]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
Merge remote-tracking branch 'remotes/stefanha/tags/tracing-pull-request' into staging
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "exec/memory.h"
18 #include "exec/address-spaces.h"
19 #include "exec/ioport.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qom/object.h"
24 #include "trace.h"
25
26 #include "exec/memory-internal.h"
27 #include "exec/ram_addr.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/sysemu.h"
30
31 //#define DEBUG_UNASSIGNED
32
33 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
34
35 static unsigned memory_region_transaction_depth;
36 static bool memory_region_update_pending;
37 static bool ioeventfd_update_pending;
38 static bool global_dirty_log = false;
39
40 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
41 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
42
43 static QTAILQ_HEAD(, AddressSpace) address_spaces
44 = QTAILQ_HEAD_INITIALIZER(address_spaces);
45
46 typedef struct AddrRange AddrRange;
47
48 /*
49 * Note that signed integers are needed for negative offsetting in aliases
50 * (large MemoryRegion::alias_offset).
51 */
52 struct AddrRange {
53 Int128 start;
54 Int128 size;
55 };
56
57 static AddrRange addrrange_make(Int128 start, Int128 size)
58 {
59 return (AddrRange) { start, size };
60 }
61
62 static bool addrrange_equal(AddrRange r1, AddrRange r2)
63 {
64 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
65 }
66
67 static Int128 addrrange_end(AddrRange r)
68 {
69 return int128_add(r.start, r.size);
70 }
71
72 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
73 {
74 int128_addto(&range.start, delta);
75 return range;
76 }
77
78 static bool addrrange_contains(AddrRange range, Int128 addr)
79 {
80 return int128_ge(addr, range.start)
81 && int128_lt(addr, addrrange_end(range));
82 }
83
84 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
85 {
86 return addrrange_contains(r1, r2.start)
87 || addrrange_contains(r2, r1.start);
88 }
89
90 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
91 {
92 Int128 start = int128_max(r1.start, r2.start);
93 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
94 return addrrange_make(start, int128_sub(end, start));
95 }
96
97 enum ListenerDirection { Forward, Reverse };
98
99 static bool memory_listener_match(MemoryListener *listener,
100 MemoryRegionSection *section)
101 {
102 return !listener->address_space_filter
103 || listener->address_space_filter == section->address_space;
104 }
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
120 memory_listeners, link) { \
121 if (_listener->_callback) { \
122 _listener->_callback(_listener, ##_args); \
123 } \
124 } \
125 break; \
126 default: \
127 abort(); \
128 } \
129 } while (0)
130
131 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
132 do { \
133 MemoryListener *_listener; \
134 \
135 switch (_direction) { \
136 case Forward: \
137 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
138 if (_listener->_callback \
139 && memory_listener_match(_listener, _section)) { \
140 _listener->_callback(_listener, _section, ##_args); \
141 } \
142 } \
143 break; \
144 case Reverse: \
145 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
146 memory_listeners, link) { \
147 if (_listener->_callback \
148 && memory_listener_match(_listener, _section)) { \
149 _listener->_callback(_listener, _section, ##_args); \
150 } \
151 } \
152 break; \
153 default: \
154 abort(); \
155 } \
156 } while (0)
157
158 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
159 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
160 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
161 .mr = (fr)->mr, \
162 .address_space = (as), \
163 .offset_within_region = (fr)->offset_in_region, \
164 .size = (fr)->addr.size, \
165 .offset_within_address_space = int128_get64((fr)->addr.start), \
166 .readonly = (fr)->readonly, \
167 }), ##_args)
168
169 struct CoalescedMemoryRange {
170 AddrRange addr;
171 QTAILQ_ENTRY(CoalescedMemoryRange) link;
172 };
173
174 struct MemoryRegionIoeventfd {
175 AddrRange addr;
176 bool match_data;
177 uint64_t data;
178 EventNotifier *e;
179 };
180
181 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
182 MemoryRegionIoeventfd b)
183 {
184 if (int128_lt(a.addr.start, b.addr.start)) {
185 return true;
186 } else if (int128_gt(a.addr.start, b.addr.start)) {
187 return false;
188 } else if (int128_lt(a.addr.size, b.addr.size)) {
189 return true;
190 } else if (int128_gt(a.addr.size, b.addr.size)) {
191 return false;
192 } else if (a.match_data < b.match_data) {
193 return true;
194 } else if (a.match_data > b.match_data) {
195 return false;
196 } else if (a.match_data) {
197 if (a.data < b.data) {
198 return true;
199 } else if (a.data > b.data) {
200 return false;
201 }
202 }
203 if (a.e < b.e) {
204 return true;
205 } else if (a.e > b.e) {
206 return false;
207 }
208 return false;
209 }
210
211 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
212 MemoryRegionIoeventfd b)
213 {
214 return !memory_region_ioeventfd_before(a, b)
215 && !memory_region_ioeventfd_before(b, a);
216 }
217
218 typedef struct FlatRange FlatRange;
219 typedef struct FlatView FlatView;
220
221 /* Range of memory in the global map. Addresses are absolute. */
222 struct FlatRange {
223 MemoryRegion *mr;
224 hwaddr offset_in_region;
225 AddrRange addr;
226 uint8_t dirty_log_mask;
227 bool romd_mode;
228 bool readonly;
229 };
230
231 /* Flattened global view of current active memory hierarchy. Kept in sorted
232 * order.
233 */
234 struct FlatView {
235 struct rcu_head rcu;
236 unsigned ref;
237 FlatRange *ranges;
238 unsigned nr;
239 unsigned nr_allocated;
240 };
241
242 typedef struct AddressSpaceOps AddressSpaceOps;
243
244 #define FOR_EACH_FLAT_RANGE(var, view) \
245 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
246
247 static bool flatrange_equal(FlatRange *a, FlatRange *b)
248 {
249 return a->mr == b->mr
250 && addrrange_equal(a->addr, b->addr)
251 && a->offset_in_region == b->offset_in_region
252 && a->romd_mode == b->romd_mode
253 && a->readonly == b->readonly;
254 }
255
256 static void flatview_init(FlatView *view)
257 {
258 view->ref = 1;
259 view->ranges = NULL;
260 view->nr = 0;
261 view->nr_allocated = 0;
262 }
263
264 /* Insert a range into a given position. Caller is responsible for maintaining
265 * sorting order.
