]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
cbf0e5a6ccdf08e0de4288a434208ba86114f5c1
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "cpu.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/boards.h"
37 #include "migration/vmstate.h"
38
39 //#define DEBUG_UNASSIGNED
40
41 static unsigned memory_region_transaction_depth;
42 static bool memory_region_update_pending;
43 static bool ioeventfd_update_pending;
44 bool global_dirty_log;
45
46 static QTAILQ_HEAD(, MemoryListener) memory_listeners
47 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
48
49 static QTAILQ_HEAD(, AddressSpace) address_spaces
50 = QTAILQ_HEAD_INITIALIZER(address_spaces);
51
52 static GHashTable *flat_views;
53
54 typedef struct AddrRange AddrRange;
55
56 /*
57 * Note that signed integers are needed for negative offsetting in aliases
58 * (large MemoryRegion::alias_offset).
59 */
60 struct AddrRange {
61 Int128 start;
62 Int128 size;
63 };
64
65 static AddrRange addrrange_make(Int128 start, Int128 size)
66 {
67 return (AddrRange) { start, size };
68 }
69
70 static bool addrrange_equal(AddrRange r1, AddrRange r2)
71 {
72 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
73 }
74
75 static Int128 addrrange_end(AddrRange r)
76 {
77 return int128_add(r.start, r.size);
78 }
79
80 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
81 {
82 int128_addto(&range.start, delta);
83 return range;
84 }
85
86 static bool addrrange_contains(AddrRange range, Int128 addr)
87 {
88 return int128_ge(addr, range.start)
89 && int128_lt(addr, addrrange_end(range));
90 }
91
92 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
93 {
94 return addrrange_contains(r1, r2.start)
95 || addrrange_contains(r2, r1.start);
96 }
97
98 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
99 {
100 Int128 start = int128_max(r1.start, r2.start);
101 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
102 return addrrange_make(start, int128_sub(end, start));
103 }
104
105 enum ListenerDirection { Forward, Reverse };
106
107 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 do { \
109 MemoryListener *_listener; \
110 \
111 switch (_direction) { \
112 case Forward: \
113 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
114 if (_listener->_callback) { \
115 _listener->_callback(_listener, ##_args); \
116 } \
117 } \
118 break; \
119 case Reverse: \
120 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
121 if (_listener->_callback) { \
122 _listener->_callback(_listener, ##_args); \
123 } \
124 } \
125 break; \
126 default: \
127 abort(); \
128 } \
129 } while (0)
130
131 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
132 do { \
133 MemoryListener *_listener; \
134 \
135 switch (_direction) { \
136 case Forward: \
137 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
138 if (_listener->_callback) { \
139 _listener->_callback(_listener, _section, ##_args); \
140 } \
141 } \
142 break; \
143 case Reverse: \
144 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
145 if (_listener->_callback) { \
146 _listener->_callback(_listener, _section, ##_args); \
147 } \
148 } \
149 break; \
150 default: \
151 abort(); \
152 } \
153 } while (0)
154
155 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 do { \
158 MemoryRegionSection mrs = section_from_flat_range(fr, \
159 address_space_to_flatview(as)); \
160 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
161 } while(0)
162
163 struct CoalescedMemoryRange {
164 AddrRange addr;
165 QTAILQ_ENTRY(CoalescedMemoryRange) link;
166 };
167
168 struct MemoryRegionIoeventfd {
169 AddrRange addr;
170 bool match_data;
171 uint64_t data;
172 EventNotifier *e;
173 };
174
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
176 MemoryRegionIoeventfd *b)
177 {
178 if (int128_lt(a->addr.start, b->addr.start)) {
179 return true;
180 } else if (int128_gt(a->addr.start, b->addr.start)) {
181 return false;
182 } else if (int128_lt(a->addr.size, b->addr.size)) {
183 return true;
184 } else if (int128_gt(a->addr.size, b->addr.size)) {
185 return false;
186 } else if (a->match_data < b->match_data) {
187 return true;
188 } else if (a->match_data > b->match_data) {
189 return false;
190 } else if (a->match_data) {
191 if (a->data < b->data) {
192 return true;
193 } else if (a->data > b->data) {
194 return false;
195 }
196 }
197 if (a->e < b->e) {
198 return true;
199 } else if (a->e > b->e) {
200 return false;
201 }
202 return false;
203 }
204
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
206 MemoryRegionIoeventfd *b)
207 {
208 return !memory_region_ioeventfd_before(a, b)
209 && !memory_region_ioeventfd_before(b, a);
210 }
211
212 /* Range of memory in the global map. Addresses are absolute. */
213 struct FlatRange {
214 MemoryRegion *mr;
215 hwaddr offset_in_region;
216 AddrRange addr;
217 uint8_t dirty_log_mask;
218 bool romd_mode;
219 bool readonly;
220 bool nonvolatile;
221 int has_coalesced_range;
222 };
223
224 #define FOR_EACH_FLAT_RANGE(var, view) \
225 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
226
227 static inline MemoryRegionSection
228 section_from_flat_range(FlatRange *fr, FlatView *fv)
229 {
230 return (MemoryRegionSection) {
231 .mr = fr->mr,
232 .fv = fv,
233 .offset_within_region = fr->offset_in_region,
234 .size = fr->addr.size,
235 .offset_within_address_space = int128_get64(fr->addr.start),
236 .readonly = fr->readonly,
237 .nonvolatile = fr->nonvolatile,
238 };
239 }
240
241 static bool flatrange_equal(FlatRange *a, FlatRange *b)
242 {
243 return a->mr == b->mr
244 && addrrange_equal(a->addr, b->addr)
245 && a->offset_in_region == b->offset_in_region
246 && a->romd_mode == b->romd_mode
247 && a->readonly == b->readonly
248 && a->nonvolatile == b->nonvolatile;
249 }
250
251 static FlatView *flatview_new(MemoryRegion *mr_root)
252 {
253 FlatView *view;
254
255 view = g_new0(FlatView, 1);
256 view->ref = 1;
257 view->root = mr_root;
258 memory_region_ref(mr_root);
259 trace_flatview_new(view, mr_root);
260
261 return view;
262 }
263
264 /* Insert a range into a given position. Caller is responsible for maintaining
265 * sorting order.
266 */
267 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
268 {
269 if (view->nr == view->nr_allocated) {
270 view->nr_allocated = MAX(2 * view->nr, 10);
271 view->ranges = g_realloc(view->ranges,
272 view->nr_allocated * sizeof(*view->ranges));
273 }
274 memmove(view->ranges + pos + 1, view->ranges + pos,
275 (view->nr - pos) * sizeof(FlatRange));
276 view->ranges[pos] = *range;
277 memory_region_ref(range->mr);
278 ++view->nr;
279 }
280
281 static void flatview_destroy(FlatView *view)
282 {
283 int i;
284
285 trace_flatview_destroy(view, view->root);
286 if (view->dispatch) {
287 address_space_dispatch_free(view->dispatch);
288 }
289 for (i = 0; i < view->nr; i++) {
290 memory_region_unref(view->ranges[i].mr);
291 }
292 g_free(view->ranges);
293 memory_region_unref(view->root);
294 g_free(view);
295 }
296
297 static bool flatview_ref(FlatView *view)
298 {
299 return atomic_fetch_inc_nonzero(&view->ref) > 0;
300 }
301
302 void flatview_unref(FlatView *view)
303 {
304 if (atomic_fetch_dec(&view->ref) == 1) {
305 trace_flatview_destroy_rcu(view, view->root);
306 assert(view->root);
307 call_rcu(view, flatview_destroy, rcu);
308 }
309 }
310
311 static bool can_merge(FlatRange *r1, FlatRange *r2)
312 {
313 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
314 && r1->mr == r2->mr
315 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
316 r1->addr.size),
317 int128_make64(r2->offset_in_region))
318 && r1->dirty_log_mask == r2->dirty_log_mask
319 && r1->romd_mode == r2->romd_mode
320 && r1->readonly == r2->readonly
321 && r1->nonvolatile == r2->nonvolatile;
322 }
323
324 /* Attempt to simplify a view by merging adjacent ranges */
325 static void flatview_simplify(FlatView *view)
326 {
327 unsigned i, j, k;
328
329 i = 0;
330 while (i < view->nr) {
331 j = i + 1;
332 while (j < view->nr
333 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
334 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
335 ++j;
336 }
337 ++i;
338 for (k = i; k < j; k++) {
339 memory_region_unref(view->ranges[k].mr);
340 }
341 memmove(&view->ranges[i], &view->ranges[j],
342 (view->nr - j) * sizeof(view->ranges[j]));
343 view->nr -= j - i;
344 }
345 }
346
347 static bool memory_region_big_endian(MemoryRegion *mr)
348 {
349 #ifdef TARGET_WORDS_BIGENDIAN
350 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
351 #else
352 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
353 #endif
354 }
355
356 static bool memory_region_wrong_endianness(MemoryRegion *mr)
357 {
358 #ifdef TARGET_WORDS_BIGENDIAN
359 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
360 #else
361 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
362 #endif
363 }
364
365 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
366 {
367 if (memory_region_wrong_endianness(mr)) {
368 switch (size) {
369 case 1:
370 break;
371 case 2:
372 *data = bswap16(*data);
373 break;
374 case 4:
375 *data = bswap32(*data);
376 break;
377 case 8:
378 *data = bswap64(*data);
379 break;
380 default:
381 abort();
382 }
383 }
384 }
385
386 static inline void memory_region_shift_read_access(uint64_t *value,
387 signed shift,
388 uint64_t mask,
389 uint64_t tmp)
390 {
391 if (shift >= 0) {
392 *value |= (tmp & mask) << shift;
393 } else {
394 *value |= (tmp & mask) >> -shift;
395 }
396 }
397
398 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
399 signed shift,
400 uint64_t mask)
401 {
402 uint64_t tmp;
403
404 if (shift >= 0) {
405 tmp = (*value >> shift) & mask;
406 } else {
407 tmp = (*value << -shift) & mask;
408 }
409
410 return tmp;
411 }
412
413 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
414 {
415 MemoryRegion *root;
416 hwaddr abs_addr = offset;
417
418 abs_addr += mr->addr;
419 for (root = mr; root->container; ) {
420 root = root->container;
421 abs_addr += root->addr;
422 }
423
424 return abs_addr;
425 }
426
427 static int get_cpu_index(void)
428 {
429 if (current_cpu) {
430 return current_cpu->cpu_index;
431 }
432 return -1;
433 }
434
435 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
436 hwaddr addr,
437 uint64_t *value,
438 unsigned size,
439 signed shift,
440 uint64_t mask,
441 MemTxAttrs attrs)
442 {
443 uint64_t tmp;
444
445 tmp = mr->ops->read(mr->opaque, addr, size);
446 if (mr->subpage) {
447 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
448 } else if (mr == &io_mem_notdirty) {
449 /* Accesses to code which has previously been translated into a TB show
450 * up in the MMIO path, as accesses to the io_mem_notdirty
451 * MemoryRegion. */
452 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
453 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
454 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
455 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
456 }
457 memory_region_shift_read_access(value, shift, mask, tmp);
458 return MEMTX_OK;
459 }
460
461 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
462 hwaddr addr,
463 uint64_t *value,
464 unsigned size,
465 signed shift,
466 uint64_t mask,
467 MemTxAttrs attrs)
468 {
469 uint64_t tmp = 0;
470 MemTxResult r;
471
472 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
473 if (mr->subpage) {
474 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
475 } else if (mr == &io_mem_notdirty) {
476 /* Accesses to code which has previously been translated into a TB show
477 * up in the MMIO path, as accesses to the io_mem_notdirty
478 * MemoryRegion. */
479 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
480 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
481 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
482 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
483 }
484 memory_region_shift_read_access(value, shift, mask, tmp);
485 return r;
486 }
487
488 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
489 hwaddr addr,
490 uint64_t *value,
491 unsigned size,
492 signed shift,
493 uint64_t mask,
494 MemTxAttrs attrs)
495 {
496 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
497
498 if (mr->subpage) {
499 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
500 } else if (mr == &io_mem_notdirty) {
501 /* Accesses to code which has previously been translated into a TB show
502 * up in the MMIO path, as accesses to the io_mem_notdirty
503 * MemoryRegion. */
504 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
505 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
506 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
507 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
508 }
509 mr->ops->write(mr->opaque, addr, tmp, size);
510 return MEMTX_OK;
511 }
512
513 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
514 hwaddr addr,
515 uint64_t *value,
516 unsigned size,
517 signed shift,
518 uint64_t mask,
519 MemTxAttrs attrs)
520 {
521 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
522
523 if (mr->subpage) {
524 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
525 } else if (mr == &io_mem_notdirty) {
526 /* Accesses to code which has previously been translated into a TB show
527 * up in the MMIO path, as accesses to the io_mem_notdirty
528 * MemoryRegion. */
529 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
530 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
531 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
532 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
533 }
534 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
535 }
536
537 static MemTxResult access_with_adjusted_size(hwaddr addr,
538 uint64_t *value,
539 unsigned size,
540 unsigned access_size_min,
541 unsigned access_size_max,
542 MemTxResult (*access_fn)
543 (MemoryRegion *mr,
544 hwaddr addr,
545 uint64_t *value,
546 unsigned size,
547 signed shift,
548 uint64_t mask,
549 MemTxAttrs attrs),
550 MemoryRegion *mr,
551 MemTxAttrs attrs)
552 {
553 uint64_t access_mask;
554 unsigned access_size;
555 unsigned i;
556 MemTxResult r = MEMTX_OK;
557
558 if (!access_size_min) {
559 access_size_min = 1;
560 }
561 if (!access_size_max) {
562 access_size_max = 4;
563 }
564
565 /* FIXME: support unaligned access? */
566 access_size = MAX(MIN(size, access_size_max), access_size_min);
567 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
568 if (memory_region_big_endian(mr)) {
569 for (i = 0; i < size; i += access_size) {
570 r |= access_fn(mr, addr + i, value, access_size,
571 (size - access_size - i) * 8, access_mask, attrs);
572 }
573 } else {
574 for (i = 0; i < size; i += access_size) {
575 r |= access_fn(mr, addr + i, value, access_size, i * 8,
576 access_mask, attrs);
577 }
578 }
579 return r;
580 }
581
582 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
583 {
584 AddressSpace *as;
585
586 while (mr->container) {
587 mr = mr->container;
588 }
589 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
590 if (mr == as->root) {
591 return as;
592 }
593 }
594 return NULL;
595 }
596
597 /* Render a memory region into the global view. Ranges in @view obscure
598 * ranges in @mr.
