]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
memory: MemoryRegion: Add may-overlap and priority props
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 /* flat_view_mutex is taken around reading as->current_map; the critical
37 * section is extremely short, so I'm using a single mutex for every AS.
38 * We could also RCU for the read-side.
39 *
40 * The BQL is taken around transaction commits, hence both locks are taken
41 * while writing to as->current_map (with the BQL taken outside).
42 */
43 static QemuMutex flat_view_mutex;
44
45 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static void memory_init(void)
52 {
53 qemu_mutex_init(&flat_view_mutex);
54 }
55
56 typedef struct AddrRange AddrRange;
57
58 /*
59 * Note using signed integers limits us to physical addresses at most
60 * 63 bits wide. They are needed for negative offsetting in aliases
61 * (large MemoryRegion::alias_offset).
62 */
63 struct AddrRange {
64 Int128 start;
65 Int128 size;
66 };
67
68 static AddrRange addrrange_make(Int128 start, Int128 size)
69 {
70 return (AddrRange) { start, size };
71 }
72
73 static bool addrrange_equal(AddrRange r1, AddrRange r2)
74 {
75 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
76 }
77
78 static Int128 addrrange_end(AddrRange r)
79 {
80 return int128_add(r.start, r.size);
81 }
82
83 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
84 {
85 int128_addto(&range.start, delta);
86 return range;
87 }
88
89 static bool addrrange_contains(AddrRange range, Int128 addr)
90 {
91 return int128_ge(addr, range.start)
92 && int128_lt(addr, addrrange_end(range));
93 }
94
95 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
96 {
97 return addrrange_contains(r1, r2.start)
98 || addrrange_contains(r2, r1.start);
99 }
100
101 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
102 {
103 Int128 start = int128_max(r1.start, r2.start);
104 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
105 return addrrange_make(start, int128_sub(end, start));
106 }
107
108 enum ListenerDirection { Forward, Reverse };
109
110 static bool memory_listener_match(MemoryListener *listener,
111 MemoryRegionSection *section)
112 {
113 return !listener->address_space_filter
114 || listener->address_space_filter == section->address_space;
115 }
116
117 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
118 do { \
119 MemoryListener *_listener; \
120 \
121 switch (_direction) { \
122 case Forward: \
123 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
124 if (_listener->_callback) { \
125 _listener->_callback(_listener, ##_args); \
126 } \
127 } \
128 break; \
129 case Reverse: \
130 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
131 memory_listeners, link) { \
132 if (_listener->_callback) { \
133 _listener->_callback(_listener, ##_args); \
134 } \
135 } \
136 break; \
137 default: \
138 abort(); \
139 } \
140 } while (0)
141
142 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
143 do { \
144 MemoryListener *_listener; \
145 \
146 switch (_direction) { \
147 case Forward: \
148 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
149 if (_listener->_callback \
150 && memory_listener_match(_listener, _section)) { \
151 _listener->_callback(_listener, _section, ##_args); \
152 } \
153 } \
154 break; \
155 case Reverse: \
156 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
157 memory_listeners, link) { \
158 if (_listener->_callback \
159 && memory_listener_match(_listener, _section)) { \
160 _listener->_callback(_listener, _section, ##_args); \
161 } \
162 } \
163 break; \
164 default: \
165 abort(); \
166 } \
167 } while (0)
168
169 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
170 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
171 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
172 .mr = (fr)->mr, \
173 .address_space = (as), \
174 .offset_within_region = (fr)->offset_in_region, \
175 .size = (fr)->addr.size, \
176 .offset_within_address_space = int128_get64((fr)->addr.start), \
177 .readonly = (fr)->readonly, \
178 }))
179
180 struct CoalescedMemoryRange {
181 AddrRange addr;
182 QTAILQ_ENTRY(CoalescedMemoryRange) link;
183 };
184
185 struct MemoryRegionIoeventfd {
186 AddrRange addr;
187 bool match_data;
188 uint64_t data;
189 EventNotifier *e;
190 };
191
192 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
193 MemoryRegionIoeventfd b)
194 {
195 if (int128_lt(a.addr.start, b.addr.start)) {
196 return true;
197 } else if (int128_gt(a.addr.start, b.addr.start)) {
198 return false;
199 } else if (int128_lt(a.addr.size, b.addr.size)) {
200 return true;
201 } else if (int128_gt(a.addr.size, b.addr.size)) {
202 return false;
203 } else if (a.match_data < b.match_data) {
204 return true;
205 } else if (a.match_data > b.match_data) {
206 return false;
207 } else if (a.match_data) {
208 if (a.data < b.data) {
209 return true;
210 } else if (a.data > b.data) {
211 return false;
212 }
213 }
214 if (a.e < b.e) {
215 return true;
216 } else if (a.e > b.e) {
217 return false;
218 }
219 return false;
220 }
221
222 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
223 MemoryRegionIoeventfd b)
224 {
225 return !memory_region_ioeventfd_before(a, b)
226 && !memory_region_ioeventfd_before(b, a);
227 }
228
229 typedef struct FlatRange FlatRange;
230 typedef struct FlatView FlatView;
231
232 /* Range of memory in the global map. Addresses are absolute. */
233 struct FlatRange {
234 MemoryRegion *mr;
235 hwaddr offset_in_region;
236 AddrRange addr;
237 uint8_t dirty_log_mask;
238 bool romd_mode;
239 bool readonly;
240 };
241
242 /* Flattened global view of current active memory hierarchy. Kept in sorted
243 * order.
244 */
245 struct FlatView {
246 unsigned ref;
247 FlatRange *ranges;
248 unsigned nr;
249 unsigned nr_allocated;
250 };
251
252 typedef struct AddressSpaceOps AddressSpaceOps;
253
254 #define FOR_EACH_FLAT_RANGE(var, view) \
255 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
256
257 static bool flatrange_equal(FlatRange *a, FlatRange *b)
258 {
259 return a->mr == b->mr
260 && addrrange_equal(a->addr, b->addr)
261 && a->offset_in_region == b->offset_in_region
262 && a->romd_mode == b->romd_mode
263 && a->readonly == b->readonly;
264 }
265
266 static void flatview_init(FlatView *view)
267 {
268 view->ref = 1;
269 view->ranges = NULL;
270 view->nr = 0;
271 view->nr_allocated = 0;
272 }
273
274 /* Insert a range into a given position. Caller is responsible for maintaining
275 * sorting order.