266 */
267 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
268 {
269 if (view->nr == view->nr_allocated) {
270 view->nr_allocated = MAX(2 * view->nr, 10);
271 view->ranges = g_realloc(view->ranges,
272 view->nr_allocated * sizeof(*view->ranges));
273 }
274 memmove(view->ranges + pos + 1, view->ranges + pos,
275 (view->nr - pos) * sizeof(FlatRange));
276 view->ranges[pos] = *range;
277 memory_region_ref(range->mr);
278 ++view->nr;
279 }
280
281 static void flatview_destroy(FlatView *view)
282 {
283 int i;
284
285 for (i = 0; i < view->nr; i++) {
286 memory_region_unref(view->ranges[i].mr);
287 }
288 g_free(view->ranges);
289 g_free(view);
290 }
291
292 static void flatview_ref(FlatView *view)
293 {
294 atomic_inc(&view->ref);
295 }
296
297 static void flatview_unref(FlatView *view)
298 {
299 if (atomic_fetch_dec(&view->ref) == 1) {
300 flatview_destroy(view);
301 }
302 }
303
304 static bool can_merge(FlatRange *r1, FlatRange *r2)
305 {
306 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
307 && r1->mr == r2->mr
308 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
309 r1->addr.size),
310 int128_make64(r2->offset_in_region))
311 && r1->dirty_log_mask == r2->dirty_log_mask
312 && r1->romd_mode == r2->romd_mode
313 && r1->readonly == r2->readonly;
314 }
315
316 /* Attempt to simplify a view by merging adjacent ranges */
317 static void flatview_simplify(FlatView *view)
318 {
319 unsigned i, j;
320
321 i = 0;
322 while (i < view->nr) {
323 j = i + 1;
324 while (j < view->nr
325 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
326 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
327 ++j;
328 }
329 ++i;
330 memmove(&view->ranges[i], &view->ranges[j],
331 (view->nr - j) * sizeof(view->ranges[j]));
332 view->nr -= j - i;
333 }
334 }
335
336 static bool memory_region_big_endian(MemoryRegion *mr)
337 {
338 #ifdef TARGET_WORDS_BIGENDIAN
339 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
340 #else
341 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
342 #endif
343 }
344
345 static bool memory_region_wrong_endianness(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
355 {
356 if (memory_region_wrong_endianness(mr)) {
357 switch (size) {
358 case 1:
359 break;
360 case 2:
361 *data = bswap16(*data);
362 break;
363 case 4:
364 *data = bswap32(*data);
365 break;
366 case 8:
367 *data = bswap64(*data);
368 break;
369 default:
370 abort();
371 }
372 }
373 }
374
375 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
376 {
377 MemoryRegion *root;
378 hwaddr abs_addr = offset;
379
380 abs_addr += mr->addr;
381 for (root = mr; root->container; ) {
382 root = root->container;
383 abs_addr += root->addr;
384 }
385
386 return abs_addr;
387 }
388
389 static int get_cpu_index(void)
390 {
391 if (current_cpu) {
392 return current_cpu->cpu_index;
393 }
394 return -1;
395 }
396
397 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
398 hwaddr addr,
399 uint64_t *value,
400 unsigned size,
401 unsigned shift,
402 uint64_t mask,
403 MemTxAttrs attrs)
404 {
405 uint64_t tmp;
406
407 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
408 if (mr->subpage) {
409 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
410 } else if (mr == &io_mem_notdirty) {
411 /* Accesses to code which has previously been translated into a TB show
412 * up in the MMIO path, as accesses to the io_mem_notdirty
413 * MemoryRegion. */
414 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
415 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
416 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
417 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
418 }
419 *value |= (tmp & mask) << shift;
420 return MEMTX_OK;
421 }
422
423 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
424 hwaddr addr,
425 uint64_t *value,
426 unsigned size,
427 unsigned shift,
428 uint64_t mask,
429 MemTxAttrs attrs)
430 {
431 uint64_t tmp;
432
433 tmp = mr->ops->read(mr->opaque, addr, size);
434 if (mr->subpage) {
435 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
436 } else if (mr == &io_mem_notdirty) {
437 /* Accesses to code which has previously been translated into a TB show
438 * up in the MMIO path, as accesses to the io_mem_notdirty
439 * MemoryRegion. */
440 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
441 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
442 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
443 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
444 }
445 *value |= (tmp & mask) << shift;
446 return MEMTX_OK;
447 }
448
449 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
450 hwaddr addr,
451 uint64_t *value,
452 unsigned size,
453 unsigned shift,
454 uint64_t mask,
455 MemTxAttrs attrs)
456 {
457 uint64_t tmp = 0;
458 MemTxResult r;
459
460 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
461 if (mr->subpage) {
462 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
463 } else if (mr == &io_mem_notdirty) {
464 /* Accesses to code which has previously been translated into a TB show
465 * up in the MMIO path, as accesses to the io_mem_notdirty
466 * MemoryRegion. */
467 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
468 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
469 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
470 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
471 }
472 *value |= (tmp & mask) << shift;
473 return r;
474 }
475
476 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
477 hwaddr addr,
478 uint64_t *value,
479 unsigned size,
480 unsigned shift,
481 uint64_t mask,
482 MemTxAttrs attrs)
483 {
484 uint64_t tmp;
485
486 tmp = (*value >> shift) & mask;
487 if (mr->subpage) {
488 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
489 } else if (mr == &io_mem_notdirty) {
490 /* Accesses to code which has previously been translated into a TB show
491 * up in the MMIO path, as accesses to the io_mem_notdirty
492 * MemoryRegion. */
493 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
494 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
495 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
496 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
497 }
498 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
499 return MEMTX_OK;
500 }
501
502 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
503 hwaddr addr,
504 uint64_t *value,
505 unsigned size,
506 unsigned shift,
507 uint64_t mask,
508 MemTxAttrs attrs)
509 {
510 uint64_t tmp;
511
512 tmp = (*value >> shift) & mask;
513 if (mr->subpage) {
514 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
515 } else if (mr == &io_mem_notdirty) {
516 /* Accesses to code which has previously been translated into a TB show
517 * up in the MMIO path, as accesses to the io_mem_notdirty
518 * MemoryRegion. */
519 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
520 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
521 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
522 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
523 }
524 mr->ops->write(mr->opaque, addr, tmp, size);
525 return MEMTX_OK;
526 }
527
528 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
529 hwaddr addr,
530 uint64_t *value,
531 unsigned size,
532 unsigned shift,
533 uint64_t mask,
534 MemTxAttrs attrs)
535 {
536 uint64_t tmp;
537
538 tmp = (*value >> shift) & mask;
539 if (mr->subpage) {
540 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
541 } else if (mr == &io_mem_notdirty) {
542 /* Accesses to code which has previously been translated into a TB show
543 * up in the MMIO path, as accesses to the io_mem_notdirty
544 * MemoryRegion. */
545 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
546 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
547 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
548 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
549 }
550 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
551 }
552
553 static MemTxResult access_with_adjusted_size(hwaddr addr,
554 uint64_t *value,
555 unsigned size,
556 unsigned access_size_min,
557 unsigned access_size_max,
558 MemTxResult (*access)(MemoryRegion *mr,
559 hwaddr addr,
560 uint64_t *value,
561 unsigned size,
562 unsigned shift,
563 uint64_t mask,
564 MemTxAttrs attrs),
565 MemoryRegion *mr,
566 MemTxAttrs attrs)
567 {
568 uint64_t access_mask;
569 unsigned access_size;
570 unsigned i;
571 MemTxResult r = MEMTX_OK;
572
573 if (!access_size_min) {
574 access_size_min = 1;
575 }
576 if (!access_size_max) {
577 access_size_max = 4;
578 }
579
580 /* FIXME: support unaligned access? */
581 access_size = MAX(MIN(size, access_size_max), access_size_min);
582 access_mask = -1ULL >> (64 - access_size * 8);
583 if (memory_region_big_endian(mr)) {
584 for (i = 0; i < size; i += access_size) {
585 r |= access(mr, addr + i, value, access_size,
586 (size - access_size - i) * 8, access_mask, attrs);
587 }
588 } else {
589 for (i = 0; i < size; i += access_size) {
590 r |= access(mr, addr + i, value, access_size, i * 8,
591 access_mask, attrs);
592 }
593 }
594 return r;
595 }
596
597 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
598 {
599 AddressSpace *as;
600
601 while (mr->container) {
602 mr = mr->container;
603 }
604 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
605 if (mr == as->root) {
606 return as;
607 }
608 }
609 return NULL;
610 }
611
612 /* Render a memory region into the global view. Ranges in @view obscure
613 * ranges in @mr.
614 */
615 static void render_memory_region(FlatView *view,
616 MemoryRegion *mr,
617 Int128 base,
618 AddrRange clip,
619 bool readonly)
620 {
621 MemoryRegion *subregion;
622 unsigned i;
623 hwaddr offset_in_region;
624 Int128 remain;
625 Int128 now;
626 FlatRange fr;
627 AddrRange tmp;
628
629 if (!mr->enabled) {
630 return;
631 }
632
633 int128_addto(&base, int128_make64(mr->addr));
634 readonly |= mr->readonly;
635
636 tmp = addrrange_make(base, mr->size);
637
638 if (!addrrange_intersects(tmp, clip)) {
639 return;
640 }
641
642 clip = addrrange_intersection(tmp, clip);
643
644 if (mr->alias) {
645 int128_subfrom(&base, int128_make64(mr->alias->addr));
646 int128_subfrom(&base, int128_make64(mr->alias_offset));
647 render_memory_region(view, mr->alias, base, clip, readonly);
648 return;
649 }
650
651 /* Render subregions in priority order. */
652 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
653 render_memory_region(view, subregion, base, clip, readonly);
654 }
655
656 if (!mr->terminates) {
657 return;
658 }
659
660 offset_in_region = int128_get64(int128_sub(clip.start, base));
661 base = clip.start;
662 remain = clip.size;
663
664 fr.mr = mr;
665 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
666 fr.romd_mode = mr->romd_mode;
667 fr.readonly = readonly;
668
669 /* Render the region itself into any gaps left by the current view. */
670 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
671 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
672 continue;
673 }
674 if (int128_lt(base, view->ranges[i].addr.start)) {
675 now = int128_min(remain,
676 int128_sub(view->ranges[i].addr.start, base));
677 fr.offset_in_region = offset_in_region;
678 fr.addr = addrrange_make(base, now);
679 flatview_insert(view, i, &fr);
680 ++i;
681 int128_addto(&base, now);
682 offset_in_region += int128_get64(now);
683 int128_subfrom(&remain, now);
684 }
685 now = int128_sub(int128_min(int128_add(base, remain),
686 addrrange_end(view->ranges[i].addr)),
687 base);
688 int128_addto(&base, now);
689 offset_in_region += int128_get64(now);
690 int128_subfrom(&remain, now);
691 }
692 if (int128_nz(remain)) {
693 fr.offset_in_region = offset_in_region;
694 fr.addr = addrrange_make(base, remain);
695 flatview_insert(view, i, &fr);
696 }
697 }
698
699 /* Render a memory topology into a list of disjoint absolute ranges. */
700 static FlatView *generate_memory_topology(MemoryRegion *mr)
701 {
702 FlatView *view;
703
704 view = g_new(FlatView, 1);
705 flatview_init(view);
706
707 if (mr) {
708 render_memory_region(view, mr, int128_zero(),
709 addrrange_make(int128_zero(), int128_2_64()), false);
710 }
711 flatview_simplify(view);
712
713 return view;
714 }
715
716 static void address_space_add_del_ioeventfds(AddressSpace *as,
717 MemoryRegionIoeventfd *fds_new,
718 unsigned fds_new_nb,
719 MemoryRegionIoeventfd *fds_old,
720 unsigned fds_old_nb)
721 {
722 unsigned iold, inew;
723 MemoryRegionIoeventfd *fd;
724 MemoryRegionSection section;
725
726 /* Generate a symmetric difference of the old and new fd sets, adding
727 * and deleting as necessary.
