]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
memory: eliminate global MemoryListeners
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33
34 //#define DEBUG_UNASSIGNED
35
36 static unsigned memory_region_transaction_depth;
37 static bool memory_region_update_pending;
38 static bool ioeventfd_update_pending;
39 static bool global_dirty_log = false;
40
41 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
42 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
43
44 static QTAILQ_HEAD(, AddressSpace) address_spaces
45 = QTAILQ_HEAD_INITIALIZER(address_spaces);
46
47 typedef struct AddrRange AddrRange;
48
49 /*
50 * Note that signed integers are needed for negative offsetting in aliases
51 * (large MemoryRegion::alias_offset).
52 */
53 struct AddrRange {
54 Int128 start;
55 Int128 size;
56 };
57
58 static AddrRange addrrange_make(Int128 start, Int128 size)
59 {
60 return (AddrRange) { start, size };
61 }
62
63 static bool addrrange_equal(AddrRange r1, AddrRange r2)
64 {
65 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
66 }
67
68 static Int128 addrrange_end(AddrRange r)
69 {
70 return int128_add(r.start, r.size);
71 }
72
73 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
74 {
75 int128_addto(&range.start, delta);
76 return range;
77 }
78
79 static bool addrrange_contains(AddrRange range, Int128 addr)
80 {
81 return int128_ge(addr, range.start)
82 && int128_lt(addr, addrrange_end(range));
83 }
84
85 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
86 {
87 return addrrange_contains(r1, r2.start)
88 || addrrange_contains(r2, r1.start);
89 }
90
91 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
92 {
93 Int128 start = int128_max(r1.start, r2.start);
94 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
95 return addrrange_make(start, int128_sub(end, start));
96 }
97
98 enum ListenerDirection { Forward, Reverse };
99
100 static bool memory_listener_match(MemoryListener *listener,
101 MemoryRegionSection *section)
102 {
103 return listener->address_space == section->address_space;
104 }
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
120 memory_listeners, link) { \
121 if (_listener->_callback) { \
122 _listener->_callback(_listener, ##_args); \
123 } \
124 } \
125 break; \
126 default: \
127 abort(); \
128 } \
129 } while (0)
130
131 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
132 do { \
133 MemoryListener *_listener; \
134 \
135 switch (_direction) { \
136 case Forward: \
137 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
138 if (_listener->_callback \
139 && memory_listener_match(_listener, _section)) { \
140 _listener->_callback(_listener, _section, ##_args); \
141 } \
142 } \
143 break; \
144 case Reverse: \
145 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
146 memory_listeners, link) { \
147 if (_listener->_callback \
148 && memory_listener_match(_listener, _section)) { \
149 _listener->_callback(_listener, _section, ##_args); \
150 } \
151 } \
152 break; \
153 default: \
154 abort(); \
155 } \
156 } while (0)
157
158 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
159 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
160 do { \
161 MemoryRegionSection mrs = section_from_flat_range(fr, as); \
162 MEMORY_LISTENER_CALL(callback, dir, &mrs, ##_args); \
163 } while(0)
164
165 struct CoalescedMemoryRange {
166 AddrRange addr;
167 QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 };
169
170 struct MemoryRegionIoeventfd {
171 AddrRange addr;
172 bool match_data;
173 uint64_t data;
174 EventNotifier *e;
175 };
176
177 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
178 MemoryRegionIoeventfd b)
179 {
180 if (int128_lt(a.addr.start, b.addr.start)) {
181 return true;
182 } else if (int128_gt(a.addr.start, b.addr.start)) {
183 return false;
184 } else if (int128_lt(a.addr.size, b.addr.size)) {
185 return true;
186 } else if (int128_gt(a.addr.size, b.addr.size)) {
187 return false;
188 } else if (a.match_data < b.match_data) {
189 return true;
190 } else if (a.match_data > b.match_data) {
191 return false;
192 } else if (a.match_data) {
193 if (a.data < b.data) {
194 return true;
195 } else if (a.data > b.data) {
196 return false;
197 }
198 }
199 if (a.e < b.e) {
200 return true;
201 } else if (a.e > b.e) {
202 return false;
203 }
204 return false;
205 }
206
207 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
208 MemoryRegionIoeventfd b)
209 {
210 return !memory_region_ioeventfd_before(a, b)
211 && !memory_region_ioeventfd_before(b, a);
212 }
213
214 typedef struct FlatRange FlatRange;
215 typedef struct FlatView FlatView;
216
217 /* Range of memory in the global map. Addresses are absolute. */
218 struct FlatRange {
219 MemoryRegion *mr;
220 hwaddr offset_in_region;
221 AddrRange addr;
222 uint8_t dirty_log_mask;
223 bool romd_mode;
224 bool readonly;
225 };
226
227 /* Flattened global view of current active memory hierarchy. Kept in sorted
228 * order.
229 */
230 struct FlatView {
231 struct rcu_head rcu;
232 unsigned ref;
233 FlatRange *ranges;
234 unsigned nr;
235 unsigned nr_allocated;
236 };
237
238 typedef struct AddressSpaceOps AddressSpaceOps;
239
240 #define FOR_EACH_FLAT_RANGE(var, view) \
241 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
242
243 static inline MemoryRegionSection
244 section_from_flat_range(FlatRange *fr, AddressSpace *as)
245 {
246 return (MemoryRegionSection) {
247 .mr = fr->mr,
248 .address_space = as,
249 .offset_within_region = fr->offset_in_region,
250 .size = fr->addr.size,
251 .offset_within_address_space = int128_get64(fr->addr.start),
252 .readonly = fr->readonly,
253 };
254 }
255
256 static bool flatrange_equal(FlatRange *a, FlatRange *b)
257 {
258 return a->mr == b->mr
259 && addrrange_equal(a->addr, b->addr)
260 && a->offset_in_region == b->offset_in_region
261 && a->romd_mode == b->romd_mode
262 && a->readonly == b->readonly;
263 }
264
265 static void flatview_init(FlatView *view)
266 {
267 view->ref = 1;
268 view->ranges = NULL;
269 view->nr = 0;
270 view->nr_allocated = 0;
271 }
272
273 /* Insert a range into a given position. Caller is responsible for maintaining
274 * sorting order.