276 */
277 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
278 {
279 if (view->nr == view->nr_allocated) {
280 view->nr_allocated = MAX(2 * view->nr, 10);
281 view->ranges = g_realloc(view->ranges,
282 view->nr_allocated * sizeof(*view->ranges));
283 }
284 memmove(view->ranges + pos + 1, view->ranges + pos,
285 (view->nr - pos) * sizeof(FlatRange));
286 view->ranges[pos] = *range;
287 memory_region_ref(range->mr);
288 ++view->nr;
289 }
290
291 static void flatview_destroy(FlatView *view)
292 {
293 int i;
294
295 for (i = 0; i < view->nr; i++) {
296 memory_region_unref(view->ranges[i].mr);
297 }
298 g_free(view->ranges);
299 g_free(view);
300 }
301
302 static void flatview_ref(FlatView *view)
303 {
304 atomic_inc(&view->ref);
305 }
306
307 static void flatview_unref(FlatView *view)
308 {
309 if (atomic_fetch_dec(&view->ref) == 1) {
310 flatview_destroy(view);
311 }
312 }
313
314 static bool can_merge(FlatRange *r1, FlatRange *r2)
315 {
316 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
317 && r1->mr == r2->mr
318 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
319 r1->addr.size),
320 int128_make64(r2->offset_in_region))
321 && r1->dirty_log_mask == r2->dirty_log_mask
322 && r1->romd_mode == r2->romd_mode
323 && r1->readonly == r2->readonly;
324 }
325
326 /* Attempt to simplify a view by merging adjacent ranges */
327 static void flatview_simplify(FlatView *view)
328 {
329 unsigned i, j;
330
331 i = 0;
332 while (i < view->nr) {
333 j = i + 1;
334 while (j < view->nr
335 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
336 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
337 ++j;
338 }
339 ++i;
340 memmove(&view->ranges[i], &view->ranges[j],
341 (view->nr - j) * sizeof(view->ranges[j]));
342 view->nr -= j - i;
343 }
344 }
345
346 static bool memory_region_big_endian(MemoryRegion *mr)
347 {
348 #ifdef TARGET_WORDS_BIGENDIAN
349 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
350 #else
351 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
352 #endif
353 }
354
355 static bool memory_region_wrong_endianness(MemoryRegion *mr)
356 {
357 #ifdef TARGET_WORDS_BIGENDIAN
358 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
359 #else
360 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
361 #endif
362 }
363
364 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
365 {
366 if (memory_region_wrong_endianness(mr)) {
367 switch (size) {
368 case 1:
369 break;
370 case 2:
371 *data = bswap16(*data);
372 break;
373 case 4:
374 *data = bswap32(*data);
375 break;
376 case 8:
377 *data = bswap64(*data);
378 break;
379 default:
380 abort();
381 }
382 }
383 }
384
385 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
386 hwaddr addr,
387 uint64_t *value,
388 unsigned size,
389 unsigned shift,
390 uint64_t mask)
391 {
392 uint64_t tmp;
393
394 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
395 trace_memory_region_ops_read(mr, addr, tmp, size);
396 *value |= (tmp & mask) << shift;
397 }
398
399 static void memory_region_read_accessor(MemoryRegion *mr,
400 hwaddr addr,
401 uint64_t *value,
402 unsigned size,
403 unsigned shift,
404 uint64_t mask)
405 {
406 uint64_t tmp;
407
408 if (mr->flush_coalesced_mmio) {
409 qemu_flush_coalesced_mmio_buffer();
410 }
411 tmp = mr->ops->read(mr->opaque, addr, size);
412 trace_memory_region_ops_read(mr, addr, tmp, size);
413 *value |= (tmp & mask) << shift;
414 }
415
416 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
417 hwaddr addr,
418 uint64_t *value,
419 unsigned size,
420 unsigned shift,
421 uint64_t mask)
422 {
423 uint64_t tmp;
424
425 tmp = (*value >> shift) & mask;
426 trace_memory_region_ops_write(mr, addr, tmp, size);
427 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
428 }
429
430 static void memory_region_write_accessor(MemoryRegion *mr,
431 hwaddr addr,
432 uint64_t *value,
433 unsigned size,
434 unsigned shift,
435 uint64_t mask)
436 {
437 uint64_t tmp;
438
439 if (mr->flush_coalesced_mmio) {
440 qemu_flush_coalesced_mmio_buffer();
441 }
442 tmp = (*value >> shift) & mask;
443 trace_memory_region_ops_write(mr, addr, tmp, size);
444 mr->ops->write(mr->opaque, addr, tmp, size);
445 }
446
447 static void access_with_adjusted_size(hwaddr addr,
448 uint64_t *value,
449 unsigned size,
450 unsigned access_size_min,
451 unsigned access_size_max,
452 void (*access)(MemoryRegion *mr,
453 hwaddr addr,
454 uint64_t *value,
455 unsigned size,
456 unsigned shift,
457 uint64_t mask),
458 MemoryRegion *mr)
459 {
460 uint64_t access_mask;
461 unsigned access_size;
462 unsigned i;
463
464 if (!access_size_min) {
465 access_size_min = 1;
466 }
467 if (!access_size_max) {
468 access_size_max = 4;
469 }
470
471 /* FIXME: support unaligned access? */
472 access_size = MAX(MIN(size, access_size_max), access_size_min);
473 access_mask = -1ULL >> (64 - access_size * 8);
474 if (memory_region_big_endian(mr)) {
475 for (i = 0; i < size; i += access_size) {
476 access(mr, addr + i, value, access_size,
477 (size - access_size - i) * 8, access_mask);
478 }
479 } else {
480 for (i = 0; i < size; i += access_size) {
481 access(mr, addr + i, value, access_size, i * 8, access_mask);
482 }
483 }
484 }
485
486 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
487 {
488 AddressSpace *as;
489
490 while (mr->container) {
491 mr = mr->container;
492 }
493 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
494 if (mr == as->root) {
495 return as;
496 }
497 }
498 return NULL;
499 }
500
501 /* Render a memory region into the global view. Ranges in @view obscure
502 * ranges in @mr.
503 */
504 static void render_memory_region(FlatView *view,
505 MemoryRegion *mr,
506 Int128 base,
507 AddrRange clip,
508 bool readonly)
509 {
510 MemoryRegion *subregion;
511 unsigned i;
512 hwaddr offset_in_region;
513 Int128 remain;
514 Int128 now;
515 FlatRange fr;
516 AddrRange tmp;
517
518 if (!mr->enabled) {
519 return;
520 }
521
522 int128_addto(&base, int128_make64(mr->addr));
523 readonly |= mr->readonly;
524
525 tmp = addrrange_make(base, mr->size);
526
527 if (!addrrange_intersects(tmp, clip)) {
528 return;
529 }
530
531 clip = addrrange_intersection(tmp, clip);
532
533 if (mr->alias) {
534 int128_subfrom(&base, int128_make64(mr->alias->addr));
535 int128_subfrom(&base, int128_make64(mr->alias_offset));
536 render_memory_region(view, mr->alias, base, clip, readonly);
537 return;
538 }
539
540 /* Render subregions in priority order. */
541 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
542 render_memory_region(view, subregion, base, clip, readonly);
543 }
544
545 if (!mr->terminates) {
546 return;
547 }
548
549 offset_in_region = int128_get64(int128_sub(clip.start, base));
550 base = clip.start;
551 remain = clip.size;
552
553 fr.mr = mr;
554 fr.dirty_log_mask = mr->dirty_log_mask;
555 fr.romd_mode = mr->romd_mode;
556 fr.readonly = readonly;
557
558 /* Render the region itself into any gaps left by the current view. */
559 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
560 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
561 continue;
562 }
563 if (int128_lt(base, view->ranges[i].addr.start)) {
564 now = int128_min(remain,
565 int128_sub(view->ranges[i].addr.start, base));
566 fr.offset_in_region = offset_in_region;
567 fr.addr = addrrange_make(base, now);
568 flatview_insert(view, i, &fr);
569 ++i;
570 int128_addto(&base, now);
571 offset_in_region += int128_get64(now);
572 int128_subfrom(&remain, now);
573 }
574 now = int128_sub(int128_min(int128_add(base, remain),
575 addrrange_end(view->ranges[i].addr)),
576 base);
577 int128_addto(&base, now);
578 offset_in_region += int128_get64(now);
579 int128_subfrom(&remain, now);
580 }
581 if (int128_nz(remain)) {
582 fr.offset_in_region = offset_in_region;
583 fr.addr = addrrange_make(base, remain);
584 flatview_insert(view, i, &fr);
585 }
586 }
587
588 /* Render a memory topology into a list of disjoint absolute ranges. */
589 static FlatView *generate_memory_topology(MemoryRegion *mr)
590 {
591 FlatView *view;
592
593 view = g_new(FlatView, 1);
594 flatview_init(view);
595
596 if (mr) {
597 render_memory_region(view, mr, int128_zero(),
598 addrrange_make(int128_zero(), int128_2_64()), false);
599 }
600 flatview_simplify(view);
601
602 return view;
603 }
604
605 static void address_space_add_del_ioeventfds(AddressSpace *as,
606 MemoryRegionIoeventfd *fds_new,
607 unsigned fds_new_nb,
608 MemoryRegionIoeventfd *fds_old,
609 unsigned fds_old_nb)
610 {
611 unsigned iold, inew;
612 MemoryRegionIoeventfd *fd;
613 MemoryRegionSection section;
614
615 /* Generate a symmetric difference of the old and new fd sets, adding
616 * and deleting as necessary.
