]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
d20f0a76feab30fb345b248cae14d01f41e4f2ff
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
27
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/misc/mmio_interface.h"
33 #include "hw/qdev-properties.h"
34 #include "migration/vmstate.h"
35
36 //#define DEBUG_UNASSIGNED
37
38 static unsigned memory_region_transaction_depth;
39 static bool memory_region_update_pending;
40 static bool ioeventfd_update_pending;
41 static bool global_dirty_log = false;
42
43 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
45
46 static QTAILQ_HEAD(, AddressSpace) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces);
48
49 static GHashTable *flat_views;
50
51 typedef struct AddrRange AddrRange;
52
53 /*
54 * Note that signed integers are needed for negative offsetting in aliases
55 * (large MemoryRegion::alias_offset).
56 */
57 struct AddrRange {
58 Int128 start;
59 Int128 size;
60 };
61
62 static AddrRange addrrange_make(Int128 start, Int128 size)
63 {
64 return (AddrRange) { start, size };
65 }
66
67 static bool addrrange_equal(AddrRange r1, AddrRange r2)
68 {
69 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
70 }
71
72 static Int128 addrrange_end(AddrRange r)
73 {
74 return int128_add(r.start, r.size);
75 }
76
77 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
78 {
79 int128_addto(&range.start, delta);
80 return range;
81 }
82
83 static bool addrrange_contains(AddrRange range, Int128 addr)
84 {
85 return int128_ge(addr, range.start)
86 && int128_lt(addr, addrrange_end(range));
87 }
88
89 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
90 {
91 return addrrange_contains(r1, r2.start)
92 || addrrange_contains(r2, r1.start);
93 }
94
95 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
96 {
97 Int128 start = int128_max(r1.start, r2.start);
98 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
99 return addrrange_make(start, int128_sub(end, start));
100 }
101
102 enum ListenerDirection { Forward, Reverse };
103
104 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
105 do { \
106 MemoryListener *_listener; \
107 \
108 switch (_direction) { \
109 case Forward: \
110 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
111 if (_listener->_callback) { \
112 _listener->_callback(_listener, ##_args); \
113 } \
114 } \
115 break; \
116 case Reverse: \
117 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
118 memory_listeners, link) { \
119 if (_listener->_callback) { \
120 _listener->_callback(_listener, ##_args); \
121 } \
122 } \
123 break; \
124 default: \
125 abort(); \
126 } \
127 } while (0)
128
129 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
130 do { \
131 MemoryListener *_listener; \
132 struct memory_listeners_as *list = &(_as)->listeners; \
133 \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, list, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
144 link_as) { \
145 if (_listener->_callback) { \
146 _listener->_callback(_listener, _section, ##_args); \
147 } \
148 } \
149 break; \
150 default: \
151 abort(); \
152 } \
153 } while (0)
154
155 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 do { \
158 MemoryRegionSection mrs = section_from_flat_range(fr, \
159 address_space_to_flatview(as)); \
160 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
161 } while(0)
162
163 struct CoalescedMemoryRange {
164 AddrRange addr;
165 QTAILQ_ENTRY(CoalescedMemoryRange) link;
166 };
167
168 struct MemoryRegionIoeventfd {
169 AddrRange addr;
170 bool match_data;
171 uint64_t data;
172 EventNotifier *e;
173 };
174
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
176 MemoryRegionIoeventfd *b)
177 {
178 if (int128_lt(a->addr.start, b->addr.start)) {
179 return true;
180 } else if (int128_gt(a->addr.start, b->addr.start)) {
181 return false;
182 } else if (int128_lt(a->addr.size, b->addr.size)) {
183 return true;
184 } else if (int128_gt(a->addr.size, b->addr.size)) {
185 return false;
186 } else if (a->match_data < b->match_data) {
187 return true;
188 } else if (a->match_data > b->match_data) {
189 return false;
190 } else if (a->match_data) {
191 if (a->data < b->data) {
192 return true;
193 } else if (a->data > b->data) {
194 return false;
195 }
196 }
197 if (a->e < b->e) {
198 return true;
199 } else if (a->e > b->e) {
200 return false;
201 }
202 return false;
203 }
204
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
206 MemoryRegionIoeventfd *b)
207 {
208 return !memory_region_ioeventfd_before(a, b)
209 && !memory_region_ioeventfd_before(b, a);
210 }
211
212 /* Range of memory in the global map. Addresses are absolute. */
213 struct FlatRange {
214 MemoryRegion *mr;
215 hwaddr offset_in_region;
216 AddrRange addr;
217 uint8_t dirty_log_mask;
218 bool romd_mode;
219 bool readonly;
220 };
221
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
227 {
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
235 };
236 }
237
238 static bool flatrange_equal(FlatRange *a, FlatRange *b)
239 {
240 return a->mr == b->mr
241 && addrrange_equal(a->addr, b->addr)
242 && a->offset_in_region == b->offset_in_region
243 && a->romd_mode == b->romd_mode
244 && a->readonly == b->readonly;
245 }
246
247 static FlatView *flatview_new(MemoryRegion *mr_root)
248 {
249 FlatView *view;
250
251 view = g_new0(FlatView, 1);
252 view->ref = 1;
253 view->root = mr_root;
254 memory_region_ref(mr_root);
255 trace_flatview_new(view, mr_root);
256
257 return view;
258 }
259
260 /* Insert a range into a given position. Caller is responsible for maintaining
261 * sorting order.
262 */
263 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
264 {
265 if (view->nr == view->nr_allocated) {
266 view->nr_allocated = MAX(2 * view->nr, 10);
267 view->ranges = g_realloc(view->ranges,
268 view->nr_allocated * sizeof(*view->ranges));
269 }
270 memmove(view->ranges + pos + 1, view->ranges + pos,
271 (view->nr - pos) * sizeof(FlatRange));
272 view->ranges[pos] = *range;
273 memory_region_ref(range->mr);
274 ++view->nr;
275 }
276
277 static void flatview_destroy(FlatView *view)
278 {
279 int i;
280
281 trace_flatview_destroy(view, view->root);
282 if (view->dispatch) {
283 address_space_dispatch_free(view->dispatch);
284 }
285 for (i = 0; i < view->nr; i++) {
286 memory_region_unref(view->ranges[i].mr);
287 }
288 g_free(view->ranges);
289 memory_region_unref(view->root);
290 g_free(view);
291 }
292
293 static bool flatview_ref(FlatView *view)
294 {
295 return atomic_fetch_inc_nonzero(&view->ref) > 0;
296 }
297
298 void flatview_unref(FlatView *view)
299 {
300 if (atomic_fetch_dec(&view->ref) == 1) {
301 trace_flatview_destroy_rcu(view, view->root);
302 assert(view->root);
303 call_rcu(view, flatview_destroy, rcu);
304 }
305 }
306
307 static bool can_merge(FlatRange *r1, FlatRange *r2)
308 {
309 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
310 && r1->mr == r2->mr
311 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
312 r1->addr.size),
313 int128_make64(r2->offset_in_region))
314 && r1->dirty_log_mask == r2->dirty_log_mask
315 && r1->romd_mode == r2->romd_mode
316 && r1->readonly == r2->readonly;
317 }
318
319 /* Attempt to simplify a view by merging adjacent ranges */
320 static void flatview_simplify(FlatView *view)
321 {
322 unsigned i, j;
323
324 i = 0;
325 while (i < view->nr) {
326 j = i + 1;
327 while (j < view->nr
328 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
329 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
330 ++j;
331 }
332 ++i;
333 memmove(&view->ranges[i], &view->ranges[j],
334 (view->nr - j) * sizeof(view->ranges[j]));
335 view->nr -= j - i;
336 }
337 }
338
339 static bool memory_region_big_endian(MemoryRegion *mr)
340 {
341 #ifdef TARGET_WORDS_BIGENDIAN
342 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
343 #else
344 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
345 #endif
346 }
347
348 static bool memory_region_wrong_endianness(MemoryRegion *mr)
349 {
350 #ifdef TARGET_WORDS_BIGENDIAN
351 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
352 #else
353 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
354 #endif
355 }
356
357 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
358 {
359 if (memory_region_wrong_endianness(mr)) {
360 switch (size) {
361 case 1:
362 break;
363 case 2:
364 *data = bswap16(*data);
365 break;
366 case 4:
367 *data = bswap32(*data);
368 break;
369 case 8:
370 *data = bswap64(*data);
371 break;
372 default:
373 abort();
374 }
375 }
376 }
377
378 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
379 {
380 MemoryRegion *root;
381 hwaddr abs_addr = offset;
382
383 abs_addr += mr->addr;
384 for (root = mr; root->container; ) {
385 root = root->container;
386 abs_addr += root->addr;
387 }
388
389 return abs_addr;
390 }
391
392 static int get_cpu_index(void)
393 {
394 if (current_cpu) {
395 return current_cpu->cpu_index;
396 }
397 return -1;
398 }
399
400 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
401 hwaddr addr,
402 uint64_t *value,
403 unsigned size,
404 unsigned shift,
405 uint64_t mask,
406 MemTxAttrs attrs)
407 {
408 uint64_t tmp;
409
410 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
411 if (mr->subpage) {
412 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
413 } else if (mr == &io_mem_notdirty) {
414 /* Accesses to code which has previously been translated into a TB show
415 * up in the MMIO path, as accesses to the io_mem_notdirty
416 * MemoryRegion. */
417 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
418 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
419 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
420 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
421 }
422 *value |= (tmp & mask) << shift;
423 return MEMTX_OK;
424 }
425
426 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
427 hwaddr addr,
428 uint64_t *value,
429 unsigned size,
430 unsigned shift,
431 uint64_t mask,
432 MemTxAttrs attrs)
433 {
434 uint64_t tmp;
435
436 tmp = mr->ops->read(mr->opaque, addr, size);
437 if (mr->subpage) {
438 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
439 } else if (mr == &io_mem_notdirty) {
440 /* Accesses to code which has previously been translated into a TB show
441 * up in the MMIO path, as accesses to the io_mem_notdirty
442 * MemoryRegion. */
443 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
444 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
445 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
446 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
447 }
448 *value |= (tmp & mask) << shift;
449 return MEMTX_OK;
450 }
451
452 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
453 hwaddr addr,
454 uint64_t *value,
455 unsigned size,
456 unsigned shift,
457 uint64_t mask,
458 MemTxAttrs attrs)
459 {
460 uint64_t tmp = 0;
461 MemTxResult r;
462
463 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
464 if (mr->subpage) {
465 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
466 } else if (mr == &io_mem_notdirty) {
467 /* Accesses to code which has previously been translated into a TB show
468 * up in the MMIO path, as accesses to the io_mem_notdirty
469 * MemoryRegion. */
470 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
471 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
472 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
474 }
475 *value |= (tmp & mask) << shift;
476 return r;
477 }
478
479 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
480 hwaddr addr,
481 uint64_t *value,
482 unsigned size,
483 unsigned shift,
484 uint64_t mask,
485 MemTxAttrs attrs)
486 {
487 uint64_t tmp;
488
489 tmp = (*value >> shift) & mask;
490 if (mr->subpage) {
491 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492 } else if (mr == &io_mem_notdirty) {
493 /* Accesses to code which has previously been translated into a TB show
494 * up in the MMIO path, as accesses to the io_mem_notdirty
495 * MemoryRegion. */
496 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
497 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
498 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
499 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
500 }
501 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
502 return MEMTX_OK;
503 }
504
505 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
506 hwaddr addr,
507 uint64_t *value,
508 unsigned size,
509 unsigned shift,
510 uint64_t mask,
511 MemTxAttrs attrs)
512 {
513 uint64_t tmp;
514
515 tmp = (*value >> shift) & mask;
516 if (mr->subpage) {
517 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
518 } else if (mr == &io_mem_notdirty) {
519 /* Accesses to code which has previously been translated into a TB show
520 * up in the MMIO path, as accesses to the io_mem_notdirty
521 * MemoryRegion. */
522 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
523 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
524 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
525 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
526 }
527 mr->ops->write(mr->opaque, addr, tmp, size);
528 return MEMTX_OK;
529 }
530
531 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
532 hwaddr addr,
533 uint64_t *value,
534 unsigned size,
535 unsigned shift,
536 uint64_t mask,
537 MemTxAttrs attrs)
538 {
539 uint64_t tmp;
540
541 tmp = (*value >> shift) & mask;
542 if (mr->subpage) {
543 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
544 } else if (mr == &io_mem_notdirty) {
545 /* Accesses to code which has previously been translated into a TB show
546 * up in the MMIO path, as accesses to the io_mem_notdirty
547 * MemoryRegion. */
548 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
549 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
550 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
551 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
552 }
553 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
554 }
555
556 static MemTxResult access_with_adjusted_size(hwaddr addr,
557 uint64_t *value,
558 unsigned size,
559 unsigned access_size_min,
560 unsigned access_size_max,
561 MemTxResult (*access_fn)
562 (MemoryRegion *mr,
563 hwaddr addr,
564 uint64_t *value,
565 unsigned size,
566 unsigned shift,
567 uint64_t mask,
568 MemTxAttrs attrs),
569 MemoryRegion *mr,
570 MemTxAttrs attrs)
571 {
572 uint64_t access_mask;
573 unsigned access_size;
574 unsigned i;
575 MemTxResult r = MEMTX_OK;
576
577 if (!access_size_min) {
578 access_size_min = 1;
579 }
580 if (!access_size_max) {
581 access_size_max = 4;
582 }
583
584 /* FIXME: support unaligned access? */
585 access_size = MAX(MIN(size, access_size_max), access_size_min);
586 access_mask = -1ULL >> (64 - access_size * 8);
587 if (memory_region_big_endian(mr)) {
588 for (i = 0; i < size; i += access_size) {
589 r |= access_fn(mr, addr + i, value, access_size,
590 (size - access_size - i) * 8, access_mask, attrs);
591 }
592 } else {
593 for (i = 0; i < size; i += access_size) {
594 r |= access_fn(mr, addr + i, value, access_size, i * 8,
595 access_mask, attrs);
596 }
597 }
598 return r;
599 }
600
601 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
602 {
603 AddressSpace *as;
604
605 while (mr->container) {
606 mr = mr->container;
607 }
608 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
609 if (mr == as->root) {
610 return as;
611 }
612 }
613 return NULL;
614 }
615
616 /* Render a memory region into the global view. Ranges in @view obscure
617 * ranges in @mr.