599 */
600 static void render_memory_region(FlatView *view,
601 MemoryRegion *mr,
602 Int128 base,
603 AddrRange clip,
604 bool readonly,
605 bool nonvolatile)
606 {
607 MemoryRegion *subregion;
608 unsigned i;
609 hwaddr offset_in_region;
610 Int128 remain;
611 Int128 now;
612 FlatRange fr;
613 AddrRange tmp;
614
615 if (!mr->enabled) {
616 return;
617 }
618
619 int128_addto(&base, int128_make64(mr->addr));
620 readonly |= mr->readonly;
621 nonvolatile |= mr->nonvolatile;
622
623 tmp = addrrange_make(base, mr->size);
624
625 if (!addrrange_intersects(tmp, clip)) {
626 return;
627 }
628
629 clip = addrrange_intersection(tmp, clip);
630
631 if (mr->alias) {
632 int128_subfrom(&base, int128_make64(mr->alias->addr));
633 int128_subfrom(&base, int128_make64(mr->alias_offset));
634 render_memory_region(view, mr->alias, base, clip,
635 readonly, nonvolatile);
636 return;
637 }
638
639 /* Render subregions in priority order. */
640 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
641 render_memory_region(view, subregion, base, clip,
642 readonly, nonvolatile);
643 }
644
645 if (!mr->terminates) {
646 return;
647 }
648
649 offset_in_region = int128_get64(int128_sub(clip.start, base));
650 base = clip.start;
651 remain = clip.size;
652
653 fr.mr = mr;
654 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
655 fr.romd_mode = mr->romd_mode;
656 fr.readonly = readonly;
657 fr.nonvolatile = nonvolatile;
658 fr.has_coalesced_range = 0;
659
660 /* Render the region itself into any gaps left by the current view. */
661 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
662 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
663 continue;
664 }
665 if (int128_lt(base, view->ranges[i].addr.start)) {
666 now = int128_min(remain,
667 int128_sub(view->ranges[i].addr.start, base));
668 fr.offset_in_region = offset_in_region;
669 fr.addr = addrrange_make(base, now);
670 flatview_insert(view, i, &fr);
671 ++i;
672 int128_addto(&base, now);
673 offset_in_region += int128_get64(now);
674 int128_subfrom(&remain, now);
675 }
676 now = int128_sub(int128_min(int128_add(base, remain),
677 addrrange_end(view->ranges[i].addr)),
678 base);
679 int128_addto(&base, now);
680 offset_in_region += int128_get64(now);
681 int128_subfrom(&remain, now);
682 }
683 if (int128_nz(remain)) {
684 fr.offset_in_region = offset_in_region;
685 fr.addr = addrrange_make(base, remain);
686 flatview_insert(view, i, &fr);
687 }
688 }
689
690 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
691 {
692 while (mr->enabled) {
693 if (mr->alias) {
694 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
695 /* The alias is included in its entirety. Use it as
696 * the "real" root, so that we can share more FlatViews.
697 */
698 mr = mr->alias;
699 continue;
700 }
701 } else if (!mr->terminates) {
702 unsigned int found = 0;
703 MemoryRegion *child, *next = NULL;
704 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
705 if (child->enabled) {
706 if (++found > 1) {
707 next = NULL;
708 break;
709 }
710 if (!child->addr && int128_ge(mr->size, child->size)) {
711 /* A child is included in its entirety. If it's the only
712 * enabled one, use it in the hope of finding an alias down the
713 * way. This will also let us share FlatViews.
714 */
715 next = child;
716 }
717 }
718 }
719 if (found == 0) {
720 return NULL;
721 }
722 if (next) {
723 mr = next;
724 continue;
725 }
726 }
727
728 return mr;
729 }
730
731 return NULL;
732 }
733
734 /* Render a memory topology into a list of disjoint absolute ranges. */
735 static FlatView *generate_memory_topology(MemoryRegion *mr)
736 {
737 int i;
738 FlatView *view;
739
740 view = flatview_new(mr);
741
742 if (mr) {
743 render_memory_region(view, mr, int128_zero(),
744 addrrange_make(int128_zero(), int128_2_64()),
745 false, false);
746 }
747 flatview_simplify(view);
748
749 view->dispatch = address_space_dispatch_new(view);
750 for (i = 0; i < view->nr; i++) {
751 MemoryRegionSection mrs =
752 section_from_flat_range(&view->ranges[i], view);
753 flatview_add_to_dispatch(view, &mrs);
754 }
755 address_space_dispatch_compact(view->dispatch);
756 g_hash_table_replace(flat_views, mr, view);
757
758 return view;
759 }
760
761 static void address_space_add_del_ioeventfds(AddressSpace *as,
762 MemoryRegionIoeventfd *fds_new,
763 unsigned fds_new_nb,
764 MemoryRegionIoeventfd *fds_old,
765 unsigned fds_old_nb)
766 {
767 unsigned iold, inew;
768 MemoryRegionIoeventfd *fd;
769 MemoryRegionSection section;
770
771 /* Generate a symmetric difference of the old and new fd sets, adding
772 * and deleting as necessary.
773 */
774
775 iold = inew = 0;
776 while (iold < fds_old_nb || inew < fds_new_nb) {
777 if (iold < fds_old_nb
778 && (inew == fds_new_nb
779 || memory_region_ioeventfd_before(&fds_old[iold],
780 &fds_new[inew]))) {
781 fd = &fds_old[iold];
782 section = (MemoryRegionSection) {
783 .fv = address_space_to_flatview(as),
784 .offset_within_address_space = int128_get64(fd->addr.start),
785 .size = fd->addr.size,
786 };
787 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
788 fd->match_data, fd->data, fd->e);
789 ++iold;
790 } else if (inew < fds_new_nb
791 && (iold == fds_old_nb
792 || memory_region_ioeventfd_before(&fds_new[inew],
793 &fds_old[iold]))) {
794 fd = &fds_new[inew];
795 section = (MemoryRegionSection) {
796 .fv = address_space_to_flatview(as),
797 .offset_within_address_space = int128_get64(fd->addr.start),
798 .size = fd->addr.size,
799 };
800 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
801 fd->match_data, fd->data, fd->e);
802 ++inew;
803 } else {
804 ++iold;
805 ++inew;
806 }
807 }
808 }
809
810 FlatView *address_space_get_flatview(AddressSpace *as)
811 {
812 FlatView *view;
813
814 rcu_read_lock();
815 do {
816 view = address_space_to_flatview(as);
817 /* If somebody has replaced as->current_map concurrently,
818 * flatview_ref returns false.
819 */
820 } while (!flatview_ref(view));
821 rcu_read_unlock();
822 return view;
823 }
824
825 static void address_space_update_ioeventfds(AddressSpace *as)
826 {
827 FlatView *view;
828 FlatRange *fr;
829 unsigned ioeventfd_nb = 0;
830 MemoryRegionIoeventfd *ioeventfds = NULL;
831 AddrRange tmp;
832 unsigned i;
833
834 view = address_space_get_flatview(as);
835 FOR_EACH_FLAT_RANGE(fr, view) {
836 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
837 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
838 int128_sub(fr->addr.start,
839 int128_make64(fr->offset_in_region)));
840 if (addrrange_intersects(fr->addr, tmp)) {
841 ++ioeventfd_nb;
842 ioeventfds = g_realloc(ioeventfds,
843 ioeventfd_nb * sizeof(*ioeventfds));
844 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
845 ioeventfds[ioeventfd_nb-1].addr = tmp;
846 }
847 }
848 }
849
850 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
851 as->ioeventfds, as->ioeventfd_nb);
852
853 g_free(as->ioeventfds);
854 as->ioeventfds = ioeventfds;
855 as->ioeventfd_nb = ioeventfd_nb;
856 flatview_unref(view);
857 }
858
859 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
860 {
861 if (!fr->has_coalesced_range) {
862 return;
863 }
864
865 if (--fr->has_coalesced_range > 0) {
866 return;
867 }
868
869 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
870 int128_get64(fr->addr.start),
871 int128_get64(fr->addr.size));
872 }
873
874 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
875 {
876 MemoryRegion *mr = fr->mr;
877 CoalescedMemoryRange *cmr;
878 AddrRange tmp;
879
880 if (QTAILQ_EMPTY(&mr->coalesced)) {
881 return;
882 }
883
884 if (fr->has_coalesced_range++) {
885 return;
886 }
887
888 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
889 tmp = addrrange_shift(cmr->addr,
890 int128_sub(fr->addr.start,
891 int128_make64(fr->offset_in_region)));
892 if (!addrrange_intersects(tmp, fr->addr)) {
893 continue;
894 }
895 tmp = addrrange_intersection(tmp, fr->addr);
896 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
897 int128_get64(tmp.start),
898 int128_get64(tmp.size));
899 }
900 }
901
902 static void address_space_update_topology_pass(AddressSpace *as,
903 const FlatView *old_view,
904 const FlatView *new_view,
905 bool adding)
906 {
907 unsigned iold, inew;
908 FlatRange *frold, *frnew;
909
910 /* Generate a symmetric difference of the old and new memory maps.