728 */
729
730 iold = inew = 0;
731 while (iold < fds_old_nb || inew < fds_new_nb) {
732 if (iold < fds_old_nb
733 && (inew == fds_new_nb
734 || memory_region_ioeventfd_before(fds_old[iold],
735 fds_new[inew]))) {
736 fd = &fds_old[iold];
737 section = (MemoryRegionSection) {
738 .address_space = as,
739 .offset_within_address_space = int128_get64(fd->addr.start),
740 .size = fd->addr.size,
741 };
742 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
743 fd->match_data, fd->data, fd->e);
744 ++iold;
745 } else if (inew < fds_new_nb
746 && (iold == fds_old_nb
747 || memory_region_ioeventfd_before(fds_new[inew],
748 fds_old[iold]))) {
749 fd = &fds_new[inew];
750 section = (MemoryRegionSection) {
751 .address_space = as,
752 .offset_within_address_space = int128_get64(fd->addr.start),
753 .size = fd->addr.size,
754 };
755 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
756 fd->match_data, fd->data, fd->e);
757 ++inew;
758 } else {
759 ++iold;
760 ++inew;
761 }
762 }
763 }
764
765 static FlatView *address_space_get_flatview(AddressSpace *as)
766 {
767 FlatView *view;
768
769 rcu_read_lock();
770 view = atomic_rcu_read(&as->current_map);
771 flatview_ref(view);
772 rcu_read_unlock();
773 return view;
774 }
775
776 static void address_space_update_ioeventfds(AddressSpace *as)
777 {
778 FlatView *view;
779 FlatRange *fr;
780 unsigned ioeventfd_nb = 0;
781 MemoryRegionIoeventfd *ioeventfds = NULL;
782 AddrRange tmp;
783 unsigned i;
784
785 view = address_space_get_flatview(as);
786 FOR_EACH_FLAT_RANGE(fr, view) {
787 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
788 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
789 int128_sub(fr->addr.start,
790 int128_make64(fr->offset_in_region)));
791 if (addrrange_intersects(fr->addr, tmp)) {
792 ++ioeventfd_nb;
793 ioeventfds = g_realloc(ioeventfds,
794 ioeventfd_nb * sizeof(*ioeventfds));
795 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
796 ioeventfds[ioeventfd_nb-1].addr = tmp;
797 }
798 }
799 }
800
801 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
802 as->ioeventfds, as->ioeventfd_nb);
803
804 g_free(as->ioeventfds);
805 as->ioeventfds = ioeventfds;
806 as->ioeventfd_nb = ioeventfd_nb;
807 flatview_unref(view);
808 }
809
810 static void address_space_update_topology_pass(AddressSpace *as,
811 const FlatView *old_view,
812 const FlatView *new_view,
813 bool adding)
814 {
815 unsigned iold, inew;
816 FlatRange *frold, *frnew;
817
818 /* Generate a symmetric difference of the old and new memory maps.
819 * Kill ranges in the old map, and instantiate ranges in the new map.
820 */
821 iold = inew = 0;
822 while (iold < old_view->nr || inew < new_view->nr) {
823 if (iold < old_view->nr) {
824 frold = &old_view->ranges[iold];
825 } else {
826 frold = NULL;
827 }
828 if (inew < new_view->nr) {
829 frnew = &new_view->ranges[inew];
830 } else {
831 frnew = NULL;
832 }
833
834 if (frold
835 && (!frnew
836 || int128_lt(frold->addr.start, frnew->addr.start)
837 || (int128_eq(frold->addr.start, frnew->addr.start)
838 && !flatrange_equal(frold, frnew)))) {
839 /* In old but not in new, or in both but attributes changed. */
840
841 if (!adding) {
842 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
843 }
844
845 ++iold;
846 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
847 /* In both and unchanged (except logging may have changed) */
848
849 if (adding) {
850 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
851 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
852 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
853 frold->dirty_log_mask,
854 frnew->dirty_log_mask);
855 }
856 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
857 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
858 frold->dirty_log_mask,
859 frnew->dirty_log_mask);
860 }
861 }
862
863 ++iold;
864 ++inew;
865 } else {
866 /* In new */
867
868 if (adding) {
869 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
870 }
871
872 ++inew;
873 }
874 }
875 }
876
877
878 static void address_space_update_topology(AddressSpace *as)
879 {
880 FlatView *old_view = address_space_get_flatview(as);
881 FlatView *new_view = generate_memory_topology(as->root);
882
883 address_space_update_topology_pass(as, old_view, new_view, false);
884 address_space_update_topology_pass(as, old_view, new_view, true);
885
886 /* Writes are protected by the BQL. */
887 atomic_rcu_set(&as->current_map, new_view);
888 call_rcu(old_view, flatview_unref, rcu);
889
890 /* Note that all the old MemoryRegions are still alive up to this
891 * point. This relieves most MemoryListeners from the need to
892 * ref/unref the MemoryRegions they get---unless they use them
893 * outside the iothread mutex, in which case precise reference
894 * counting is necessary.