618 */
619 static void render_memory_region(FlatView *view,
620 MemoryRegion *mr,
621 Int128 base,
622 AddrRange clip,
623 bool readonly)
624 {
625 MemoryRegion *subregion;
626 unsigned i;
627 hwaddr offset_in_region;
628 Int128 remain;
629 Int128 now;
630 FlatRange fr;
631 AddrRange tmp;
632
633 if (!mr->enabled) {
634 return;
635 }
636
637 int128_addto(&base, int128_make64(mr->addr));
638 readonly |= mr->readonly;
639
640 tmp = addrrange_make(base, mr->size);
641
642 if (!addrrange_intersects(tmp, clip)) {
643 return;
644 }
645
646 clip = addrrange_intersection(tmp, clip);
647
648 if (mr->alias) {
649 int128_subfrom(&base, int128_make64(mr->alias->addr));
650 int128_subfrom(&base, int128_make64(mr->alias_offset));
651 render_memory_region(view, mr->alias, base, clip, readonly);
652 return;
653 }
654
655 /* Render subregions in priority order. */
656 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
657 render_memory_region(view, subregion, base, clip, readonly);
658 }
659
660 if (!mr->terminates) {
661 return;
662 }
663
664 offset_in_region = int128_get64(int128_sub(clip.start, base));
665 base = clip.start;
666 remain = clip.size;
667
668 fr.mr = mr;
669 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
670 fr.romd_mode = mr->romd_mode;
671 fr.readonly = readonly;
672
673 /* Render the region itself into any gaps left by the current view. */
674 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
675 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
676 continue;
677 }
678 if (int128_lt(base, view->ranges[i].addr.start)) {
679 now = int128_min(remain,
680 int128_sub(view->ranges[i].addr.start, base));
681 fr.offset_in_region = offset_in_region;
682 fr.addr = addrrange_make(base, now);
683 flatview_insert(view, i, &fr);
684 ++i;
685 int128_addto(&base, now);
686 offset_in_region += int128_get64(now);
687 int128_subfrom(&remain, now);
688 }
689 now = int128_sub(int128_min(int128_add(base, remain),
690 addrrange_end(view->ranges[i].addr)),
691 base);
692 int128_addto(&base, now);
693 offset_in_region += int128_get64(now);
694 int128_subfrom(&remain, now);
695 }
696 if (int128_nz(remain)) {
697 fr.offset_in_region = offset_in_region;
698 fr.addr = addrrange_make(base, remain);
699 flatview_insert(view, i, &fr);
700 }
701 }
702
703 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
704 {
705 while (mr->enabled) {
706 if (mr->alias) {
707 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
708 /* The alias is included in its entirety. Use it as
709 * the "real" root, so that we can share more FlatViews.
710 */
711 mr = mr->alias;
712 continue;
713 }
714 } else if (!mr->terminates) {
715 unsigned int found = 0;
716 MemoryRegion *child, *next = NULL;
717 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
718 if (child->enabled) {
719 if (++found > 1) {
720 next = NULL;
721 break;
722 }
723 if (!child->addr && int128_ge(mr->size, child->size)) {
724 /* A child is included in its entirety. If it's the only
725 * enabled one, use it in the hope of finding an alias down the
726 * way. This will also let us share FlatViews.
727 */
728 next = child;
729 }
730 }
731 }
732 if (found == 0) {
733 return NULL;
734 }
735 if (next) {
736 mr = next;
737 continue;
738 }
739 }
740
741 return mr;
742 }
743
744 return NULL;
745 }
746
747 /* Render a memory topology into a list of disjoint absolute ranges. */
748 static FlatView *generate_memory_topology(MemoryRegion *mr)
749 {
750 int i;
751 FlatView *view;
752
753 view = flatview_new(mr);
754
755 if (mr) {
756 render_memory_region(view, mr, int128_zero(),
757 addrrange_make(int128_zero(), int128_2_64()), false);
758 }
759 flatview_simplify(view);
760
761 view->dispatch = address_space_dispatch_new(view);
762 for (i = 0; i < view->nr; i++) {
763 MemoryRegionSection mrs =
764 section_from_flat_range(&view->ranges[i], view);
765 flatview_add_to_dispatch(view, &mrs);
766 }
767 address_space_dispatch_compact(view->dispatch);
768 g_hash_table_replace(flat_views, mr, view);
769
770 return view;
771 }
772
773 static void address_space_add_del_ioeventfds(AddressSpace *as,
774 MemoryRegionIoeventfd *fds_new,
775 unsigned fds_new_nb,
776 MemoryRegionIoeventfd *fds_old,
777 unsigned fds_old_nb)
778 {
779 unsigned iold, inew;
780 MemoryRegionIoeventfd *fd;
781 MemoryRegionSection section;
782
783 /* Generate a symmetric difference of the old and new fd sets, adding
784 * and deleting as necessary.
785 */
786
787 iold = inew = 0;
788 while (iold < fds_old_nb || inew < fds_new_nb) {
789 if (iold < fds_old_nb
790 && (inew == fds_new_nb
791 || memory_region_ioeventfd_before(&fds_old[iold],
792 &fds_new[inew]))) {
793 fd = &fds_old[iold];
794 section = (MemoryRegionSection) {
795 .fv = address_space_to_flatview(as),
796 .offset_within_address_space = int128_get64(fd->addr.start),
797 .size = fd->addr.size,
798 };
799 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
800 fd->match_data, fd->data, fd->e);
801 ++iold;
802 } else if (inew < fds_new_nb
803 && (iold == fds_old_nb
804 || memory_region_ioeventfd_before(&fds_new[inew],
805 &fds_old[iold]))) {
806 fd = &fds_new[inew];
807 section = (MemoryRegionSection) {
808 .fv = address_space_to_flatview(as),
809 .offset_within_address_space = int128_get64(fd->addr.start),
810 .size = fd->addr.size,
811 };
812 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
813 fd->match_data, fd->data, fd->e);
814 ++inew;
815 } else {
816 ++iold;
817 ++inew;
818 }
819 }
820 }
821
822 FlatView *address_space_get_flatview(AddressSpace *as)
823 {
824 FlatView *view;
825
826 rcu_read_lock();
827 do {
828 view = address_space_to_flatview(as);
829 /* If somebody has replaced as->current_map concurrently,
830 * flatview_ref returns false.
831 */
832 } while (!flatview_ref(view));
833 rcu_read_unlock();
834 return view;
835 }
836
837 static void address_space_update_ioeventfds(AddressSpace *as)
838 {
839 FlatView *view;
840 FlatRange *fr;
841 unsigned ioeventfd_nb = 0;
842 MemoryRegionIoeventfd *ioeventfds = NULL;
843 AddrRange tmp;
844 unsigned i;
845
846 view = address_space_get_flatview(as);
847 FOR_EACH_FLAT_RANGE(fr, view) {
848 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
849 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
850 int128_sub(fr->addr.start,
851 int128_make64(fr->offset_in_region)));
852 if (addrrange_intersects(fr->addr, tmp)) {
853 ++ioeventfd_nb;
854 ioeventfds = g_realloc(ioeventfds,
855 ioeventfd_nb * sizeof(*ioeventfds));
856 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
857 ioeventfds[ioeventfd_nb-1].addr = tmp;
858 }
859 }
860 }
861
862 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
863 as->ioeventfds, as->ioeventfd_nb);
864
865 g_free(as->ioeventfds);
866 as->ioeventfds = ioeventfds;
867 as->ioeventfd_nb = ioeventfd_nb;
868 flatview_unref(view);
869 }
870
871 static void address_space_update_topology_pass(AddressSpace *as,
872 const FlatView *old_view,
873 const FlatView *new_view,
874 bool adding)
875 {
876 unsigned iold, inew;
877 FlatRange *frold, *frnew;
878
879 /* Generate a symmetric difference of the old and new memory maps.
880 * Kill ranges in the old map, and instantiate ranges in the new map.