911 * Kill ranges in the old map, and instantiate ranges in the new map.
912 */
913 iold = inew = 0;
914 while (iold < old_view->nr || inew < new_view->nr) {
915 if (iold < old_view->nr) {
916 frold = &old_view->ranges[iold];
917 } else {
918 frold = NULL;
919 }
920 if (inew < new_view->nr) {
921 frnew = &new_view->ranges[inew];
922 } else {
923 frnew = NULL;
924 }
925
926 if (frold
927 && (!frnew
928 || int128_lt(frold->addr.start, frnew->addr.start)
929 || (int128_eq(frold->addr.start, frnew->addr.start)
930 && !flatrange_equal(frold, frnew)))) {
931 /* In old but not in new, or in both but attributes changed. */
932
933 if (!adding) {
934 flat_range_coalesced_io_del(frold, as);
935 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
936 }
937
938 ++iold;
939 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
940 /* In both and unchanged (except logging may have changed) */
941
942 if (adding) {
943 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
944 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
945 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
946 frold->dirty_log_mask,
947 frnew->dirty_log_mask);
948 }
949 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
950 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
951 frold->dirty_log_mask,
952 frnew->dirty_log_mask);
953 }
954 }
955
956 ++iold;
957 ++inew;
958 } else {
959 /* In new */
960
961 if (adding) {
962 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
963 flat_range_coalesced_io_add(frnew, as);
964 }
965
966 ++inew;
967 }
968 }
969 }
970
971 static void flatviews_init(void)
972 {
973 static FlatView *empty_view;
974
975 if (flat_views) {
976 return;
977 }
978
979 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
980 (GDestroyNotify) flatview_unref);
981 if (!empty_view) {
982 empty_view = generate_memory_topology(NULL);
983 /* We keep it alive forever in the global variable. */
984 flatview_ref(empty_view);
985 } else {
986 g_hash_table_replace(flat_views, NULL, empty_view);
987 flatview_ref(empty_view);
988 }
989 }
990
991 static void flatviews_reset(void)
992 {
993 AddressSpace *as;
994
995 if (flat_views) {
996 g_hash_table_unref(flat_views);
997 flat_views = NULL;
998 }
999 flatviews_init();
1000
1001 /* Render unique FVs */
1002 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1003 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1004
1005 if (g_hash_table_lookup(flat_views, physmr)) {
1006 continue;
1007 }
1008
1009 generate_memory_topology(physmr);
1010 }
1011 }
1012
1013 static void address_space_set_flatview(AddressSpace *as)
1014 {
1015 FlatView *old_view = address_space_to_flatview(as);
1016 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1017 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1018
1019 assert(new_view);
1020
1021 if (old_view == new_view) {
1022 return;
1023 }
1024
1025 if (old_view) {
1026 flatview_ref(old_view);
1027 }
1028
1029 flatview_ref(new_view);
1030
1031 if (!QTAILQ_EMPTY(&as->listeners)) {
1032 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1033
1034 if (!old_view2) {
1035 old_view2 = &tmpview;
1036 }
1037 address_space_update_topology_pass(as, old_view2, new_view, false);
1038 address_space_update_topology_pass(as, old_view2, new_view, true);
1039 }
1040
1041 /* Writes are protected by the BQL. */
1042 atomic_rcu_set(&as->current_map, new_view);
1043 if (old_view) {
1044 flatview_unref(old_view);
1045 }
1046
1047 /* Note that all the old MemoryRegions are still alive up to this
1048 * point. This relieves most MemoryListeners from the need to
1049 * ref/unref the MemoryRegions they get---unless they use them
1050 * outside the iothread mutex, in which case precise reference
1051 * counting is necessary.
1052 */
1053 if (old_view) {
1054 flatview_unref(old_view);
1055 }
1056 }
1057
1058 static void address_space_update_topology(AddressSpace *as)
1059 {
1060 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1061
1062 flatviews_init();
1063 if (!g_hash_table_lookup(flat_views, physmr)) {
1064 generate_memory_topology(physmr);
1065 }
1066 address_space_set_flatview(as);
1067 }
1068
1069 void memory_region_transaction_begin(void)
1070 {
1071 qemu_flush_coalesced_mmio_buffer();
1072 ++memory_region_transaction_depth;
1073 }
1074
1075 void memory_region_transaction_commit(void)
1076 {
1077 AddressSpace *as;
1078
1079 assert(memory_region_transaction_depth);
1080 assert(qemu_mutex_iothread_locked());
1081
1082 --memory_region_transaction_depth;
1083 if (!memory_region_transaction_depth) {
1084 if (memory_region_update_pending) {
1085 flatviews_reset();
1086
1087 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1088
1089 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1090 address_space_set_flatview(as);
1091 address_space_update_ioeventfds(as);
1092 }
1093 memory_region_update_pending = false;
1094 ioeventfd_update_pending = false;
1095 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1096 } else if (ioeventfd_update_pending) {
1097 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1098 address_space_update_ioeventfds(as);
1099 }
1100 ioeventfd_update_pending = false;
1101 }
1102 }
1103 }
1104
1105 static void memory_region_destructor_none(MemoryRegion *mr)
1106 {
1107 }
1108
1109 static void memory_region_destructor_ram(MemoryRegion *mr)
1110 {
1111 qemu_ram_free(mr->ram_block);
1112 }
1113
1114 static bool memory_region_need_escape(char c)
1115 {
1116 return c == '/' || c == '[' || c == '\\' || c == ']';
1117 }
1118
1119 static char *memory_region_escape_name(const char *name)
1120 {
1121 const char *p;
1122 char *escaped, *q;
1123 uint8_t c;
1124 size_t bytes = 0;
1125
1126 for (p = name; *p; p++) {
1127 bytes += memory_region_need_escape(*p) ? 4 : 1;
1128 }
1129 if (bytes == p - name) {
1130 return g_memdup(name, bytes + 1);
1131 }
1132
1133 escaped = g_malloc(bytes + 1);
1134 for (p = name, q = escaped; *p; p++) {
1135 c = *p;
1136 if (unlikely(memory_region_need_escape(c))) {
1137 *q++ = '\\';
1138 *q++ = 'x';
1139 *q++ = "0123456789abcdef"[c >> 4];
1140 c = "0123456789abcdef"[c & 15];
1141 }
1142 *q++ = c;
1143 }
1144 *q = 0;
1145 return escaped;
1146 }
1147
1148 static void memory_region_do_init(MemoryRegion *mr,
1149 Object *owner,
1150 const char *name,
1151 uint64_t size)
1152 {
1153 mr->size = int128_make64(size);
1154 if (size == UINT64_MAX) {
1155 mr->size = int128_2_64();
1156 }
1157 mr->name = g_strdup(name);
1158 mr->owner = owner;
1159 mr->ram_block = NULL;
1160
1161 if (name) {
1162 char *escaped_name = memory_region_escape_name(name);
1163 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1164
1165 if (!owner) {
1166 owner = container_get(qdev_get_machine(), "/unattached");
1167 }
1168
1169 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1170 object_unref(OBJECT(mr));
1171 g_free(name_array);
1172 g_free(escaped_name);
1173 }
1174 }
1175
1176 void memory_region_init(MemoryRegion *mr,
1177 Object *owner,
1178 const char *name,
1179 uint64_t size)
1180 {
1181 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1182 memory_region_do_init(mr, owner, name, size);
1183 }
1184
1185 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1186 void *opaque, Error **errp)
1187 {
1188 MemoryRegion *mr = MEMORY_REGION(obj);
1189 uint64_t value = mr->addr;
1190
1191 visit_type_uint64(v, name, &value, errp);
1192 }
1193
1194 static void memory_region_get_container(Object *obj, Visitor *v,
1195 const char *name, void *opaque,
1196 Error **errp)
1197 {
1198 MemoryRegion *mr = MEMORY_REGION(obj);
1199 gchar *path = (gchar *)"";
1200
1201 if (mr->container) {
1202 path = object_get_canonical_path(OBJECT(mr->container));
1203 }
1204 visit_type_str(v, name, &path, errp);
1205 if (mr->container) {
1206 g_free(path);
1207 }
1208 }
1209
1210 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1211 const char *part)
1212 {
1213 MemoryRegion *mr = MEMORY_REGION(obj);
1214
1215 return OBJECT(mr->container);
1216 }
1217
1218 static void memory_region_get_priority(Object *obj, Visitor *v,
1219 const char *name, void *opaque,
1220 Error **errp)
1221 {
1222 MemoryRegion *mr = MEMORY_REGION(obj);
1223 int32_t value = mr->priority;
1224
1225 visit_type_int32(v, name, &value, errp);
1226 }
1227
1228 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1229 void *opaque, Error **errp)
1230 {
1231 MemoryRegion *mr = MEMORY_REGION(obj);
1232 uint64_t value = memory_region_size(mr);
1233
1234 visit_type_uint64(v, name, &value, errp);
1235 }
1236
1237 static void memory_region_initfn(Object *obj)
1238 {
1239 MemoryRegion *mr = MEMORY_REGION(obj);
1240 ObjectProperty *op;
1241
1242 mr->ops = &unassigned_mem_ops;
1243 mr->enabled = true;
1244 mr->romd_mode = true;
1245 mr->global_locking = true;
1246 mr->destructor = memory_region_destructor_none;
1247 QTAILQ_INIT(&mr->subregions);
1248 QTAILQ_INIT(&mr->coalesced);
1249
1250 op = object_property_add(OBJECT(mr), "container",
1251 "link<" TYPE_MEMORY_REGION ">",
1252 memory_region_get_container,
1253 NULL, /* memory_region_set_container */
1254 NULL, NULL, &error_abort);
1255 op->resolve = memory_region_resolve_container;
1256
1257 object_property_add(OBJECT(mr), "addr", "uint64",
1258 memory_region_get_addr,
1259 NULL, /* memory_region_set_addr */
1260 NULL, NULL, &error_abort);
1261 object_property_add(OBJECT(mr), "priority", "uint32",
1262 memory_region_get_priority,
1263 NULL, /* memory_region_set_priority */
1264 NULL, NULL, &error_abort);
1265 object_property_add(OBJECT(mr), "size", "uint64",
1266 memory_region_get_size,
1267 NULL, /* memory_region_set_size, */
1268 NULL, NULL, &error_abort);
1269 }
1270
1271 static void iommu_memory_region_initfn(Object *obj)
1272 {
1273 MemoryRegion *mr = MEMORY_REGION(obj);
1274
1275 mr->is_iommu = true;
1276 }
1277
1278 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1279 unsigned size)
1280 {
1281 #ifdef DEBUG_UNASSIGNED
1282 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1283 #endif
1284 if (current_cpu != NULL) {
1285 bool is_exec = current_cpu->mem_io_access_type == MMU_INST_FETCH;
1286 cpu_unassigned_access(current_cpu, addr, false, is_exec, 0, size);
1287 }
1288 return 0;
1289 }
1290
1291 static void unassigned_mem_write(void *opaque, hwaddr addr,
1292 uint64_t val, unsigned size)
1293 {
1294 #ifdef DEBUG_UNASSIGNED
1295 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1296 #endif
1297 if (current_cpu != NULL) {
1298 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1299 }
1300 }
1301
1302 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1303 unsigned size, bool is_write,
1304 MemTxAttrs attrs)
1305 {
1306 return false;
1307 }
1308
1309 const MemoryRegionOps unassigned_mem_ops = {
1310 .valid.accepts = unassigned_mem_accepts,
1311 .endianness = DEVICE_NATIVE_ENDIAN,
1312 };
1313
1314 static uint64_t memory_region_ram_device_read(void *opaque,
1315 hwaddr addr, unsigned size)
1316 {
1317 MemoryRegion *mr = opaque;
1318 uint64_t data = (uint64_t)~0;
1319
1320 switch (size) {
1321 case 1:
1322 data = *(uint8_t *)(mr->ram_block->host + addr);
1323 break;
1324 case 2:
1325 data = *(uint16_t *)(mr->ram_block->host + addr);
1326 break;
1327 case 4:
1328 data = *(uint32_t *)(mr->ram_block->host + addr);
1329 break;
1330 case 8:
1331 data = *(uint64_t *)(mr->ram_block->host + addr);
1332 break;
1333 }
1334