617 */
618
619 iold = inew = 0;
620 while (iold < fds_old_nb || inew < fds_new_nb) {
621 if (iold < fds_old_nb
622 && (inew == fds_new_nb
623 || memory_region_ioeventfd_before(fds_old[iold],
624 fds_new[inew]))) {
625 fd = &fds_old[iold];
626 section = (MemoryRegionSection) {
627 .address_space = as,
628 .offset_within_address_space = int128_get64(fd->addr.start),
629 .size = fd->addr.size,
630 };
631 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
632 fd->match_data, fd->data, fd->e);
633 ++iold;
634 } else if (inew < fds_new_nb
635 && (iold == fds_old_nb
636 || memory_region_ioeventfd_before(fds_new[inew],
637 fds_old[iold]))) {
638 fd = &fds_new[inew];
639 section = (MemoryRegionSection) {
640 .address_space = as,
641 .offset_within_address_space = int128_get64(fd->addr.start),
642 .size = fd->addr.size,
643 };
644 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
645 fd->match_data, fd->data, fd->e);
646 ++inew;
647 } else {
648 ++iold;
649 ++inew;
650 }
651 }
652 }
653
654 static FlatView *address_space_get_flatview(AddressSpace *as)
655 {
656 FlatView *view;
657
658 qemu_mutex_lock(&flat_view_mutex);
659 view = as->current_map;
660 flatview_ref(view);
661 qemu_mutex_unlock(&flat_view_mutex);
662 return view;
663 }
664
665 static void address_space_update_ioeventfds(AddressSpace *as)
666 {
667 FlatView *view;
668 FlatRange *fr;
669 unsigned ioeventfd_nb = 0;
670 MemoryRegionIoeventfd *ioeventfds = NULL;
671 AddrRange tmp;
672 unsigned i;
673
674 view = address_space_get_flatview(as);
675 FOR_EACH_FLAT_RANGE(fr, view) {
676 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
677 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
678 int128_sub(fr->addr.start,
679 int128_make64(fr->offset_in_region)));
680 if (addrrange_intersects(fr->addr, tmp)) {
681 ++ioeventfd_nb;
682 ioeventfds = g_realloc(ioeventfds,
683 ioeventfd_nb * sizeof(*ioeventfds));
684 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
685 ioeventfds[ioeventfd_nb-1].addr = tmp;
686 }
687 }
688 }
689
690 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
691 as->ioeventfds, as->ioeventfd_nb);
692
693 g_free(as->ioeventfds);
694 as->ioeventfds = ioeventfds;
695 as->ioeventfd_nb = ioeventfd_nb;
696 flatview_unref(view);
697 }
698
699 static void address_space_update_topology_pass(AddressSpace *as,
700 const FlatView *old_view,
701 const FlatView *new_view,
702 bool adding)
703 {
704 unsigned iold, inew;
705 FlatRange *frold, *frnew;
706
707 /* Generate a symmetric difference of the old and new memory maps.
708 * Kill ranges in the old map, and instantiate ranges in the new map.
709 */
710 iold = inew = 0;
711 while (iold < old_view->nr || inew < new_view->nr) {
712 if (iold < old_view->nr) {
713 frold = &old_view->ranges[iold];
714 } else {
715 frold = NULL;
716 }
717 if (inew < new_view->nr) {
718 frnew = &new_view->ranges[inew];
719 } else {
720 frnew = NULL;
721 }
722
723 if (frold
724 && (!frnew
725 || int128_lt(frold->addr.start, frnew->addr.start)
726 || (int128_eq(frold->addr.start, frnew->addr.start)
727 && !flatrange_equal(frold, frnew)))) {
728 /* In old but not in new, or in both but attributes changed. */
729
730 if (!adding) {
731 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
732 }
733
734 ++iold;
735 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
736 /* In both and unchanged (except logging may have changed) */
737
738 if (adding) {
739 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
740 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
741 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
742 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
743 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
744 }
745 }
746
747 ++iold;
748 ++inew;
749 } else {
750 /* In new */
751
752 if (adding) {
753 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
754 }
755
756 ++inew;
757 }
758 }
759 }
760
761
762 static void address_space_update_topology(AddressSpace *as)
763 {
764 FlatView *old_view = address_space_get_flatview(as);
765 FlatView *new_view = generate_memory_topology(as->root);
766
767 address_space_update_topology_pass(as, old_view, new_view, false);
768 address_space_update_topology_pass(as, old_view, new_view, true);
769
770 qemu_mutex_lock(&flat_view_mutex);
771 flatview_unref(as->current_map);
772 as->current_map = new_view;
773 qemu_mutex_unlock(&flat_view_mutex);
774
775 /* Note that all the old MemoryRegions are still alive up to this
776 * point. This relieves most MemoryListeners from the need to
777 * ref/unref the MemoryRegions they get---unless they use them
778 * outside the iothread mutex, in which case precise reference
779 * counting is necessary.