881 */
882 iold = inew = 0;
883 while (iold < old_view->nr || inew < new_view->nr) {
884 if (iold < old_view->nr) {
885 frold = &old_view->ranges[iold];
886 } else {
887 frold = NULL;
888 }
889 if (inew < new_view->nr) {
890 frnew = &new_view->ranges[inew];
891 } else {
892 frnew = NULL;
893 }
894
895 if (frold
896 && (!frnew
897 || int128_lt(frold->addr.start, frnew->addr.start)
898 || (int128_eq(frold->addr.start, frnew->addr.start)
899 && !flatrange_equal(frold, frnew)))) {
900 /* In old but not in new, or in both but attributes changed. */
901
902 if (!adding) {
903 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
904 }
905
906 ++iold;
907 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
908 /* In both and unchanged (except logging may have changed) */
909
910 if (adding) {
911 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
912 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
913 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
914 frold->dirty_log_mask,
915 frnew->dirty_log_mask);
916 }
917 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
918 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
919 frold->dirty_log_mask,
920 frnew->dirty_log_mask);
921 }
922 }
923
924 ++iold;
925 ++inew;
926 } else {
927 /* In new */
928
929 if (adding) {
930 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
931 }
932
933 ++inew;
934 }
935 }
936 }
937
938 static void flatviews_init(void)
939 {
940 static FlatView *empty_view;
941
942 if (flat_views) {
943 return;
944 }
945
946 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
947 (GDestroyNotify) flatview_unref);
948 if (!empty_view) {
949 empty_view = generate_memory_topology(NULL);
950 /* We keep it alive forever in the global variable. */
951 flatview_ref(empty_view);
952 } else {
953 g_hash_table_replace(flat_views, NULL, empty_view);
954 flatview_ref(empty_view);
955 }
956 }
957
958 static void flatviews_reset(void)
959 {
960 AddressSpace *as;
961
962 if (flat_views) {
963 g_hash_table_unref(flat_views);
964 flat_views = NULL;
965 }
966 flatviews_init();
967
968 /* Render unique FVs */
969 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
970 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
971
972 if (g_hash_table_lookup(flat_views, physmr)) {
973 continue;
974 }
975
976 generate_memory_topology(physmr);
977 }
978 }
979
980 static void address_space_set_flatview(AddressSpace *as)
981 {
982 FlatView *old_view = address_space_to_flatview(as);
983 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
984 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
985
986 assert(new_view);
987
988 if (old_view == new_view) {
989 return;
990 }
991
992 if (old_view) {
993 flatview_ref(old_view);
994 }
995
996 flatview_ref(new_view);
997
998 if (!QTAILQ_EMPTY(&as->listeners)) {
999 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1000
1001 if (!old_view2) {
1002 old_view2 = &tmpview;
1003 }
1004 address_space_update_topology_pass(as, old_view2, new_view, false);
1005 address_space_update_topology_pass(as, old_view2, new_view, true);
1006 }
1007
1008 /* Writes are protected by the BQL. */
1009 atomic_rcu_set(&as->current_map, new_view);
1010 if (old_view) {
1011 flatview_unref(old_view);
1012 }
1013
1014 /* Note that all the old MemoryRegions are still alive up to this
1015 * point. This relieves most MemoryListeners from the need to
1016 * ref/unref the MemoryRegions they get---unless they use them
1017 * outside the iothread mutex, in which case precise reference
1018 * counting is necessary.
1019 */
1020 if (old_view) {
1021 flatview_unref(old_view);
1022 }
1023 }
1024
1025 static void address_space_update_topology(AddressSpace *as)
1026 {
1027 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1028
1029 flatviews_init();
1030 if (!g_hash_table_lookup(flat_views, physmr)) {
1031 generate_memory_topology(physmr);
1032 }
1033 address_space_set_flatview(as);
1034 }
1035
1036 void memory_region_transaction_begin(void)
1037 {
1038 qemu_flush_coalesced_mmio_buffer();
1039 ++memory_region_transaction_depth;
1040 }
1041
1042 void memory_region_transaction_commit(void)
1043 {
1044 AddressSpace *as;
1045
1046 assert(memory_region_transaction_depth);
1047 assert(qemu_mutex_iothread_locked());
1048
1049 --memory_region_transaction_depth;
1050 if (!memory_region_transaction_depth) {
1051 if (memory_region_update_pending) {
1052 flatviews_reset();
1053
1054 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1055
1056 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1057 address_space_set_flatview(as);
1058 address_space_update_ioeventfds(as);
1059 }
1060 memory_region_update_pending = false;
1061 ioeventfd_update_pending = false;
1062 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1063 } else if (ioeventfd_update_pending) {
1064 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1065 address_space_update_ioeventfds(as);
1066 }
1067 ioeventfd_update_pending = false;
1068 }
1069 }
1070 }
1071
1072 static void memory_region_destructor_none(MemoryRegion *mr)
1073 {
1074 }
1075
1076 static void memory_region_destructor_ram(MemoryRegion *mr)
1077 {
1078 qemu_ram_free(mr->ram_block);
1079 }
1080
1081 static bool memory_region_need_escape(char c)
1082 {
1083 return c == '/' || c == '[' || c == '\\' || c == ']';
1084 }
1085
1086 static char *memory_region_escape_name(const char *name)
1087 {
1088 const char *p;
1089 char *escaped, *q;
1090 uint8_t c;
1091 size_t bytes = 0;
1092
1093 for (p = name; *p; p++) {
1094 bytes += memory_region_need_escape(*p) ? 4 : 1;
1095 }
1096 if (bytes == p - name) {
1097 return g_memdup(name, bytes + 1);
1098 }
1099
1100 escaped = g_malloc(bytes + 1);
1101 for (p = name, q = escaped; *p; p++) {
1102 c = *p;
1103 if (unlikely(memory_region_need_escape(c))) {
1104 *q++ = '\\';
1105 *q++ = 'x';
1106 *q++ = "0123456789abcdef"[c >> 4];
1107 c = "0123456789abcdef"[c & 15];
1108 }
1109 *q++ = c;
1110 }
1111 *q = 0;
1112 return escaped;
1113 }
1114
1115 static void memory_region_do_init(MemoryRegion *mr,
1116 Object *owner,
1117 const char *name,
1118 uint64_t size)
1119 {
1120 mr->size = int128_make64(size);
1121 if (size == UINT64_MAX) {
1122 mr->size = int128_2_64();
1123 }
1124 mr->name = g_strdup(name);
1125 mr->owner = owner;
1126 mr->ram_block = NULL;
1127
1128 if (name) {
1129 char *escaped_name = memory_region_escape_name(name);
1130 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1131
1132 if (!owner) {
1133 owner = container_get(qdev_get_machine(), "/unattached");
1134 }
1135
1136 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1137 object_unref(OBJECT(mr));
1138 g_free(name_array);
1139 g_free(escaped_name);
1140 }
1141 }
1142
1143 void memory_region_init(MemoryRegion *mr,
1144 Object *owner,
1145 const char *name,
1146 uint64_t size)
1147 {
1148 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1149 memory_region_do_init(mr, owner, name, size);
1150 }
1151
1152 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1153 void *opaque, Error **errp)
1154 {
1155 MemoryRegion *mr = MEMORY_REGION(obj);
1156 uint64_t value = mr->addr;
1157
1158 visit_type_uint64(v, name, &value, errp);
1159 }
1160
1161 static void memory_region_get_container(Object *obj, Visitor *v,
1162 const char *name, void *opaque,
1163 Error **errp)
1164 {
1165 MemoryRegion *mr = MEMORY_REGION(obj);
1166 gchar *path = (gchar *)"";
1167
1168 if (mr->container) {
1169 path = object_get_canonical_path(OBJECT(mr->container));
1170 }
1171 visit_type_str(v, name, &path, errp);
1172 if (mr->container) {
1173 g_free(path);
1174 }
1175 }
1176
1177 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1178 const char *part)
1179 {
1180 MemoryRegion *mr = MEMORY_REGION(obj);
1181
1182 return OBJECT(mr->container);
1183 }
1184
1185 static void memory_region_get_priority(Object *obj, Visitor *v,
1186 const char *name, void *opaque,
1187 Error **errp)
1188 {
1189 MemoryRegion *mr = MEMORY_REGION(obj);
1190 int32_t value = mr->priority;
1191
1192 visit_type_int32(v, name, &value, errp);
1193 }
1194
1195 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1196 void *opaque, Error **errp)
1197 {
1198 MemoryRegion *mr = MEMORY_REGION(obj);
1199 uint64_t value = memory_region_size(mr);
1200
1201 visit_type_uint64(v, name, &value, errp);
1202 }
1203
1204 static void memory_region_initfn(Object *obj)
1205 {
1206 MemoryRegion *mr = MEMORY_REGION(obj);
1207 ObjectProperty *op;
1208
1209 mr->ops = &unassigned_mem_ops;
1210 mr->enabled = true;
1211 mr->romd_mode = true;
1212 mr->global_locking = true;
1213 mr->destructor = memory_region_destructor_none;
1214 QTAILQ_INIT(&mr->subregions);
1215 QTAILQ_INIT(&mr->coalesced);
1216
1217 op = object_property_add(OBJECT(mr), "container",
1218 "link<" TYPE_MEMORY_REGION ">",
1219 memory_region_get_container,
1220 NULL, /* memory_region_set_container */
1221 NULL, NULL, &error_abort);
1222 op->resolve = memory_region_resolve_container;
1223
1224 object_property_add(OBJECT(mr), "addr", "uint64",
1225 memory_region_get_addr,
1226 NULL, /* memory_region_set_addr */
1227 NULL, NULL, &error_abort);
1228 object_property_add(OBJECT(mr), "priority", "uint32",
1229 memory_region_get_priority,
1230 NULL, /* memory_region_set_priority */
1231 NULL, NULL, &error_abort);
1232 object_property_add(OBJECT(mr), "size", "uint64",
1233 memory_region_get_size,
1234 NULL, /* memory_region_set_size, */
1235 NULL, NULL, &error_abort);
1236 }
1237
1238 static void iommu_memory_region_initfn(Object *obj)
1239 {
1240 MemoryRegion *mr = MEMORY_REGION(obj);
1241
1242 mr->is_iommu = true;
1243 }
1244
1245 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1246 unsigned size)
1247 {
1248 #ifdef DEBUG_UNASSIGNED
1249 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1250 #endif
1251 if (current_cpu != NULL) {
1252 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1253 }
1254 return 0;
1255 }
1256
1257 static void unassigned_mem_write(void *opaque, hwaddr addr,
1258 uint64_t val, unsigned size)
1259 {
1260 #ifdef DEBUG_UNASSIGNED
1261 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1262 #endif
1263 if (current_cpu != NULL) {
1264 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1265 }
1266 }
1267
1268 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1269 unsigned size, bool is_write,
1270 MemTxAttrs attrs)
1271 {
1272 return false;
1273 }
1274
1275 const MemoryRegionOps unassigned_mem_ops = {
1276 .valid.accepts = unassigned_mem_accepts,
1277 .endianness = DEVICE_NATIVE_ENDIAN,
1278 };
1279
1280 static uint64_t memory_region_ram_device_read(void *opaque,
1281 hwaddr addr, unsigned size)
1282 {
1283 MemoryRegion *mr = opaque;
1284 uint64_t data = (uint64_t)~0;
1285
1286 switch (size) {
1287 case 1:
1288 data = *(uint8_t *)(mr->ram_block->host + addr);
1289 break;
