]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
atomic: update documentation
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/misc/mmio_interface.h"
34 #include "hw/qdev-properties.h"
35 #include "migration/vmstate.h"
36
37 //#define DEBUG_UNASSIGNED
38
39 static unsigned memory_region_transaction_depth;
40 static bool memory_region_update_pending;
41 static bool ioeventfd_update_pending;
42 static bool global_dirty_log = false;
43
44 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
45 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46
47 static QTAILQ_HEAD(, AddressSpace) address_spaces
48 = QTAILQ_HEAD_INITIALIZER(address_spaces);
49
50 typedef struct AddrRange AddrRange;
51
52 /*
53 * Note that signed integers are needed for negative offsetting in aliases
54 * (large MemoryRegion::alias_offset).
55 */
56 struct AddrRange {
57 Int128 start;
58 Int128 size;
59 };
60
61 static AddrRange addrrange_make(Int128 start, Int128 size)
62 {
63 return (AddrRange) { start, size };
64 }
65
66 static bool addrrange_equal(AddrRange r1, AddrRange r2)
67 {
68 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
69 }
70
71 static Int128 addrrange_end(AddrRange r)
72 {
73 return int128_add(r.start, r.size);
74 }
75
76 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
77 {
78 int128_addto(&range.start, delta);
79 return range;
80 }
81
82 static bool addrrange_contains(AddrRange range, Int128 addr)
83 {
84 return int128_ge(addr, range.start)
85 && int128_lt(addr, addrrange_end(range));
86 }
87
88 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
89 {
90 return addrrange_contains(r1, r2.start)
91 || addrrange_contains(r2, r1.start);
92 }
93
94 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
95 {
96 Int128 start = int128_max(r1.start, r2.start);
97 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
98 return addrrange_make(start, int128_sub(end, start));
99 }
100
101 enum ListenerDirection { Forward, Reverse };
102
103 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
104 do { \
105 MemoryListener *_listener; \
106 \
107 switch (_direction) { \
108 case Forward: \
109 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
112 } \
113 } \
114 break; \
115 case Reverse: \
116 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
117 memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
120 } \
121 } \
122 break; \
123 default: \
124 abort(); \
125 } \
126 } while (0)
127
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
129 do { \
130 MemoryListener *_listener; \
131 struct memory_listeners_as *list = &(_as)->listeners; \
132 \
133 switch (_direction) { \
134 case Forward: \
135 QTAILQ_FOREACH(_listener, list, link_as) { \
136 if (_listener->_callback) { \
137 _listener->_callback(_listener, _section, ##_args); \
138 } \
139 } \
140 break; \
141 case Reverse: \
142 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
143 link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, as); \
158 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
159 } while(0)
160
161 struct CoalescedMemoryRange {
162 AddrRange addr;
163 QTAILQ_ENTRY(CoalescedMemoryRange) link;
164 };
165
166 struct MemoryRegionIoeventfd {
167 AddrRange addr;
168 bool match_data;
169 uint64_t data;
170 EventNotifier *e;
171 };
172
173 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
174 MemoryRegionIoeventfd b)
175 {
176 if (int128_lt(a.addr.start, b.addr.start)) {
177 return true;
178 } else if (int128_gt(a.addr.start, b.addr.start)) {
179 return false;
180 } else if (int128_lt(a.addr.size, b.addr.size)) {
181 return true;
182 } else if (int128_gt(a.addr.size, b.addr.size)) {
183 return false;
184 } else if (a.match_data < b.match_data) {
185 return true;
186 } else if (a.match_data > b.match_data) {
187 return false;
188 } else if (a.match_data) {
189 if (a.data < b.data) {
190 return true;
191 } else if (a.data > b.data) {
192 return false;
193 }
194 }
195 if (a.e < b.e) {
196 return true;
197 } else if (a.e > b.e) {
198 return false;
199 }
200 return false;
201 }
202
203 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
204 MemoryRegionIoeventfd b)
205 {
206 return !memory_region_ioeventfd_before(a, b)
207 && !memory_region_ioeventfd_before(b, a);
208 }
209
210 typedef struct FlatRange FlatRange;
211 typedef struct FlatView FlatView;
212
213 /* Range of memory in the global map. Addresses are absolute. */
214 struct FlatRange {
215 MemoryRegion *mr;
216 hwaddr offset_in_region;
217 AddrRange addr;
218 uint8_t dirty_log_mask;
219 bool romd_mode;
220 bool readonly;
221 };
222
223 /* Flattened global view of current active memory hierarchy. Kept in sorted
224 * order.