1335 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1336
1337 return data;
1338 }
1339
1340 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1341 uint64_t data, unsigned size)
1342 {
1343 MemoryRegion *mr = opaque;
1344
1345 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1346
1347 switch (size) {
1348 case 1:
1349 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1350 break;
1351 case 2:
1352 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1353 break;
1354 case 4:
1355 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1356 break;
1357 case 8:
1358 *(uint64_t *)(mr->ram_block->host + addr) = data;
1359 break;
1360 }
1361 }
1362
1363 static const MemoryRegionOps ram_device_mem_ops = {
1364 .read = memory_region_ram_device_read,
1365 .write = memory_region_ram_device_write,
1366 .endianness = DEVICE_HOST_ENDIAN,
1367 .valid = {
1368 .min_access_size = 1,
1369 .max_access_size = 8,
1370 .unaligned = true,
1371 },
1372 .impl = {
1373 .min_access_size = 1,
1374 .max_access_size = 8,
1375 .unaligned = true,
1376 },
1377 };
1378
1379 bool memory_region_access_valid(MemoryRegion *mr,
1380 hwaddr addr,
1381 unsigned size,
1382 bool is_write,
1383 MemTxAttrs attrs)
1384 {
1385 int access_size_min, access_size_max;
1386 int access_size, i;
1387
1388 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1389 return false;
1390 }
1391
1392 if (!mr->ops->valid.accepts) {
1393 return true;
1394 }
1395
1396 access_size_min = mr->ops->valid.min_access_size;
1397 if (!mr->ops->valid.min_access_size) {
1398 access_size_min = 1;
1399 }
1400
1401 access_size_max = mr->ops->valid.max_access_size;
1402 if (!mr->ops->valid.max_access_size) {
1403 access_size_max = 4;
1404 }
1405
1406 access_size = MAX(MIN(size, access_size_max), access_size_min);
1407 for (i = 0; i < size; i += access_size) {
1408 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1409 is_write, attrs)) {
1410 return false;
1411 }
1412 }
1413
1414 return true;
1415 }
1416
1417 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1418 hwaddr addr,
1419 uint64_t *pval,
1420 unsigned size,
1421 MemTxAttrs attrs)
1422 {
1423 *pval = 0;
1424
1425 if (mr->ops->read) {
1426 return access_with_adjusted_size(addr, pval, size,
1427 mr->ops->impl.min_access_size,
1428 mr->ops->impl.max_access_size,
1429 memory_region_read_accessor,
1430 mr, attrs);
1431 } else {
1432 return access_with_adjusted_size(addr, pval, size,
1433 mr->ops->impl.min_access_size,
1434 mr->ops->impl.max_access_size,
1435 memory_region_read_with_attrs_accessor,
1436 mr, attrs);
1437 }
1438 }
1439
1440 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1441 hwaddr addr,
1442 uint64_t *pval,
1443 unsigned size,
1444 MemTxAttrs attrs)
1445 {
1446 MemTxResult r;
1447
1448 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1449 *pval = unassigned_mem_read(mr, addr, size);
1450 return MEMTX_DECODE_ERROR;
1451 }
1452
1453 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1454 adjust_endianness(mr, pval, size);
1455 return r;
1456 }
1457
1458 /* Return true if an eventfd was signalled */
1459 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1460 hwaddr addr,
1461 uint64_t data,
1462 unsigned size,
1463 MemTxAttrs attrs)
1464 {
1465 MemoryRegionIoeventfd ioeventfd = {
1466 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1467 .data = data,
1468 };
1469 unsigned i;
1470
1471 for (i = 0; i < mr->ioeventfd_nb; i++) {
1472 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1473 ioeventfd.e = mr->ioeventfds[i].e;
1474
1475 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1476 event_notifier_set(ioeventfd.e);
1477 return true;
1478 }
1479 }
1480
1481 return false;
1482 }
1483
1484 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1485 hwaddr addr,
1486 uint64_t data,
1487 unsigned size,
1488 MemTxAttrs attrs)
1489 {
1490 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1491 unassigned_mem_write(mr, addr, data, size);
1492 return MEMTX_DECODE_ERROR;
1493 }
1494
1495 adjust_endianness(mr, &data, size);
1496
1497 if ((!kvm_eventfds_enabled()) &&
1498 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1499 return MEMTX_OK;
1500 }
1501
1502 if (mr->ops->write) {
1503 return access_with_adjusted_size(addr, &data, size,
1504 mr->ops->impl.min_access_size,
1505 mr->ops->impl.max_access_size,
1506 memory_region_write_accessor, mr,
1507 attrs);
1508 } else {
1509 return
1510 access_with_adjusted_size(addr, &data, size,
1511 mr->ops->impl.min_access_size,
1512 mr->ops->impl.max_access_size,
1513 memory_region_write_with_attrs_accessor,
1514 mr, attrs);
1515 }
1516 }
1517
1518 void memory_region_init_io(MemoryRegion *mr,
1519 Object *owner,
1520 const MemoryRegionOps *ops,
1521 void *opaque,
1522 const char *name,
1523 uint64_t size)
1524 {
1525 memory_region_init(mr, owner, name, size);
1526 mr->ops = ops ? ops : &unassigned_mem_ops;
1527 mr->opaque = opaque;
1528 mr->terminates = true;
1529 }
1530
1531 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1532 Object *owner,
1533 const char *name,
1534 uint64_t size,
1535 Error **errp)
1536 {
1537 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1538 }
1539
1540 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1541 Object *owner,
1542 const char *name,
1543 uint64_t size,
1544 bool share,
1545 Error **errp)
1546 {
1547 Error *err = NULL;
1548 memory_region_init(mr, owner, name, size);
1549 mr->ram = true;
1550 mr->terminates = true;
1551 mr->destructor = memory_region_destructor_ram;
1552 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1553 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1554 if (err) {
1555 mr->size = int128_zero();
1556 object_unparent(OBJECT(mr));
1557 error_propagate(errp, err);
1558 }
1559 }
1560
1561 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1562 Object *owner,
1563 const char *name,
1564 uint64_t size,
1565 uint64_t max_size,
1566 void (*resized)(const char*,
1567 uint64_t length,
1568 void *host),
1569 Error **errp)
1570 {
1571 Error *err = NULL;
1572 memory_region_init(mr, owner, name, size);
1573 mr->ram = true;
1574 mr->terminates = true;
1575 mr->destructor = memory_region_destructor_ram;
1576 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1577 mr, &err);
1578 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1579 if (err) {
1580 mr->size = int128_zero();
1581 object_unparent(OBJECT(mr));
1582 error_propagate(errp, err);
1583 }
1584 }
1585
1586 #ifdef CONFIG_POSIX
1587 void memory_region_init_ram_from_file(MemoryRegion *mr,
1588 struct Object *owner,
1589 const char *name,
1590 uint64_t size,
1591 uint64_t align,
1592 uint32_t ram_flags,
1593 const char *path,
1594 Error **errp)
1595 {
1596 Error *err = NULL;
1597 memory_region_init(mr, owner, name, size);
1598 mr->ram = true;
1599 mr->terminates = true;
1600 mr->destructor = memory_region_destructor_ram;
1601 mr->align = align;
1602 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1603 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1604 if (err) {
1605 mr->size = int128_zero();
1606 object_unparent(OBJECT(mr));
1607 error_propagate(errp, err);
1608 }
1609 }
1610
1611 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1612 struct Object *owner,
1613 const char *name,
1614 uint64_t size,
1615 bool share,
1616 int fd,
1617 Error **errp)
1618 {
1619 Error *err = NULL;
1620 memory_region_init(mr, owner, name, size);
1621 mr->ram = true;
1622 mr->terminates = true;
1623 mr->destructor = memory_region_destructor_ram;
1624 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1625 share ? RAM_SHARED : 0,
1626 fd, &err);
1627 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1628 if (err) {
1629 mr->size = int128_zero();
1630 object_unparent(OBJECT(mr));
1631 error_propagate(errp, err);
1632 }
1633 }
1634 #endif
1635
1636 void memory_region_init_ram_ptr(MemoryRegion *mr,
1637 Object *owner,
1638 const char *name,
1639 uint64_t size,
1640 void *ptr)
1641 {
1642 memory_region_init(mr, owner, name, size);
1643 mr->ram = true;
1644 mr->terminates = true;
1645 mr->destructor = memory_region_destructor_ram;
1646 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1647
1648 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1649 assert(ptr != NULL);
1650 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1651 }
1652
1653 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1654 Object *owner,
1655 const char *name,
1656 uint64_t size,
1657 void *ptr)
1658 {
1659 memory_region_init(mr, owner, name, size);
1660 mr->ram = true;
1661 mr->terminates = true;
1662 mr->ram_device = true;
1663 mr->ops = &ram_device_mem_ops;
1664 mr->opaque = mr;
1665 mr->destructor = memory_region_destructor_ram;
1666 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1667 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1668 assert(ptr != NULL);
1669 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1670 }
1671
1672 void memory_region_init_alias(MemoryRegion *mr,
1673 Object *owner,
1674 const char *name,
1675 MemoryRegion *orig,
1676 hwaddr offset,
1677 uint64_t size)
1678 {
1679 memory_region_init(mr, owner, name, size);
1680 mr->alias = orig;
1681 mr->alias_offset = offset;
1682 }
1683
1684 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1685 struct Object *owner,
1686 const char *name,
1687 uint64_t size,
1688 Error **errp)
1689 {
1690 Error *err = NULL;
1691 memory_region_init(mr, owner, name, size);
1692 mr->ram = true;
1693 mr->readonly = true;
1694 mr->terminates = true;
1695 mr->destructor = memory_region_destructor_ram;
1696 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1697 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1698 if (err) {
1699 mr->size = int128_zero();
1700 object_unparent(OBJECT(mr));
1701 error_propagate(errp, err);
1702 }
1703 }
1704
1705 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1706 Object *owner,
1707 const MemoryRegionOps *ops,
1708 void *opaque,
1709 const char *name,
1710 uint64_t size,
1711 Error **errp)
1712 {
1713 Error *err = NULL;
1714 assert(ops);
1715 memory_region_init(mr, owner, name, size);
1716 mr->ops = ops;
1717 mr->opaque = opaque;
1718 mr->terminates = true;
1719 mr->rom_device = true;
1720 mr->destructor = memory_region_destructor_ram;
1721 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1722 if (err) {
1723 mr->size = int128_zero();
1724 object_unparent(OBJECT(mr));
1725 error_propagate(errp, err);
1726 }
1727 }
1728
1729 void memory_region_init_iommu(void *_iommu_mr,
1730 size_t instance_size,
1731 const char *mrtypename,
1732 Object *owner,
1733 const char *name,
1734 uint64_t size)
1735 {
1736 struct IOMMUMemoryRegion *iommu_mr;
1737 struct MemoryRegion *mr;
1738
1739 object_initialize(_iommu_mr, instance_size, mrtypename);
1740 mr = MEMORY_REGION(_iommu_mr);
1741 memory_region_do_init(mr, owner, name, size);
1742 iommu_mr = IOMMU_MEMORY_REGION(mr);
1743 mr->terminates = true; /* then re-forwards */
1744 QLIST_INIT(&iommu_mr->iommu_notify);
1745 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1746 }
1747
1748 static void memory_region_finalize(Object *obj)
1749 {
1750 MemoryRegion *mr = MEMORY_REGION(obj);
1751
1752 assert(!mr->container);
1753
1754 /* We know the region is not visible in any address space (it
1755 * does not have a container and cannot be a root either because
1756 * it has no references, so we can blindly clear mr->enabled.