1290 case 2:
1291 data = *(uint16_t *)(mr->ram_block->host + addr);
1292 break;
1293 case 4:
1294 data = *(uint32_t *)(mr->ram_block->host + addr);
1295 break;
1296 case 8:
1297 data = *(uint64_t *)(mr->ram_block->host + addr);
1298 break;
1299 }
1300
1301 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1302
1303 return data;
1304 }
1305
1306 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1307 uint64_t data, unsigned size)
1308 {
1309 MemoryRegion *mr = opaque;
1310
1311 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1312
1313 switch (size) {
1314 case 1:
1315 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1316 break;
1317 case 2:
1318 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1319 break;
1320 case 4:
1321 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1322 break;
1323 case 8:
1324 *(uint64_t *)(mr->ram_block->host + addr) = data;
1325 break;
1326 }
1327 }
1328
1329 static const MemoryRegionOps ram_device_mem_ops = {
1330 .read = memory_region_ram_device_read,
1331 .write = memory_region_ram_device_write,
1332 .endianness = DEVICE_HOST_ENDIAN,
1333 .valid = {
1334 .min_access_size = 1,
1335 .max_access_size = 8,
1336 .unaligned = true,
1337 },
1338 .impl = {
1339 .min_access_size = 1,
1340 .max_access_size = 8,
1341 .unaligned = true,
1342 },
1343 };
1344
1345 bool memory_region_access_valid(MemoryRegion *mr,
1346 hwaddr addr,
1347 unsigned size,
1348 bool is_write,
1349 MemTxAttrs attrs)
1350 {
1351 int access_size_min, access_size_max;
1352 int access_size, i;
1353
1354 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1355 return false;
1356 }
1357
1358 if (!mr->ops->valid.accepts) {
1359 return true;
1360 }
1361
1362 access_size_min = mr->ops->valid.min_access_size;
1363 if (!mr->ops->valid.min_access_size) {
1364 access_size_min = 1;
1365 }
1366
1367 access_size_max = mr->ops->valid.max_access_size;
1368 if (!mr->ops->valid.max_access_size) {
1369 access_size_max = 4;
1370 }
1371
1372 access_size = MAX(MIN(size, access_size_max), access_size_min);
1373 for (i = 0; i < size; i += access_size) {
1374 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1375 is_write, attrs)) {
1376 return false;
1377 }
1378 }
1379
1380 return true;
1381 }
1382
1383 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1384 hwaddr addr,
1385 uint64_t *pval,
1386 unsigned size,
1387 MemTxAttrs attrs)
1388 {
1389 *pval = 0;
1390
1391 if (mr->ops->read) {
1392 return access_with_adjusted_size(addr, pval, size,
1393 mr->ops->impl.min_access_size,
1394 mr->ops->impl.max_access_size,
1395 memory_region_read_accessor,
1396 mr, attrs);
1397 } else if (mr->ops->read_with_attrs) {
1398 return access_with_adjusted_size(addr, pval, size,
1399 mr->ops->impl.min_access_size,
1400 mr->ops->impl.max_access_size,
1401 memory_region_read_with_attrs_accessor,
1402 mr, attrs);
1403 } else {
1404 return access_with_adjusted_size(addr, pval, size, 1, 4,
1405 memory_region_oldmmio_read_accessor,
1406 mr, attrs);
1407 }
1408 }
1409
1410 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1411 hwaddr addr,
1412 uint64_t *pval,
1413 unsigned size,
1414 MemTxAttrs attrs)
1415 {
1416 MemTxResult r;
1417
1418 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1419 *pval = unassigned_mem_read(mr, addr, size);
1420 return MEMTX_DECODE_ERROR;
1421 }
1422
1423 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1424 adjust_endianness(mr, pval, size);
1425 return r;
1426 }
1427
1428 /* Return true if an eventfd was signalled */
1429 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1430 hwaddr addr,
1431 uint64_t data,
1432 unsigned size,
1433 MemTxAttrs attrs)
1434 {
1435 MemoryRegionIoeventfd ioeventfd = {
1436 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1437 .data = data,
1438 };
1439 unsigned i;
1440
1441 for (i = 0; i < mr->ioeventfd_nb; i++) {
1442 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1443 ioeventfd.e = mr->ioeventfds[i].e;
1444
1445 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1446 event_notifier_set(ioeventfd.e);
1447 return true;
1448 }
1449 }
1450
1451 return false;
1452 }
1453
1454 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1455 hwaddr addr,
1456 uint64_t data,
1457 unsigned size,
1458 MemTxAttrs attrs)
1459 {
1460 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1461 unassigned_mem_write(mr, addr, data, size);
1462 return MEMTX_DECODE_ERROR;
1463 }
1464
1465 adjust_endianness(mr, &data, size);
1466
1467 if ((!kvm_eventfds_enabled()) &&
1468 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1469 return MEMTX_OK;
1470 }
1471
1472 if (mr->ops->write) {
1473 return access_with_adjusted_size(addr, &data, size,
1474 mr->ops->impl.min_access_size,
1475 mr->ops->impl.max_access_size,
1476 memory_region_write_accessor, mr,
1477 attrs);
1478 } else if (mr->ops->write_with_attrs) {
1479 return
1480 access_with_adjusted_size(addr, &data, size,
1481 mr->ops->impl.min_access_size,
1482 mr->ops->impl.max_access_size,
1483 memory_region_write_with_attrs_accessor,
1484 mr, attrs);
1485 } else {
1486 return access_with_adjusted_size(addr, &data, size, 1, 4,
1487 memory_region_oldmmio_write_accessor,
1488 mr, attrs);
1489 }
1490 }
1491
1492 void memory_region_init_io(MemoryRegion *mr,
1493 Object *owner,
1494 const MemoryRegionOps *ops,
1495 void *opaque,
1496 const char *name,
1497 uint64_t size)
1498 {
1499 memory_region_init(mr, owner, name, size);
1500 mr->ops = ops ? ops : &unassigned_mem_ops;
1501 mr->opaque = opaque;
1502 mr->terminates = true;
1503 }
1504
1505 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1506 Object *owner,
1507 const char *name,
1508 uint64_t size,
1509 Error **errp)
1510 {
1511 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1512 }
1513
1514 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1515 Object *owner,
1516 const char *name,
1517 uint64_t size,
1518 bool share,
1519 Error **errp)
1520 {
1521 memory_region_init(mr, owner, name, size);
1522 mr->ram = true;
1523 mr->terminates = true;
1524 mr->destructor = memory_region_destructor_ram;
1525 mr->ram_block = qemu_ram_alloc(size, share, mr, errp);
1526 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1527 }
1528
1529 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1530 Object *owner,
1531 const char *name,
1532 uint64_t size,
1533 uint64_t max_size,
1534 void (*resized)(const char*,
1535 uint64_t length,
1536 void *host),
1537 Error **errp)
1538 {
1539 memory_region_init(mr, owner, name, size);
1540 mr->ram = true;
1541 mr->terminates = true;
1542 mr->destructor = memory_region_destructor_ram;
1543 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1544 mr, errp);
1545 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1546 }
1547
1548 #ifdef __linux__
1549 void memory_region_init_ram_from_file(MemoryRegion *mr,
1550 struct Object *owner,
1551 const char *name,
1552 uint64_t size,
1553 uint64_t align,
1554 uint32_t ram_flags,
1555 const char *path,
1556 Error **errp)
1557 {
1558 memory_region_init(mr, owner, name, size);
1559 mr->ram = true;
1560 mr->terminates = true;
1561 mr->destructor = memory_region_destructor_ram;
1562 mr->align = align;
1563 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, errp);
1564 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1565 }
1566
1567 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1568 struct Object *owner,
1569 const char *name,
1570 uint64_t size,
1571 bool share,
1572 int fd,
1573 Error **errp)
1574 {
1575 memory_region_init(mr, owner, name, size);
1576 mr->ram = true;
1577 mr->terminates = true;
1578 mr->destructor = memory_region_destructor_ram;
1579 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1580 share ? RAM_SHARED : 0,
1581 fd, errp);
1582 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1583 }
1584 #endif
1585
1586 void memory_region_init_ram_ptr(MemoryRegion *mr,
1587 Object *owner,
1588 const char *name,
1589 uint64_t size,
1590 void *ptr)
1591 {
1592 memory_region_init(mr, owner, name, size);
1593 mr->ram = true;
1594 mr->terminates = true;
1595 mr->destructor = memory_region_destructor_ram;
1596 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1597
1598 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1599 assert(ptr != NULL);
1600 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1601 }
1602
1603 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1604 Object *owner,
1605 const char *name,
1606 uint64_t size,
1607 void *ptr)
1608 {
1609 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1610 mr->ram_device = true;
1611 mr->ops = &ram_device_mem_ops;
1612 mr->opaque = mr;
1613 }
1614
1615 void memory_region_init_alias(MemoryRegion *mr,
1616 Object *owner,
1617 const char *name,
1618 MemoryRegion *orig,
1619 hwaddr offset,
1620 uint64_t size)
1621 {
1622 memory_region_init(mr, owner, name, size);
1623 mr->alias = orig;
1624 mr->alias_offset = offset;
1625 }
1626
1627 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1628 struct Object *owner,
1629 const char *name,
1630 uint64_t size,
1631 Error **errp)
1632 {
1633 memory_region_init(mr, owner, name, size);
1634 mr->ram = true;
1635 mr->readonly = true;
1636 mr->terminates = true;
1637 mr->destructor = memory_region_destructor_ram;
1638 mr->ram_block = qemu_ram_alloc(size, false, mr, errp);
1639 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1640 }
1641
1642 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1643 Object *owner,
1644 const MemoryRegionOps *ops,
1645 void *opaque,
1646 const char *name,
1647 uint64_t size,
1648 Error **errp)
1649 {
1650 assert(ops);
1651 memory_region_init(mr, owner, name, size);
1652 mr->ops = ops;
1653 mr->opaque = opaque;
1654 mr->terminates = true;
1655 mr->rom_device = true;
1656 mr->destructor = memory_region_destructor_ram;
1657 mr->ram_block = qemu_ram_alloc(size, false, mr, errp);
1658 }
1659
1660 void memory_region_init_iommu(void *_iommu_mr,
1661 size_t instance_size,
1662 const char *mrtypename,
1663 Object *owner,
1664 const char *name,
1665 uint64_t size)
1666 {
1667 struct IOMMUMemoryRegion *iommu_mr;
1668 struct MemoryRegion *mr;
1669
1670 object_initialize(_iommu_mr, instance_size, mrtypename);
1671 mr = MEMORY_REGION(_iommu_mr);
1672 memory_region_do_init(mr, owner, name, size);
1673 iommu_mr = IOMMU_MEMORY_REGION(mr);
1674 mr->terminates = true; /* then re-forwards */
1675 QLIST_INIT(&iommu_mr->iommu_notify);
1676 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1677 }
1678
1679 static void memory_region_finalize(Object *obj)
1680 {
1681 MemoryRegion *mr = MEMORY_REGION(obj);
1682
1683 assert(!mr->container);
1684
1685 /* We know the region is not visible in any address space (it
1686 * does not have a container and cannot be a root either because
1687 * it has no references, so we can blindly clear mr->enabled.