275 */
276 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
277 {
278 if (view->nr == view->nr_allocated) {
279 view->nr_allocated = MAX(2 * view->nr, 10);
280 view->ranges = g_realloc(view->ranges,
281 view->nr_allocated * sizeof(*view->ranges));
282 }
283 memmove(view->ranges + pos + 1, view->ranges + pos,
284 (view->nr - pos) * sizeof(FlatRange));
285 view->ranges[pos] = *range;
286 memory_region_ref(range->mr);
287 ++view->nr;
288 }
289
290 static void flatview_destroy(FlatView *view)
291 {
292 int i;
293
294 for (i = 0; i < view->nr; i++) {
295 memory_region_unref(view->ranges[i].mr);
296 }
297 g_free(view->ranges);
298 g_free(view);
299 }
300
301 static void flatview_ref(FlatView *view)
302 {
303 atomic_inc(&view->ref);
304 }
305
306 static void flatview_unref(FlatView *view)
307 {
308 if (atomic_fetch_dec(&view->ref) == 1) {
309 flatview_destroy(view);
310 }
311 }
312
313 static bool can_merge(FlatRange *r1, FlatRange *r2)
314 {
315 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
316 && r1->mr == r2->mr
317 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
318 r1->addr.size),
319 int128_make64(r2->offset_in_region))
320 && r1->dirty_log_mask == r2->dirty_log_mask
321 && r1->romd_mode == r2->romd_mode
322 && r1->readonly == r2->readonly;
323 }
324
325 /* Attempt to simplify a view by merging adjacent ranges */
326 static void flatview_simplify(FlatView *view)
327 {
328 unsigned i, j;
329
330 i = 0;
331 while (i < view->nr) {
332 j = i + 1;
333 while (j < view->nr
334 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
335 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
336 ++j;
337 }
338 ++i;
339 memmove(&view->ranges[i], &view->ranges[j],
340 (view->nr - j) * sizeof(view->ranges[j]));
341 view->nr -= j - i;
342 }
343 }
344
345 static bool memory_region_big_endian(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static bool memory_region_wrong_endianness(MemoryRegion *mr)
355 {
356 #ifdef TARGET_WORDS_BIGENDIAN
357 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
358 #else
359 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
360 #endif
361 }
362
363 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
364 {
365 if (memory_region_wrong_endianness(mr)) {
366 switch (size) {
367 case 1:
368 break;
369 case 2:
370 *data = bswap16(*data);
371 break;
372 case 4:
373 *data = bswap32(*data);
374 break;
375 case 8:
376 *data = bswap64(*data);
377 break;
378 default:
379 abort();
380 }
381 }
382 }
383
384 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
385 {
386 MemoryRegion *root;
387 hwaddr abs_addr = offset;
388
389 abs_addr += mr->addr;
390 for (root = mr; root->container; ) {
391 root = root->container;
392 abs_addr += root->addr;
393 }
394
395 return abs_addr;
396 }
397
398 static int get_cpu_index(void)
399 {
400 if (current_cpu) {
401 return current_cpu->cpu_index;
402 }
403 return -1;
404 }
405
406 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
407 hwaddr addr,
408 uint64_t *value,
409 unsigned size,
410 unsigned shift,
411 uint64_t mask,
412 MemTxAttrs attrs)
413 {
414 uint64_t tmp;
415
416 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
417 if (mr->subpage) {
418 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
419 } else if (mr == &io_mem_notdirty) {
420 /* Accesses to code which has previously been translated into a TB show
421 * up in the MMIO path, as accesses to the io_mem_notdirty
422 * MemoryRegion. */
423 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
424 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
425 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
426 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
427 }
428 *value |= (tmp & mask) << shift;
429 return MEMTX_OK;
430 }
431
432 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
433 hwaddr addr,
434 uint64_t *value,
435 unsigned size,
436 unsigned shift,
437 uint64_t mask,
438 MemTxAttrs attrs)
439 {
440 uint64_t tmp;
441
442 tmp = mr->ops->read(mr->opaque, addr, size);
443 if (mr->subpage) {
444 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
445 } else if (mr == &io_mem_notdirty) {
446 /* Accesses to code which has previously been translated into a TB show
447 * up in the MMIO path, as accesses to the io_mem_notdirty
448 * MemoryRegion. */
449 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
450 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
451 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
452 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
453 }
454 *value |= (tmp & mask) << shift;
455 return MEMTX_OK;
456 }
457
458 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
459 hwaddr addr,
460 uint64_t *value,
461 unsigned size,
462 unsigned shift,
463 uint64_t mask,
464 MemTxAttrs attrs)
465 {
466 uint64_t tmp = 0;
467 MemTxResult r;
468
469 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
470 if (mr->subpage) {
471 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
472 } else if (mr == &io_mem_notdirty) {
473 /* Accesses to code which has previously been translated into a TB show
474 * up in the MMIO path, as accesses to the io_mem_notdirty
475 * MemoryRegion. */
476 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
477 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
478 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
479 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
480 }
481 *value |= (tmp & mask) << shift;
482 return r;
483 }
484
485 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
486 hwaddr addr,
487 uint64_t *value,
488 unsigned size,
489 unsigned shift,
490 uint64_t mask,
491 MemTxAttrs attrs)
492 {
493 uint64_t tmp;
494
495 tmp = (*value >> shift) & mask;
496 if (mr->subpage) {
497 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
498 } else if (mr == &io_mem_notdirty) {
499 /* Accesses to code which has previously been translated into a TB show
500 * up in the MMIO path, as accesses to the io_mem_notdirty
501 * MemoryRegion. */
502 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
503 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
504 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
505 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
506 }
507 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
508 return MEMTX_OK;
509 }
510
511 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
512 hwaddr addr,
513 uint64_t *value,
514 unsigned size,
515 unsigned shift,
516 uint64_t mask,
517 MemTxAttrs attrs)
518 {
519 uint64_t tmp;
520
521 tmp = (*value >> shift) & mask;
522 if (mr->subpage) {
523 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
524 } else if (mr == &io_mem_notdirty) {
525 /* Accesses to code which has previously been translated into a TB show
526 * up in the MMIO path, as accesses to the io_mem_notdirty
527 * MemoryRegion. */
528 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
529 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
530 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
531 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
532 }
533 mr->ops->write(mr->opaque, addr, tmp, size);
534 return MEMTX_OK;
535 }
536
537 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
538 hwaddr addr,
539 uint64_t *value,
540 unsigned size,
541 unsigned shift,
542 uint64_t mask,
543 MemTxAttrs attrs)
544 {
545 uint64_t tmp;
546
547 tmp = (*value >> shift) & mask;
548 if (mr->subpage) {
549 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
550 } else if (mr == &io_mem_notdirty) {
551 /* Accesses to code which has previously been translated into a TB show
552 * up in the MMIO path, as accesses to the io_mem_notdirty
553 * MemoryRegion. */
554 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
555 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
556 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
557 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
558 }
559 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
560 }
561
562 static MemTxResult access_with_adjusted_size(hwaddr addr,
563 uint64_t *value,
564 unsigned size,
565 unsigned access_size_min,
566 unsigned access_size_max,
567 MemTxResult (*access)(MemoryRegion *mr,
568 hwaddr addr,
569 uint64_t *value,
570 unsigned size,
571 unsigned shift,
572 uint64_t mask,
573 MemTxAttrs attrs),
574 MemoryRegion *mr,
575 MemTxAttrs attrs)
576 {
577 uint64_t access_mask;
578 unsigned access_size;
579 unsigned i;
580 MemTxResult r = MEMTX_OK;
581
582 if (!access_size_min) {
583 access_size_min = 1;
584 }
585 if (!access_size_max) {
586 access_size_max = 4;
587 }
588
589 /* FIXME: support unaligned access? */
590 access_size = MAX(MIN(size, access_size_max), access_size_min);
591 access_mask = -1ULL >> (64 - access_size * 8);
592 if (memory_region_big_endian(mr)) {
593 for (i = 0; i < size; i += access_size) {
594 r |= access(mr, addr + i, value, access_size,
595 (size - access_size - i) * 8, access_mask, attrs);
596 }
597 } else {
598 for (i = 0; i < size; i += access_size) {
599 r |= access(mr, addr + i, value, access_size, i * 8,
600 access_mask, attrs);
601 }
602 }
603 return r;
604 }
605
606 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
607 {
608 AddressSpace *as;
609
610 while (mr->container) {
611 mr = mr->container;
612 }
613 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
614 if (mr == as->root) {
615 return as;
616 }
617 }
618 return NULL;
619 }
620
621 /* Render a memory region into the global view. Ranges in @view obscure
622 * ranges in @mr.
623 */
624 static void render_memory_region(FlatView *view,
625 MemoryRegion *mr,
626 Int128 base,
627 AddrRange clip,
628 bool readonly)
629 {
630 MemoryRegion *subregion;
631 unsigned i;
632 hwaddr offset_in_region;
633 Int128 remain;
634 Int128 now;
635 FlatRange fr;
636 AddrRange tmp;
637
638 if (!mr->enabled) {
639 return;
640 }
641
642 int128_addto(&base, int128_make64(mr->addr));
643 readonly |= mr->readonly;
644
645 tmp = addrrange_make(base, mr->size);
646
647 if (!addrrange_intersects(tmp, clip)) {
648 return;
649 }
650
651 clip = addrrange_intersection(tmp, clip);
652
653 if (mr->alias) {
654 int128_subfrom(&base, int128_make64(mr->alias->addr));
655 int128_subfrom(&base, int128_make64(mr->alias_offset));
656 render_memory_region(view, mr->alias, base, clip, readonly);
657 return;
658 }
659
660 /* Render subregions in priority order. */
661 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
662 render_memory_region(view, subregion, base, clip, readonly);
663 }
664
665 if (!mr->terminates) {
666 return;
667 }
668
669 offset_in_region = int128_get64(int128_sub(clip.start, base));
670 base = clip.start;
671 remain = clip.size;
672
673 fr.mr = mr;
674 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
675 fr.romd_mode = mr->romd_mode;
676 fr.readonly = readonly;
677
678 /* Render the region itself into any gaps left by the current view. */
679 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
680 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
681 continue;
682 }
683 if (int128_lt(base, view->ranges[i].addr.start)) {
684 now = int128_min(remain,
685 int128_sub(view->ranges[i].addr.start, base));
686 fr.offset_in_region = offset_in_region;
687 fr.addr = addrrange_make(base, now);
688 flatview_insert(view, i, &fr);
689 ++i;
690 int128_addto(&base, now);
691 offset_in_region += int128_get64(now);
692 int128_subfrom(&remain, now);
693 }
694 now = int128_sub(int128_min(int128_add(base, remain),
695 addrrange_end(view->ranges[i].addr)),
696 base);
697 int128_addto(&base, now);
698 offset_in_region += int128_get64(now);
699 int128_subfrom(&remain, now);
700 }
701 if (int128_nz(remain)) {
702 fr.offset_in_region = offset_in_region;
703 fr.addr = addrrange_make(base, remain);
704 flatview_insert(view, i, &fr);
705 }
706 }
707
708 /* Render a memory topology into a list of disjoint absolute ranges. */
709 static FlatView *generate_memory_topology(MemoryRegion *mr)
710 {
711 FlatView *view;
712
713 view = g_new(FlatView, 1);
714 flatview_init(view);
715
716 if (mr) {
717 render_memory_region(view, mr, int128_zero(),
718 addrrange_make(int128_zero(), int128_2_64()), false);
719 }
720 flatview_simplify(view);
721
722 return view;
723 }
724
725 static void address_space_add_del_ioeventfds(AddressSpace *as,
726 MemoryRegionIoeventfd *fds_new,
727 unsigned fds_new_nb,
728 MemoryRegionIoeventfd *fds_old,
729 unsigned fds_old_nb)
730 {
731 unsigned iold, inew;
732 MemoryRegionIoeventfd *fd;
733 MemoryRegionSection section;
734
735 /* Generate a symmetric difference of the old and new fd sets, adding
736 * and deleting as necessary.