1757 * memory_region_set_enabled instead could trigger a transaction
1758 * and cause an infinite loop.
1759 */
1760 mr->enabled = false;
1761 memory_region_transaction_begin();
1762 while (!QTAILQ_EMPTY(&mr->subregions)) {
1763 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1764 memory_region_del_subregion(mr, subregion);
1765 }
1766 memory_region_transaction_commit();
1767
1768 mr->destructor(mr);
1769 memory_region_clear_coalescing(mr);
1770 g_free((char *)mr->name);
1771 g_free(mr->ioeventfds);
1772 }
1773
1774 Object *memory_region_owner(MemoryRegion *mr)
1775 {
1776 Object *obj = OBJECT(mr);
1777 return obj->parent;
1778 }
1779
1780 void memory_region_ref(MemoryRegion *mr)
1781 {
1782 /* MMIO callbacks most likely will access data that belongs
1783 * to the owner, hence the need to ref/unref the owner whenever
1784 * the memory region is in use.
1785 *
1786 * The memory region is a child of its owner. As long as the
1787 * owner doesn't call unparent itself on the memory region,
1788 * ref-ing the owner will also keep the memory region alive.
1789 * Memory regions without an owner are supposed to never go away;
1790 * we do not ref/unref them because it slows down DMA sensibly.
1791 */
1792 if (mr && mr->owner) {
1793 object_ref(mr->owner);
1794 }
1795 }
1796
1797 void memory_region_unref(MemoryRegion *mr)
1798 {
1799 if (mr && mr->owner) {
1800 object_unref(mr->owner);
1801 }
1802 }
1803
1804 uint64_t memory_region_size(MemoryRegion *mr)
1805 {
1806 if (int128_eq(mr->size, int128_2_64())) {
1807 return UINT64_MAX;
1808 }
1809 return int128_get64(mr->size);
1810 }
1811
1812 const char *memory_region_name(const MemoryRegion *mr)
1813 {
1814 if (!mr->name) {
1815 ((MemoryRegion *)mr)->name =
1816 object_get_canonical_path_component(OBJECT(mr));
1817 }
1818 return mr->name;
1819 }
1820
1821 bool memory_region_is_ram_device(MemoryRegion *mr)
1822 {
1823 return mr->ram_device;
1824 }
1825
1826 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1827 {
1828 uint8_t mask = mr->dirty_log_mask;
1829 if (global_dirty_log && mr->ram_block) {
1830 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1831 }
1832 return mask;
1833 }
1834
1835 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1836 {
1837 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1838 }
1839
1840 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1841 {
1842 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1843 IOMMUNotifier *iommu_notifier;
1844 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1845
1846 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1847 flags |= iommu_notifier->notifier_flags;
1848 }
1849
1850 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1851 imrc->notify_flag_changed(iommu_mr,
1852 iommu_mr->iommu_notify_flags,
1853 flags);
1854 }
1855
1856 iommu_mr->iommu_notify_flags = flags;
1857 }
1858
1859 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1860 IOMMUNotifier *n)
1861 {
1862 IOMMUMemoryRegion *iommu_mr;
1863
1864 if (mr->alias) {
1865 memory_region_register_iommu_notifier(mr->alias, n);
1866 return;
1867 }
1868
1869 /* We need to register for at least one bitfield */
1870 iommu_mr = IOMMU_MEMORY_REGION(mr);
1871 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1872 assert(n->start <= n->end);
1873 assert(n->iommu_idx >= 0 &&
1874 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1875
1876 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1877 memory_region_update_iommu_notify_flags(iommu_mr);
1878 }
1879
1880 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1881 {
1882 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1883
1884 if (imrc->get_min_page_size) {
1885 return imrc->get_min_page_size(iommu_mr);
1886 }
1887 return TARGET_PAGE_SIZE;
1888 }
1889
1890 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1891 {
1892 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1893 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1894 hwaddr addr, granularity;
1895 IOMMUTLBEntry iotlb;
1896
1897 /* If the IOMMU has its own replay callback, override */
1898 if (imrc->replay) {
1899 imrc->replay(iommu_mr, n);
1900 return;
1901 }
1902
1903 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1904
1905 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1906 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1907 if (iotlb.perm != IOMMU_NONE) {
1908 n->notify(n, &iotlb);
1909 }
1910
1911 /* if (2^64 - MR size) < granularity, it's possible to get an
1912 * infinite loop here. This should catch such a wraparound */
1913 if ((addr + granularity) < addr) {
1914 break;
1915 }
1916 }
1917 }
1918
1919 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1920 {
1921 IOMMUNotifier *notifier;
1922
1923 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1924 memory_region_iommu_replay(iommu_mr, notifier);
1925 }
1926 }
1927
1928 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1929 IOMMUNotifier *n)
1930 {
1931 IOMMUMemoryRegion *iommu_mr;
1932
1933 if (mr->alias) {
1934 memory_region_unregister_iommu_notifier(mr->alias, n);
1935 return;
1936 }
1937 QLIST_REMOVE(n, node);
1938 iommu_mr = IOMMU_MEMORY_REGION(mr);
1939 memory_region_update_iommu_notify_flags(iommu_mr);
1940 }
1941
1942 void memory_region_notify_one(IOMMUNotifier *notifier,
1943 IOMMUTLBEntry *entry)
1944 {
1945 IOMMUNotifierFlag request_flags;
1946
1947 /*
1948 * Skip the notification if the notification does not overlap
1949 * with registered range.
1950 */
1951 if (notifier->start > entry->iova + entry->addr_mask ||
1952 notifier->end < entry->iova) {
1953 return;
1954 }
1955
1956 if (entry->perm & IOMMU_RW) {
1957 request_flags = IOMMU_NOTIFIER_MAP;
1958 } else {
1959 request_flags = IOMMU_NOTIFIER_UNMAP;
1960 }
1961
1962 if (notifier->notifier_flags & request_flags) {
1963 notifier->notify(notifier, entry);
1964 }
1965 }
1966
1967 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1968 int iommu_idx,
1969 IOMMUTLBEntry entry)
1970 {
1971 IOMMUNotifier *iommu_notifier;
1972
1973 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1974
1975 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1976 if (iommu_notifier->iommu_idx == iommu_idx) {
1977 memory_region_notify_one(iommu_notifier, &entry);
1978 }
1979 }
1980 }
1981
1982 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1983 enum IOMMUMemoryRegionAttr attr,
1984 void *data)
1985 {
1986 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1987
1988 if (!imrc->get_attr) {
1989 return -EINVAL;
1990 }
1991
1992 return imrc->get_attr(iommu_mr, attr, data);
1993 }
1994
1995 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1996 MemTxAttrs attrs)
1997 {
1998 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1999
2000 if (!imrc->attrs_to_index) {
2001 return 0;
2002 }
2003
2004 return imrc->attrs_to_index(iommu_mr, attrs);
2005 }
2006
2007 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2008 {
2009 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2010
2011 if (!imrc->num_indexes) {
2012 return 1;
2013 }
2014
2015 return imrc->num_indexes(iommu_mr);
2016 }
2017
2018 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2019 {
2020 uint8_t mask = 1 << client;
2021 uint8_t old_logging;
2022
2023 assert(client == DIRTY_MEMORY_VGA);
2024 old_logging = mr->vga_logging_count;
2025 mr->vga_logging_count += log ? 1 : -1;
2026 if (!!old_logging == !!mr->vga_logging_count) {
2027 return;
2028 }
2029
2030 memory_region_transaction_begin();
2031 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2032 memory_region_update_pending |= mr->enabled;
2033 memory_region_transaction_commit();
2034 }
2035
2036 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2037 hwaddr size)
2038 {
2039 assert(mr->ram_block);
2040 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2041 size,
2042 memory_region_get_dirty_log_mask(mr));
2043 }
2044
2045 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2046 {
2047 MemoryListener *listener;
2048 AddressSpace *as;
2049 FlatView *view;
2050 FlatRange *fr;
2051
2052 /* If the same address space has multiple log_sync listeners, we
2053 * visit that address space's FlatView multiple times. But because
2054 * log_sync listeners are rare, it's still cheaper than walking each
2055 * address space once.
2056 */
2057 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2058 if (!listener->log_sync) {
2059 continue;
2060 }
2061 as = listener->address_space;
2062 view = address_space_get_flatview(as);
2063 FOR_EACH_FLAT_RANGE(fr, view) {
2064 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2065 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2066 listener->log_sync(listener, &mrs);
2067 }
2068 }
2069 flatview_unref(view);
2070 }
2071 }
2072
2073 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2074 hwaddr len)
2075 {
2076 MemoryRegionSection mrs;
2077 MemoryListener *listener;
2078 AddressSpace *as;
2079 FlatView *view;
2080 FlatRange *fr;
2081 hwaddr sec_start, sec_end, sec_size;
2082
2083 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2084 if (!listener->log_clear) {
2085 continue;
2086 }
2087 as = listener->address_space;
2088 view = address_space_get_flatview(as);
2089 FOR_EACH_FLAT_RANGE(fr, view) {
2090 if (!fr->dirty_log_mask || fr->mr != mr) {
2091 /*
2092 * Clear dirty bitmap operation only applies to those
2093 * regions whose dirty logging is at least enabled
2094 */
2095 continue;
2096 }
2097
2098 mrs = section_from_flat_range(fr, view);
2099
2100 sec_start = MAX(mrs.offset_within_region, start);
2101 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2102 sec_end = MIN(sec_end, start + len);
2103
2104 if (sec_start >= sec_end) {
2105 /*
2106 * If this memory region section has no intersection
2107 * with the requested range, skip.