1688 * memory_region_set_enabled instead could trigger a transaction
1689 * and cause an infinite loop.
1690 */
1691 mr->enabled = false;
1692 memory_region_transaction_begin();
1693 while (!QTAILQ_EMPTY(&mr->subregions)) {
1694 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1695 memory_region_del_subregion(mr, subregion);
1696 }
1697 memory_region_transaction_commit();
1698
1699 mr->destructor(mr);
1700 memory_region_clear_coalescing(mr);
1701 g_free((char *)mr->name);
1702 g_free(mr->ioeventfds);
1703 }
1704
1705 Object *memory_region_owner(MemoryRegion *mr)
1706 {
1707 Object *obj = OBJECT(mr);
1708 return obj->parent;
1709 }
1710
1711 void memory_region_ref(MemoryRegion *mr)
1712 {
1713 /* MMIO callbacks most likely will access data that belongs
1714 * to the owner, hence the need to ref/unref the owner whenever
1715 * the memory region is in use.
1716 *
1717 * The memory region is a child of its owner. As long as the
1718 * owner doesn't call unparent itself on the memory region,
1719 * ref-ing the owner will also keep the memory region alive.
1720 * Memory regions without an owner are supposed to never go away;
1721 * we do not ref/unref them because it slows down DMA sensibly.
1722 */
1723 if (mr && mr->owner) {
1724 object_ref(mr->owner);
1725 }
1726 }
1727
1728 void memory_region_unref(MemoryRegion *mr)
1729 {
1730 if (mr && mr->owner) {
1731 object_unref(mr->owner);
1732 }
1733 }
1734
1735 uint64_t memory_region_size(MemoryRegion *mr)
1736 {
1737 if (int128_eq(mr->size, int128_2_64())) {
1738 return UINT64_MAX;
1739 }
1740 return int128_get64(mr->size);
1741 }
1742
1743 const char *memory_region_name(const MemoryRegion *mr)
1744 {
1745 if (!mr->name) {
1746 ((MemoryRegion *)mr)->name =
1747 object_get_canonical_path_component(OBJECT(mr));
1748 }
1749 return mr->name;
1750 }
1751
1752 bool memory_region_is_ram_device(MemoryRegion *mr)
1753 {
1754 return mr->ram_device;
1755 }
1756
1757 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1758 {
1759 uint8_t mask = mr->dirty_log_mask;
1760 if (global_dirty_log && mr->ram_block) {
1761 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1762 }
1763 return mask;
1764 }
1765
1766 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1767 {
1768 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1769 }
1770
1771 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1772 {
1773 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1774 IOMMUNotifier *iommu_notifier;
1775 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1776
1777 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1778 flags |= iommu_notifier->notifier_flags;
1779 }
1780
1781 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1782 imrc->notify_flag_changed(iommu_mr,
1783 iommu_mr->iommu_notify_flags,
1784 flags);
1785 }
1786
1787 iommu_mr->iommu_notify_flags = flags;
1788 }
1789
1790 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1791 IOMMUNotifier *n)
1792 {
1793 IOMMUMemoryRegion *iommu_mr;
1794
1795 if (mr->alias) {
1796 memory_region_register_iommu_notifier(mr->alias, n);
1797 return;
1798 }
1799
1800 /* We need to register for at least one bitfield */
1801 iommu_mr = IOMMU_MEMORY_REGION(mr);
1802 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1803 assert(n->start <= n->end);
1804 assert(n->iommu_idx >= 0 &&
1805 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1806
1807 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1808 memory_region_update_iommu_notify_flags(iommu_mr);
1809 }
1810
1811 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1812 {
1813 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1814
1815 if (imrc->get_min_page_size) {
1816 return imrc->get_min_page_size(iommu_mr);
1817 }
1818 return TARGET_PAGE_SIZE;
1819 }
1820
1821 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1822 {
1823 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1824 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1825 hwaddr addr, granularity;
1826 IOMMUTLBEntry iotlb;
1827
1828 /* If the IOMMU has its own replay callback, override */
1829 if (imrc->replay) {
1830 imrc->replay(iommu_mr, n);
1831 return;
1832 }
1833
1834 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1835
1836 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1837 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1838 if (iotlb.perm != IOMMU_NONE) {
1839 n->notify(n, &iotlb);
1840 }
1841
1842 /* if (2^64 - MR size) < granularity, it's possible to get an
1843 * infinite loop here. This should catch such a wraparound */
1844 if ((addr + granularity) < addr) {
1845 break;
1846 }
1847 }
1848 }
1849
1850 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1851 {
1852 IOMMUNotifier *notifier;
1853
1854 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1855 memory_region_iommu_replay(iommu_mr, notifier);
1856 }
1857 }
1858
1859 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1860 IOMMUNotifier *n)
1861 {
1862 IOMMUMemoryRegion *iommu_mr;
1863
1864 if (mr->alias) {
1865 memory_region_unregister_iommu_notifier(mr->alias, n);
1866 return;
1867 }
1868 QLIST_REMOVE(n, node);
1869 iommu_mr = IOMMU_MEMORY_REGION(mr);
1870 memory_region_update_iommu_notify_flags(iommu_mr);
1871 }
1872
1873 void memory_region_notify_one(IOMMUNotifier *notifier,
1874 IOMMUTLBEntry *entry)
1875 {
1876 IOMMUNotifierFlag request_flags;
1877
1878 /*
1879 * Skip the notification if the notification does not overlap
1880 * with registered range.
1881 */
1882 if (notifier->start > entry->iova + entry->addr_mask ||
1883 notifier->end < entry->iova) {
1884 return;
1885 }
1886
1887 if (entry->perm & IOMMU_RW) {
1888 request_flags = IOMMU_NOTIFIER_MAP;
1889 } else {
1890 request_flags = IOMMU_NOTIFIER_UNMAP;
1891 }
1892
1893 if (notifier->notifier_flags & request_flags) {
1894 notifier->notify(notifier, entry);
1895 }
1896 }
1897
1898 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1899 int iommu_idx,
1900 IOMMUTLBEntry entry)
1901 {
1902 IOMMUNotifier *iommu_notifier;
1903
1904 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1905
1906 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1907 if (iommu_notifier->iommu_idx == iommu_idx) {
1908 memory_region_notify_one(iommu_notifier, &entry);
1909 }
1910 }
1911 }
1912
1913 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1914 enum IOMMUMemoryRegionAttr attr,
1915 void *data)
1916 {
1917 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1918
1919 if (!imrc->get_attr) {
1920 return -EINVAL;
1921 }
1922
1923 return imrc->get_attr(iommu_mr, attr, data);
1924 }
1925
1926 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1927 MemTxAttrs attrs)
1928 {
1929 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1930
1931 if (!imrc->attrs_to_index) {
1932 return 0;
1933 }
1934
1935 return imrc->attrs_to_index(iommu_mr, attrs);
1936 }
1937
1938 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
1939 {
1940 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1941
1942 if (!imrc->num_indexes) {
1943 return 1;
1944 }
1945
1946 return imrc->num_indexes(iommu_mr);
1947 }
1948
1949 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1950 {
1951 uint8_t mask = 1 << client;
1952 uint8_t old_logging;
1953
1954 assert(client == DIRTY_MEMORY_VGA);
1955 old_logging = mr->vga_logging_count;
1956 mr->vga_logging_count += log ? 1 : -1;
1957 if (!!old_logging == !!mr->vga_logging_count) {
1958 return;
1959 }
1960
1961 memory_region_transaction_begin();
1962 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1963 memory_region_update_pending |= mr->enabled;
1964 memory_region_transaction_commit();
1965 }
1966
1967 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1968 hwaddr size, unsigned client)
1969 {
1970 assert(mr->ram_block);
1971 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1972 size, client);
1973 }
1974
1975 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1976 hwaddr size)
1977 {
1978 assert(mr->ram_block);
1979 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1980 size,
1981 memory_region_get_dirty_log_mask(mr));
1982 }
1983
1984 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1985 {
1986 MemoryListener *listener;
1987 AddressSpace *as;
1988 FlatView *view;
1989 FlatRange *fr;
1990
1991 /* If the same address space has multiple log_sync listeners, we
1992 * visit that address space's FlatView multiple times. But because
1993 * log_sync listeners are rare, it's still cheaper than walking each
1994 * address space once.