895 */
896 flatview_unref(old_view);
897
898 address_space_update_ioeventfds(as);
899 }
900
901 void memory_region_transaction_begin(void)
902 {
903 qemu_flush_coalesced_mmio_buffer();
904 ++memory_region_transaction_depth;
905 }
906
907 static void memory_region_clear_pending(void)
908 {
909 memory_region_update_pending = false;
910 ioeventfd_update_pending = false;
911 }
912
913 void memory_region_transaction_commit(void)
914 {
915 AddressSpace *as;
916
917 assert(memory_region_transaction_depth);
918 --memory_region_transaction_depth;
919 if (!memory_region_transaction_depth) {
920 if (memory_region_update_pending) {
921 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
922
923 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
924 address_space_update_topology(as);
925 }
926
927 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
928 } else if (ioeventfd_update_pending) {
929 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
930 address_space_update_ioeventfds(as);
931 }
932 }
933 memory_region_clear_pending();
934 }
935 }
936
937 static void memory_region_destructor_none(MemoryRegion *mr)
938 {
939 }
940
941 static void memory_region_destructor_ram(MemoryRegion *mr)
942 {
943 qemu_ram_free(mr->ram_block);
944 }
945
946 static void memory_region_destructor_rom_device(MemoryRegion *mr)
947 {
948 qemu_ram_free(mr->ram_block);
949 }
950
951 static bool memory_region_need_escape(char c)
952 {
953 return c == '/' || c == '[' || c == '\\' || c == ']';
954 }
955
956 static char *memory_region_escape_name(const char *name)
957 {
958 const char *p;
959 char *escaped, *q;
960 uint8_t c;
961 size_t bytes = 0;
962
963 for (p = name; *p; p++) {
964 bytes += memory_region_need_escape(*p) ? 4 : 1;
965 }
966 if (bytes == p - name) {
967 return g_memdup(name, bytes + 1);
968 }
969
970 escaped = g_malloc(bytes + 1);
971 for (p = name, q = escaped; *p; p++) {
972 c = *p;
973 if (unlikely(memory_region_need_escape(c))) {
974 *q++ = '\\';
975 *q++ = 'x';
976 *q++ = "0123456789abcdef"[c >> 4];
977 c = "0123456789abcdef"[c & 15];
978 }
979 *q++ = c;
980 }
981 *q = 0;
982 return escaped;
983 }
984
985 void memory_region_init(MemoryRegion *mr,
986 Object *owner,
987 const char *name,
988 uint64_t size)
989 {
990 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
991 mr->size = int128_make64(size);
992 if (size == UINT64_MAX) {
993 mr->size = int128_2_64();
994 }
995 mr->name = g_strdup(name);
996 mr->owner = owner;
997 mr->ram_block = NULL;
998
999 if (name) {
1000 char *escaped_name = memory_region_escape_name(name);
1001 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1002
1003 if (!owner) {
1004 owner = container_get(qdev_get_machine(), "/unattached");
1005 }
1006
1007 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1008 object_unref(OBJECT(mr));
1009 g_free(name_array);
1010 g_free(escaped_name);
1011 }
1012 }
1013
1014 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1015 void *opaque, Error **errp)
1016 {
1017 MemoryRegion *mr = MEMORY_REGION(obj);
1018 uint64_t value = mr->addr;
1019
1020 visit_type_uint64(v, name, &value, errp);
1021 }
1022
1023 static void memory_region_get_container(Object *obj, Visitor *v,
1024 const char *name, void *opaque,
1025 Error **errp)
1026 {
1027 MemoryRegion *mr = MEMORY_REGION(obj);
1028 gchar *path = (gchar *)"";
1029
1030 if (mr->container) {
1031 path = object_get_canonical_path(OBJECT(mr->container));
1032 }
1033 visit_type_str(v, name, &path, errp);
1034 if (mr->container) {
1035 g_free(path);
1036 }
1037 }
1038
1039 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1040 const char *part)
1041 {
1042 MemoryRegion *mr = MEMORY_REGION(obj);
1043
1044 return OBJECT(mr->container);
1045 }
1046
1047 static void memory_region_get_priority(Object *obj, Visitor *v,
1048 const char *name, void *opaque,
1049 Error **errp)
1050 {
1051 MemoryRegion *mr = MEMORY_REGION(obj);
1052 int32_t value = mr->priority;
1053
1054 visit_type_int32(v, name, &value, errp);
1055 }
1056
1057 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
1058 {
1059 MemoryRegion *mr = MEMORY_REGION(obj);
1060
1061 return mr->may_overlap;
1062 }
1063
1064 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1065 void *opaque, Error **errp)
1066 {
1067 MemoryRegion *mr = MEMORY_REGION(obj);
1068 uint64_t value = memory_region_size(mr);
1069
1070 visit_type_uint64(v, name, &value, errp);
1071 }
1072
1073 static void memory_region_initfn(Object *obj)
1074 {
1075 MemoryRegion *mr = MEMORY_REGION(obj);
1076 ObjectProperty *op;
1077
1078 mr->ops = &unassigned_mem_ops;
1079 mr->enabled = true;
1080 mr->romd_mode = true;
1081 mr->global_locking = true;
1082 mr->destructor = memory_region_destructor_none;
1083 QTAILQ_INIT(&mr->subregions);
1084 QTAILQ_INIT(&mr->coalesced);
1085
1086 op = object_property_add(OBJECT(mr), "container",
1087 "link<" TYPE_MEMORY_REGION ">",
1088 memory_region_get_container,
1089 NULL, /* memory_region_set_container */
1090 NULL, NULL, &error_abort);
1091 op->resolve = memory_region_resolve_container;
1092
1093 object_property_add(OBJECT(mr), "addr", "uint64",
1094 memory_region_get_addr,
1095 NULL, /* memory_region_set_addr */
1096 NULL, NULL, &error_abort);
1097 object_property_add(OBJECT(mr), "priority", "uint32",
1098 memory_region_get_priority,
1099 NULL, /* memory_region_set_priority */
1100 NULL, NULL, &error_abort);
1101 object_property_add_bool(OBJECT(mr), "may-overlap",
1102 memory_region_get_may_overlap,
1103 NULL, /* memory_region_set_may_overlap */
1104 &error_abort);
1105 object_property_add(OBJECT(mr), "size", "uint64",
1106 memory_region_get_size,
1107 NULL, /* memory_region_set_size, */
1108 NULL, NULL, &error_abort);
1109 }
1110
1111 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1112 unsigned size)
1113 {
1114 #ifdef DEBUG_UNASSIGNED
1115 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1116 #endif
1117 if (current_cpu != NULL) {
1118 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1119 }
1120 return 0;
1121 }
1122
1123 static void unassigned_mem_write(void *opaque, hwaddr addr,
1124 uint64_t val, unsigned size)
1125 {
1126 #ifdef DEBUG_UNASSIGNED
1127 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1128 #endif
1129 if (current_cpu != NULL) {
1130 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1131 }
1132 }
1133
1134 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1135 unsigned size, bool is_write)
1136 {
1137 return false;
1138 }
1139
1140 const MemoryRegionOps unassigned_mem_ops = {
1141 .valid.accepts = unassigned_mem_accepts,
1142 .endianness = DEVICE_NATIVE_ENDIAN,
1143 };
1144
1145 bool memory_region_access_valid(MemoryRegion *mr,
1146 hwaddr addr,
1147 unsigned size,
1148 bool is_write)
1149 {
1150 int access_size_min, access_size_max;
1151 int access_size, i;
1152
1153 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1154 return false;
1155 }
1156
1157 if (!mr->ops->valid.accepts) {
1158 return true;
1159 }
1160
1161 access_size_min = mr->ops->valid.min_access_size;
1162 if (!mr->ops->valid.min_access_size) {
1163 access_size_min = 1;
1164 }
1165
1166 access_size_max = mr->ops->valid.max_access_size;
1167 if (!mr->ops->valid.max_access_size) {
1168 access_size_max = 4;
1169 }
1170
1171 access_size = MAX(MIN(size, access_size_max), access_size_min);
1172 for (i = 0; i < size; i += access_size) {
1173 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1174 is_write)) {
1175 return false;
1176 }
1177 }
1178
1179 return true;
1180 }
1181
1182 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1183 hwaddr addr,
1184 uint64_t *pval,
1185 unsigned size,
1186 MemTxAttrs attrs)
1187 {
1188 *pval = 0;
1189
1190 if (mr->ops->read) {
1191 return access_with_adjusted_size(addr, pval, size,
1192 mr->ops->impl.min_access_size,