780 */
781 flatview_unref(old_view);
782
783 address_space_update_ioeventfds(as);
784 }
785
786 void memory_region_transaction_begin(void)
787 {
788 qemu_flush_coalesced_mmio_buffer();
789 ++memory_region_transaction_depth;
790 }
791
792 static void memory_region_clear_pending(void)
793 {
794 memory_region_update_pending = false;
795 ioeventfd_update_pending = false;
796 }
797
798 void memory_region_transaction_commit(void)
799 {
800 AddressSpace *as;
801
802 assert(memory_region_transaction_depth);
803 --memory_region_transaction_depth;
804 if (!memory_region_transaction_depth) {
805 if (memory_region_update_pending) {
806 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
807
808 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
809 address_space_update_topology(as);
810 }
811
812 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
813 } else if (ioeventfd_update_pending) {
814 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
815 address_space_update_ioeventfds(as);
816 }
817 }
818 memory_region_clear_pending();
819 }
820 }
821
822 static void memory_region_destructor_none(MemoryRegion *mr)
823 {
824 }
825
826 static void memory_region_destructor_ram(MemoryRegion *mr)
827 {
828 qemu_ram_free(mr->ram_addr);
829 }
830
831 static void memory_region_destructor_alias(MemoryRegion *mr)
832 {
833 memory_region_unref(mr->alias);
834 }
835
836 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
837 {
838 qemu_ram_free_from_ptr(mr->ram_addr);
839 }
840
841 static void memory_region_destructor_rom_device(MemoryRegion *mr)
842 {
843 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
844 }
845
846 static bool memory_region_need_escape(char c)
847 {
848 return c == '/' || c == '[' || c == '\\' || c == ']';
849 }
850
851 static char *memory_region_escape_name(const char *name)
852 {
853 const char *p;
854 char *escaped, *q;
855 uint8_t c;
856 size_t bytes = 0;
857
858 for (p = name; *p; p++) {
859 bytes += memory_region_need_escape(*p) ? 4 : 1;
860 }
861 if (bytes == p - name) {
862 return g_memdup(name, bytes + 1);
863 }
864
865 escaped = g_malloc(bytes + 1);
866 for (p = name, q = escaped; *p; p++) {
867 c = *p;
868 if (unlikely(memory_region_need_escape(c))) {
869 *q++ = '\\';
870 *q++ = 'x';
871 *q++ = "0123456789abcdef"[c >> 4];
872 c = "0123456789abcdef"[c & 15];
873 }
874 *q++ = c;
875 }
876 *q = 0;
877 return escaped;
878 }
879
880 static void object_property_add_child_array(Object *owner,
881 const char *name,
882 Object *child)
883 {
884 int i;
885 char *base_name = memory_region_escape_name(name);
886
887 for (i = 0; ; i++) {
888 char *full_name = g_strdup_printf("%s[%d]", base_name, i);
889 Error *local_err = NULL;
890
891 object_property_add_child(owner, full_name, child, &local_err);
892 g_free(full_name);
893 if (!local_err) {
894 break;
895 }
896
897 error_free(local_err);
898 }
899
900 g_free(base_name);
901 }
902
903
904 void memory_region_init(MemoryRegion *mr,
905 Object *owner,
906 const char *name,
907 uint64_t size)
908 {
909 if (!owner) {
910 owner = qdev_get_machine();
911 }
912
913 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
914 mr->size = int128_make64(size);
915 if (size == UINT64_MAX) {
916 mr->size = int128_2_64();
917 }
918 mr->name = g_strdup(name);
919
920 if (name) {
921 object_property_add_child_array(owner, name, OBJECT(mr));
922 object_unref(OBJECT(mr));
923 }
924 }
925
926 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
927 const char *name, Error **errp)
928 {
929 MemoryRegion *mr = MEMORY_REGION(obj);
930 uint64_t value = mr->addr;
931
932 visit_type_uint64(v, &value, name, errp);
933 }
934
935 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
936 const char *name, Error **errp)
937 {
938 MemoryRegion *mr = MEMORY_REGION(obj);
939 gchar *path = (gchar *)"";
940
941 if (mr->container) {
942 path = object_get_canonical_path(OBJECT(mr->container));
943 }
944 visit_type_str(v, &path, name, errp);
945 if (mr->container) {
946 g_free(path);
947 }
948 }
949
950 static Object *memory_region_resolve_container(Object *obj, void *opaque,
951 const char *part)
952 {
953 MemoryRegion *mr = MEMORY_REGION(obj);
954
955 return OBJECT(mr->container);
956 }
957
958 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
959 const char *name, Error **errp)
960 {
961 MemoryRegion *mr = MEMORY_REGION(obj);
962 int32_t value = mr->priority;
963
964 visit_type_int32(v, &value, name, errp);
965 }
966
967 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
968 {
969 MemoryRegion *mr = MEMORY_REGION(obj);
970
971 return mr->may_overlap;
972 }
973
974 static void memory_region_initfn(Object *obj)
975 {
976 MemoryRegion *mr = MEMORY_REGION(obj);
977 ObjectProperty *op;
978
979 mr->ops = &unassigned_mem_ops;
980 mr->enabled = true;
981 mr->romd_mode = true;
982 mr->destructor = memory_region_destructor_none;
983 QTAILQ_INIT(&mr->subregions);
984 QTAILQ_INIT(&mr->coalesced);
985
986 op = object_property_add(OBJECT(mr), "container",
987 "link<" TYPE_MEMORY_REGION ">",
988 memory_region_get_container,
989 NULL, /* memory_region_set_container */
990 NULL, NULL, &error_abort);
991 op->resolve = memory_region_resolve_container;
992
993 object_property_add(OBJECT(mr), "addr", "uint64",
994 memory_region_get_addr,
995 NULL, /* memory_region_set_addr */
996 NULL, NULL, &error_abort);
997 object_property_add(OBJECT(mr), "priority", "uint32",
998 memory_region_get_priority,
999 NULL, /* memory_region_set_priority */
1000 NULL, NULL, &error_abort);
1001 object_property_add_bool(OBJECT(mr), "may-overlap",
1002 memory_region_get_may_overlap,
1003 NULL, /* memory_region_set_may_overlap */
1004 &error_abort);
1005 }
1006
1007 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1008 unsigned size)
1009 {
1010 #ifdef DEBUG_UNASSIGNED
1011 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1012 #endif
1013 if (current_cpu != NULL) {
1014 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1015 }
1016 return 0;
1017 }
1018
1019 static void unassigned_mem_write(void *opaque, hwaddr addr,
1020 uint64_t val, unsigned size)
1021 {
1022 #ifdef DEBUG_UNASSIGNED
1023 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1024 #endif
1025 if (current_cpu != NULL) {
1026 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1027 }
1028 }
1029
1030 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1031 unsigned size, bool is_write)
1032 {
1033 return false;
1034 }
1035
1036 const MemoryRegionOps unassigned_mem_ops = {