1995 */
1996 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1997 if (!listener->log_sync) {
1998 continue;
1999 }
2000 as = listener->address_space;
2001 view = address_space_get_flatview(as);
2002 FOR_EACH_FLAT_RANGE(fr, view) {
2003 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2004 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2005 listener->log_sync(listener, &mrs);
2006 }
2007 }
2008 flatview_unref(view);
2009 }
2010 }
2011
2012 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2013 hwaddr addr,
2014 hwaddr size,
2015 unsigned client)
2016 {
2017 assert(mr->ram_block);
2018 memory_region_sync_dirty_bitmap(mr);
2019 return cpu_physical_memory_snapshot_and_clear_dirty(
2020 memory_region_get_ram_addr(mr) + addr, size, client);
2021 }
2022
2023 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2024 hwaddr addr, hwaddr size)
2025 {
2026 assert(mr->ram_block);
2027 return cpu_physical_memory_snapshot_get_dirty(snap,
2028 memory_region_get_ram_addr(mr) + addr, size);
2029 }
2030
2031 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2032 {
2033 if (mr->readonly != readonly) {
2034 memory_region_transaction_begin();
2035 mr->readonly = readonly;
2036 memory_region_update_pending |= mr->enabled;
2037 memory_region_transaction_commit();
2038 }
2039 }
2040
2041 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2042 {
2043 if (mr->romd_mode != romd_mode) {
2044 memory_region_transaction_begin();
2045 mr->romd_mode = romd_mode;
2046 memory_region_update_pending |= mr->enabled;
2047 memory_region_transaction_commit();
2048 }
2049 }
2050
2051 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2052 hwaddr size, unsigned client)
2053 {
2054 assert(mr->ram_block);
2055 cpu_physical_memory_test_and_clear_dirty(
2056 memory_region_get_ram_addr(mr) + addr, size, client);
2057 }
2058
2059 int memory_region_get_fd(MemoryRegion *mr)
2060 {
2061 int fd;
2062
2063 rcu_read_lock();
2064 while (mr->alias) {
2065 mr = mr->alias;
2066 }
2067 fd = mr->ram_block->fd;
2068 rcu_read_unlock();
2069
2070 return fd;
2071 }
2072
2073 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2074 {
2075 void *ptr;
2076 uint64_t offset = 0;
2077
2078 rcu_read_lock();
2079 while (mr->alias) {
2080 offset += mr->alias_offset;
2081 mr = mr->alias;
2082 }
2083 assert(mr->ram_block);
2084 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2085 rcu_read_unlock();
2086
2087 return ptr;
2088 }
2089
2090 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2091 {
2092 RAMBlock *block;
2093
2094 block = qemu_ram_block_from_host(ptr, false, offset);
2095 if (!block) {
2096 return NULL;
2097 }
2098
2099 return block->mr;
2100 }
2101
2102 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2103 {
2104 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2105 }
2106
2107 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2108 {
2109 assert(mr->ram_block);
2110
2111 qemu_ram_resize(mr->ram_block, newsize, errp);
2112 }
2113
2114 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
2115 {
2116 FlatView *view;
2117 FlatRange *fr;
2118 CoalescedMemoryRange *cmr;
2119 AddrRange tmp;
2120 MemoryRegionSection section;
2121
2122 view = address_space_get_flatview(as);
2123 FOR_EACH_FLAT_RANGE(fr, view) {
2124 if (fr->mr == mr) {
2125 section = (MemoryRegionSection) {
2126 .fv = view,
2127 .offset_within_address_space = int128_get64(fr->addr.start),
2128 .size = fr->addr.size,
2129 };
2130
2131 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
2132 int128_get64(fr->addr.start),
2133 int128_get64(fr->addr.size));
2134 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
2135 tmp = addrrange_shift(cmr->addr,
2136 int128_sub(fr->addr.start,
2137 int128_make64(fr->offset_in_region)));
2138 if (!addrrange_intersects(tmp, fr->addr)) {
2139 continue;
2140 }
2141 tmp = addrrange_intersection(tmp, fr->addr);
2142 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
2143 int128_get64(tmp.start),
2144 int128_get64(tmp.size));
2145 }
2146 }
2147 }
2148 flatview_unref(view);
2149 }
2150
2151 static void memory_region_update_coalesced_range(MemoryRegion *mr)
2152 {
2153 AddressSpace *as;
2154
2155 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2156 memory_region_update_coalesced_range_as(mr, as);
2157 }
2158 }
2159
2160 void memory_region_set_coalescing(MemoryRegion *mr)
2161 {
2162 memory_region_clear_coalescing(mr);
2163 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2164 }
2165
2166 void memory_region_add_coalescing(MemoryRegion *mr,
2167 hwaddr offset,
2168 uint64_t size)
2169 {
2170 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2171
2172 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2173 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2174 memory_region_update_coalesced_range(mr);
2175 memory_region_set_flush_coalesced(mr);
2176 }
2177
2178 void memory_region_clear_coalescing(MemoryRegion *mr)
2179 {
2180 CoalescedMemoryRange *cmr;
2181 bool updated = false;
2182
2183 qemu_flush_coalesced_mmio_buffer();
2184 mr->flush_coalesced_mmio = false;
2185
2186 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2187 cmr = QTAILQ_FIRST(&mr->coalesced);
2188 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2189 g_free(cmr);
2190 updated = true;
2191 }
2192
2193 if (updated) {
2194 memory_region_update_coalesced_range(mr);
2195 }
2196 }
2197
2198 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2199 {
2200 mr->flush_coalesced_mmio = true;
2201 }
2202
2203 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2204 {
2205 qemu_flush_coalesced_mmio_buffer();
2206 if (QTAILQ_EMPTY(&mr->coalesced)) {
2207 mr->flush_coalesced_mmio = false;
2208 }
2209 }
2210
2211 void memory_region_clear_global_locking(MemoryRegion *mr)
2212 {
2213 mr->global_locking = false;
2214 }
2215
2216 static bool userspace_eventfd_warning;
2217
2218 void memory_region_add_eventfd(MemoryRegion *mr,
2219 hwaddr addr,
2220 unsigned size,
2221 bool match_data,
2222 uint64_t data,
2223 EventNotifier *e)
2224 {
2225 MemoryRegionIoeventfd mrfd = {
2226 .addr.start = int128_make64(addr),
2227 .addr.size = int128_make64(size),
2228 .match_data = match_data,
2229 .data = data,
2230 .e = e,
2231 };
2232 unsigned i;
2233
2234 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2235 userspace_eventfd_warning))) {
2236 userspace_eventfd_warning = true;
2237 error_report("Using eventfd without MMIO binding in KVM. "
2238 "Suboptimal performance expected");
2239 }
2240
2241 if (size) {
2242 adjust_endianness(mr, &mrfd.data, size);
2243 }
2244 memory_region_transaction_begin();
2245 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2246 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2247 break;
2248 }
2249 }
2250 ++mr->ioeventfd_nb;
2251 mr->ioeventfds = g_realloc(mr->ioeventfds,
2252 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2253 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2254 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2255 mr->ioeventfds[i] = mrfd;
2256 ioeventfd_update_pending |= mr->enabled;
2257 memory_region_transaction_commit();
2258 }
2259
2260 void memory_region_del_eventfd(MemoryRegion *mr,
2261 hwaddr addr,
2262 unsigned size,
2263 bool match_data,
2264 uint64_t data,
2265 EventNotifier *e)
2266 {
2267 MemoryRegionIoeventfd mrfd = {
2268 .addr.start = int128_make64(addr),
2269 .addr.size = int128_make64(size),
2270 .match_data = match_data,
2271 .data = data,
2272 .e = e,
2273 };
2274 unsigned i;
2275
2276 if (size) {
2277 adjust_endianness(mr, &mrfd.data, size);
2278 }
2279 memory_region_transaction_begin();
2280 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2281 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2282 break;
2283 }
2284 }
2285 assert(i != mr->ioeventfd_nb);
2286 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2287 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2288 --mr->ioeventfd_nb;
2289 mr->ioeventfds = g_realloc(mr->ioeventfds,
2290 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2291 ioeventfd_update_pending |= mr->enabled;
2292 memory_region_transaction_commit();
2293 }
2294
2295 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2296 {
2297 MemoryRegion *mr = subregion->container;
2298 MemoryRegion *other;
2299
2300 memory_region_transaction_begin();
2301
2302 memory_region_ref(subregion);
2303 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2304 if (subregion->priority >= other->priority) {
2305 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2306 goto done;
2307 }
2308 }
2309 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2310 done:
2311 memory_region_update_pending |= mr->enabled && subregion->enabled;
2312 memory_region_transaction_commit();
2313 }
2314
2315 static void memory_region_add_subregion_common(MemoryRegion *mr,
2316 hwaddr offset,
2317 MemoryRegion *subregion)
2318 {
2319 assert(!subregion->container);
2320 subregion->container = mr;
2321 subregion->addr = offset;
2322 memory_region_update_container_subregions(subregion);
2323 }
2324
2325 void memory_region_add_subregion(MemoryRegion *mr,
2326 hwaddr offset,
2327 MemoryRegion *subregion)
2328 {
2329 subregion->priority = 0;
2330 memory_region_add_subregion_common(mr, offset, subregion);
2331 }
2332
2333 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2334 hwaddr offset,
2335 MemoryRegion *subregion,
2336 int priority)
2337 {
2338 subregion->priority = priority;
2339 memory_region_add_subregion_common(mr, offset, subregion);
2340 }
2341
2342 void memory_region_del_subregion(MemoryRegion *mr,
2343 MemoryRegion *subregion)
2344 {
2345 memory_region_transaction_begin();
2346 assert(subregion->container == mr);
2347 subregion->container = NULL;
2348 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2349 memory_region_unref(subregion);
2350 memory_region_update_pending |= mr->enabled && subregion->enabled;
2351 memory_region_transaction_commit();
2352 }
2353
2354 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2355 {
2356 if (enabled == mr->enabled) {
2357 return;
2358 }
2359 memory_region_transaction_begin();
2360 mr->enabled = enabled;
2361 memory_region_update_pending = true;
2362 memory_region_transaction_commit();
2363 }
2364
2365 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2366 {
2367 Int128 s = int128_make64(size);
2368
2369 if (size == UINT64_MAX) {
2370 s = int128_2_64();
2371 }
2372 if (int128_eq(s, mr->size)) {
2373 return;
2374 }
2375 memory_region_transaction_begin();
2376 mr->size = s;
2377 memory_region_update_pending = true;
2378 memory_region_transaction_commit();
2379 }
2380
2381 static void memory_region_readd_subregion(MemoryRegion *mr)
2382 {
2383 MemoryRegion *container = mr->container;
2384
2385 if (container) {
2386 memory_region_transaction_begin();
2387 memory_region_ref(mr);
2388 memory_region_del_subregion(container, mr);
2389 mr->container = container;
2390 memory_region_update_container_subregions(mr);
2391 memory_region_unref(mr);
2392 memory_region_transaction_commit();
2393 }
2394 }
2395
2396 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2397 {
2398 if (addr != mr->addr) {
2399 mr->addr = addr;
2400 memory_region_readd_subregion(mr);
2401 }
2402 }
2403
2404 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2405 {
2406 assert(mr->alias);
2407
2408 if (offset == mr->alias_offset) {
2409 return;
2410 }
2411
2412 memory_region_transaction_begin();
2413 mr->alias_offset = offset;
2414 memory_region_update_pending |= mr->enabled;
2415 memory_region_transaction_commit();
2416 }
2417
2418 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2419 {
2420 return mr->align;
2421 }
2422
2423 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2424 {
2425 const AddrRange *addr = addr_;
2426 const FlatRange *fr = fr_;
2427
2428 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2429 return -1;
2430 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2431 return 1;
2432 }
2433 return 0;
2434 }
2435
2436 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2437 {
2438 return bsearch(&addr, view->ranges, view->nr,
2439 sizeof(FlatRange), cmp_flatrange_addr);
2440 }
2441
2442 bool memory_region_is_mapped(MemoryRegion *mr)
2443 {
2444 return mr->container ? true : false;
2445 }
2446
2447 /* Same as memory_region_find, but it does not add a reference to the
2448 * returned region. It must be called from an RCU critical section.