1193 mr->ops->impl.max_access_size,
1194 memory_region_read_accessor,
1195 mr, attrs);
1196 } else if (mr->ops->read_with_attrs) {
1197 return access_with_adjusted_size(addr, pval, size,
1198 mr->ops->impl.min_access_size,
1199 mr->ops->impl.max_access_size,
1200 memory_region_read_with_attrs_accessor,
1201 mr, attrs);
1202 } else {
1203 return access_with_adjusted_size(addr, pval, size, 1, 4,
1204 memory_region_oldmmio_read_accessor,
1205 mr, attrs);
1206 }
1207 }
1208
1209 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1210 hwaddr addr,
1211 uint64_t *pval,
1212 unsigned size,
1213 MemTxAttrs attrs)
1214 {
1215 MemTxResult r;
1216
1217 if (!memory_region_access_valid(mr, addr, size, false)) {
1218 *pval = unassigned_mem_read(mr, addr, size);
1219 return MEMTX_DECODE_ERROR;
1220 }
1221
1222 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1223 adjust_endianness(mr, pval, size);
1224 return r;
1225 }
1226
1227 /* Return true if an eventfd was signalled */
1228 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1229 hwaddr addr,
1230 uint64_t data,
1231 unsigned size,
1232 MemTxAttrs attrs)
1233 {
1234 MemoryRegionIoeventfd ioeventfd = {
1235 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1236 .data = data,
1237 };
1238 unsigned i;
1239
1240 for (i = 0; i < mr->ioeventfd_nb; i++) {
1241 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1242 ioeventfd.e = mr->ioeventfds[i].e;
1243
1244 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1245 event_notifier_set(ioeventfd.e);
1246 return true;
1247 }
1248 }
1249
1250 return false;
1251 }
1252
1253 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1254 hwaddr addr,
1255 uint64_t data,
1256 unsigned size,
1257 MemTxAttrs attrs)
1258 {
1259 if (!memory_region_access_valid(mr, addr, size, true)) {
1260 unassigned_mem_write(mr, addr, data, size);
1261 return MEMTX_DECODE_ERROR;
1262 }
1263
1264 adjust_endianness(mr, &data, size);
1265
1266 if ((!kvm_eventfds_enabled()) &&
1267 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1268 return MEMTX_OK;
1269 }
1270
1271 if (mr->ops->write) {
1272 return access_with_adjusted_size(addr, &data, size,
1273 mr->ops->impl.min_access_size,
1274 mr->ops->impl.max_access_size,
1275 memory_region_write_accessor, mr,
1276 attrs);
1277 } else if (mr->ops->write_with_attrs) {
1278 return
1279 access_with_adjusted_size(addr, &data, size,
1280 mr->ops->impl.min_access_size,
1281 mr->ops->impl.max_access_size,
1282 memory_region_write_with_attrs_accessor,
1283 mr, attrs);
1284 } else {
1285 return access_with_adjusted_size(addr, &data, size, 1, 4,
1286 memory_region_oldmmio_write_accessor,
1287 mr, attrs);
1288 }
1289 }
1290
1291 void memory_region_init_io(MemoryRegion *mr,
1292 Object *owner,
1293 const MemoryRegionOps *ops,
1294 void *opaque,
1295 const char *name,
1296 uint64_t size)
1297 {
1298 memory_region_init(mr, owner, name, size);
1299 mr->ops = ops ? ops : &unassigned_mem_ops;
1300 mr->opaque = opaque;
1301 mr->terminates = true;
1302 }
1303
1304 void memory_region_init_ram(MemoryRegion *mr,
1305 Object *owner,
1306 const char *name,
1307 uint64_t size,
1308 Error **errp)
1309 {
1310 memory_region_init(mr, owner, name, size);
1311 mr->ram = true;
1312 mr->terminates = true;
1313 mr->destructor = memory_region_destructor_ram;
1314 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1315 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1316 }
1317
1318 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1319 Object *owner,
1320 const char *name,
1321 uint64_t size,
1322 uint64_t max_size,
1323 void (*resized)(const char*,
1324 uint64_t length,
1325 void *host),
1326 Error **errp)
1327 {
1328 memory_region_init(mr, owner, name, size);
1329 mr->ram = true;
1330 mr->terminates = true;
1331 mr->destructor = memory_region_destructor_ram;
1332 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1333 mr, errp);
1334 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1335 }
1336
1337 #ifdef __linux__
1338 void memory_region_init_ram_from_file(MemoryRegion *mr,
1339 struct Object *owner,
1340 const char *name,
1341 uint64_t size,
1342 bool share,
1343 const char *path,
1344 Error **errp)
1345 {
1346 memory_region_init(mr, owner, name, size);
1347 mr->ram = true;
1348 mr->terminates = true;
1349 mr->destructor = memory_region_destructor_ram;
1350 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1351 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1352 }
1353 #endif
1354
1355 void memory_region_init_ram_ptr(MemoryRegion *mr,
1356 Object *owner,
1357 const char *name,
1358 uint64_t size,
1359 void *ptr)
1360 {
1361 memory_region_init(mr, owner, name, size);
1362 mr->ram = true;
1363 mr->terminates = true;
1364 mr->destructor = memory_region_destructor_ram;
1365 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1366
1367 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1368 assert(ptr != NULL);
1369 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1370 }
1371
1372 void memory_region_set_skip_dump(MemoryRegion *mr)
1373 {
1374 mr->skip_dump = true;
1375 }
1376
1377 void memory_region_init_alias(MemoryRegion *mr,
1378 Object *owner,
1379 const char *name,
1380 MemoryRegion *orig,
1381 hwaddr offset,
1382 uint64_t size)
1383 {
1384 memory_region_init(mr, owner, name, size);
1385 mr->alias = orig;
1386 mr->alias_offset = offset;
1387 }
1388
1389 void memory_region_init_rom_device(MemoryRegion *mr,
1390 Object *owner,
1391 const MemoryRegionOps *ops,
1392 void *opaque,
1393 const char *name,
1394 uint64_t size,
1395 Error **errp)
1396 {
1397 memory_region_init(mr, owner, name, size);
1398 mr->ops = ops;
1399 mr->opaque = opaque;
1400 mr->terminates = true;
1401 mr->rom_device = true;
1402 mr->destructor = memory_region_destructor_rom_device;
1403 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1404 }
1405
1406 void memory_region_init_iommu(MemoryRegion *mr,
1407 Object *owner,
1408 const MemoryRegionIOMMUOps *ops,
1409 const char *name,
1410 uint64_t size)
1411 {
1412 memory_region_init(mr, owner, name, size);
1413 mr->iommu_ops = ops,
1414 mr->terminates = true; /* then re-forwards */
1415 notifier_list_init(&mr->iommu_notify);
1416 }
1417
1418 static void memory_region_finalize(Object *obj)
1419 {
1420 MemoryRegion *mr = MEMORY_REGION(obj);
1421
1422 assert(!mr->container);
1423
1424 /* We know the region is not visible in any address space (it
1425 * does not have a container and cannot be a root either because
1426 * it has no references, so we can blindly clear mr->enabled.
1427 * memory_region_set_enabled instead could trigger a transaction
1428 * and cause an infinite loop.
1429 */
1430 mr->enabled = false;
1431 memory_region_transaction_begin();
1432 while (!QTAILQ_EMPTY(&mr->subregions)) {
1433 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1434 memory_region_del_subregion(mr, subregion);
1435 }
1436 memory_region_transaction_commit();
1437
1438 mr->destructor(mr);
1439 memory_region_clear_coalescing(mr);
1440 g_free((char *)mr->name);
1441 g_free(mr->ioeventfds);
1442 }
1443
1444 Object *memory_region_owner(MemoryRegion *mr)
1445 {
1446 Object *obj = OBJECT(mr);
1447 return obj->parent;
1448 }
1449
1450 void memory_region_ref(MemoryRegion *mr)
1451 {
1452 /* MMIO callbacks most likely will access data that belongs
1453 * to the owner, hence the need to ref/unref the owner whenever
1454 * the memory region is in use.
1455 *
1456 * The memory region is a child of its owner. As long as the
1457 * owner doesn't call unparent itself on the memory region,
1458 * ref-ing the owner will also keep the memory region alive.
1459 * Memory regions without an owner are supposed to never go away;
1460 * we do not ref/unref them because it slows down DMA sensibly.