2108 */
2109 continue;
2110 }
2111
2112 /* Valid case; shrink the section if needed */
2113 mrs.offset_within_address_space +=
2114 sec_start - mrs.offset_within_region;
2115 mrs.offset_within_region = sec_start;
2116 sec_size = sec_end - sec_start;
2117 mrs.size = int128_make64(sec_size);
2118 listener->log_clear(listener, &mrs);
2119 }
2120 flatview_unref(view);
2121 }
2122 }
2123
2124 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2125 hwaddr addr,
2126 hwaddr size,
2127 unsigned client)
2128 {
2129 assert(mr->ram_block);
2130 memory_region_sync_dirty_bitmap(mr);
2131 return cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2132 }
2133
2134 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2135 hwaddr addr, hwaddr size)
2136 {
2137 assert(mr->ram_block);
2138 return cpu_physical_memory_snapshot_get_dirty(snap,
2139 memory_region_get_ram_addr(mr) + addr, size);
2140 }
2141
2142 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2143 {
2144 if (mr->readonly != readonly) {
2145 memory_region_transaction_begin();
2146 mr->readonly = readonly;
2147 memory_region_update_pending |= mr->enabled;
2148 memory_region_transaction_commit();
2149 }
2150 }
2151
2152 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2153 {
2154 if (mr->nonvolatile != nonvolatile) {
2155 memory_region_transaction_begin();
2156 mr->nonvolatile = nonvolatile;
2157 memory_region_update_pending |= mr->enabled;
2158 memory_region_transaction_commit();
2159 }
2160 }
2161
2162 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2163 {
2164 if (mr->romd_mode != romd_mode) {
2165 memory_region_transaction_begin();
2166 mr->romd_mode = romd_mode;
2167 memory_region_update_pending |= mr->enabled;
2168 memory_region_transaction_commit();
2169 }
2170 }
2171
2172 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2173 hwaddr size, unsigned client)
2174 {
2175 assert(mr->ram_block);
2176 cpu_physical_memory_test_and_clear_dirty(
2177 memory_region_get_ram_addr(mr) + addr, size, client);
2178 }
2179
2180 int memory_region_get_fd(MemoryRegion *mr)
2181 {
2182 int fd;
2183
2184 rcu_read_lock();
2185 while (mr->alias) {
2186 mr = mr->alias;
2187 }
2188 fd = mr->ram_block->fd;
2189 rcu_read_unlock();
2190
2191 return fd;
2192 }
2193
2194 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2195 {
2196 void *ptr;
2197 uint64_t offset = 0;
2198
2199 rcu_read_lock();
2200 while (mr->alias) {
2201 offset += mr->alias_offset;
2202 mr = mr->alias;
2203 }
2204 assert(mr->ram_block);
2205 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2206 rcu_read_unlock();
2207
2208 return ptr;
2209 }
2210
2211 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2212 {
2213 RAMBlock *block;
2214
2215 block = qemu_ram_block_from_host(ptr, false, offset);
2216 if (!block) {
2217 return NULL;
2218 }
2219
2220 return block->mr;
2221 }
2222
2223 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2224 {
2225 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2226 }
2227
2228 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2229 {
2230 assert(mr->ram_block);
2231
2232 qemu_ram_resize(mr->ram_block, newsize, errp);
2233 }
2234
2235 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
2236 {
2237 FlatView *view;
2238 FlatRange *fr;
2239
2240 view = address_space_get_flatview(as);
2241 FOR_EACH_FLAT_RANGE(fr, view) {
2242 if (fr->mr == mr) {
2243 flat_range_coalesced_io_del(fr, as);
2244 flat_range_coalesced_io_add(fr, as);
2245 }
2246 }
2247 flatview_unref(view);
2248 }
2249
2250 static void memory_region_update_coalesced_range(MemoryRegion *mr)
2251 {
2252 AddressSpace *as;
2253
2254 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2255 memory_region_update_coalesced_range_as(mr, as);
2256 }
2257 }
2258
2259 void memory_region_set_coalescing(MemoryRegion *mr)
2260 {
2261 memory_region_clear_coalescing(mr);
2262 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2263 }
2264
2265 void memory_region_add_coalescing(MemoryRegion *mr,
2266 hwaddr offset,
2267 uint64_t size)
2268 {
2269 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2270
2271 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2272 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2273 memory_region_update_coalesced_range(mr);
2274 memory_region_set_flush_coalesced(mr);
2275 }
2276
2277 void memory_region_clear_coalescing(MemoryRegion *mr)
2278 {
2279 CoalescedMemoryRange *cmr;
2280 bool updated = false;
2281
2282 qemu_flush_coalesced_mmio_buffer();
2283 mr->flush_coalesced_mmio = false;
2284
2285 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2286 cmr = QTAILQ_FIRST(&mr->coalesced);
2287 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2288 g_free(cmr);
2289 updated = true;
2290 }
2291
2292 if (updated) {
2293 memory_region_update_coalesced_range(mr);
2294 }
2295 }
2296
2297 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2298 {
2299 mr->flush_coalesced_mmio = true;
2300 }
2301
2302 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2303 {
2304 qemu_flush_coalesced_mmio_buffer();
2305 if (QTAILQ_EMPTY(&mr->coalesced)) {
2306 mr->flush_coalesced_mmio = false;
2307 }
2308 }
2309
2310 void memory_region_clear_global_locking(MemoryRegion *mr)
2311 {
2312 mr->global_locking = false;
2313 }
2314
2315 static bool userspace_eventfd_warning;
2316
2317 void memory_region_add_eventfd(MemoryRegion *mr,
2318 hwaddr addr,
2319 unsigned size,
2320 bool match_data,
2321 uint64_t data,
2322 EventNotifier *e)
2323 {
2324 MemoryRegionIoeventfd mrfd = {
2325 .addr.start = int128_make64(addr),
2326 .addr.size = int128_make64(size),
2327 .match_data = match_data,
2328 .data = data,
2329 .e = e,
2330 };
2331 unsigned i;
2332
2333 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2334 userspace_eventfd_warning))) {
2335 userspace_eventfd_warning = true;
2336 error_report("Using eventfd without MMIO binding in KVM. "
2337 "Suboptimal performance expected");
2338 }
2339
2340 if (size) {
2341 adjust_endianness(mr, &mrfd.data, size);
2342 }
2343 memory_region_transaction_begin();
2344 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2345 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2346 break;
2347 }
2348 }
2349 ++mr->ioeventfd_nb;
2350 mr->ioeventfds = g_realloc(mr->ioeventfds,
2351 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2352 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2353 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2354 mr->ioeventfds[i] = mrfd;
2355 ioeventfd_update_pending |= mr->enabled;
2356 memory_region_transaction_commit();
2357 }
2358
2359 void memory_region_del_eventfd(MemoryRegion *mr,
2360 hwaddr addr,
2361 unsigned size,
2362 bool match_data,
2363 uint64_t data,
2364 EventNotifier *e)
2365 {
2366 MemoryRegionIoeventfd mrfd = {
2367 .addr.start = int128_make64(addr),
2368 .addr.size = int128_make64(size),
2369 .match_data = match_data,
2370 .data = data,
2371 .e = e,
2372 };
2373 unsigned i;
2374
2375 if (size) {
2376 adjust_endianness(mr, &mrfd.data, size);
2377 }
2378 memory_region_transaction_begin();
2379 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2380 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2381 break;
2382 }
2383 }
2384 assert(i != mr->ioeventfd_nb);
2385 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2386 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2387 --mr->ioeventfd_nb;
2388 mr->ioeventfds = g_realloc(mr->ioeventfds,
2389 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2390 ioeventfd_update_pending |= mr->enabled;
2391 memory_region_transaction_commit();
2392 }
2393
2394 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2395 {
2396 MemoryRegion *mr = subregion->container;
2397 MemoryRegion *other;
2398
2399 memory_region_transaction_begin();
2400
2401 memory_region_ref(subregion);
2402 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2403 if (subregion->priority >= other->priority) {
2404 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2405 goto done;
2406 }
2407 }
2408 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2409 done:
2410 memory_region_update_pending |= mr->enabled && subregion->enabled;
2411 memory_region_transaction_commit();
2412 }
2413
2414 static void memory_region_add_subregion_common(MemoryRegion *mr,
2415 hwaddr offset,
2416 MemoryRegion *subregion)
2417 {
2418 assert(!subregion->container);
2419 subregion->container = mr;
2420 subregion->addr = offset;
2421 memory_region_update_container_subregions(subregion);
2422 }
2423
2424 void memory_region_add_subregion(MemoryRegion *mr,
2425 hwaddr offset,
2426 MemoryRegion *subregion)
2427 {
2428 subregion->priority = 0;
2429 memory_region_add_subregion_common(mr, offset, subregion);
2430 }
2431
2432 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2433 hwaddr offset,
2434 MemoryRegion *subregion,
2435 int priority)
2436 {
2437 subregion->priority = priority;
2438 memory_region_add_subregion_common(mr, offset, subregion);
2439 }
2440
2441 void memory_region_del_subregion(MemoryRegion *mr,
2442 MemoryRegion *subregion)
2443 {
2444 memory_region_transaction_begin();
2445 assert(subregion->container == mr);
2446 subregion->container = NULL;
2447 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2448 memory_region_unref(subregion);
2449 memory_region_update_pending |= mr->enabled && subregion->enabled;
2450 memory_region_transaction_commit();
2451 }
2452
2453 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2454 {
2455 if (enabled == mr->enabled) {
2456 return;
2457 }
2458 memory_region_transaction_begin();
2459 mr->enabled = enabled;
2460 memory_region_update_pending = true;
2461 memory_region_transaction_commit();
2462 }
2463
2464 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2465 {
2466 Int128 s = int128_make64(size);
2467
2468 if (size == UINT64_MAX) {
2469 s = int128_2_64();
2470 }
2471 if (int128_eq(s, mr->size)) {
2472 return;
2473 }
2474 memory_region_transaction_begin();
2475 mr->size = s;
2476 memory_region_update_pending = true;
2477 memory_region_transaction_commit();
2478 }
2479
2480 static void memory_region_readd_subregion(MemoryRegion *mr)
2481 {
2482 MemoryRegion *container = mr->container;
2483
2484 if (container) {
2485 memory_region_transaction_begin();
2486 memory_region_ref(mr);
2487 memory_region_del_subregion(container, mr);
2488 mr->container = container;
2489 memory_region_update_container_subregions(mr);
2490 memory_region_unref(mr);
2491 memory_region_transaction_commit();
2492 }
2493 }
2494
2495 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2496 {
2497 if (addr != mr->addr) {
2498 mr->addr = addr;
2499 memory_region_readd_subregion(mr);
2500 }
2501 }
2502
2503 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2504 {
2505 assert(mr->alias);
2506
2507 if (offset == mr->alias_offset) {
2508 return;
2509 }
2510
2511 memory_region_transaction_begin();
2512 mr->alias_offset = offset;
2513 memory_region_update_pending |= mr->enabled;
2514 memory_region_transaction_commit();
2515 }
2516
2517 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2518 {
2519 return mr->align;
2520 }
2521
2522 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2523 {
2524 const AddrRange *addr = addr_;
2525 const FlatRange *fr = fr_;
2526
2527 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2528 return -1;
2529 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2530 return 1;
2531 }
2532 return 0;
2533 }
2534
2535 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2536 {
2537 return bsearch(&addr, view->ranges, view->nr,
2538 sizeof(FlatRange), cmp_flatrange_addr);
2539 }
2540
2541 bool memory_region_is_mapped(MemoryRegion *mr)
2542 {
2543 return mr->container ? true : false;
2544 }
2545
2546 /* Same as memory_region_find, but it does not add a reference to the
2547 * returned region. It must be called from an RCU critical section.