225 */
226 struct FlatView {
227 struct rcu_head rcu;
228 unsigned ref;
229 FlatRange *ranges;
230 unsigned nr;
231 unsigned nr_allocated;
232 };
233
234 typedef struct AddressSpaceOps AddressSpaceOps;
235
236 #define FOR_EACH_FLAT_RANGE(var, view) \
237 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
238
239 static inline MemoryRegionSection
240 section_from_flat_range(FlatRange *fr, AddressSpace *as)
241 {
242 return (MemoryRegionSection) {
243 .mr = fr->mr,
244 .address_space = as,
245 .offset_within_region = fr->offset_in_region,
246 .size = fr->addr.size,
247 .offset_within_address_space = int128_get64(fr->addr.start),
248 .readonly = fr->readonly,
249 };
250 }
251
252 static bool flatrange_equal(FlatRange *a, FlatRange *b)
253 {
254 return a->mr == b->mr
255 && addrrange_equal(a->addr, b->addr)
256 && a->offset_in_region == b->offset_in_region
257 && a->romd_mode == b->romd_mode
258 && a->readonly == b->readonly;
259 }
260
261 static void flatview_init(FlatView *view)
262 {
263 view->ref = 1;
264 view->ranges = NULL;
265 view->nr = 0;
266 view->nr_allocated = 0;
267 }
268
269 /* Insert a range into a given position. Caller is responsible for maintaining
270 * sorting order.
271 */
272 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
273 {
274 if (view->nr == view->nr_allocated) {
275 view->nr_allocated = MAX(2 * view->nr, 10);
276 view->ranges = g_realloc(view->ranges,
277 view->nr_allocated * sizeof(*view->ranges));
278 }
279 memmove(view->ranges + pos + 1, view->ranges + pos,
280 (view->nr - pos) * sizeof(FlatRange));
281 view->ranges[pos] = *range;
282 memory_region_ref(range->mr);
283 ++view->nr;
284 }
285
286 static void flatview_destroy(FlatView *view)
287 {
288 int i;
289
290 for (i = 0; i < view->nr; i++) {
291 memory_region_unref(view->ranges[i].mr);
292 }
293 g_free(view->ranges);
294 g_free(view);
295 }
296
297 static void flatview_ref(FlatView *view)
298 {
299 atomic_inc(&view->ref);
300 }
301
302 static void flatview_unref(FlatView *view)
303 {
304 if (atomic_fetch_dec(&view->ref) == 1) {
305 flatview_destroy(view);
306 }
307 }
308
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
310 {
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly;
319 }
320
321 /* Attempt to simplify a view by merging adjacent ranges */
322 static void flatview_simplify(FlatView *view)
323 {
324 unsigned i, j;
325
326 i = 0;
327 while (i < view->nr) {
328 j = i + 1;
329 while (j < view->nr
330 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
331 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
332 ++j;
333 }
334 ++i;
335 memmove(&view->ranges[i], &view->ranges[j],
336 (view->nr - j) * sizeof(view->ranges[j]));
337 view->nr -= j - i;
338 }
339 }
340
341 static bool memory_region_big_endian(MemoryRegion *mr)
342 {
343 #ifdef TARGET_WORDS_BIGENDIAN
344 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
345 #else
346 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
347 #endif
348 }
349
350 static bool memory_region_wrong_endianness(MemoryRegion *mr)
351 {
352 #ifdef TARGET_WORDS_BIGENDIAN
353 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
354 #else
355 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
356 #endif
357 }
358
359 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
360 {
361 if (memory_region_wrong_endianness(mr)) {
362 switch (size) {
363 case 1:
364 break;
365 case 2:
366 *data = bswap16(*data);
367 break;
368 case 4:
369 *data = bswap32(*data);
370 break;
371 case 8:
372 *data = bswap64(*data);
373 break;
374 default:
375 abort();
376 }
377 }
378 }
379
380 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
381 {
382 MemoryRegion *root;
383 hwaddr abs_addr = offset;
384
385 abs_addr += mr->addr;
386 for (root = mr; root->container; ) {
387 root = root->container;
388 abs_addr += root->addr;
389 }
390
391 return abs_addr;
392 }
393
394 static int get_cpu_index(void)
395 {
396 if (current_cpu) {
397 return current_cpu->cpu_index;
398 }
399 return -1;
400 }
401
402 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
403 hwaddr addr,
404 uint64_t *value,
405 unsigned size,
406 unsigned shift,
407 uint64_t mask,
408 MemTxAttrs attrs)
409 {
410 uint64_t tmp;
411
412 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