737 */
738
739 iold = inew = 0;
740 while (iold < fds_old_nb || inew < fds_new_nb) {
741 if (iold < fds_old_nb
742 && (inew == fds_new_nb
743 || memory_region_ioeventfd_before(fds_old[iold],
744 fds_new[inew]))) {
745 fd = &fds_old[iold];
746 section = (MemoryRegionSection) {
747 .address_space = as,
748 .offset_within_address_space = int128_get64(fd->addr.start),
749 .size = fd->addr.size,
750 };
751 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
752 fd->match_data, fd->data, fd->e);
753 ++iold;
754 } else if (inew < fds_new_nb
755 && (iold == fds_old_nb
756 || memory_region_ioeventfd_before(fds_new[inew],
757 fds_old[iold]))) {
758 fd = &fds_new[inew];
759 section = (MemoryRegionSection) {
760 .address_space = as,
761 .offset_within_address_space = int128_get64(fd->addr.start),
762 .size = fd->addr.size,
763 };
764 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
765 fd->match_data, fd->data, fd->e);
766 ++inew;
767 } else {
768 ++iold;
769 ++inew;
770 }
771 }
772 }
773
774 static FlatView *address_space_get_flatview(AddressSpace *as)
775 {
776 FlatView *view;
777
778 rcu_read_lock();
779 view = atomic_rcu_read(&as->current_map);
780 flatview_ref(view);
781 rcu_read_unlock();
782 return view;
783 }
784
785 static void address_space_update_ioeventfds(AddressSpace *as)
786 {
787 FlatView *view;
788 FlatRange *fr;
789 unsigned ioeventfd_nb = 0;
790 MemoryRegionIoeventfd *ioeventfds = NULL;
791 AddrRange tmp;
792 unsigned i;
793
794 view = address_space_get_flatview(as);
795 FOR_EACH_FLAT_RANGE(fr, view) {
796 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
797 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
798 int128_sub(fr->addr.start,
799 int128_make64(fr->offset_in_region)));
800 if (addrrange_intersects(fr->addr, tmp)) {
801 ++ioeventfd_nb;
802 ioeventfds = g_realloc(ioeventfds,
803 ioeventfd_nb * sizeof(*ioeventfds));
804 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
805 ioeventfds[ioeventfd_nb-1].addr = tmp;
806 }
807 }
808 }
809
810 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
811 as->ioeventfds, as->ioeventfd_nb);
812
813 g_free(as->ioeventfds);
814 as->ioeventfds = ioeventfds;
815 as->ioeventfd_nb = ioeventfd_nb;
816 flatview_unref(view);
817 }
818
819 static void address_space_update_topology_pass(AddressSpace *as,
820 const FlatView *old_view,
821 const FlatView *new_view,
822 bool adding)
823 {
824 unsigned iold, inew;
825 FlatRange *frold, *frnew;
826
827 /* Generate a symmetric difference of the old and new memory maps.
828 * Kill ranges in the old map, and instantiate ranges in the new map.
829 */
830 iold = inew = 0;
831 while (iold < old_view->nr || inew < new_view->nr) {
832 if (iold < old_view->nr) {
833 frold = &old_view->ranges[iold];
834 } else {
835 frold = NULL;
836 }
837 if (inew < new_view->nr) {
838 frnew = &new_view->ranges[inew];
839 } else {
840 frnew = NULL;
841 }
842
843 if (frold
844 && (!frnew
845 || int128_lt(frold->addr.start, frnew->addr.start)
846 || (int128_eq(frold->addr.start, frnew->addr.start)
847 && !flatrange_equal(frold, frnew)))) {
848 /* In old but not in new, or in both but attributes changed. */
849
850 if (!adding) {
851 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
852 }
853
854 ++iold;
855 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
856 /* In both and unchanged (except logging may have changed) */
857
858 if (adding) {
859 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
860 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
861 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
862 frold->dirty_log_mask,
863 frnew->dirty_log_mask);
864 }
865 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
866 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
867 frold->dirty_log_mask,
868 frnew->dirty_log_mask);
869 }
870 }
871
872 ++iold;
873 ++inew;
874 } else {
875 /* In new */
876
877 if (adding) {
878 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
879 }
880
881 ++inew;
882 }
883 }
884 }
885
886
887 static void address_space_update_topology(AddressSpace *as)
888 {
889 FlatView *old_view = address_space_get_flatview(as);
890 FlatView *new_view = generate_memory_topology(as->root);
891
892 address_space_update_topology_pass(as, old_view, new_view, false);
893 address_space_update_topology_pass(as, old_view, new_view, true);
894
895 /* Writes are protected by the BQL. */
896 atomic_rcu_set(&as->current_map, new_view);
897 call_rcu(old_view, flatview_unref, rcu);
898
899 /* Note that all the old MemoryRegions are still alive up to this
900 * point. This relieves most MemoryListeners from the need to
901 * ref/unref the MemoryRegions they get---unless they use them
902 * outside the iothread mutex, in which case precise reference
903 * counting is necessary.
904 */
905 flatview_unref(old_view);
906
907 address_space_update_ioeventfds(as);
908 }
909
910 void memory_region_transaction_begin(void)
911 {
912 qemu_flush_coalesced_mmio_buffer();
913 ++memory_region_transaction_depth;
914 }
915
916 static void memory_region_clear_pending(void)
917 {
918 memory_region_update_pending = false;
919 ioeventfd_update_pending = false;
920 }
921
922 void memory_region_transaction_commit(void)
923 {
924 AddressSpace *as;
925
926 assert(memory_region_transaction_depth);
927 --memory_region_transaction_depth;
928 if (!memory_region_transaction_depth) {
929 if (memory_region_update_pending) {
930 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
931
932 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
933 address_space_update_topology(as);
934 }
935
936 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
937 } else if (ioeventfd_update_pending) {
938 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
939 address_space_update_ioeventfds(as);
940 }
941 }
942 memory_region_clear_pending();
943 }
944 }
945
946 static void memory_region_destructor_none(MemoryRegion *mr)
947 {
948 }
949
950 static void memory_region_destructor_ram(MemoryRegion *mr)
951 {
952 qemu_ram_free(mr->ram_block);
953 }
954
955 static bool memory_region_need_escape(char c)
956 {
957 return c == '/' || c == '[' || c == '\\' || c == ']';
958 }
959
960 static char *memory_region_escape_name(const char *name)
961 {
962 const char *p;
963 char *escaped, *q;
964 uint8_t c;
965 size_t bytes = 0;
966
967 for (p = name; *p; p++) {
968 bytes += memory_region_need_escape(*p) ? 4 : 1;
969 }
970 if (bytes == p - name) {
971 return g_memdup(name, bytes + 1);
972 }
973
974 escaped = g_malloc(bytes + 1);
975 for (p = name, q = escaped; *p; p++) {
976 c = *p;
977 if (unlikely(memory_region_need_escape(c))) {
978 *q++ = '\\';
979 *q++ = 'x';
980 *q++ = "0123456789abcdef"[c >> 4];
981 c = "0123456789abcdef"[c & 15];
982 }
983 *q++ = c;
984 }
985 *q = 0;
986 return escaped;
987 }
988
989 void memory_region_init(MemoryRegion *mr,
990 Object *owner,
991 const char *name,
992 uint64_t size)
993 {
994 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
995 mr->size = int128_make64(size);
996 if (size == UINT64_MAX) {
997 mr->size = int128_2_64();
998 }
999 mr->name = g_strdup(name);
1000 mr->owner = owner;
1001 mr->ram_block = NULL;
1002
1003 if (name) {
1004 char *escaped_name = memory_region_escape_name(name);
1005 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1006
1007 if (!owner) {
1008 owner = container_get(qdev_get_machine(), "/unattached");
1009 }
1010
1011 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1012 object_unref(OBJECT(mr));
1013 g_free(name_array);
1014 g_free(escaped_name);
1015 }
1016 }
1017
1018 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1019 void *opaque, Error **errp)
1020 {
1021 MemoryRegion *mr = MEMORY_REGION(obj);
1022 uint64_t value = mr->addr;
1023
1024 visit_type_uint64(v, name, &value, errp);
1025 }
1026
1027 static void memory_region_get_container(Object *obj, Visitor *v,
1028 const char *name, void *opaque,
1029 Error **errp)
1030 {
1031 MemoryRegion *mr = MEMORY_REGION(obj);
1032 gchar *path = (gchar *)"";
1033
1034 if (mr->container) {