2548 */
2549 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2550 hwaddr addr, uint64_t size)
2551 {
2552 MemoryRegionSection ret = { .mr = NULL };
2553 MemoryRegion *root;
2554 AddressSpace *as;
2555 AddrRange range;
2556 FlatView *view;
2557 FlatRange *fr;
2558
2559 addr += mr->addr;
2560 for (root = mr; root->container; ) {
2561 root = root->container;
2562 addr += root->addr;
2563 }
2564
2565 as = memory_region_to_address_space(root);
2566 if (!as) {
2567 return ret;
2568 }
2569 range = addrrange_make(int128_make64(addr), int128_make64(size));
2570
2571 view = address_space_to_flatview(as);
2572 fr = flatview_lookup(view, range);
2573 if (!fr) {
2574 return ret;
2575 }
2576
2577 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2578 --fr;
2579 }
2580
2581 ret.mr = fr->mr;
2582 ret.fv = view;
2583 range = addrrange_intersection(range, fr->addr);
2584 ret.offset_within_region = fr->offset_in_region;
2585 ret.offset_within_region += int128_get64(int128_sub(range.start,
2586 fr->addr.start));
2587 ret.size = range.size;
2588 ret.offset_within_address_space = int128_get64(range.start);
2589 ret.readonly = fr->readonly;
2590 ret.nonvolatile = fr->nonvolatile;
2591 return ret;
2592 }
2593
2594 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2595 hwaddr addr, uint64_t size)
2596 {
2597 MemoryRegionSection ret;
2598 rcu_read_lock();
2599 ret = memory_region_find_rcu(mr, addr, size);
2600 if (ret.mr) {
2601 memory_region_ref(ret.mr);
2602 }
2603 rcu_read_unlock();
2604 return ret;
2605 }
2606
2607 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2608 {
2609 MemoryRegion *mr;
2610
2611 rcu_read_lock();
2612 mr = memory_region_find_rcu(container, addr, 1).mr;
2613 rcu_read_unlock();
2614 return mr && mr != container;
2615 }
2616
2617 void memory_global_dirty_log_sync(void)
2618 {
2619 memory_region_sync_dirty_bitmap(NULL);
2620 }
2621
2622 static VMChangeStateEntry *vmstate_change;
2623
2624 void memory_global_dirty_log_start(void)
2625 {
2626 if (vmstate_change) {
2627 qemu_del_vm_change_state_handler(vmstate_change);
2628 vmstate_change = NULL;
2629 }
2630
2631 global_dirty_log = true;
2632
2633 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2634
2635 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2636 memory_region_transaction_begin();
2637 memory_region_update_pending = true;
2638 memory_region_transaction_commit();
2639 }
2640
2641 static void memory_global_dirty_log_do_stop(void)
2642 {
2643 global_dirty_log = false;
2644
2645 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2646 memory_region_transaction_begin();
2647 memory_region_update_pending = true;
2648 memory_region_transaction_commit();
2649
2650 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2651 }
2652
2653 static void memory_vm_change_state_handler(void *opaque, int running,
2654 RunState state)
2655 {
2656 if (running) {
2657 memory_global_dirty_log_do_stop();
2658
2659 if (vmstate_change) {
2660 qemu_del_vm_change_state_handler(vmstate_change);
2661 vmstate_change = NULL;
2662 }
2663 }
2664 }
2665
2666 void memory_global_dirty_log_stop(void)
2667 {
2668 if (!runstate_is_running()) {
2669 if (vmstate_change) {
2670 return;
2671 }
2672 vmstate_change = qemu_add_vm_change_state_handler(
2673 memory_vm_change_state_handler, NULL);
2674 return;
2675 }
2676
2677 memory_global_dirty_log_do_stop();
2678 }
2679
2680 static void listener_add_address_space(MemoryListener *listener,
2681 AddressSpace *as)
2682 {
2683 FlatView *view;
2684 FlatRange *fr;
2685
2686 if (listener->begin) {
2687 listener->begin(listener);
2688 }
2689 if (global_dirty_log) {
2690 if (listener->log_global_start) {
2691 listener->log_global_start(listener);
2692 }
2693 }
2694
2695 view = address_space_get_flatview(as);
2696 FOR_EACH_FLAT_RANGE(fr, view) {
2697 MemoryRegionSection section = section_from_flat_range(fr, view);
2698
2699 if (listener->region_add) {
2700 listener->region_add(listener, &section);
2701 }
2702 if (fr->dirty_log_mask && listener->log_start) {
2703 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2704 }
2705 }
2706 if (listener->commit) {
2707 listener->commit(listener);
2708 }
2709 flatview_unref(view);
2710 }
2711
2712 static void listener_del_address_space(MemoryListener *listener,
2713 AddressSpace *as)
2714 {
2715 FlatView *view;
2716 FlatRange *fr;
2717
2718 if (listener->begin) {
2719 listener->begin(listener);
2720 }
2721 view = address_space_get_flatview(as);
2722 FOR_EACH_FLAT_RANGE(fr, view) {
2723 MemoryRegionSection section = section_from_flat_range(fr, view);
2724
2725 if (fr->dirty_log_mask && listener->log_stop) {
2726 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2727 }
2728 if (listener->region_del) {
2729 listener->region_del(listener, &section);
2730 }
2731 }
2732 if (listener->commit) {
2733 listener->commit(listener);
2734 }
2735 flatview_unref(view);
2736 }
2737
2738 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2739 {
2740 MemoryListener *other = NULL;
2741
2742 listener->address_space = as;
2743 if (QTAILQ_EMPTY(&memory_listeners)
2744 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2745 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2746 } else {
2747 QTAILQ_FOREACH(other, &memory_listeners, link) {
2748 if (listener->priority < other->priority) {
2749 break;
2750 }
2751 }
2752 QTAILQ_INSERT_BEFORE(other, listener, link);
2753 }
2754
2755 if (QTAILQ_EMPTY(&as->listeners)
2756 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2757 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2758 } else {
2759 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2760 if (listener->priority < other->priority) {
2761 break;
2762 }
2763 }
2764 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2765 }
2766
2767 listener_add_address_space(listener, as);
2768 }
2769
2770 void memory_listener_unregister(MemoryListener *listener)
2771 {
2772 if (!listener->address_space) {
2773 return;
2774 }
2775
2776 listener_del_address_space(listener, listener->address_space);
2777 QTAILQ_REMOVE(&memory_listeners, listener, link);
2778 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2779 listener->address_space = NULL;
2780 }
2781
2782 void address_space_remove_listeners(AddressSpace *as)
2783 {
2784 while (!QTAILQ_EMPTY(&as->listeners)) {
2785 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2786 }
2787 }
2788
2789 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2790 {
2791 memory_region_ref(root);
2792 as->root = root;
2793 as->current_map = NULL;
2794 as->ioeventfd_nb = 0;
2795 as->ioeventfds = NULL;
2796 QTAILQ_INIT(&as->listeners);
2797 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2798 as->name = g_strdup(name ? name : "anonymous");
2799 address_space_update_topology(as);
2800 address_space_update_ioeventfds(as);
2801 }
2802
2803 static void do_address_space_destroy(AddressSpace *as)
2804 {
2805 assert(QTAILQ_EMPTY(&as->listeners));
2806
2807 flatview_unref(as->current_map);
2808 g_free(as->name);
2809 g_free(as->ioeventfds);
2810 memory_region_unref(as->root);
2811 }
2812
2813 void address_space_destroy(AddressSpace *as)
2814 {
2815 MemoryRegion *root = as->root;
2816
2817 /* Flush out anything from MemoryListeners listening in on this */
2818 memory_region_transaction_begin();
2819 as->root = NULL;
2820 memory_region_transaction_commit();
2821 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2822
2823 /* At this point, as->dispatch and as->current_map are dummy
2824 * entries that the guest should never use. Wait for the old
2825 * values to expire before freeing the data.
2826 */
2827 as->root = root;
2828 call_rcu(as, do_address_space_destroy, rcu);
2829 }
2830
2831 static const char *memory_region_type(MemoryRegion *mr)
2832 {
2833 if (memory_region_is_ram_device(mr)) {
2834 return "ramd";
2835 } else if (memory_region_is_romd(mr)) {
2836 return "romd";
2837 } else if (memory_region_is_rom(mr)) {
2838 return "rom";
2839 } else if (memory_region_is_ram(mr)) {
2840 return "ram";
2841 } else {
2842 return "i/o";
2843 }
2844 }
2845
2846 typedef struct MemoryRegionList MemoryRegionList;
2847
2848 struct MemoryRegionList {
2849 const MemoryRegion *mr;
2850 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2851 };
2852
2853 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2854
2855 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2856 int128_sub((size), int128_one())) : 0)
2857 #define MTREE_INDENT " "
2858
2859 static void mtree_expand_owner(const char *label, Object *obj)
2860 {
2861 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2862
2863 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2864 if (dev && dev->id) {
2865 qemu_printf(" id=%s", dev->id);
2866 } else {
2867 gchar *canonical_path = object_get_canonical_path(obj);
2868 if (canonical_path) {
2869 qemu_printf(" path=%s", canonical_path);
2870 g_free(canonical_path);
2871 } else {
2872 qemu_printf(" type=%s", object_get_typename(obj));
2873 }
2874 }
2875 qemu_printf("}");
2876 }
2877
2878 static void mtree_print_mr_owner(const MemoryRegion *mr)
2879 {
2880 Object *owner = mr->owner;
2881 Object *parent = memory_region_owner((MemoryRegion *)mr);
2882
2883 if (!owner && !parent) {
2884 qemu_printf(" orphan");
2885 return;
2886 }
2887 if (owner) {
2888 mtree_expand_owner("owner", owner);
2889 }
2890 if (parent && parent != owner) {
2891 mtree_expand_owner("parent", parent);
2892 }
2893 }
2894
2895 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2896 hwaddr base,
2897 MemoryRegionListHead *alias_print_queue,
2898 bool owner)
2899 {
2900 MemoryRegionList *new_ml, *ml, *next_ml;
2901 MemoryRegionListHead submr_print_queue;
2902 const MemoryRegion *submr;
2903 unsigned int i;
2904 hwaddr cur_start, cur_end;
2905
2906 if (!mr) {
2907 return;
2908 }
2909
2910 for (i = 0; i < level; i++) {
2911 qemu_printf(MTREE_INDENT);
2912 }
2913
2914 cur_start = base + mr->addr;
2915 cur_end = cur_start + MR_SIZE(mr->size);
2916
2917 /*
2918 * Try to detect overflow of memory region. This should never
2919 * happen normally. When it happens, we dump something to warn the
2920 * user who is observing this.