1461 */
1462 if (mr && mr->owner) {
1463 object_ref(mr->owner);
1464 }
1465 }
1466
1467 void memory_region_unref(MemoryRegion *mr)
1468 {
1469 if (mr && mr->owner) {
1470 object_unref(mr->owner);
1471 }
1472 }
1473
1474 uint64_t memory_region_size(MemoryRegion *mr)
1475 {
1476 if (int128_eq(mr->size, int128_2_64())) {
1477 return UINT64_MAX;
1478 }
1479 return int128_get64(mr->size);
1480 }
1481
1482 const char *memory_region_name(const MemoryRegion *mr)
1483 {
1484 if (!mr->name) {
1485 ((MemoryRegion *)mr)->name =
1486 object_get_canonical_path_component(OBJECT(mr));
1487 }
1488 return mr->name;
1489 }
1490
1491 bool memory_region_is_skip_dump(MemoryRegion *mr)
1492 {
1493 return mr->skip_dump;
1494 }
1495
1496 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1497 {
1498 uint8_t mask = mr->dirty_log_mask;
1499 if (global_dirty_log) {
1500 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1501 }
1502 return mask;
1503 }
1504
1505 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1506 {
1507 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1508 }
1509
1510 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1511 {
1512 notifier_list_add(&mr->iommu_notify, n);
1513 }
1514
1515 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1516 hwaddr granularity, bool is_write)
1517 {
1518 hwaddr addr;
1519 IOMMUTLBEntry iotlb;
1520
1521 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1522 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1523 if (iotlb.perm != IOMMU_NONE) {
1524 n->notify(n, &iotlb);
1525 }
1526
1527 /* if (2^64 - MR size) < granularity, it's possible to get an
1528 * infinite loop here. This should catch such a wraparound */
1529 if ((addr + granularity) < addr) {
1530 break;
1531 }
1532 }
1533 }
1534
1535 void memory_region_unregister_iommu_notifier(Notifier *n)
1536 {
1537 notifier_remove(n);
1538 }
1539
1540 void memory_region_notify_iommu(MemoryRegion *mr,
1541 IOMMUTLBEntry entry)
1542 {
1543 assert(memory_region_is_iommu(mr));
1544 notifier_list_notify(&mr->iommu_notify, &entry);
1545 }
1546
1547 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1548 {
1549 uint8_t mask = 1 << client;
1550 uint8_t old_logging;
1551
1552 assert(client == DIRTY_MEMORY_VGA);
1553 old_logging = mr->vga_logging_count;
1554 mr->vga_logging_count += log ? 1 : -1;
1555 if (!!old_logging == !!mr->vga_logging_count) {
1556 return;
1557 }
1558
1559 memory_region_transaction_begin();
1560 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1561 memory_region_update_pending |= mr->enabled;
1562 memory_region_transaction_commit();
1563 }
1564
1565 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1566 hwaddr size, unsigned client)
1567 {
1568 assert(mr->ram_block);
1569 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1570 size, client);
1571 }
1572
1573 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1574 hwaddr size)
1575 {
1576 assert(mr->ram_block);
1577 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1578 size,
1579 memory_region_get_dirty_log_mask(mr));
1580 }
1581
1582 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1583 hwaddr size, unsigned client)
1584 {
1585 assert(mr->ram_block);
1586 return cpu_physical_memory_test_and_clear_dirty(
1587 memory_region_get_ram_addr(mr) + addr, size, client);
1588 }
1589
1590
1591 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1592 {
1593 AddressSpace *as;
1594 FlatRange *fr;
1595
1596 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1597 FlatView *view = address_space_get_flatview(as);
1598 FOR_EACH_FLAT_RANGE(fr, view) {
1599 if (fr->mr == mr) {
1600 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1601 }
1602 }
1603 flatview_unref(view);
1604 }
1605 }
1606
1607 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1608 {
1609 if (mr->readonly != readonly) {
1610 memory_region_transaction_begin();
1611 mr->readonly = readonly;
1612 memory_region_update_pending |= mr->enabled;
1613 memory_region_transaction_commit();
1614 }
1615 }
1616
1617 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1618 {
1619 if (mr->romd_mode != romd_mode) {
1620 memory_region_transaction_begin();
1621 mr->romd_mode = romd_mode;
1622 memory_region_update_pending |= mr->enabled;
1623 memory_region_transaction_commit();
1624 }
1625 }
1626
1627 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1628 hwaddr size, unsigned client)
1629 {
1630 assert(mr->ram_block);
1631 cpu_physical_memory_test_and_clear_dirty(
1632 memory_region_get_ram_addr(mr) + addr, size, client);
1633 }
1634
1635 int memory_region_get_fd(MemoryRegion *mr)
1636 {
1637 if (mr->alias) {
1638 return memory_region_get_fd(mr->alias);
1639 }
1640
1641 assert(mr->ram_block);
1642
1643 return qemu_get_ram_fd(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1644 }
1645
1646 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1647 {
1648 void *ptr;
1649 uint64_t offset = 0;
1650
1651 rcu_read_lock();
1652 while (mr->alias) {
1653 offset += mr->alias_offset;
1654 mr = mr->alias;
1655 }
1656 assert(mr->ram_block);
1657 ptr = qemu_get_ram_ptr(mr->ram_block,
1658 memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1659 rcu_read_unlock();
1660
1661 return ptr + offset;
1662 }
1663
1664 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1665 {
1666 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1667 }
1668
1669 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1670 {
1671 assert(mr->ram_block);
1672
1673 qemu_ram_resize(memory_region_get_ram_addr(mr), newsize, errp);
1674 }
1675
1676 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1677 {
1678 FlatView *view;
1679 FlatRange *fr;
1680 CoalescedMemoryRange *cmr;
1681 AddrRange tmp;
1682 MemoryRegionSection section;
1683
1684 view = address_space_get_flatview(as);
1685 FOR_EACH_FLAT_RANGE(fr, view) {
1686 if (fr->mr == mr) {
1687 section = (MemoryRegionSection) {
1688 .address_space = as,
1689 .offset_within_address_space = int128_get64(fr->addr.start),
1690 .size = fr->addr.size,
1691 };
1692
1693 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1694 int128_get64(fr->addr.start),
1695 int128_get64(fr->addr.size));
1696 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1697 tmp = addrrange_shift(cmr->addr,
1698 int128_sub(fr->addr.start,
1699 int128_make64(fr->offset_in_region)));
1700 if (!addrrange_intersects(tmp, fr->addr)) {
1701 continue;
1702 }
1703 tmp = addrrange_intersection(tmp, fr->addr);
1704 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1705 int128_get64(tmp.start),
1706 int128_get64(tmp.size));
1707 }
1708 }
1709 }
1710 flatview_unref(view);
1711 }
1712
1713 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1714 {
1715 AddressSpace *as;
1716
1717 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1718 memory_region_update_coalesced_range_as(mr, as);
1719 }
1720 }
1721
1722 void memory_region_set_coalescing(MemoryRegion *mr)
1723 {
1724 memory_region_clear_coalescing(mr);
1725 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1726 }
1727
1728 void memory_region_add_coalescing(MemoryRegion *mr,
1729 hwaddr offset,
1730 uint64_t size)
1731 {
1732 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1733
1734 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1735 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1736 memory_region_update_coalesced_range(mr);
1737 memory_region_set_flush_coalesced(mr);
1738 }
1739
1740 void memory_region_clear_coalescing(MemoryRegion *mr)
1741 {
1742 CoalescedMemoryRange *cmr;
1743 bool updated = false;
1744
1745 qemu_flush_coalesced_mmio_buffer();
1746 mr->flush_coalesced_mmio = false;
1747
1748 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1749 cmr = QTAILQ_FIRST(&mr->coalesced);
1750 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1751 g_free(cmr);
1752 updated = true;
1753 }
1754
1755 if (updated) {
1756 memory_region_update_coalesced_range(mr);
1757 }
1758 }
1759
1760 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1761 {
1762 mr->flush_coalesced_mmio = true;
1763 }
1764
1765 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1766 {
1767 qemu_flush_coalesced_mmio_buffer();
1768 if (QTAILQ_EMPTY(&mr->coalesced)) {
1769 mr->flush_coalesced_mmio = false;
1770 }
1771 }
1772
1773 void memory_region_set_global_locking(MemoryRegion *mr)
1774 {
1775 mr->global_locking = true;
1776 }
1777
1778 void memory_region_clear_global_locking(MemoryRegion *mr)
1779 {
1780 mr->global_locking = false;
1781 }
1782
1783 static bool userspace_eventfd_warning;
1784
1785 void memory_region_add_eventfd(MemoryRegion *mr,
1786 hwaddr addr,
1787 unsigned size,
1788 bool match_data,
1789 uint64_t data,
1790 EventNotifier *e)
1791 {
1792 MemoryRegionIoeventfd mrfd = {
1793 .addr.start = int128_make64(addr),
1794 .addr.size = int128_make64(size),
1795 .match_data = match_data,
1796 .data = data,
1797 .e = e,
1798 };
1799 unsigned i;
1800
1801 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1802 userspace_eventfd_warning))) {