1037 .valid.accepts = unassigned_mem_accepts,
1038 .endianness = DEVICE_NATIVE_ENDIAN,
1039 };
1040
1041 bool memory_region_access_valid(MemoryRegion *mr,
1042 hwaddr addr,
1043 unsigned size,
1044 bool is_write)
1045 {
1046 int access_size_min, access_size_max;
1047 int access_size, i;
1048
1049 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1050 return false;
1051 }
1052
1053 if (!mr->ops->valid.accepts) {
1054 return true;
1055 }
1056
1057 access_size_min = mr->ops->valid.min_access_size;
1058 if (!mr->ops->valid.min_access_size) {
1059 access_size_min = 1;
1060 }
1061
1062 access_size_max = mr->ops->valid.max_access_size;
1063 if (!mr->ops->valid.max_access_size) {
1064 access_size_max = 4;
1065 }
1066
1067 access_size = MAX(MIN(size, access_size_max), access_size_min);
1068 for (i = 0; i < size; i += access_size) {
1069 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1070 is_write)) {
1071 return false;
1072 }
1073 }
1074
1075 return true;
1076 }
1077
1078 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1079 hwaddr addr,
1080 unsigned size)
1081 {
1082 uint64_t data = 0;
1083
1084 if (mr->ops->read) {
1085 access_with_adjusted_size(addr, &data, size,
1086 mr->ops->impl.min_access_size,
1087 mr->ops->impl.max_access_size,
1088 memory_region_read_accessor, mr);
1089 } else {
1090 access_with_adjusted_size(addr, &data, size, 1, 4,
1091 memory_region_oldmmio_read_accessor, mr);
1092 }
1093
1094 return data;
1095 }
1096
1097 static bool memory_region_dispatch_read(MemoryRegion *mr,
1098 hwaddr addr,
1099 uint64_t *pval,
1100 unsigned size)
1101 {
1102 if (!memory_region_access_valid(mr, addr, size, false)) {
1103 *pval = unassigned_mem_read(mr, addr, size);
1104 return true;
1105 }
1106
1107 *pval = memory_region_dispatch_read1(mr, addr, size);
1108 adjust_endianness(mr, pval, size);
1109 return false;
1110 }
1111
1112 static bool memory_region_dispatch_write(MemoryRegion *mr,
1113 hwaddr addr,
1114 uint64_t data,
1115 unsigned size)
1116 {
1117 if (!memory_region_access_valid(mr, addr, size, true)) {
1118 unassigned_mem_write(mr, addr, data, size);
1119 return true;
1120 }
1121
1122 adjust_endianness(mr, &data, size);
1123
1124 if (mr->ops->write) {
1125 access_with_adjusted_size(addr, &data, size,
1126 mr->ops->impl.min_access_size,
1127 mr->ops->impl.max_access_size,
1128 memory_region_write_accessor, mr);
1129 } else {
1130 access_with_adjusted_size(addr, &data, size, 1, 4,
1131 memory_region_oldmmio_write_accessor, mr);
1132 }
1133 return false;
1134 }
1135
1136 void memory_region_init_io(MemoryRegion *mr,
1137 Object *owner,
1138 const MemoryRegionOps *ops,
1139 void *opaque,
1140 const char *name,
1141 uint64_t size)
1142 {
1143 memory_region_init(mr, owner, name, size);
1144 mr->ops = ops;
1145 mr->opaque = opaque;
1146 mr->terminates = true;
1147 mr->ram_addr = ~(ram_addr_t)0;
1148 }
1149
1150 void memory_region_init_ram(MemoryRegion *mr,
1151 Object *owner,
1152 const char *name,
1153 uint64_t size)
1154 {
1155 memory_region_init(mr, owner, name, size);
1156 mr->ram = true;
1157 mr->terminates = true;
1158 mr->destructor = memory_region_destructor_ram;
1159 mr->ram_addr = qemu_ram_alloc(size, mr);
1160 }
1161
1162 #ifdef __linux__
1163 void memory_region_init_ram_from_file(MemoryRegion *mr,
1164 struct Object *owner,
1165 const char *name,
1166 uint64_t size,
1167 bool share,
1168 const char *path,
1169 Error **errp)
1170 {
1171 memory_region_init(mr, owner, name, size);
1172 mr->ram = true;
1173 mr->terminates = true;
1174 mr->destructor = memory_region_destructor_ram;
1175 mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1176 }
1177 #endif
1178
1179 void memory_region_init_ram_ptr(MemoryRegion *mr,
1180 Object *owner,
1181 const char *name,
1182 uint64_t size,
1183 void *ptr)
1184 {
1185 memory_region_init(mr, owner, name, size);
1186 mr->ram = true;
1187 mr->terminates = true;
1188 mr->destructor = memory_region_destructor_ram_from_ptr;
1189 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1190 }
1191
1192 void memory_region_init_alias(MemoryRegion *mr,
1193 Object *owner,
1194 const char *name,
1195 MemoryRegion *orig,
1196 hwaddr offset,
1197 uint64_t size)
1198 {
1199 memory_region_init(mr, owner, name, size);
1200 memory_region_ref(orig);
1201 mr->destructor = memory_region_destructor_alias;
1202 mr->alias = orig;
1203 mr->alias_offset = offset;
1204 }
1205
1206 void memory_region_init_rom_device(MemoryRegion *mr,
1207 Object *owner,
1208 const MemoryRegionOps *ops,
1209 void *opaque,
1210 const char *name,
1211 uint64_t size)
1212 {
1213 memory_region_init(mr, owner, name, size);
1214 mr->ops = ops;
1215 mr->opaque = opaque;
1216 mr->terminates = true;
1217 mr->rom_device = true;
1218 mr->destructor = memory_region_destructor_rom_device;
1219 mr->ram_addr = qemu_ram_alloc(size, mr);
1220 }
1221
1222 void memory_region_init_iommu(MemoryRegion *mr,
1223 Object *owner,
1224 const MemoryRegionIOMMUOps *ops,
1225 const char *name,
1226 uint64_t size)
1227 {
1228 memory_region_init(mr, owner, name, size);
1229 mr->iommu_ops = ops,
1230 mr->terminates = true; /* then re-forwards */
1231 notifier_list_init(&mr->iommu_notify);
1232 }
1233
1234 void memory_region_init_reservation(MemoryRegion *mr,
1235 Object *owner,
1236 const char *name,
1237 uint64_t size)
1238 {
1239 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1240 }
1241
1242 static void memory_region_finalize(Object *obj)
1243 {
1244 MemoryRegion *mr = MEMORY_REGION(obj);
1245
1246 assert(QTAILQ_EMPTY(&mr->subregions));
1247 assert(memory_region_transaction_depth == 0);
1248 mr->destructor(mr);
1249 memory_region_clear_coalescing(mr);
1250 g_free((char *)mr->name);
1251 g_free(mr->ioeventfds);
1252 }
1253
1254 void memory_region_destroy(MemoryRegion *mr)
1255 {
1256 object_unparent(OBJECT(mr));
1257 }
1258
1259
1260 Object *memory_region_owner(MemoryRegion *mr)
1261 {
1262 Object *obj = OBJECT(mr);
1263 return obj->parent;
1264 }
1265
1266 void memory_region_ref(MemoryRegion *mr)
1267 {
1268 /* MMIO callbacks most likely will access data that belongs
1269 * to the owner, hence the need to ref/unref the owner whenever
1270 * the memory region is in use.
1271 *
1272 * The memory region is a child of its owner. As long as the
1273 * owner doesn't call unparent itself on the memory region,
1274 * ref-ing the owner will also keep the memory region alive.
1275 * Memory regions without an owner are supposed to never go away,
1276 * but we still ref/unref them for debugging purposes.