1035 path = object_get_canonical_path(OBJECT(mr->container));
1036 }
1037 visit_type_str(v, name, &path, errp);
1038 if (mr->container) {
1039 g_free(path);
1040 }
1041 }
1042
1043 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1044 const char *part)
1045 {
1046 MemoryRegion *mr = MEMORY_REGION(obj);
1047
1048 return OBJECT(mr->container);
1049 }
1050
1051 static void memory_region_get_priority(Object *obj, Visitor *v,
1052 const char *name, void *opaque,
1053 Error **errp)
1054 {
1055 MemoryRegion *mr = MEMORY_REGION(obj);
1056 int32_t value = mr->priority;
1057
1058 visit_type_int32(v, name, &value, errp);
1059 }
1060
1061 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1062 void *opaque, Error **errp)
1063 {
1064 MemoryRegion *mr = MEMORY_REGION(obj);
1065 uint64_t value = memory_region_size(mr);
1066
1067 visit_type_uint64(v, name, &value, errp);
1068 }
1069
1070 static void memory_region_initfn(Object *obj)
1071 {
1072 MemoryRegion *mr = MEMORY_REGION(obj);
1073 ObjectProperty *op;
1074
1075 mr->ops = &unassigned_mem_ops;
1076 mr->enabled = true;
1077 mr->romd_mode = true;
1078 mr->global_locking = true;
1079 mr->destructor = memory_region_destructor_none;
1080 QTAILQ_INIT(&mr->subregions);
1081 QTAILQ_INIT(&mr->coalesced);
1082
1083 op = object_property_add(OBJECT(mr), "container",
1084 "link<" TYPE_MEMORY_REGION ">",
1085 memory_region_get_container,
1086 NULL, /* memory_region_set_container */
1087 NULL, NULL, &error_abort);
1088 op->resolve = memory_region_resolve_container;
1089
1090 object_property_add(OBJECT(mr), "addr", "uint64",
1091 memory_region_get_addr,
1092 NULL, /* memory_region_set_addr */
1093 NULL, NULL, &error_abort);
1094 object_property_add(OBJECT(mr), "priority", "uint32",
1095 memory_region_get_priority,
1096 NULL, /* memory_region_set_priority */
1097 NULL, NULL, &error_abort);
1098 object_property_add(OBJECT(mr), "size", "uint64",
1099 memory_region_get_size,
1100 NULL, /* memory_region_set_size, */
1101 NULL, NULL, &error_abort);
1102 }
1103
1104 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1105 unsigned size)
1106 {
1107 #ifdef DEBUG_UNASSIGNED
1108 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1109 #endif
1110 if (current_cpu != NULL) {
1111 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1112 }
1113 return 0;
1114 }
1115
1116 static void unassigned_mem_write(void *opaque, hwaddr addr,
1117 uint64_t val, unsigned size)
1118 {
1119 #ifdef DEBUG_UNASSIGNED
1120 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1121 #endif
1122 if (current_cpu != NULL) {
1123 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1124 }
1125 }
1126
1127 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1128 unsigned size, bool is_write)
1129 {
1130 return false;
1131 }
1132
1133 const MemoryRegionOps unassigned_mem_ops = {
1134 .valid.accepts = unassigned_mem_accepts,
1135 .endianness = DEVICE_NATIVE_ENDIAN,
1136 };
1137
1138 bool memory_region_access_valid(MemoryRegion *mr,
1139 hwaddr addr,
1140 unsigned size,
1141 bool is_write)
1142 {
1143 int access_size_min, access_size_max;
1144 int access_size, i;
1145
1146 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1147 return false;
1148 }
1149
1150 if (!mr->ops->valid.accepts) {
1151 return true;
1152 }
1153
1154 access_size_min = mr->ops->valid.min_access_size;
1155 if (!mr->ops->valid.min_access_size) {
1156 access_size_min = 1;
1157 }
1158
1159 access_size_max = mr->ops->valid.max_access_size;
1160 if (!mr->ops->valid.max_access_size) {
1161 access_size_max = 4;
1162 }
1163
1164 access_size = MAX(MIN(size, access_size_max), access_size_min);
1165 for (i = 0; i < size; i += access_size) {
1166 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1167 is_write)) {
1168 return false;
1169 }
1170 }
1171
1172 return true;
1173 }
1174
1175 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1176 hwaddr addr,
1177 uint64_t *pval,
1178 unsigned size,
1179 MemTxAttrs attrs)
1180 {
1181 *pval = 0;
1182
1183 if (mr->ops->read) {
1184 return access_with_adjusted_size(addr, pval, size,
1185 mr->ops->impl.min_access_size,
1186 mr->ops->impl.max_access_size,
1187 memory_region_read_accessor,
1188 mr, attrs);
1189 } else if (mr->ops->read_with_attrs) {
1190 return access_with_adjusted_size(addr, pval, size,
1191 mr->ops->impl.min_access_size,
1192 mr->ops->impl.max_access_size,
1193 memory_region_read_with_attrs_accessor,
1194 mr, attrs);
1195 } else {
1196 return access_with_adjusted_size(addr, pval, size, 1, 4,
1197 memory_region_oldmmio_read_accessor,
1198 mr, attrs);
1199 }
1200 }
1201
1202 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1203 hwaddr addr,
1204 uint64_t *pval,
1205 unsigned size,
1206 MemTxAttrs attrs)
1207 {
1208 MemTxResult r;
1209
1210 if (!memory_region_access_valid(mr, addr, size, false)) {
1211 *pval = unassigned_mem_read(mr, addr, size);
1212 return MEMTX_DECODE_ERROR;
1213 }
1214
1215 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1216 adjust_endianness(mr, pval, size);
1217 return r;
1218 }
1219
1220 /* Return true if an eventfd was signalled */
1221 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1222 hwaddr addr,
1223 uint64_t data,
1224 unsigned size,
1225 MemTxAttrs attrs)
1226 {
1227 MemoryRegionIoeventfd ioeventfd = {
1228 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1229 .data = data,
1230 };
1231 unsigned i;
1232
1233 for (i = 0; i < mr->ioeventfd_nb; i++) {
1234 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1235 ioeventfd.e = mr->ioeventfds[i].e;
1236
1237 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1238 event_notifier_set(ioeventfd.e);
1239 return true;
1240 }
1241 }
1242
1243 return false;
1244 }
1245
1246 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1247 hwaddr addr,
1248 uint64_t data,
1249 unsigned size,
1250 MemTxAttrs attrs)
1251 {
1252 if (!memory_region_access_valid(mr, addr, size, true)) {
1253 unassigned_mem_write(mr, addr, data, size);
1254 return MEMTX_DECODE_ERROR;
1255 }
1256
1257 adjust_endianness(mr, &data, size);
1258
1259 if ((!kvm_eventfds_enabled()) &&
1260 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1261 return MEMTX_OK;
1262 }
1263
1264 if (mr->ops->write) {
1265 return access_with_adjusted_size(addr, &data, size,
1266 mr->ops->impl.min_access_size,
1267 mr->ops->impl.max_access_size,
1268 memory_region_write_accessor, mr,
1269 attrs);
1270 } else if (mr->ops->write_with_attrs) {
1271 return
1272 access_with_adjusted_size(addr, &data, size,
1273 mr->ops->impl.min_access_size,
1274 mr->ops->impl.max_access_size,
1275 memory_region_write_with_attrs_accessor,
1276 mr, attrs);
1277 } else {
1278 return access_with_adjusted_size(addr, &data, size, 1, 4,
1279 memory_region_oldmmio_write_accessor,
1280 mr, attrs);
1281 }
1282 }
1283
1284 void memory_region_init_io(MemoryRegion *mr,
1285 Object *owner,
1286 const MemoryRegionOps *ops,
1287 void *opaque,
1288 const char *name,
1289 uint64_t size)
1290 {
1291 memory_region_init(mr, owner, name, size);
1292 mr->ops = ops ? ops : &unassigned_mem_ops;
1293 mr->opaque = opaque;
1294 mr->terminates = true;
1295 }
1296
1297 void memory_region_init_ram(MemoryRegion *mr,
1298 Object *owner,
1299 const char *name,
1300 uint64_t size,
1301 Error **errp)
1302 {
1303 memory_region_init(mr, owner, name, size);
1304 mr->ram = true;
1305 mr->terminates = true;
1306 mr->destructor = memory_region_destructor_ram;
1307 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1308 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1309 }
1310
1311 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1312 Object *owner,
1313 const char *name,
1314 uint64_t size,
1315 uint64_t max_size,
1316 void (*resized)(const char*,
1317 uint64_t length,
1318 void *host),
1319 Error **errp)
1320 {
1321 memory_region_init(mr, owner, name, size);
1322 mr->ram = true;
1323 mr->terminates = true;
1324 mr->destructor = memory_region_destructor_ram;
1325 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1326 mr, errp);
1327 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1328 }
1329