2449 */
2450 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2451 hwaddr addr, uint64_t size)
2452 {
2453 MemoryRegionSection ret = { .mr = NULL };
2454 MemoryRegion *root;
2455 AddressSpace *as;
2456 AddrRange range;
2457 FlatView *view;
2458 FlatRange *fr;
2459
2460 addr += mr->addr;
2461 for (root = mr; root->container; ) {
2462 root = root->container;
2463 addr += root->addr;
2464 }
2465
2466 as = memory_region_to_address_space(root);
2467 if (!as) {
2468 return ret;
2469 }
2470 range = addrrange_make(int128_make64(addr), int128_make64(size));
2471
2472 view = address_space_to_flatview(as);
2473 fr = flatview_lookup(view, range);
2474 if (!fr) {
2475 return ret;
2476 }
2477
2478 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2479 --fr;
2480 }
2481
2482 ret.mr = fr->mr;
2483 ret.fv = view;
2484 range = addrrange_intersection(range, fr->addr);
2485 ret.offset_within_region = fr->offset_in_region;
2486 ret.offset_within_region += int128_get64(int128_sub(range.start,
2487 fr->addr.start));
2488 ret.size = range.size;
2489 ret.offset_within_address_space = int128_get64(range.start);
2490 ret.readonly = fr->readonly;
2491 return ret;
2492 }
2493
2494 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2495 hwaddr addr, uint64_t size)
2496 {
2497 MemoryRegionSection ret;
2498 rcu_read_lock();
2499 ret = memory_region_find_rcu(mr, addr, size);
2500 if (ret.mr) {
2501 memory_region_ref(ret.mr);
2502 }
2503 rcu_read_unlock();
2504 return ret;
2505 }
2506
2507 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2508 {
2509 MemoryRegion *mr;
2510
2511 rcu_read_lock();
2512 mr = memory_region_find_rcu(container, addr, 1).mr;
2513 rcu_read_unlock();
2514 return mr && mr != container;
2515 }
2516
2517 void memory_global_dirty_log_sync(void)
2518 {
2519 memory_region_sync_dirty_bitmap(NULL);
2520 }
2521
2522 static VMChangeStateEntry *vmstate_change;
2523
2524 void memory_global_dirty_log_start(void)
2525 {
2526 if (vmstate_change) {
2527 qemu_del_vm_change_state_handler(vmstate_change);
2528 vmstate_change = NULL;
2529 }
2530
2531 global_dirty_log = true;
2532
2533 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2534
2535 /* Refresh DIRTY_LOG_MIGRATION bit. */
2536 memory_region_transaction_begin();
2537 memory_region_update_pending = true;
2538 memory_region_transaction_commit();
2539 }
2540
2541 static void memory_global_dirty_log_do_stop(void)
2542 {
2543 global_dirty_log = false;
2544
2545 /* Refresh DIRTY_LOG_MIGRATION bit. */
2546 memory_region_transaction_begin();
2547 memory_region_update_pending = true;
2548 memory_region_transaction_commit();
2549
2550 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2551 }
2552
2553 static void memory_vm_change_state_handler(void *opaque, int running,
2554 RunState state)
2555 {
2556 if (running) {
2557 memory_global_dirty_log_do_stop();
2558
2559 if (vmstate_change) {
2560 qemu_del_vm_change_state_handler(vmstate_change);
2561 vmstate_change = NULL;
2562 }
2563 }
2564 }
2565
2566 void memory_global_dirty_log_stop(void)
2567 {
2568 if (!runstate_is_running()) {
2569 if (vmstate_change) {
2570 return;
2571 }
2572 vmstate_change = qemu_add_vm_change_state_handler(
2573 memory_vm_change_state_handler, NULL);
2574 return;
2575 }
2576
2577 memory_global_dirty_log_do_stop();
2578 }
2579
2580 static void listener_add_address_space(MemoryListener *listener,
2581 AddressSpace *as)
2582 {
2583 FlatView *view;
2584 FlatRange *fr;
2585
2586 if (listener->begin) {
2587 listener->begin(listener);
2588 }
2589 if (global_dirty_log) {
2590 if (listener->log_global_start) {
2591 listener->log_global_start(listener);
2592 }
2593 }
2594
2595 view = address_space_get_flatview(as);
2596 FOR_EACH_FLAT_RANGE(fr, view) {
2597 MemoryRegionSection section = section_from_flat_range(fr, view);
2598
2599 if (listener->region_add) {
2600 listener->region_add(listener, &section);
2601 }
2602 if (fr->dirty_log_mask && listener->log_start) {
2603 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2604 }
2605 }
2606 if (listener->commit) {
2607 listener->commit(listener);
2608 }
2609 flatview_unref(view);
2610 }
2611
2612 static void listener_del_address_space(MemoryListener *listener,
2613 AddressSpace *as)
2614 {
2615 FlatView *view;
2616 FlatRange *fr;
2617
2618 if (listener->begin) {
2619 listener->begin(listener);
2620 }
2621 view = address_space_get_flatview(as);
2622 FOR_EACH_FLAT_RANGE(fr, view) {
2623 MemoryRegionSection section = section_from_flat_range(fr, view);
2624
2625 if (fr->dirty_log_mask && listener->log_stop) {
2626 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2627 }
2628 if (listener->region_del) {
2629 listener->region_del(listener, &section);
2630 }
2631 }
2632 if (listener->commit) {
2633 listener->commit(listener);
2634 }
2635 flatview_unref(view);
2636 }
2637
2638 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2639 {
2640 MemoryListener *other = NULL;
2641
2642 listener->address_space = as;
2643 if (QTAILQ_EMPTY(&memory_listeners)
2644 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2645 memory_listeners)->priority) {
2646 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2647 } else {
2648 QTAILQ_FOREACH(other, &memory_listeners, link) {
2649 if (listener->priority < other->priority) {
2650 break;
2651 }
2652 }
2653 QTAILQ_INSERT_BEFORE(other, listener, link);
2654 }
2655
2656 if (QTAILQ_EMPTY(&as->listeners)
2657 || listener->priority >= QTAILQ_LAST(&as->listeners,
2658 memory_listeners)->priority) {
2659 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2660 } else {
2661 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2662 if (listener->priority < other->priority) {
2663 break;
2664 }
2665 }
2666 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2667 }
2668
2669 listener_add_address_space(listener, as);
2670 }
2671
2672 void memory_listener_unregister(MemoryListener *listener)
2673 {
2674 if (!listener->address_space) {
2675 return;
2676 }
2677
2678 listener_del_address_space(listener, listener->address_space);
2679 QTAILQ_REMOVE(&memory_listeners, listener, link);
2680 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2681 listener->address_space = NULL;
2682 }
2683
2684 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
2685 {
2686 void *host;
2687 unsigned size = 0;
2688 unsigned offset = 0;
2689 Object *new_interface;
2690
2691 if (!mr || !mr->ops->request_ptr) {
2692 return false;
2693 }
2694
2695 /*
2696 * Avoid an update if the request_ptr call
2697 * memory_region_invalidate_mmio_ptr which seems to be likely when we use
2698 * a cache.
2699 */
2700 memory_region_transaction_begin();
2701
2702 host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
2703
2704 if (!host || !size) {
2705 memory_region_transaction_commit();
2706 return false;
2707 }
2708
2709 new_interface = object_new("mmio_interface");
2710 qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
2711 qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
2712 qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
2713 qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
2714 qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
2715 object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
2716
2717 memory_region_transaction_commit();
2718 return true;
2719 }
2720
2721 typedef struct MMIOPtrInvalidate {
2722 MemoryRegion *mr;
2723 hwaddr offset;
2724 unsigned size;
2725 int busy;
2726 int allocated;
2727 } MMIOPtrInvalidate;
2728
2729 #define MAX_MMIO_INVALIDATE 10
2730 static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
2731
2732 static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
2733 run_on_cpu_data data)
2734 {
2735 MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
2736 MemoryRegion *mr = invalidate_data->mr;
2737 hwaddr offset = invalidate_data->offset;
2738 unsigned size = invalidate_data->size;
2739 MemoryRegionSection section = memory_region_find(mr, offset, size);
2740
2741 qemu_mutex_lock_iothread();
2742
2743 /* Reset dirty so this doesn't happen later. */
2744 cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
2745
2746 if (section.mr != mr) {
2747 /* memory_region_find add a ref on section.mr */
2748 memory_region_unref(section.mr);
2749 if (MMIO_INTERFACE(section.mr->owner)) {
2750 /* We found the interface just drop it. */
2751 object_property_set_bool(section.mr->owner, false, "realized",
2752 NULL);
2753 object_unref(section.mr->owner);
2754 object_unparent(section.mr->owner);
2755 }
2756 }
2757
2758 qemu_mutex_unlock_iothread();
2759
2760 if (invalidate_data->allocated) {
2761 g_free(invalidate_data);
2762 } else {
2763 invalidate_data->busy = 0;
2764 }
2765 }
2766
2767 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
2768 unsigned size)
2769 {
2770 size_t i;
2771 MMIOPtrInvalidate *invalidate_data = NULL;
2772
2773 for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
2774 if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
2775 invalidate_data = &mmio_ptr_invalidate_list[i];
2776 break;
2777 }
2778 }
2779
2780 if (!invalidate_data) {
2781 invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
2782 invalidate_data->allocated = 1;
2783 }
2784
2785 invalidate_data->mr = mr;
2786 invalidate_data->offset = offset;
2787 invalidate_data->size = size;
2788
2789 async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
2790 RUN_ON_CPU_HOST_PTR(invalidate_data));
2791 }
2792
2793 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2794 {
2795 memory_region_ref(root);
2796 as->root = root;
2797 as->current_map = NULL;
2798 as->ioeventfd_nb = 0;
2799 as->ioeventfds = NULL;
2800 QTAILQ_INIT(&as->listeners);
2801 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2802 as->name = g_strdup(name ? name : "anonymous");
2803 address_space_update_topology(as);
2804 address_space_update_ioeventfds(as);
2805 }
2806
2807 static void do_address_space_destroy(AddressSpace *as)
2808 {
2809 assert(QTAILQ_EMPTY(&as->listeners));
2810
2811 flatview_unref(as->current_map);
2812 g_free(as->name);
2813 g_free(as->ioeventfds);
2814 memory_region_unref(as->root);
2815 }
2816
2817 void address_space_destroy(AddressSpace *as)
2818 {
2819 MemoryRegion *root = as->root;
2820
2821 /* Flush out anything from MemoryListeners listening in on this */
2822 memory_region_transaction_begin();
2823 as->root = NULL;
2824 memory_region_transaction_commit();
2825 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2826
2827 /* At this point, as->dispatch and as->current_map are dummy
2828 * entries that the guest should never use. Wait for the old
2829 * values to expire before freeing the data.
2830 */
2831 as->root = root;
2832 call_rcu(as, do_address_space_destroy, rcu);
2833 }
2834
2835 static const char *memory_region_type(MemoryRegion *mr)
2836 {
2837 if (memory_region_is_ram_device(mr)) {
2838 return "ramd";
2839 } else if (memory_region_is_romd(mr)) {
2840 return "romd";
2841 } else if (memory_region_is_rom(mr)) {
2842 return "rom";
2843 } else if (memory_region_is_ram(mr)) {
2844 return "ram";
2845 } else {
2846 return "i/o";
2847 }
2848 }
2849
2850 typedef struct MemoryRegionList MemoryRegionList;
2851
2852 struct MemoryRegionList {
2853 const MemoryRegion *mr;
2854 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2855 };
2856
2857 typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2858
2859 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2860 int128_sub((size), int128_one())) : 0)
2861 #define MTREE_INDENT " "
2862
2863 static void mtree_expand_owner(fprintf_function mon_printf, void *f,
2864 const char *label, Object *obj)
2865 {
2866 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2867
2868 mon_printf(f, " %s:{%s", label, dev ? "dev" : "obj");
2869 if (dev && dev->id) {
2870 mon_printf(f, " id=%s", dev->id);
2871 } else {
2872 gchar *canonical_path = object_get_canonical_path(obj);
2873 if (canonical_path) {
2874 mon_printf(f, " path=%s", canonical_path);
2875 g_free(canonical_path);
2876 } else {
2877 mon_printf(f, " type=%s", object_get_typename(obj));
2878 }
2879 }
2880 mon_printf(f, "}");
2881 }
2882
2883 static void mtree_print_mr_owner(fprintf_function mon_printf, void *f,
2884 const MemoryRegion *mr)
2885 {
2886 Object *owner = mr->owner;
2887 Object *parent = memory_region_owner((MemoryRegion *)mr);
2888
2889 if (!owner && !parent) {
2890 mon_printf(f, " orphan");
2891 return;
2892 }
2893 if (owner) {
2894 mtree_expand_owner(mon_printf, f, "owner", owner);
2895 }
2896 if (parent && parent != owner) {
2897 mtree_expand_owner(mon_printf, f, "parent", parent);
2898 }
2899 }
2900
2901 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2902 const MemoryRegion *mr, unsigned int level,
2903 hwaddr base,
2904 MemoryRegionListHead *alias_print_queue,
2905 bool owner)
2906 {
2907 MemoryRegionList *new_ml, *ml, *next_ml;
2908 MemoryRegionListHead submr_print_queue;
2909 const MemoryRegion *submr;
2910 unsigned int i;
2911 hwaddr cur_start, cur_end;
2912
2913 if (!mr) {
2914 return;
2915 }
2916
2917 for (i = 0; i < level; i++) {
2918 mon_printf(f, MTREE_INDENT);
2919 }
2920
2921 cur_start = base + mr->addr;
2922 cur_end = cur_start + MR_SIZE(mr->size);
2923
2924 /*
2925 * Try to detect overflow of memory region. This should never
2926 * happen normally. When it happens, we dump something to warn the
2927 * user who is observing this.