1277 */
1278 Object *obj = OBJECT(mr);
1279 if (obj && obj->parent) {
1280 object_ref(obj->parent);
1281 } else {
1282 object_ref(obj);
1283 }
1284 }
1285
1286 void memory_region_unref(MemoryRegion *mr)
1287 {
1288 Object *obj = OBJECT(mr);
1289 if (obj && obj->parent) {
1290 object_unref(obj->parent);
1291 } else {
1292 object_unref(obj);
1293 }
1294 }
1295
1296 uint64_t memory_region_size(MemoryRegion *mr)
1297 {
1298 if (int128_eq(mr->size, int128_2_64())) {
1299 return UINT64_MAX;
1300 }
1301 return int128_get64(mr->size);
1302 }
1303
1304 const char *memory_region_name(MemoryRegion *mr)
1305 {
1306 return mr->name;
1307 }
1308
1309 bool memory_region_is_ram(MemoryRegion *mr)
1310 {
1311 return mr->ram;
1312 }
1313
1314 bool memory_region_is_logging(MemoryRegion *mr)
1315 {
1316 return mr->dirty_log_mask;
1317 }
1318
1319 bool memory_region_is_rom(MemoryRegion *mr)
1320 {
1321 return mr->ram && mr->readonly;
1322 }
1323
1324 bool memory_region_is_iommu(MemoryRegion *mr)
1325 {
1326 return mr->iommu_ops;
1327 }
1328
1329 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1330 {
1331 notifier_list_add(&mr->iommu_notify, n);
1332 }
1333
1334 void memory_region_unregister_iommu_notifier(Notifier *n)
1335 {
1336 notifier_remove(n);
1337 }
1338
1339 void memory_region_notify_iommu(MemoryRegion *mr,
1340 IOMMUTLBEntry entry)
1341 {
1342 assert(memory_region_is_iommu(mr));
1343 notifier_list_notify(&mr->iommu_notify, &entry);
1344 }
1345
1346 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1347 {
1348 uint8_t mask = 1 << client;
1349
1350 memory_region_transaction_begin();
1351 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1352 memory_region_update_pending |= mr->enabled;
1353 memory_region_transaction_commit();
1354 }
1355
1356 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1357 hwaddr size, unsigned client)
1358 {
1359 assert(mr->terminates);
1360 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1361 }
1362
1363 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1364 hwaddr size)
1365 {
1366 assert(mr->terminates);
1367 cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1368 }
1369
1370 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1371 hwaddr size, unsigned client)
1372 {
1373 bool ret;
1374 assert(mr->terminates);
1375 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1376 if (ret) {
1377 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1378 }
1379 return ret;
1380 }
1381
1382
1383 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1384 {
1385 AddressSpace *as;
1386 FlatRange *fr;
1387
1388 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1389 FlatView *view = address_space_get_flatview(as);
1390 FOR_EACH_FLAT_RANGE(fr, view) {
1391 if (fr->mr == mr) {
1392 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1393 }
1394 }
1395 flatview_unref(view);
1396 }
1397 }
1398
1399 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1400 {
1401 if (mr->readonly != readonly) {
1402 memory_region_transaction_begin();
1403 mr->readonly = readonly;
1404 memory_region_update_pending |= mr->enabled;
1405 memory_region_transaction_commit();
1406 }
1407 }
1408
1409 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1410 {
1411 if (mr->romd_mode != romd_mode) {
1412 memory_region_transaction_begin();
1413 mr->romd_mode = romd_mode;
1414 memory_region_update_pending |= mr->enabled;
1415 memory_region_transaction_commit();
1416 }
1417 }
1418
1419 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1420 hwaddr size, unsigned client)
1421 {
1422 assert(mr->terminates);
1423 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1424 }
1425
1426 int memory_region_get_fd(MemoryRegion *mr)
1427 {
1428 if (mr->alias) {
1429 return memory_region_get_fd(mr->alias);
1430 }
1431
1432 assert(mr->terminates);
1433
1434 return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1435 }
1436
1437 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1438 {
1439 if (mr->alias) {
1440 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1441 }
1442
1443 assert(mr->terminates);
1444
1445 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1446 }
1447
1448 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1449 {
1450 FlatView *view;
1451 FlatRange *fr;
1452 CoalescedMemoryRange *cmr;
1453 AddrRange tmp;
1454 MemoryRegionSection section;
1455
1456 view = address_space_get_flatview(as);
1457 FOR_EACH_FLAT_RANGE(fr, view) {
1458 if (fr->mr == mr) {
1459 section = (MemoryRegionSection) {
1460 .address_space = as,
1461 .offset_within_address_space = int128_get64(fr->addr.start),
1462 .size = fr->addr.size,
1463 };
1464
1465 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1466 int128_get64(fr->addr.start),
1467 int128_get64(fr->addr.size));
1468 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1469 tmp = addrrange_shift(cmr->addr,
1470 int128_sub(fr->addr.start,
1471 int128_make64(fr->offset_in_region)));
1472 if (!addrrange_intersects(tmp, fr->addr)) {
1473 continue;
1474 }
1475 tmp = addrrange_intersection(tmp, fr->addr);
1476 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1477 int128_get64(tmp.start),
1478 int128_get64(tmp.size));
1479 }
1480 }
1481 }
1482 flatview_unref(view);
1483 }
1484
1485 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1486 {
1487 AddressSpace *as;
1488
1489 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1490 memory_region_update_coalesced_range_as(mr, as);
1491 }
1492 }
1493
1494 void memory_region_set_coalescing(MemoryRegion *mr)
1495 {
1496 memory_region_clear_coalescing(mr);
1497 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1498 }
1499
1500 void memory_region_add_coalescing(MemoryRegion *mr,
1501 hwaddr offset,
1502 uint64_t size)
1503 {
1504 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1505
1506 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1507 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1508 memory_region_update_coalesced_range(mr);
1509 memory_region_set_flush_coalesced(mr);
1510 }
1511
1512 void memory_region_clear_coalescing(MemoryRegion *mr)
1513 {
1514 CoalescedMemoryRange *cmr;
1515 bool updated = false;
1516
1517 qemu_flush_coalesced_mmio_buffer();
1518 mr->flush_coalesced_mmio = false;
1519
1520 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1521 cmr = QTAILQ_FIRST(&mr->coalesced);
1522 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1523 g_free(cmr);
1524 updated = true;
1525 }
1526
1527 if (updated) {
1528 memory_region_update_coalesced_range(mr);
1529 }
1530 }
1531
1532 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1533 {
1534 mr->flush_coalesced_mmio = true;
1535 }
1536
1537 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1538 {
1539 qemu_flush_coalesced_mmio_buffer();
1540 if (QTAILQ_EMPTY(&mr->coalesced)) {
1541 mr->flush_coalesced_mmio = false;
1542 }
1543 }
1544
1545 void memory_region_add_eventfd(MemoryRegion *mr,
1546 hwaddr addr,
1547 unsigned size,
1548 bool match_data,
1549 uint64_t data,
1550 EventNotifier *e)
1551 {
1552 MemoryRegionIoeventfd mrfd = {
1553 .addr.start = int128_make64(addr),
1554 .addr.size = int128_make64(size),
1555 .match_data = match_data,
1556 .data = data,
1557 .e = e,
1558 };
1559 unsigned i;
1560
1561 adjust_endianness(mr, &mrfd.data, size);
1562 memory_region_transaction_begin();
1563 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1564 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1565 break;
1566 }
1567 }
1568 ++mr->ioeventfd_nb;
1569 mr->ioeventfds = g_realloc(mr->ioeventfds,