1330 #ifdef __linux__
1331 void memory_region_init_ram_from_file(MemoryRegion *mr,
1332 struct Object *owner,
1333 const char *name,
1334 uint64_t size,
1335 bool share,
1336 const char *path,
1337 Error **errp)
1338 {
1339 memory_region_init(mr, owner, name, size);
1340 mr->ram = true;
1341 mr->terminates = true;
1342 mr->destructor = memory_region_destructor_ram;
1343 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1344 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1345 }
1346 #endif
1347
1348 void memory_region_init_ram_ptr(MemoryRegion *mr,
1349 Object *owner,
1350 const char *name,
1351 uint64_t size,
1352 void *ptr)
1353 {
1354 memory_region_init(mr, owner, name, size);
1355 mr->ram = true;
1356 mr->terminates = true;
1357 mr->destructor = memory_region_destructor_ram;
1358 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1359
1360 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1361 assert(ptr != NULL);
1362 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1363 }
1364
1365 void memory_region_set_skip_dump(MemoryRegion *mr)
1366 {
1367 mr->skip_dump = true;
1368 }
1369
1370 void memory_region_init_alias(MemoryRegion *mr,
1371 Object *owner,
1372 const char *name,
1373 MemoryRegion *orig,
1374 hwaddr offset,
1375 uint64_t size)
1376 {
1377 memory_region_init(mr, owner, name, size);
1378 mr->alias = orig;
1379 mr->alias_offset = offset;
1380 }
1381
1382 void memory_region_init_rom(MemoryRegion *mr,
1383 struct Object *owner,
1384 const char *name,
1385 uint64_t size,
1386 Error **errp)
1387 {
1388 memory_region_init(mr, owner, name, size);
1389 mr->ram = true;
1390 mr->readonly = true;
1391 mr->terminates = true;
1392 mr->destructor = memory_region_destructor_ram;
1393 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1394 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1395 }
1396
1397 void memory_region_init_rom_device(MemoryRegion *mr,
1398 Object *owner,
1399 const MemoryRegionOps *ops,
1400 void *opaque,
1401 const char *name,
1402 uint64_t size,
1403 Error **errp)
1404 {
1405 assert(ops);
1406 memory_region_init(mr, owner, name, size);
1407 mr->ops = ops;
1408 mr->opaque = opaque;
1409 mr->terminates = true;
1410 mr->rom_device = true;
1411 mr->destructor = memory_region_destructor_ram;
1412 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1413 }
1414
1415 void memory_region_init_iommu(MemoryRegion *mr,
1416 Object *owner,
1417 const MemoryRegionIOMMUOps *ops,
1418 const char *name,
1419 uint64_t size)
1420 {
1421 memory_region_init(mr, owner, name, size);
1422 mr->iommu_ops = ops,
1423 mr->terminates = true; /* then re-forwards */
1424 QLIST_INIT(&mr->iommu_notify);
1425 mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1426 }
1427
1428 static void memory_region_finalize(Object *obj)
1429 {
1430 MemoryRegion *mr = MEMORY_REGION(obj);
1431
1432 assert(!mr->container);
1433
1434 /* We know the region is not visible in any address space (it
1435 * does not have a container and cannot be a root either because
1436 * it has no references, so we can blindly clear mr->enabled.
1437 * memory_region_set_enabled instead could trigger a transaction
1438 * and cause an infinite loop.
1439 */
1440 mr->enabled = false;
1441 memory_region_transaction_begin();
1442 while (!QTAILQ_EMPTY(&mr->subregions)) {
1443 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1444 memory_region_del_subregion(mr, subregion);
1445 }
1446 memory_region_transaction_commit();
1447
1448 mr->destructor(mr);
1449 memory_region_clear_coalescing(mr);
1450 g_free((char *)mr->name);
1451 g_free(mr->ioeventfds);
1452 }
1453
1454 Object *memory_region_owner(MemoryRegion *mr)
1455 {
1456 Object *obj = OBJECT(mr);
1457 return obj->parent;
1458 }
1459
1460 void memory_region_ref(MemoryRegion *mr)
1461 {
1462 /* MMIO callbacks most likely will access data that belongs
1463 * to the owner, hence the need to ref/unref the owner whenever
1464 * the memory region is in use.
1465 *
1466 * The memory region is a child of its owner. As long as the
1467 * owner doesn't call unparent itself on the memory region,
1468 * ref-ing the owner will also keep the memory region alive.
1469 * Memory regions without an owner are supposed to never go away;
1470 * we do not ref/unref them because it slows down DMA sensibly.
1471 */
1472 if (mr && mr->owner) {
1473 object_ref(mr->owner);
1474 }
1475 }
1476
1477 void memory_region_unref(MemoryRegion *mr)
1478 {
1479 if (mr && mr->owner) {
1480 object_unref(mr->owner);
1481 }
1482 }
1483
1484 uint64_t memory_region_size(MemoryRegion *mr)
1485 {
1486 if (int128_eq(mr->size, int128_2_64())) {
1487 return UINT64_MAX;
1488 }
1489 return int128_get64(mr->size);
1490 }
1491
1492 const char *memory_region_name(const MemoryRegion *mr)
1493 {
1494 if (!mr->name) {
1495 ((MemoryRegion *)mr)->name =
1496 object_get_canonical_path_component(OBJECT(mr));
1497 }
1498 return mr->name;
1499 }
1500
1501 bool memory_region_is_skip_dump(MemoryRegion *mr)
1502 {
1503 return mr->skip_dump;
1504 }
1505
1506 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1507 {
1508 uint8_t mask = mr->dirty_log_mask;
1509 if (global_dirty_log) {
1510 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1511 }
1512 return mask;
1513 }
1514
1515 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1516 {
1517 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1518 }
1519
1520 static void memory_region_update_iommu_notify_flags(MemoryRegion *mr)
1521 {
1522 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1523 IOMMUNotifier *iommu_notifier;
1524
1525 QLIST_FOREACH(iommu_notifier, &mr->iommu_notify, node) {
1526 flags |= iommu_notifier->notifier_flags;
1527 }
1528
1529 if (flags != mr->iommu_notify_flags &&
1530 mr->iommu_ops->notify_flag_changed) {
1531 mr->iommu_ops->notify_flag_changed(mr, mr->iommu_notify_flags,
1532 flags);
1533 }
1534
1535 mr->iommu_notify_flags = flags;
1536 }
1537
1538 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1539 IOMMUNotifier *n)
1540 {
1541 /* We need to register for at least one bitfield */
1542 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1543 QLIST_INSERT_HEAD(&mr->iommu_notify, n, node);
1544 memory_region_update_iommu_notify_flags(mr);
1545 }
1546
1547 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr)
1548 {
1549 assert(memory_region_is_iommu(mr));
1550 if (mr->iommu_ops && mr->iommu_ops->get_min_page_size) {
1551 return mr->iommu_ops->get_min_page_size(mr);
1552 }
1553 return TARGET_PAGE_SIZE;
1554 }
1555
1556 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
1557 bool is_write)
1558 {
1559 hwaddr addr, granularity;
1560 IOMMUTLBEntry iotlb;
1561
1562 granularity = memory_region_iommu_get_min_page_size(mr);
1563
1564 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1565 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1566 if (iotlb.perm != IOMMU_NONE) {
1567 n->notify(n, &iotlb);
1568 }
1569
1570 /* if (2^64 - MR size) < granularity, it's possible to get an
1571 * infinite loop here. This should catch such a wraparound */
1572 if ((addr + granularity) < addr) {
1573 break;
1574 }
1575 }
1576 }
1577
1578 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1579 IOMMUNotifier *n)
1580 {
1581 QLIST_REMOVE(n, node);
1582 memory_region_update_iommu_notify_flags(mr);
1583 }
1584
1585 void memory_region_notify_iommu(MemoryRegion *mr,
1586 IOMMUTLBEntry entry)
1587 {
1588 IOMMUNotifier *iommu_notifier;
1589 IOMMUNotifierFlag request_flags;
1590
1591 assert(memory_region_is_iommu(mr));
1592
1593 if (entry.perm & IOMMU_RW) {
1594 request_flags = IOMMU_NOTIFIER_MAP;
1595 } else {
1596 request_flags = IOMMU_NOTIFIER_UNMAP;
1597 }
1598
1599 QLIST_FOREACH(iommu_notifier, &mr->iommu_notify, node) {
1600 if (iommu_notifier->notifier_flags & request_flags) {
1601 iommu_notifier->notify(iommu_notifier, &entry);
1602 }
1603 }
1604 }
1605
1606 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1607 {
1608 uint8_t mask = 1 << client;
1609 uint8_t old_logging;
1610
1611 assert(client == DIRTY_MEMORY_VGA);
1612 old_logging = mr->vga_logging_count;