1803 userspace_eventfd_warning = true;
1804 error_report("Using eventfd without MMIO binding in KVM. "
1805 "Suboptimal performance expected");
1806 }
1807
1808 if (size) {
1809 adjust_endianness(mr, &mrfd.data, size);
1810 }
1811 memory_region_transaction_begin();
1812 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1813 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1814 break;
1815 }
1816 }
1817 ++mr->ioeventfd_nb;
1818 mr->ioeventfds = g_realloc(mr->ioeventfds,
1819 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1820 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1821 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1822 mr->ioeventfds[i] = mrfd;
1823 ioeventfd_update_pending |= mr->enabled;
1824 memory_region_transaction_commit();
1825 }
1826
1827 void memory_region_del_eventfd(MemoryRegion *mr,
1828 hwaddr addr,
1829 unsigned size,
1830 bool match_data,
1831 uint64_t data,
1832 EventNotifier *e)
1833 {
1834 MemoryRegionIoeventfd mrfd = {
1835 .addr.start = int128_make64(addr),
1836 .addr.size = int128_make64(size),
1837 .match_data = match_data,
1838 .data = data,
1839 .e = e,
1840 };
1841 unsigned i;
1842
1843 if (size) {
1844 adjust_endianness(mr, &mrfd.data, size);
1845 }
1846 memory_region_transaction_begin();
1847 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1848 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1849 break;
1850 }
1851 }
1852 assert(i != mr->ioeventfd_nb);
1853 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1854 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1855 --mr->ioeventfd_nb;
1856 mr->ioeventfds = g_realloc(mr->ioeventfds,
1857 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1858 ioeventfd_update_pending |= mr->enabled;
1859 memory_region_transaction_commit();
1860 }
1861
1862 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1863 {
1864 hwaddr offset = subregion->addr;
1865 MemoryRegion *mr = subregion->container;
1866 MemoryRegion *other;
1867
1868 memory_region_transaction_begin();
1869
1870 memory_region_ref(subregion);
1871 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1872 if (subregion->may_overlap || other->may_overlap) {
1873 continue;
1874 }
1875 if (int128_ge(int128_make64(offset),
1876 int128_add(int128_make64(other->addr), other->size))
1877 || int128_le(int128_add(int128_make64(offset), subregion->size),
1878 int128_make64(other->addr))) {
1879 continue;
1880 }
1881 #if 0
1882 printf("warning: subregion collision %llx/%llx (%s) "
1883 "vs %llx/%llx (%s)\n",
1884 (unsigned long long)offset,
1885 (unsigned long long)int128_get64(subregion->size),
1886 subregion->name,
1887 (unsigned long long)other->addr,
1888 (unsigned long long)int128_get64(other->size),
1889 other->name);
1890 #endif
1891 }
1892 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1893 if (subregion->priority >= other->priority) {
1894 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1895 goto done;
1896 }
1897 }
1898 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1899 done:
1900 memory_region_update_pending |= mr->enabled && subregion->enabled;
1901 memory_region_transaction_commit();
1902 }
1903
1904 static void memory_region_add_subregion_common(MemoryRegion *mr,
1905 hwaddr offset,
1906 MemoryRegion *subregion)
1907 {
1908 assert(!subregion->container);
1909 subregion->container = mr;
1910 subregion->addr = offset;
1911 memory_region_update_container_subregions(subregion);
1912 }
1913
1914 void memory_region_add_subregion(MemoryRegion *mr,
1915 hwaddr offset,
1916 MemoryRegion *subregion)
1917 {
1918 subregion->may_overlap = false;
1919 subregion->priority = 0;
1920 memory_region_add_subregion_common(mr, offset, subregion);
1921 }
1922
1923 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1924 hwaddr offset,
1925 MemoryRegion *subregion,
1926 int priority)
1927 {
1928 subregion->may_overlap = true;
1929 subregion->priority = priority;
1930 memory_region_add_subregion_common(mr, offset, subregion);
1931 }
1932
1933 void memory_region_del_subregion(MemoryRegion *mr,
1934 MemoryRegion *subregion)
1935 {
1936 memory_region_transaction_begin();
1937 assert(subregion->container == mr);
1938 subregion->container = NULL;
1939 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1940 memory_region_unref(subregion);
1941 memory_region_update_pending |= mr->enabled && subregion->enabled;
1942 memory_region_transaction_commit();
1943 }
1944
1945 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1946 {
1947 if (enabled == mr->enabled) {
1948 return;
1949 }
1950 memory_region_transaction_begin();
1951 mr->enabled = enabled;
1952 memory_region_update_pending = true;
1953 memory_region_transaction_commit();
1954 }
1955
1956 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1957 {
1958 Int128 s = int128_make64(size);
1959
1960 if (size == UINT64_MAX) {
1961 s = int128_2_64();
1962 }
1963 if (int128_eq(s, mr->size)) {
1964 return;
1965 }
1966 memory_region_transaction_begin();
1967 mr->size = s;
1968 memory_region_update_pending = true;
1969 memory_region_transaction_commit();
1970 }
1971
1972 static void memory_region_readd_subregion(MemoryRegion *mr)
1973 {
1974 MemoryRegion *container = mr->container;
1975
1976 if (container) {
1977 memory_region_transaction_begin();
1978 memory_region_ref(mr);
1979 memory_region_del_subregion(container, mr);
1980 mr->container = container;
1981 memory_region_update_container_subregions(mr);
1982 memory_region_unref(mr);
1983 memory_region_transaction_commit();
1984 }
1985 }
1986
1987 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1988 {
1989 if (addr != mr->addr) {
1990 mr->addr = addr;
1991 memory_region_readd_subregion(mr);
1992 }
1993 }
1994
1995 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1996 {
1997 assert(mr->alias);
1998
1999 if (offset == mr->alias_offset) {
2000 return;
2001 }
2002
2003 memory_region_transaction_begin();
2004 mr->alias_offset = offset;
2005 memory_region_update_pending |= mr->enabled;
2006 memory_region_transaction_commit();
2007 }
2008
2009 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2010 {
2011 return mr->align;
2012 }
2013
2014 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2015 {
2016 const AddrRange *addr = addr_;
2017 const FlatRange *fr = fr_;
2018
2019 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2020 return -1;
2021 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2022 return 1;
2023 }
2024 return 0;
2025 }
2026
2027 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2028 {
2029 return bsearch(&addr, view->ranges, view->nr,
2030 sizeof(FlatRange), cmp_flatrange_addr);
2031 }
2032
2033 bool memory_region_is_mapped(MemoryRegion *mr)
2034 {
2035 return mr->container ? true : false;
2036 }
2037
2038 /* Same as memory_region_find, but it does not add a reference to the
2039 * returned region. It must be called from an RCU critical section.
2040 */
2041 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2042 hwaddr addr, uint64_t size)
2043 {
2044 MemoryRegionSection ret = { .mr = NULL };
2045 MemoryRegion *root;
2046 AddressSpace *as;
2047 AddrRange range;
2048 FlatView *view;
2049 FlatRange *fr;
2050
2051 addr += mr->addr;
2052 for (root = mr; root->container; ) {
2053 root = root->container;
2054 addr += root->addr;
2055 }
2056
2057 as = memory_region_to_address_space(root);
2058 if (!as) {
2059 return ret;
2060 }
2061 range = addrrange_make(int128_make64(addr), int128_make64(size));
2062
2063 view = atomic_rcu_read(&as->current_map);
2064 fr = flatview_lookup(view, range);
2065 if (!fr) {
2066 return ret;
2067 }
2068
2069 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2070 --fr;
2071 }
2072
2073 ret.mr = fr->mr;
2074 ret.address_space = as;
2075 range = addrrange_intersection(range, fr->addr);
2076 ret.offset_within_region = fr->offset_in_region;
2077 ret.offset_within_region += int128_get64(int128_sub(range.start,
2078 fr->addr.start));
2079 ret.size = range.size;
2080 ret.offset_within_address_space = int128_get64(range.start);
2081 ret.readonly = fr->readonly;
2082 return ret;
2083 }
2084
2085 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2086 hwaddr addr, uint64_t size)
2087 {
2088 MemoryRegionSection ret;
2089 rcu_read_lock();
2090 ret = memory_region_find_rcu(mr, addr, size);
2091 if (ret.mr) {
2092 memory_region_ref(ret.mr);
2093 }
2094 rcu_read_unlock();
2095 return ret;
2096 }
2097
2098 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2099 {
2100 MemoryRegion *mr;
2101
2102 rcu_read_lock();
2103 mr = memory_region_find_rcu(container, addr, 1).mr;
2104 rcu_read_unlock();
2105 return mr && mr != container;
2106 }
2107
2108 void address_space_sync_dirty_bitmap(AddressSpace *as)
2109 {
2110 FlatView *view;
2111 FlatRange *fr;
2112
2113 view = address_space_get_flatview(as);
2114 FOR_EACH_FLAT_RANGE(fr, view) {
2115 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2116 }
2117 flatview_unref(view);
2118 }
2119