1570 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1571 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1572 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1573 mr->ioeventfds[i] = mrfd;
1574 ioeventfd_update_pending |= mr->enabled;
1575 memory_region_transaction_commit();
1576 }
1577
1578 void memory_region_del_eventfd(MemoryRegion *mr,
1579 hwaddr addr,
1580 unsigned size,
1581 bool match_data,
1582 uint64_t data,
1583 EventNotifier *e)
1584 {
1585 MemoryRegionIoeventfd mrfd = {
1586 .addr.start = int128_make64(addr),
1587 .addr.size = int128_make64(size),
1588 .match_data = match_data,
1589 .data = data,
1590 .e = e,
1591 };
1592 unsigned i;
1593
1594 adjust_endianness(mr, &mrfd.data, size);
1595 memory_region_transaction_begin();
1596 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1597 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1598 break;
1599 }
1600 }
1601 assert(i != mr->ioeventfd_nb);
1602 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1603 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1604 --mr->ioeventfd_nb;
1605 mr->ioeventfds = g_realloc(mr->ioeventfds,
1606 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1607 ioeventfd_update_pending |= mr->enabled;
1608 memory_region_transaction_commit();
1609 }
1610
1611 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1612 {
1613 hwaddr offset = subregion->addr;
1614 MemoryRegion *mr = subregion->container;
1615 MemoryRegion *other;
1616
1617 memory_region_transaction_begin();
1618
1619 memory_region_ref(subregion);
1620 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1621 if (subregion->may_overlap || other->may_overlap) {
1622 continue;
1623 }
1624 if (int128_ge(int128_make64(offset),
1625 int128_add(int128_make64(other->addr), other->size))
1626 || int128_le(int128_add(int128_make64(offset), subregion->size),
1627 int128_make64(other->addr))) {
1628 continue;
1629 }
1630 #if 0
1631 printf("warning: subregion collision %llx/%llx (%s) "
1632 "vs %llx/%llx (%s)\n",
1633 (unsigned long long)offset,
1634 (unsigned long long)int128_get64(subregion->size),
1635 subregion->name,
1636 (unsigned long long)other->addr,
1637 (unsigned long long)int128_get64(other->size),
1638 other->name);
1639 #endif
1640 }
1641 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1642 if (subregion->priority >= other->priority) {
1643 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1644 goto done;
1645 }
1646 }
1647 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1648 done:
1649 memory_region_update_pending |= mr->enabled && subregion->enabled;
1650 memory_region_transaction_commit();
1651 }
1652
1653 static void memory_region_add_subregion_common(MemoryRegion *mr,
1654 hwaddr offset,
1655 MemoryRegion *subregion)
1656 {
1657 assert(!subregion->container);
1658 subregion->container = mr;
1659 subregion->addr = offset;
1660 memory_region_update_container_subregions(subregion);
1661 }
1662
1663 void memory_region_add_subregion(MemoryRegion *mr,
1664 hwaddr offset,
1665 MemoryRegion *subregion)
1666 {
1667 subregion->may_overlap = false;
1668 subregion->priority = 0;
1669 memory_region_add_subregion_common(mr, offset, subregion);
1670 }
1671
1672 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1673 hwaddr offset,
1674 MemoryRegion *subregion,
1675 int priority)
1676 {
1677 subregion->may_overlap = true;
1678 subregion->priority = priority;
1679 memory_region_add_subregion_common(mr, offset, subregion);
1680 }
1681
1682 void memory_region_del_subregion(MemoryRegion *mr,
1683 MemoryRegion *subregion)
1684 {
1685 memory_region_transaction_begin();
1686 assert(subregion->container == mr);
1687 subregion->container = NULL;
1688 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1689 memory_region_unref(subregion);
1690 memory_region_update_pending |= mr->enabled && subregion->enabled;
1691 memory_region_transaction_commit();
1692 }
1693
1694 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1695 {
1696 if (enabled == mr->enabled) {
1697 return;
1698 }
1699 memory_region_transaction_begin();
1700 mr->enabled = enabled;
1701 memory_region_update_pending = true;
1702 memory_region_transaction_commit();
1703 }
1704
1705 static void memory_region_readd_subregion(MemoryRegion *mr)
1706 {
1707 MemoryRegion *container = mr->container;
1708
1709 if (container) {
1710 memory_region_transaction_begin();
1711 memory_region_ref(mr);
1712 memory_region_del_subregion(container, mr);
1713 mr->container = container;
1714 memory_region_update_container_subregions(mr);
1715 memory_region_unref(mr);
1716 memory_region_transaction_commit();
1717 }
1718 }
1719
1720 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1721 {
1722 if (addr != mr->addr) {
1723 mr->addr = addr;
1724 memory_region_readd_subregion(mr);
1725 }
1726 }
1727
1728 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1729 {
1730 assert(mr->alias);
1731
1732 if (offset == mr->alias_offset) {
1733 return;
1734 }
1735
1736 memory_region_transaction_begin();
1737 mr->alias_offset = offset;
1738 memory_region_update_pending |= mr->enabled;
1739 memory_region_transaction_commit();
1740 }
1741
1742 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1743 {
1744 return mr->ram_addr;
1745 }
1746
1747 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1748 {
1749 const AddrRange *addr = addr_;
1750 const FlatRange *fr = fr_;
1751
1752 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1753 return -1;
1754 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1755 return 1;
1756 }
1757 return 0;
1758 }
1759
1760 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1761 {
1762 return bsearch(&addr, view->ranges, view->nr,
1763 sizeof(FlatRange), cmp_flatrange_addr);
1764 }
1765
1766 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1767 {
1768 MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1769 if (!mr || (mr == container)) {
1770 return false;
1771 }
1772 memory_region_unref(mr);
1773 return true;
1774 }
1775
1776 bool memory_region_is_mapped(MemoryRegion *mr)
1777 {
1778 return mr->container ? true : false;
1779 }
1780
1781 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1782 hwaddr addr, uint64_t size)
1783 {
1784 MemoryRegionSection ret = { .mr = NULL };
1785 MemoryRegion *root;
1786 AddressSpace *as;
1787 AddrRange range;
1788 FlatView *view;
1789 FlatRange *fr;
1790
1791 addr += mr->addr;
1792 for (root = mr; root->container; ) {
1793 root = root->container;
1794 addr += root->addr;
1795 }
1796
1797 as = memory_region_to_address_space(root);
1798 if (!as) {
1799 return ret;
1800 }
1801 range = addrrange_make(int128_make64(addr), int128_make64(size));
1802
1803 view = address_space_get_flatview(as);
1804 fr = flatview_lookup(view, range);
1805 if (!fr) {
1806 flatview_unref(view);
1807 return ret;
1808 }
1809
1810 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1811 --fr;
1812 }
1813
1814 ret.mr = fr->mr;
1815 ret.address_space = as;
1816 range = addrrange_intersection(range, fr->addr);
1817 ret.offset_within_region = fr->offset_in_region;
1818 ret.offset_within_region += int128_get64(int128_sub(range.start,
1819 fr->addr.start));
1820 ret.size = range.size;
1821 ret.offset_within_address_space = int128_get64(range.start);
1822 ret.readonly = fr->readonly;
1823 memory_region_ref(ret.mr);
1824
1825 flatview_unref(view);
1826 return ret;
1827 }
1828
1829 void address_space_sync_dirty_bitmap(AddressSpace *as)
1830 {
1831 FlatView *view;
1832 FlatRange *fr;
1833
1834 view = address_space_get_flatview(as);
1835 FOR_EACH_FLAT_RANGE(fr, view) {
1836 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1837 }
1838 flatview_unref(view);
1839 }
1840