1613 mr->vga_logging_count += log ? 1 : -1;
1614 if (!!old_logging == !!mr->vga_logging_count) {
1615 return;
1616 }
1617
1618 memory_region_transaction_begin();
1619 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1620 memory_region_update_pending |= mr->enabled;
1621 memory_region_transaction_commit();
1622 }
1623
1624 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1625 hwaddr size, unsigned client)
1626 {
1627 assert(mr->ram_block);
1628 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1629 size, client);
1630 }
1631
1632 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1633 hwaddr size)
1634 {
1635 assert(mr->ram_block);
1636 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1637 size,
1638 memory_region_get_dirty_log_mask(mr));
1639 }
1640
1641 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1642 hwaddr size, unsigned client)
1643 {
1644 assert(mr->ram_block);
1645 return cpu_physical_memory_test_and_clear_dirty(
1646 memory_region_get_ram_addr(mr) + addr, size, client);
1647 }
1648
1649
1650 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1651 {
1652 AddressSpace *as;
1653 FlatRange *fr;
1654
1655 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1656 FlatView *view = address_space_get_flatview(as);
1657 FOR_EACH_FLAT_RANGE(fr, view) {
1658 if (fr->mr == mr) {
1659 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1660 }
1661 }
1662 flatview_unref(view);
1663 }
1664 }
1665
1666 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1667 {
1668 if (mr->readonly != readonly) {
1669 memory_region_transaction_begin();
1670 mr->readonly = readonly;
1671 memory_region_update_pending |= mr->enabled;
1672 memory_region_transaction_commit();
1673 }
1674 }
1675
1676 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1677 {
1678 if (mr->romd_mode != romd_mode) {
1679 memory_region_transaction_begin();
1680 mr->romd_mode = romd_mode;
1681 memory_region_update_pending |= mr->enabled;
1682 memory_region_transaction_commit();
1683 }
1684 }
1685
1686 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1687 hwaddr size, unsigned client)
1688 {
1689 assert(mr->ram_block);
1690 cpu_physical_memory_test_and_clear_dirty(
1691 memory_region_get_ram_addr(mr) + addr, size, client);
1692 }
1693
1694 int memory_region_get_fd(MemoryRegion *mr)
1695 {
1696 int fd;
1697
1698 rcu_read_lock();
1699 while (mr->alias) {
1700 mr = mr->alias;
1701 }
1702 fd = mr->ram_block->fd;
1703 rcu_read_unlock();
1704
1705 return fd;
1706 }
1707
1708 void memory_region_set_fd(MemoryRegion *mr, int fd)
1709 {
1710 rcu_read_lock();
1711 while (mr->alias) {
1712 mr = mr->alias;
1713 }
1714 mr->ram_block->fd = fd;
1715 rcu_read_unlock();
1716 }
1717
1718 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1719 {
1720 void *ptr;
1721 uint64_t offset = 0;
1722
1723 rcu_read_lock();
1724 while (mr->alias) {
1725 offset += mr->alias_offset;
1726 mr = mr->alias;
1727 }
1728 assert(mr->ram_block);
1729 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
1730 rcu_read_unlock();
1731
1732 return ptr;
1733 }
1734
1735 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
1736 {
1737 RAMBlock *block;
1738
1739 block = qemu_ram_block_from_host(ptr, false, offset);
1740 if (!block) {
1741 return NULL;
1742 }
1743
1744 return block->mr;
1745 }
1746
1747 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1748 {
1749 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1750 }
1751
1752 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1753 {
1754 assert(mr->ram_block);
1755
1756 qemu_ram_resize(mr->ram_block, newsize, errp);
1757 }
1758
1759 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1760 {
1761 FlatView *view;
1762 FlatRange *fr;
1763 CoalescedMemoryRange *cmr;
1764 AddrRange tmp;
1765 MemoryRegionSection section;
1766
1767 view = address_space_get_flatview(as);
1768 FOR_EACH_FLAT_RANGE(fr, view) {
1769 if (fr->mr == mr) {
1770 section = (MemoryRegionSection) {
1771 .address_space = as,
1772 .offset_within_address_space = int128_get64(fr->addr.start),
1773 .size = fr->addr.size,
1774 };
1775
1776 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1777 int128_get64(fr->addr.start),
1778 int128_get64(fr->addr.size));
1779 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1780 tmp = addrrange_shift(cmr->addr,
1781 int128_sub(fr->addr.start,
1782 int128_make64(fr->offset_in_region)));
1783 if (!addrrange_intersects(tmp, fr->addr)) {
1784 continue;
1785 }
1786 tmp = addrrange_intersection(tmp, fr->addr);
1787 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1788 int128_get64(tmp.start),
1789 int128_get64(tmp.size));
1790 }
1791 }
1792 }
1793 flatview_unref(view);
1794 }
1795
1796 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1797 {
1798 AddressSpace *as;
1799
1800 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1801 memory_region_update_coalesced_range_as(mr, as);
1802 }
1803 }
1804
1805 void memory_region_set_coalescing(MemoryRegion *mr)
1806 {
1807 memory_region_clear_coalescing(mr);
1808 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1809 }
1810
1811 void memory_region_add_coalescing(MemoryRegion *mr,
1812 hwaddr offset,
1813 uint64_t size)
1814 {
1815 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1816
1817 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1818 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1819 memory_region_update_coalesced_range(mr);
1820 memory_region_set_flush_coalesced(mr);
1821 }
1822
1823 void memory_region_clear_coalescing(MemoryRegion *mr)
1824 {
1825 CoalescedMemoryRange *cmr;
1826 bool updated = false;
1827
1828 qemu_flush_coalesced_mmio_buffer();
1829 mr->flush_coalesced_mmio = false;
1830
1831 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1832 cmr = QTAILQ_FIRST(&mr->coalesced);
1833 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1834 g_free(cmr);
1835 updated = true;
1836 }
1837
1838 if (updated) {
1839 memory_region_update_coalesced_range(mr);
1840 }
1841 }
1842
1843 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1844 {
1845 mr->flush_coalesced_mmio = true;
1846 }
1847
1848 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1849 {
1850 qemu_flush_coalesced_mmio_buffer();
1851 if (QTAILQ_EMPTY(&mr->coalesced)) {
1852 mr->flush_coalesced_mmio = false;
1853 }
1854 }
1855
1856 void memory_region_set_global_locking(MemoryRegion *mr)
1857 {
1858 mr->global_locking = true;
1859 }
1860
1861 void memory_region_clear_global_locking(MemoryRegion *mr)
1862 {
1863 mr->global_locking = false;
1864 }
1865
1866 static bool userspace_eventfd_warning;
1867
1868 void memory_region_add_eventfd(MemoryRegion *mr,
1869 hwaddr addr,
1870 unsigned size,
1871 bool match_data,
1872 uint64_t data,
1873 EventNotifier *e)
1874 {
1875 MemoryRegionIoeventfd mrfd = {
1876 .addr.start = int128_make64(addr),
1877 .addr.size = int128_make64(size),
1878 .match_data = match_data,
1879 .data = data,
1880 .e = e,
1881 };
1882 unsigned i;
1883
1884 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1885 userspace_eventfd_warning))) {
1886 userspace_eventfd_warning = true;
1887 error_report("Using eventfd without MMIO binding in KVM. "
1888 "Suboptimal performance expected");
1889 }
1890
1891 if (size) {
1892 adjust_endianness(mr, &mrfd.data, size);
1893 }
1894 memory_region_transaction_begin();
1895 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1896 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1897 break;
1898 }
1899 }
1900 ++mr->ioeventfd_nb;
1901 mr->ioeventfds = g_realloc(mr->ioeventfds,
1902 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1903 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1904 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1905 mr->ioeventfds[i] = mrfd;
1906 ioeventfd_update_pending |= mr->enabled;
1907 memory_region_transaction_commit();
1908 }
1909
1910 void memory_region_del_eventfd(MemoryRegion *mr,
1911 hwaddr addr,
1912 unsigned size,
1913 bool match_data,
1914 uint64_t data,
1915 EventNotifier *e)
1916 {
1917 MemoryRegionIoeventfd mrfd = {