2928 */
2929 if (cur_start < base || cur_end < cur_start) {
2930 mon_printf(f, "[DETECTED OVERFLOW!] ");
2931 }
2932
2933 if (mr->alias) {
2934 MemoryRegionList *ml;
2935 bool found = false;
2936
2937 /* check if the alias is already in the queue */
2938 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2939 if (ml->mr == mr->alias) {
2940 found = true;
2941 }
2942 }
2943
2944 if (!found) {
2945 ml = g_new(MemoryRegionList, 1);
2946 ml->mr = mr->alias;
2947 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2948 }
2949 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2950 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2951 "-" TARGET_FMT_plx "%s",
2952 cur_start, cur_end,
2953 mr->priority,
2954 memory_region_type((MemoryRegion *)mr),
2955 memory_region_name(mr),
2956 memory_region_name(mr->alias),
2957 mr->alias_offset,
2958 mr->alias_offset + MR_SIZE(mr->size),
2959 mr->enabled ? "" : " [disabled]");
2960 if (owner) {
2961 mtree_print_mr_owner(mon_printf, f, mr);
2962 }
2963 } else {
2964 mon_printf(f,
2965 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s",
2966 cur_start, cur_end,
2967 mr->priority,
2968 memory_region_type((MemoryRegion *)mr),
2969 memory_region_name(mr),
2970 mr->enabled ? "" : " [disabled]");
2971 if (owner) {
2972 mtree_print_mr_owner(mon_printf, f, mr);
2973 }
2974 }
2975 mon_printf(f, "\n");
2976
2977 QTAILQ_INIT(&submr_print_queue);
2978
2979 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2980 new_ml = g_new(MemoryRegionList, 1);
2981 new_ml->mr = submr;
2982 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2983 if (new_ml->mr->addr < ml->mr->addr ||
2984 (new_ml->mr->addr == ml->mr->addr &&
2985 new_ml->mr->priority > ml->mr->priority)) {
2986 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2987 new_ml = NULL;
2988 break;
2989 }
2990 }
2991 if (new_ml) {
2992 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2993 }
2994 }
2995
2996 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2997 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2998 alias_print_queue, owner);
2999 }
3000
3001 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3002 g_free(ml);
3003 }
3004 }
3005
3006 struct FlatViewInfo {
3007 fprintf_function mon_printf;
3008 void *f;
3009 int counter;
3010 bool dispatch_tree;
3011 bool owner;
3012 };
3013
3014 static void mtree_print_flatview(gpointer key, gpointer value,
3015 gpointer user_data)
3016 {
3017 FlatView *view = key;
3018 GArray *fv_address_spaces = value;
3019 struct FlatViewInfo *fvi = user_data;
3020 fprintf_function p = fvi->mon_printf;
3021 void *f = fvi->f;
3022 FlatRange *range = &view->ranges[0];
3023 MemoryRegion *mr;
3024 int n = view->nr;
3025 int i;
3026 AddressSpace *as;
3027
3028 p(f, "FlatView #%d\n", fvi->counter);
3029 ++fvi->counter;
3030
3031 for (i = 0; i < fv_address_spaces->len; ++i) {
3032 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3033 p(f, " AS \"%s\", root: %s", as->name, memory_region_name(as->root));
3034 if (as->root->alias) {
3035 p(f, ", alias %s", memory_region_name(as->root->alias));
3036 }
3037 p(f, "\n");
3038 }
3039
3040 p(f, " Root memory region: %s\n",
3041 view->root ? memory_region_name(view->root) : "(none)");
3042
3043 if (n <= 0) {
3044 p(f, MTREE_INDENT "No rendered FlatView\n\n");
3045 return;
3046 }
3047
3048 while (n--) {
3049 mr = range->mr;
3050 if (range->offset_in_region) {
3051 p(f, MTREE_INDENT TARGET_FMT_plx "-"
3052 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx,
3053 int128_get64(range->addr.start),
3054 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
3055 mr->priority,
3056 range->readonly ? "rom" : memory_region_type(mr),
3057 memory_region_name(mr),
3058 range->offset_in_region);
3059 } else {
3060 p(f, MTREE_INDENT TARGET_FMT_plx "-"
3061 TARGET_FMT_plx " (prio %d, %s): %s",
3062 int128_get64(range->addr.start),
3063 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
3064 mr->priority,
3065 range->readonly ? "rom" : memory_region_type(mr),
3066 memory_region_name(mr));
3067 }
3068 if (fvi->owner) {
3069 mtree_print_mr_owner(p, f, mr);
3070 }
3071 p(f, "\n");
3072 range++;
3073 }
3074
3075 #if !defined(CONFIG_USER_ONLY)
3076 if (fvi->dispatch_tree && view->root) {
3077 mtree_print_dispatch(p, f, view->dispatch, view->root);
3078 }
3079 #endif
3080
3081 p(f, "\n");
3082 }
3083
3084 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3085 gpointer user_data)
3086 {
3087 FlatView *view = key;
3088 GArray *fv_address_spaces = value;
3089
3090 g_array_unref(fv_address_spaces);
3091 flatview_unref(view);
3092
3093 return true;
3094 }
3095
3096 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
3097 bool dispatch_tree, bool owner)
3098 {
3099 MemoryRegionListHead ml_head;
3100 MemoryRegionList *ml, *ml2;
3101 AddressSpace *as;
3102
3103 if (flatview) {
3104 FlatView *view;
3105 struct FlatViewInfo fvi = {
3106 .mon_printf = mon_printf,
3107 .f = f,
3108 .counter = 0,
3109 .dispatch_tree = dispatch_tree,
3110 .owner = owner,
3111 };
3112 GArray *fv_address_spaces;
3113 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3114
3115 /* Gather all FVs in one table */
3116 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3117 view = address_space_get_flatview(as);
3118
3119 fv_address_spaces = g_hash_table_lookup(views, view);
3120 if (!fv_address_spaces) {
3121 fv_address_spaces = g_array_new(false, false, sizeof(as));
3122 g_hash_table_insert(views, view, fv_address_spaces);
3123 }
3124
3125 g_array_append_val(fv_address_spaces, as);
3126 }
3127
3128 /* Print */
3129 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3130
3131 /* Free */
3132 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3133 g_hash_table_unref(views);
3134
3135 return;
3136 }
3137
3138 QTAILQ_INIT(&ml_head);
3139
3140 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3141 mon_printf(f, "address-space: %s\n", as->name);
3142 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head, owner);
3143 mon_printf(f, "\n");
3144 }
3145
3146 /* print aliased regions */
3147 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3148 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
3149 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head, owner);
3150 mon_printf(f, "\n");
3151 }
3152
3153 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3154 g_free(ml);
3155 }
3156 }
3157
3158 void memory_region_init_ram(MemoryRegion *mr,
3159 struct Object *owner,
3160 const char *name,
3161 uint64_t size,
3162 Error **errp)
3163 {
3164 DeviceState *owner_dev;
3165 Error *err = NULL;
3166
3167 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3168 if (err) {
3169 error_propagate(errp, err);
3170 return;
3171 }
3172 /* This will assert if owner is neither NULL nor a DeviceState.
3173 * We only want the owner here for the purposes of defining a
3174 * unique name for migration. TODO: Ideally we should implement
3175 * a naming scheme for Objects which are not DeviceStates, in
3176 * which case we can relax this restriction.
3177 */
3178 owner_dev = DEVICE(owner);
3179 vmstate_register_ram(mr, owner_dev);
3180 }
3181
3182 void memory_region_init_rom(MemoryRegion *mr,
3183 struct Object *owner,
3184 const char *name,
3185 uint64_t size,
3186 Error **errp)
3187 {
3188 DeviceState *owner_dev;
3189 Error *err = NULL;
3190
3191 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3192 if (err) {
3193 error_propagate(errp, err);
3194 return;
3195 }
3196 /* This will assert if owner is neither NULL nor a DeviceState.
3197 * We only want the owner here for the purposes of defining a
3198 * unique name for migration. TODO: Ideally we should implement
3199 * a naming scheme for Objects which are not DeviceStates, in
3200 * which case we can relax this restriction.
3201 */
3202 owner_dev = DEVICE(owner);
3203 vmstate_register_ram(mr, owner_dev);
3204 }
3205
3206 void memory_region_init_rom_device(MemoryRegion *mr,
3207 struct Object *owner,
3208 const MemoryRegionOps *ops,
3209 void *opaque,
3210 const char *name,
3211 uint64_t size,
3212 Error **errp)
3213 {
3214 DeviceState *owner_dev;
3215 Error *err = NULL;
3216
3217 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3218 name, size, &err);
3219 if (err) {
3220 error_propagate(errp, err);
3221 return;
3222 }
3223 /* This will assert if owner is neither NULL nor a DeviceState.
3224 * We only want the owner here for the purposes of defining a
3225 * unique name for migration. TODO: Ideally we should implement
3226 * a naming scheme for Objects which are not DeviceStates, in
3227 * which case we can relax this restriction.
3228 */
3229 owner_dev = DEVICE(owner);
3230 vmstate_register_ram(mr, owner_dev);
3231 }
3232
3233 static const TypeInfo memory_region_info = {
3234 .parent = TYPE_OBJECT,
3235 .name = TYPE_MEMORY_REGION,
3236 .instance_size = sizeof(MemoryRegion),
3237 .instance_init = memory_region_initfn,
3238 .instance_finalize = memory_region_finalize,
3239 };
3240
3241 static const TypeInfo iommu_memory_region_info = {
3242 .parent = TYPE_MEMORY_REGION,
3243 .name = TYPE_IOMMU_MEMORY_REGION,
3244 .class_size = sizeof(IOMMUMemoryRegionClass),
3245 .instance_size = sizeof(IOMMUMemoryRegion),
3246 .instance_init = iommu_memory_region_initfn,
3247 .abstract = true,
3248 };
3249
3250 static void memory_register_types(void)
3251 {
3252 type_register_static(&memory_region_info);
3253 type_register_static(&iommu_memory_region_info);
3254 }
3255
3256 type_init(memory_register_types)