2921 */
2922 if (cur_start < base || cur_end < cur_start) {
2923 qemu_printf("[DETECTED OVERFLOW!] ");
2924 }
2925
2926 if (mr->alias) {
2927 MemoryRegionList *ml;
2928 bool found = false;
2929
2930 /* check if the alias is already in the queue */
2931 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2932 if (ml->mr == mr->alias) {
2933 found = true;
2934 }
2935 }
2936
2937 if (!found) {
2938 ml = g_new(MemoryRegionList, 1);
2939 ml->mr = mr->alias;
2940 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2941 }
2942 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2943 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2944 "-" TARGET_FMT_plx "%s",
2945 cur_start, cur_end,
2946 mr->priority,
2947 mr->nonvolatile ? "nv-" : "",
2948 memory_region_type((MemoryRegion *)mr),
2949 memory_region_name(mr),
2950 memory_region_name(mr->alias),
2951 mr->alias_offset,
2952 mr->alias_offset + MR_SIZE(mr->size),
2953 mr->enabled ? "" : " [disabled]");
2954 if (owner) {
2955 mtree_print_mr_owner(mr);
2956 }
2957 } else {
2958 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2959 " (prio %d, %s%s): %s%s",
2960 cur_start, cur_end,
2961 mr->priority,
2962 mr->nonvolatile ? "nv-" : "",
2963 memory_region_type((MemoryRegion *)mr),
2964 memory_region_name(mr),
2965 mr->enabled ? "" : " [disabled]");
2966 if (owner) {
2967 mtree_print_mr_owner(mr);
2968 }
2969 }
2970 qemu_printf("\n");
2971
2972 QTAILQ_INIT(&submr_print_queue);
2973
2974 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2975 new_ml = g_new(MemoryRegionList, 1);
2976 new_ml->mr = submr;
2977 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2978 if (new_ml->mr->addr < ml->mr->addr ||
2979 (new_ml->mr->addr == ml->mr->addr &&
2980 new_ml->mr->priority > ml->mr->priority)) {
2981 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2982 new_ml = NULL;
2983 break;
2984 }
2985 }
2986 if (new_ml) {
2987 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2988 }
2989 }
2990
2991 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2992 mtree_print_mr(ml->mr, level + 1, cur_start,
2993 alias_print_queue, owner);
2994 }
2995
2996 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2997 g_free(ml);
2998 }
2999 }
3000
3001 struct FlatViewInfo {
3002 int counter;
3003 bool dispatch_tree;
3004 bool owner;
3005 AccelClass *ac;
3006 const char *ac_name;
3007 };
3008
3009 static void mtree_print_flatview(gpointer key, gpointer value,
3010 gpointer user_data)
3011 {
3012 FlatView *view = key;
3013 GArray *fv_address_spaces = value;
3014 struct FlatViewInfo *fvi = user_data;
3015 FlatRange *range = &view->ranges[0];
3016 MemoryRegion *mr;
3017 int n = view->nr;
3018 int i;
3019 AddressSpace *as;
3020
3021 qemu_printf("FlatView #%d\n", fvi->counter);
3022 ++fvi->counter;
3023
3024 for (i = 0; i < fv_address_spaces->len; ++i) {
3025 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3026 qemu_printf(" AS \"%s\", root: %s",
3027 as->name, memory_region_name(as->root));
3028 if (as->root->alias) {
3029 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3030 }
3031 qemu_printf("\n");
3032 }
3033
3034 qemu_printf(" Root memory region: %s\n",
3035 view->root ? memory_region_name(view->root) : "(none)");
3036
3037 if (n <= 0) {
3038 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3039 return;
3040 }
3041
3042 while (n--) {
3043 mr = range->mr;
3044 if (range->offset_in_region) {
3045 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3046 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3047 int128_get64(range->addr.start),
3048 int128_get64(range->addr.start)
3049 + MR_SIZE(range->addr.size),
3050 mr->priority,
3051 range->nonvolatile ? "nv-" : "",
3052 range->readonly ? "rom" : memory_region_type(mr),
3053 memory_region_name(mr),
3054 range->offset_in_region);
3055 } else {
3056 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3057 " (prio %d, %s%s): %s",
3058 int128_get64(range->addr.start),
3059 int128_get64(range->addr.start)
3060 + MR_SIZE(range->addr.size),
3061 mr->priority,
3062 range->nonvolatile ? "nv-" : "",
3063 range->readonly ? "rom" : memory_region_type(mr),
3064 memory_region_name(mr));
3065 }
3066 if (fvi->owner) {
3067 mtree_print_mr_owner(mr);
3068 }
3069
3070 if (fvi->ac) {
3071 for (i = 0; i < fv_address_spaces->len; ++i) {
3072 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3073 if (fvi->ac->has_memory(current_machine, as,
3074 int128_get64(range->addr.start),
3075 MR_SIZE(range->addr.size) + 1)) {
3076 qemu_printf(" %s", fvi->ac_name);
3077 }
3078 }
3079 }
3080 qemu_printf("\n");
3081 range++;
3082 }
3083
3084 #if !defined(CONFIG_USER_ONLY)
3085 if (fvi->dispatch_tree && view->root) {
3086 mtree_print_dispatch(view->dispatch, view->root);
3087 }
3088 #endif
3089
3090 qemu_printf("\n");
3091 }
3092
3093 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3094 gpointer user_data)
3095 {
3096 FlatView *view = key;
3097 GArray *fv_address_spaces = value;
3098
3099 g_array_unref(fv_address_spaces);
3100 flatview_unref(view);
3101
3102 return true;
3103 }
3104
3105 void mtree_info(bool flatview, bool dispatch_tree, bool owner)
3106 {
3107 MemoryRegionListHead ml_head;
3108 MemoryRegionList *ml, *ml2;
3109 AddressSpace *as;
3110
3111 if (flatview) {
3112 FlatView *view;
3113 struct FlatViewInfo fvi = {
3114 .counter = 0,
3115 .dispatch_tree = dispatch_tree,
3116 .owner = owner,
3117 };
3118 GArray *fv_address_spaces;
3119 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3120 AccelClass *ac = ACCEL_GET_CLASS(current_machine->accelerator);
3121
3122 if (ac->has_memory) {
3123 fvi.ac = ac;
3124 fvi.ac_name = current_machine->accel ? current_machine->accel :
3125 object_class_get_name(OBJECT_CLASS(ac));
3126 }
3127
3128 /* Gather all FVs in one table */
3129 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3130 view = address_space_get_flatview(as);
3131
3132 fv_address_spaces = g_hash_table_lookup(views, view);
3133 if (!fv_address_spaces) {
3134 fv_address_spaces = g_array_new(false, false, sizeof(as));
3135 g_hash_table_insert(views, view, fv_address_spaces);
3136 }
3137
3138 g_array_append_val(fv_address_spaces, as);
3139 }
3140
3141 /* Print */
3142 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3143
3144 /* Free */
3145 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3146 g_hash_table_unref(views);
3147
3148 return;
3149 }
3150
3151 QTAILQ_INIT(&ml_head);
3152
3153 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3154 qemu_printf("address-space: %s\n", as->name);
3155 mtree_print_mr(as->root, 1, 0, &ml_head, owner);
3156 qemu_printf("\n");
3157 }
3158
3159 /* print aliased regions */
3160 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3161 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3162 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner);
3163 qemu_printf("\n");
3164 }
3165
3166 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3167 g_free(ml);
3168 }
3169 }
3170
3171 void memory_region_init_ram(MemoryRegion *mr,
3172 struct Object *owner,
3173 const char *name,
3174 uint64_t size,
3175 Error **errp)
3176 {
3177 DeviceState *owner_dev;
3178 Error *err = NULL;
3179
3180 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3181 if (err) {
3182 error_propagate(errp, err);
3183 return;
3184 }
3185 /* This will assert if owner is neither NULL nor a DeviceState.
3186 * We only want the owner here for the purposes of defining a
3187 * unique name for migration. TODO: Ideally we should implement
3188 * a naming scheme for Objects which are not DeviceStates, in
3189 * which case we can relax this restriction.
3190 */
3191 owner_dev = DEVICE(owner);
3192 vmstate_register_ram(mr, owner_dev);
3193 }
3194
3195 void memory_region_init_rom(MemoryRegion *mr,
3196 struct Object *owner,
3197 const char *name,
3198 uint64_t size,
3199 Error **errp)
3200 {
3201 DeviceState *owner_dev;
3202 Error *err = NULL;
3203
3204 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3205 if (err) {
3206 error_propagate(errp, err);
3207 return;
3208 }
3209 /* This will assert if owner is neither NULL nor a DeviceState.
3210 * We only want the owner here for the purposes of defining a
3211 * unique name for migration. TODO: Ideally we should implement
3212 * a naming scheme for Objects which are not DeviceStates, in
3213 * which case we can relax this restriction.
3214 */
3215 owner_dev = DEVICE(owner);
3216 vmstate_register_ram(mr, owner_dev);
3217 }
3218
3219 void memory_region_init_rom_device(MemoryRegion *mr,
3220 struct Object *owner,
3221 const MemoryRegionOps *ops,
3222 void *opaque,
3223 const char *name,
3224 uint64_t size,
3225 Error **errp)
3226 {
3227 DeviceState *owner_dev;
3228 Error *err = NULL;
3229
3230 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3231 name, size, &err);
3232 if (err) {
3233 error_propagate(errp, err);
3234 return;
3235 }
3236 /* This will assert if owner is neither NULL nor a DeviceState.
3237 * We only want the owner here for the purposes of defining a
3238 * unique name for migration. TODO: Ideally we should implement
3239 * a naming scheme for Objects which are not DeviceStates, in
3240 * which case we can relax this restriction.
3241 */
3242 owner_dev = DEVICE(owner);
3243 vmstate_register_ram(mr, owner_dev);
3244 }
3245
3246 static const TypeInfo memory_region_info = {
3247 .parent = TYPE_OBJECT,
3248 .name = TYPE_MEMORY_REGION,
3249 .class_size = sizeof(MemoryRegionClass),
3250 .instance_size = sizeof(MemoryRegion),
3251 .instance_init = memory_region_initfn,
3252 .instance_finalize = memory_region_finalize,
3253 };
3254
3255 static const TypeInfo iommu_memory_region_info = {
3256 .parent = TYPE_MEMORY_REGION,
3257 .name = TYPE_IOMMU_MEMORY_REGION,
3258 .class_size = sizeof(IOMMUMemoryRegionClass),
3259 .instance_size = sizeof(IOMMUMemoryRegion),
3260 .instance_init = iommu_memory_region_initfn,
3261 .abstract = true,
3262 };
3263
3264 static void memory_register_types(void)
3265 {
3266 type_register_static(&memory_region_info);
3267 type_register_static(&iommu_memory_region_info);
3268 }
3269
3270 type_init(memory_register_types)