1918 .addr.start = int128_make64(addr),
1919 .addr.size = int128_make64(size),
1920 .match_data = match_data,
1921 .data = data,
1922 .e = e,
1923 };
1924 unsigned i;
1925
1926 if (size) {
1927 adjust_endianness(mr, &mrfd.data, size);
1928 }
1929 memory_region_transaction_begin();
1930 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1931 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1932 break;
1933 }
1934 }
1935 assert(i != mr->ioeventfd_nb);
1936 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1937 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1938 --mr->ioeventfd_nb;
1939 mr->ioeventfds = g_realloc(mr->ioeventfds,
1940 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1941 ioeventfd_update_pending |= mr->enabled;
1942 memory_region_transaction_commit();
1943 }
1944
1945 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1946 {
1947 MemoryRegion *mr = subregion->container;
1948 MemoryRegion *other;
1949
1950 memory_region_transaction_begin();
1951
1952 memory_region_ref(subregion);
1953 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1954 if (subregion->priority >= other->priority) {
1955 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1956 goto done;
1957 }
1958 }
1959 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1960 done:
1961 memory_region_update_pending |= mr->enabled && subregion->enabled;
1962 memory_region_transaction_commit();
1963 }
1964
1965 static void memory_region_add_subregion_common(MemoryRegion *mr,
1966 hwaddr offset,
1967 MemoryRegion *subregion)
1968 {
1969 assert(!subregion->container);
1970 subregion->container = mr;
1971 subregion->addr = offset;
1972 memory_region_update_container_subregions(subregion);
1973 }
1974
1975 void memory_region_add_subregion(MemoryRegion *mr,
1976 hwaddr offset,
1977 MemoryRegion *subregion)
1978 {
1979 subregion->priority = 0;
1980 memory_region_add_subregion_common(mr, offset, subregion);
1981 }
1982
1983 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1984 hwaddr offset,
1985 MemoryRegion *subregion,
1986 int priority)
1987 {
1988 subregion->priority = priority;
1989 memory_region_add_subregion_common(mr, offset, subregion);
1990 }
1991
1992 void memory_region_del_subregion(MemoryRegion *mr,
1993 MemoryRegion *subregion)
1994 {
1995 memory_region_transaction_begin();
1996 assert(subregion->container == mr);
1997 subregion->container = NULL;
1998 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1999 memory_region_unref(subregion);
2000 memory_region_update_pending |= mr->enabled && subregion->enabled;
2001 memory_region_transaction_commit();
2002 }
2003
2004 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2005 {
2006 if (enabled == mr->enabled) {
2007 return;
2008 }
2009 memory_region_transaction_begin();
2010 mr->enabled = enabled;
2011 memory_region_update_pending = true;
2012 memory_region_transaction_commit();
2013 }
2014
2015 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2016 {
2017 Int128 s = int128_make64(size);
2018
2019 if (size == UINT64_MAX) {
2020 s = int128_2_64();
2021 }
2022 if (int128_eq(s, mr->size)) {
2023 return;
2024 }
2025 memory_region_transaction_begin();
2026 mr->size = s;
2027 memory_region_update_pending = true;
2028 memory_region_transaction_commit();
2029 }
2030
2031 static void memory_region_readd_subregion(MemoryRegion *mr)
2032 {
2033 MemoryRegion *container = mr->container;
2034
2035 if (container) {
2036 memory_region_transaction_begin();
2037 memory_region_ref(mr);
2038 memory_region_del_subregion(container, mr);
2039 mr->container = container;
2040 memory_region_update_container_subregions(mr);
2041 memory_region_unref(mr);
2042 memory_region_transaction_commit();
2043 }
2044 }
2045
2046 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2047 {
2048 if (addr != mr->addr) {
2049 mr->addr = addr;
2050 memory_region_readd_subregion(mr);
2051 }
2052 }
2053
2054 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2055 {
2056 assert(mr->alias);
2057
2058 if (offset == mr->alias_offset) {
2059 return;
2060 }
2061
2062 memory_region_transaction_begin();
2063 mr->alias_offset = offset;
2064 memory_region_update_pending |= mr->enabled;
2065 memory_region_transaction_commit();
2066 }
2067
2068 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2069 {
2070 return mr->align;
2071 }
2072
2073 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2074 {
2075 const AddrRange *addr = addr_;
2076 const FlatRange *fr = fr_;
2077
2078 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2079 return -1;
2080 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2081 return 1;
2082 }
2083 return 0;
2084 }
2085
2086 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2087 {
2088 return bsearch(&addr, view->ranges, view->nr,
2089 sizeof(FlatRange), cmp_flatrange_addr);
2090 }
2091
2092 bool memory_region_is_mapped(MemoryRegion *mr)
2093 {
2094 return mr->container ? true : false;
2095 }
2096
2097 /* Same as memory_region_find, but it does not add a reference to the
2098 * returned region. It must be called from an RCU critical section.
2099 */
2100 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2101 hwaddr addr, uint64_t size)
2102 {
2103 MemoryRegionSection ret = { .mr = NULL };
2104 MemoryRegion *root;
2105 AddressSpace *as;
2106 AddrRange range;
2107 FlatView *view;
2108 FlatRange *fr;
2109
2110 addr += mr->addr;
2111 for (root = mr; root->container; ) {
2112 root = root->container;
2113 addr += root->addr;
2114 }
2115
2116 as = memory_region_to_address_space(root);
2117 if (!as) {
2118 return ret;
2119 }
2120 range = addrrange_make(int128_make64(addr), int128_make64(size));
2121
2122 view = atomic_rcu_read(&as->current_map);
2123 fr = flatview_lookup(view, range);
2124 if (!fr) {
2125 return ret;
2126 }
2127
2128 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2129 --fr;
2130 }
2131
2132 ret.mr = fr->mr;
2133 ret.address_space = as;
2134 range = addrrange_intersection(range, fr->addr);
2135 ret.offset_within_region = fr->offset_in_region;
2136 ret.offset_within_region += int128_get64(int128_sub(range.start,
2137 fr->addr.start));
2138 ret.size = range.size;
2139 ret.offset_within_address_space = int128_get64(range.start);
2140 ret.readonly = fr->readonly;
2141 return ret;
2142 }
2143
2144 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2145 hwaddr addr, uint64_t size)
2146 {
2147 MemoryRegionSection ret;
2148 rcu_read_lock();
2149 ret = memory_region_find_rcu(mr, addr, size);
2150 if (ret.mr) {
2151 memory_region_ref(ret.mr);
2152 }
2153 rcu_read_unlock();
2154 return ret;
2155 }
2156
2157 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2158 {
2159 MemoryRegion *mr;
2160
2161 rcu_read_lock();
2162 mr = memory_region_find_rcu(container, addr, 1).mr;
2163 rcu_read_unlock();
2164 return mr && mr != container;
2165 }
2166
2167 void memory_global_dirty_log_sync(void)
2168 {
2169 MemoryListener *listener;
2170 AddressSpace *as;
2171 FlatView *view;
2172 FlatRange *fr;
2173
2174 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2175 if (!listener->log_sync) {
2176 continue;
2177 }
2178 as = listener->address_space;
2179 view = address_space_get_flatview(as);
2180 FOR_EACH_FLAT_RANGE(fr, view) {
2181 MemoryRegionSection mrs = section_from_flat_range(fr, as);
2182 listener->log_sync(listener, &mrs);
2183 }
2184 flatview_unref(view);
2185 }
2186 }
2187
2188 void memory_global_dirty_log_start(void)
2189 {
2190 global_dirty_log = true;
2191
2192 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2193
2194 /* Refresh DIRTY_LOG_MIGRATION bit. */
2195 memory_region_transaction_begin();
2196 memory_region_update_pending = true;
2197 memory_region_transaction_commit();
2198 }
2199
2200 void memory_global_dirty_log_stop(void)
2201 {
2202 global_dirty_log = false;
2203
2204 /* Refresh DIRTY_LOG_MIGRATION bit. */
2205 memory_region_transaction_begin();
2206 memory_region_update_pending = true;
2207 memory_region_transaction_commit();
2208
2209 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2210 }
2211