2120 void memory_global_dirty_log_start(void)
2121 {
2122 global_dirty_log = true;
2123
2124 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2125
2126 /* Refresh DIRTY_LOG_MIGRATION bit. */
2127 memory_region_transaction_begin();
2128 memory_region_update_pending = true;
2129 memory_region_transaction_commit();
2130 }
2131
2132 void memory_global_dirty_log_stop(void)
2133 {
2134 global_dirty_log = false;
2135
2136 /* Refresh DIRTY_LOG_MIGRATION bit. */
2137 memory_region_transaction_begin();
2138 memory_region_update_pending = true;
2139 memory_region_transaction_commit();
2140
2141 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2142 }
2143
2144 static void listener_add_address_space(MemoryListener *listener,
2145 AddressSpace *as)
2146 {
2147 FlatView *view;
2148 FlatRange *fr;
2149
2150 if (listener->address_space_filter
2151 && listener->address_space_filter != as) {
2152 return;
2153 }
2154
2155 if (listener->begin) {
2156 listener->begin(listener);
2157 }
2158 if (global_dirty_log) {
2159 if (listener->log_global_start) {
2160 listener->log_global_start(listener);
2161 }
2162 }
2163
2164 view = address_space_get_flatview(as);
2165 FOR_EACH_FLAT_RANGE(fr, view) {
2166 MemoryRegionSection section = {
2167 .mr = fr->mr,
2168 .address_space = as,
2169 .offset_within_region = fr->offset_in_region,
2170 .size = fr->addr.size,
2171 .offset_within_address_space = int128_get64(fr->addr.start),
2172 .readonly = fr->readonly,
2173 };
2174 if (fr->dirty_log_mask && listener->log_start) {
2175 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2176 }
2177 if (listener->region_add) {
2178 listener->region_add(listener, &section);
2179 }
2180 }
2181 if (listener->commit) {
2182 listener->commit(listener);
2183 }
2184 flatview_unref(view);
2185 }
2186
2187 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2188 {
2189 MemoryListener *other = NULL;
2190 AddressSpace *as;
2191
2192 listener->address_space_filter = filter;
2193 if (QTAILQ_EMPTY(&memory_listeners)
2194 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2195 memory_listeners)->priority) {
2196 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2197 } else {
2198 QTAILQ_FOREACH(other, &memory_listeners, link) {
2199 if (listener->priority < other->priority) {
2200 break;
2201 }
2202 }
2203 QTAILQ_INSERT_BEFORE(other, listener, link);
2204 }
2205
2206 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2207 listener_add_address_space(listener, as);
2208 }
2209 }
2210
2211 void memory_listener_unregister(MemoryListener *listener)
2212 {
2213 QTAILQ_REMOVE(&memory_listeners, listener, link);
2214 }
2215
2216 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2217 {
2218 memory_region_ref(root);
2219 memory_region_transaction_begin();
2220 as->ref_count = 1;
2221 as->root = root;
2222 as->malloced = false;
2223 as->current_map = g_new(FlatView, 1);
2224 flatview_init(as->current_map);
2225 as->ioeventfd_nb = 0;
2226 as->ioeventfds = NULL;
2227 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2228 as->name = g_strdup(name ? name : "anonymous");
2229 address_space_init_dispatch(as);
2230 memory_region_update_pending |= root->enabled;
2231 memory_region_transaction_commit();
2232 }
2233
2234 static void do_address_space_destroy(AddressSpace *as)
2235 {
2236 MemoryListener *listener;
2237 bool do_free = as->malloced;
2238
2239 address_space_destroy_dispatch(as);
2240
2241 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2242 assert(listener->address_space_filter != as);
2243 }
2244
2245 flatview_unref(as->current_map);
2246 g_free(as->name);
2247 g_free(as->ioeventfds);
2248 memory_region_unref(as->root);
2249 if (do_free) {
2250 g_free(as);
2251 }
2252 }
2253
2254 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2255 {
2256 AddressSpace *as;
2257
2258 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2259 if (root == as->root && as->malloced) {
2260 as->ref_count++;
2261 return as;
2262 }
2263 }
2264
2265 as = g_malloc0(sizeof *as);
2266 address_space_init(as, root, name);
2267 as->malloced = true;
2268 return as;
2269 }
2270
2271 void address_space_destroy(AddressSpace *as)
2272 {
2273 MemoryRegion *root = as->root;
2274
2275 as->ref_count--;
2276 if (as->ref_count) {
2277 return;
2278 }
2279 /* Flush out anything from MemoryListeners listening in on this */
2280 memory_region_transaction_begin();
2281 as->root = NULL;
2282 memory_region_transaction_commit();
2283 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2284 address_space_unregister(as);
2285
2286 /* At this point, as->dispatch and as->current_map are dummy
2287 * entries that the guest should never use. Wait for the old
2288 * values to expire before freeing the data.
2289 */
2290 as->root = root;
2291 call_rcu(as, do_address_space_destroy, rcu);
2292 }
2293
2294 typedef struct MemoryRegionList MemoryRegionList;
2295
2296 struct MemoryRegionList {
2297 const MemoryRegion *mr;
2298 QTAILQ_ENTRY(MemoryRegionList) queue;
2299 };
2300
2301 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2302
2303 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2304 const MemoryRegion *mr, unsigned int level,
2305 hwaddr base,
2306 MemoryRegionListHead *alias_print_queue)
2307 {
2308 MemoryRegionList *new_ml, *ml, *next_ml;
2309 MemoryRegionListHead submr_print_queue;
2310 const MemoryRegion *submr;
2311 unsigned int i;
2312
2313 if (!mr) {
2314 return;
2315 }
2316
2317 for (i = 0; i < level; i++) {
2318 mon_printf(f, " ");
2319 }
2320
2321 if (mr->alias) {
2322 MemoryRegionList *ml;
2323 bool found = false;
2324
2325 /* check if the alias is already in the queue */
2326 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2327 if (ml->mr == mr->alias) {
2328 found = true;
2329 }
2330 }
2331
2332 if (!found) {
2333 ml = g_new(MemoryRegionList, 1);
2334 ml->mr = mr->alias;
2335 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2336 }
2337 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2338 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2339 "-" TARGET_FMT_plx "%s\n",
2340 base + mr->addr,
2341 base + mr->addr
2342 + (int128_nz(mr->size) ?
2343 (hwaddr)int128_get64(int128_sub(mr->size,
2344 int128_one())) : 0),
2345 mr->priority,
2346 mr->romd_mode ? 'R' : '-',
2347 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2348 : '-',
2349 memory_region_name(mr),
2350 memory_region_name(mr->alias),
2351 mr->alias_offset,
2352 mr->alias_offset
2353 + (int128_nz(mr->size) ?
2354 (hwaddr)int128_get64(int128_sub(mr->size,
2355 int128_one())) : 0),
2356 mr->enabled ? "" : " [disabled]");
2357 } else {
2358 mon_printf(f,
2359 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2360 base + mr->addr,
2361 base + mr->addr
2362 + (int128_nz(mr->size) ?
2363 (hwaddr)int128_get64(int128_sub(mr->size,
2364 int128_one())) : 0),
2365 mr->priority,
2366 mr->romd_mode ? 'R' : '-',
2367 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2368 : '-',
2369 memory_region_name(mr),
2370 mr->enabled ? "" : " [disabled]");
2371 }
2372
2373 QTAILQ_INIT(&submr_print_queue);
2374
2375 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2376 new_ml = g_new(MemoryRegionList, 1);
2377 new_ml->mr = submr;
2378 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2379 if (new_ml->mr->addr < ml->mr->addr ||
2380 (new_ml->mr->addr == ml->mr->addr &&
2381 new_ml->mr->priority > ml->mr->priority)) {
2382 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2383 new_ml = NULL;
2384 break;
2385 }
2386 }
2387 if (new_ml) {
2388 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2389 }
2390 }
2391
2392 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2393 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2394 alias_print_queue);
2395 }
2396
2397 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2398 g_free(ml);
2399 }
2400 }
2401
2402 void mtree_info(fprintf_function mon_printf, void *f)
2403 {
2404 MemoryRegionListHead ml_head;
2405 MemoryRegionList *ml, *ml2;
2406 AddressSpace *as;
2407
2408 QTAILQ_INIT(&ml_head);
2409
2410 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2411 mon_printf(f, "address-space: %s\n", as->name);
2412 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2413 mon_printf(f, "\n");
2414 }
2415
2416 /* print aliased regions */
2417 QTAILQ_FOREACH(ml, &ml_head, queue) {
2418 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2419 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2420 mon_printf(f, "\n");
2421 }
2422
2423 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2424 g_free(ml);
2425 }
2426 }
2427
2428 static const TypeInfo memory_region_info = {
2429 .parent = TYPE_OBJECT,
2430 .name = TYPE_MEMORY_REGION,
2431 .instance_size = sizeof(MemoryRegion),
2432 .instance_init = memory_region_initfn,
2433 .instance_finalize = memory_region_finalize,
2434 };
2435
2436 static void memory_register_types(void)
2437 {
2438 type_register_static(&memory_region_info);
2439 }
2440
2441 type_init(memory_register_types)