1841 void memory_global_dirty_log_start(void)
1842 {
1843 global_dirty_log = true;
1844 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1845 }
1846
1847 void memory_global_dirty_log_stop(void)
1848 {
1849 global_dirty_log = false;
1850 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1851 }
1852
1853 static void listener_add_address_space(MemoryListener *listener,
1854 AddressSpace *as)
1855 {
1856 FlatView *view;
1857 FlatRange *fr;
1858
1859 if (listener->address_space_filter
1860 && listener->address_space_filter != as) {
1861 return;
1862 }
1863
1864 if (global_dirty_log) {
1865 if (listener->log_global_start) {
1866 listener->log_global_start(listener);
1867 }
1868 }
1869
1870 view = address_space_get_flatview(as);
1871 FOR_EACH_FLAT_RANGE(fr, view) {
1872 MemoryRegionSection section = {
1873 .mr = fr->mr,
1874 .address_space = as,
1875 .offset_within_region = fr->offset_in_region,
1876 .size = fr->addr.size,
1877 .offset_within_address_space = int128_get64(fr->addr.start),
1878 .readonly = fr->readonly,
1879 };
1880 if (listener->region_add) {
1881 listener->region_add(listener, &section);
1882 }
1883 }
1884 flatview_unref(view);
1885 }
1886
1887 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1888 {
1889 MemoryListener *other = NULL;
1890 AddressSpace *as;
1891
1892 listener->address_space_filter = filter;
1893 if (QTAILQ_EMPTY(&memory_listeners)
1894 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1895 memory_listeners)->priority) {
1896 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1897 } else {
1898 QTAILQ_FOREACH(other, &memory_listeners, link) {
1899 if (listener->priority < other->priority) {
1900 break;
1901 }
1902 }
1903 QTAILQ_INSERT_BEFORE(other, listener, link);
1904 }
1905
1906 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1907 listener_add_address_space(listener, as);
1908 }
1909 }
1910
1911 void memory_listener_unregister(MemoryListener *listener)
1912 {
1913 QTAILQ_REMOVE(&memory_listeners, listener, link);
1914 }
1915
1916 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1917 {
1918 if (QTAILQ_EMPTY(&address_spaces)) {
1919 memory_init();
1920 }
1921
1922 memory_region_transaction_begin();
1923 as->root = root;
1924 as->current_map = g_new(FlatView, 1);
1925 flatview_init(as->current_map);
1926 as->ioeventfd_nb = 0;
1927 as->ioeventfds = NULL;
1928 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1929 as->name = g_strdup(name ? name : "anonymous");
1930 address_space_init_dispatch(as);
1931 memory_region_update_pending |= root->enabled;
1932 memory_region_transaction_commit();
1933 }
1934
1935 void address_space_destroy(AddressSpace *as)
1936 {
1937 MemoryListener *listener;
1938
1939 /* Flush out anything from MemoryListeners listening in on this */
1940 memory_region_transaction_begin();
1941 as->root = NULL;
1942 memory_region_transaction_commit();
1943 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1944 address_space_destroy_dispatch(as);
1945
1946 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1947 assert(listener->address_space_filter != as);
1948 }
1949
1950 flatview_unref(as->current_map);
1951 g_free(as->name);
1952 g_free(as->ioeventfds);
1953 }
1954
1955 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1956 {
1957 return memory_region_dispatch_read(mr, addr, pval, size);
1958 }
1959
1960 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1961 uint64_t val, unsigned size)
1962 {
1963 return memory_region_dispatch_write(mr, addr, val, size);
1964 }
1965
1966 typedef struct MemoryRegionList MemoryRegionList;
1967
1968 struct MemoryRegionList {
1969 const MemoryRegion *mr;
1970 bool printed;
1971 QTAILQ_ENTRY(MemoryRegionList) queue;
1972 };
1973
1974 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1975
1976 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1977 const MemoryRegion *mr, unsigned int level,
1978 hwaddr base,
1979 MemoryRegionListHead *alias_print_queue)
1980 {
1981 MemoryRegionList *new_ml, *ml, *next_ml;
1982 MemoryRegionListHead submr_print_queue;
1983 const MemoryRegion *submr;
1984 unsigned int i;
1985
1986 if (!mr || !mr->enabled) {
1987 return;
1988 }
1989
1990 for (i = 0; i < level; i++) {
1991 mon_printf(f, " ");
1992 }
1993
1994 if (mr->alias) {
1995 MemoryRegionList *ml;
1996 bool found = false;
1997
1998 /* check if the alias is already in the queue */
1999 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2000 if (ml->mr == mr->alias && !ml->printed) {
2001 found = true;
2002 }
2003 }
2004
2005 if (!found) {
2006 ml = g_new(MemoryRegionList, 1);
2007 ml->mr = mr->alias;
2008 ml->printed = false;
2009 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2010 }
2011 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2012 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2013 "-" TARGET_FMT_plx "\n",
2014 base + mr->addr,
2015 base + mr->addr
2016 + (int128_nz(mr->size) ?
2017 (hwaddr)int128_get64(int128_sub(mr->size,
2018 int128_one())) : 0),
2019 mr->priority,
2020 mr->romd_mode ? 'R' : '-',
2021 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2022 : '-',
2023 mr->name,
2024 mr->alias->name,
2025 mr->alias_offset,
2026 mr->alias_offset
2027 + (int128_nz(mr->size) ?
2028 (hwaddr)int128_get64(int128_sub(mr->size,
2029 int128_one())) : 0));
2030 } else {
2031 mon_printf(f,
2032 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2033 base + mr->addr,
2034 base + mr->addr
2035 + (int128_nz(mr->size) ?
2036 (hwaddr)int128_get64(int128_sub(mr->size,
2037 int128_one())) : 0),
2038 mr->priority,
2039 mr->romd_mode ? 'R' : '-',
2040 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2041 : '-',
2042 mr->name);
2043 }
2044
2045 QTAILQ_INIT(&submr_print_queue);
2046
2047 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2048 new_ml = g_new(MemoryRegionList, 1);
2049 new_ml->mr = submr;
2050 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2051 if (new_ml->mr->addr < ml->mr->addr ||
2052 (new_ml->mr->addr == ml->mr->addr &&
2053 new_ml->mr->priority > ml->mr->priority)) {
2054 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2055 new_ml = NULL;
2056 break;
2057 }
2058 }
2059 if (new_ml) {
2060 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2061 }
2062 }
2063
2064 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2065 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2066 alias_print_queue);
2067 }
2068
2069 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2070 g_free(ml);
2071 }
2072 }
2073
2074 void mtree_info(fprintf_function mon_printf, void *f)
2075 {
2076 MemoryRegionListHead ml_head;
2077 MemoryRegionList *ml, *ml2;
2078 AddressSpace *as;
2079
2080 QTAILQ_INIT(&ml_head);
2081
2082 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2083 mon_printf(f, "%s\n", as->name);
2084 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2085 }
2086
2087 mon_printf(f, "aliases\n");
2088 /* print aliased regions */
2089 QTAILQ_FOREACH(ml, &ml_head, queue) {
2090 if (!ml->printed) {
2091 mon_printf(f, "%s\n", ml->mr->name);
2092 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2093 }
2094 }
2095
2096 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2097 g_free(ml);
2098 }
2099 }
2100
2101 static const TypeInfo memory_region_info = {
2102 .parent = TYPE_OBJECT,
2103 .name = TYPE_MEMORY_REGION,
2104 .instance_size = sizeof(MemoryRegion),
2105 .instance_init = memory_region_initfn,
2106 .instance_finalize = memory_region_finalize,
2107 };
2108
2109 static void memory_register_types(void)
2110 {
2111 type_register_static(&memory_region_info);
2112 }
2113
2114 type_init(memory_register_types)