2212 static void listener_add_address_space(MemoryListener *listener,
2213 AddressSpace *as)
2214 {
2215 FlatView *view;
2216 FlatRange *fr;
2217
2218 if (listener->begin) {
2219 listener->begin(listener);
2220 }
2221 if (global_dirty_log) {
2222 if (listener->log_global_start) {
2223 listener->log_global_start(listener);
2224 }
2225 }
2226
2227 view = address_space_get_flatview(as);
2228 FOR_EACH_FLAT_RANGE(fr, view) {
2229 MemoryRegionSection section = {
2230 .mr = fr->mr,
2231 .address_space = as,
2232 .offset_within_region = fr->offset_in_region,
2233 .size = fr->addr.size,
2234 .offset_within_address_space = int128_get64(fr->addr.start),
2235 .readonly = fr->readonly,
2236 };
2237 if (fr->dirty_log_mask && listener->log_start) {
2238 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2239 }
2240 if (listener->region_add) {
2241 listener->region_add(listener, &section);
2242 }
2243 }
2244 if (listener->commit) {
2245 listener->commit(listener);
2246 }
2247 flatview_unref(view);
2248 }
2249
2250 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2251 {
2252 MemoryListener *other = NULL;
2253
2254 listener->address_space = as;
2255 if (QTAILQ_EMPTY(&memory_listeners)
2256 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2257 memory_listeners)->priority) {
2258 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2259 } else {
2260 QTAILQ_FOREACH(other, &memory_listeners, link) {
2261 if (listener->priority < other->priority) {
2262 break;
2263 }
2264 }
2265 QTAILQ_INSERT_BEFORE(other, listener, link);
2266 }
2267
2268 listener_add_address_space(listener, as);
2269 }
2270
2271 void memory_listener_unregister(MemoryListener *listener)
2272 {
2273 QTAILQ_REMOVE(&memory_listeners, listener, link);
2274 }
2275
2276 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2277 {
2278 memory_region_ref(root);
2279 memory_region_transaction_begin();
2280 as->ref_count = 1;
2281 as->root = root;
2282 as->malloced = false;
2283 as->current_map = g_new(FlatView, 1);
2284 flatview_init(as->current_map);
2285 as->ioeventfd_nb = 0;
2286 as->ioeventfds = NULL;
2287 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2288 as->name = g_strdup(name ? name : "anonymous");
2289 address_space_init_dispatch(as);
2290 memory_region_update_pending |= root->enabled;
2291 memory_region_transaction_commit();
2292 }
2293
2294 static void do_address_space_destroy(AddressSpace *as)
2295 {
2296 MemoryListener *listener;
2297 bool do_free = as->malloced;
2298
2299 address_space_destroy_dispatch(as);
2300
2301 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2302 assert(listener->address_space != as);
2303 }
2304
2305 flatview_unref(as->current_map);
2306 g_free(as->name);
2307 g_free(as->ioeventfds);
2308 memory_region_unref(as->root);
2309 if (do_free) {
2310 g_free(as);
2311 }
2312 }
2313
2314 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2315 {
2316 AddressSpace *as;
2317
2318 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2319 if (root == as->root && as->malloced) {
2320 as->ref_count++;
2321 return as;
2322 }
2323 }
2324
2325 as = g_malloc0(sizeof *as);
2326 address_space_init(as, root, name);
2327 as->malloced = true;
2328 return as;
2329 }
2330
2331 void address_space_destroy(AddressSpace *as)
2332 {
2333 MemoryRegion *root = as->root;
2334
2335 as->ref_count--;
2336 if (as->ref_count) {
2337 return;
2338 }
2339 /* Flush out anything from MemoryListeners listening in on this */
2340 memory_region_transaction_begin();
2341 as->root = NULL;
2342 memory_region_transaction_commit();
2343 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2344 address_space_unregister(as);
2345
2346 /* At this point, as->dispatch and as->current_map are dummy
2347 * entries that the guest should never use. Wait for the old
2348 * values to expire before freeing the data.
2349 */
2350 as->root = root;
2351 call_rcu(as, do_address_space_destroy, rcu);
2352 }
2353
2354 typedef struct MemoryRegionList MemoryRegionList;
2355
2356 struct MemoryRegionList {
2357 const MemoryRegion *mr;
2358 QTAILQ_ENTRY(MemoryRegionList) queue;
2359 };
2360
2361 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2362
2363 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2364 const MemoryRegion *mr, unsigned int level,
2365 hwaddr base,
2366 MemoryRegionListHead *alias_print_queue)
2367 {
2368 MemoryRegionList *new_ml, *ml, *next_ml;
2369 MemoryRegionListHead submr_print_queue;
2370 const MemoryRegion *submr;
2371 unsigned int i;
2372
2373 if (!mr) {
2374 return;
2375 }
2376
2377 for (i = 0; i < level; i++) {
2378 mon_printf(f, " ");
2379 }
2380
2381 if (mr->alias) {
2382 MemoryRegionList *ml;
2383 bool found = false;
2384
2385 /* check if the alias is already in the queue */
2386 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2387 if (ml->mr == mr->alias) {
2388 found = true;
2389 }
2390 }
2391
2392 if (!found) {
2393 ml = g_new(MemoryRegionList, 1);
2394 ml->mr = mr->alias;
2395 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2396 }
2397 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2398 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2399 "-" TARGET_FMT_plx "%s\n",
2400 base + mr->addr,
2401 base + mr->addr
2402 + (int128_nz(mr->size) ?
2403 (hwaddr)int128_get64(int128_sub(mr->size,
2404 int128_one())) : 0),
2405 mr->priority,
2406 mr->romd_mode ? 'R' : '-',
2407 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2408 : '-',
2409 memory_region_name(mr),
2410 memory_region_name(mr->alias),
2411 mr->alias_offset,
2412 mr->alias_offset
2413 + (int128_nz(mr->size) ?
2414 (hwaddr)int128_get64(int128_sub(mr->size,
2415 int128_one())) : 0),
2416 mr->enabled ? "" : " [disabled]");
2417 } else {
2418 mon_printf(f,
2419 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2420 base + mr->addr,
2421 base + mr->addr
2422 + (int128_nz(mr->size) ?
2423 (hwaddr)int128_get64(int128_sub(mr->size,
2424 int128_one())) : 0),
2425 mr->priority,
2426 mr->romd_mode ? 'R' : '-',
2427 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2428 : '-',
2429 memory_region_name(mr),
2430 mr->enabled ? "" : " [disabled]");
2431 }
2432
2433 QTAILQ_INIT(&submr_print_queue);
2434
2435 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2436 new_ml = g_new(MemoryRegionList, 1);
2437 new_ml->mr = submr;
2438 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2439 if (new_ml->mr->addr < ml->mr->addr ||
2440 (new_ml->mr->addr == ml->mr->addr &&
2441 new_ml->mr->priority > ml->mr->priority)) {
2442 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2443 new_ml = NULL;
2444 break;
2445 }
2446 }
2447 if (new_ml) {
2448 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2449 }
2450 }
2451
2452 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2453 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2454 alias_print_queue);
2455 }
2456
2457 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2458 g_free(ml);
2459 }
2460 }
2461
2462 void mtree_info(fprintf_function mon_printf, void *f)
2463 {
2464 MemoryRegionListHead ml_head;
2465 MemoryRegionList *ml, *ml2;
2466 AddressSpace *as;
2467
2468 QTAILQ_INIT(&ml_head);
2469
2470 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2471 mon_printf(f, "address-space: %s\n", as->name);
2472 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2473 mon_printf(f, "\n");
2474 }
2475
2476 /* print aliased regions */
2477 QTAILQ_FOREACH(ml, &ml_head, queue) {
2478 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2479 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2480 mon_printf(f, "\n");
2481 }
2482
2483 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2484 g_free(ml);
2485 }
2486 }
2487
2488 static const TypeInfo memory_region_info = {
2489 .parent = TYPE_OBJECT,
2490 .name = TYPE_MEMORY_REGION,
2491 .instance_size = sizeof(MemoryRegion),
2492 .instance_init = memory_region_initfn,
2493 .instance_finalize = memory_region_finalize,
2494 };
2495
2496 static void memory_register_types(void)
2497 {
2498 type_register_static(&memory_region_info);
2499 }
2500
2501 type_init(memory_register_types)