413 if (mr->subpage) {
414 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
415 } else if (mr == &io_mem_notdirty) {
416 /* Accesses to code which has previously been translated into a TB show
417 * up in the MMIO path, as accesses to the io_mem_notdirty
418 * MemoryRegion. */
419 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
420 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
421 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
422 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
423 }
424 *value |= (tmp & mask) << shift;
425 return MEMTX_OK;
426 }
427
428 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
429 hwaddr addr,
430 uint64_t *value,
431 unsigned size,
432 unsigned shift,
433 uint64_t mask,
434 MemTxAttrs attrs)
435 {
436 uint64_t tmp;
437
438 tmp = mr->ops->read(mr->opaque, addr, size);
439 if (mr->subpage) {
440 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
441 } else if (mr == &io_mem_notdirty) {
442 /* Accesses to code which has previously been translated into a TB show
443 * up in the MMIO path, as accesses to the io_mem_notdirty
444 * MemoryRegion. */
445 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
446 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
447 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
448 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
449 }
450 *value |= (tmp & mask) << shift;
451 return MEMTX_OK;
452 }
453
454 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
455 hwaddr addr,
456 uint64_t *value,
457 unsigned size,
458 unsigned shift,
459 uint64_t mask,
460 MemTxAttrs attrs)
461 {
462 uint64_t tmp = 0;
463 MemTxResult r;
464
465 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
466 if (mr->subpage) {
467 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
468 } else if (mr == &io_mem_notdirty) {
469 /* Accesses to code which has previously been translated into a TB show
470 * up in the MMIO path, as accesses to the io_mem_notdirty
471 * MemoryRegion. */
472 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
473 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
474 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
475 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
476 }
477 *value |= (tmp & mask) << shift;
478 return r;
479 }
480
481 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
482 hwaddr addr,
483 uint64_t *value,
484 unsigned size,
485 unsigned shift,
486 uint64_t mask,
487 MemTxAttrs attrs)
488 {
489 uint64_t tmp;
490
491 tmp = (*value >> shift) & mask;
492 if (mr->subpage) {
493 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
494 } else if (mr == &io_mem_notdirty) {
495 /* Accesses to code which has previously been translated into a TB show
496 * up in the MMIO path, as accesses to the io_mem_notdirty
497 * MemoryRegion. */
498 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
499 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
500 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
501 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
502 }
503 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
504 return MEMTX_OK;
505 }
506
507 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
508 hwaddr addr,
509 uint64_t *value,
510 unsigned size,
511 unsigned shift,
512 uint64_t mask,
513 MemTxAttrs attrs)
514 {
515 uint64_t tmp;
516
517 tmp = (*value >> shift) & mask;
518 if (mr->subpage) {
519 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
520 } else if (mr == &io_mem_notdirty) {
521 /* Accesses to code which has previously been translated into a TB show
522 * up in the MMIO path, as accesses to the io_mem_notdirty
523 * MemoryRegion. */
524 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
525 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
526 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
527 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
528 }
529 mr->ops->write(mr->opaque, addr, tmp, size);
530 return MEMTX_OK;
531 }
532
533 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
534 hwaddr addr,
535 uint64_t *value,
536 unsigned size,
537 unsigned shift,
538 uint64_t mask,
539 MemTxAttrs attrs)
540 {
541 uint64_t tmp;
542
543 tmp = (*value >> shift) & mask;
544 if (mr->subpage) {
545 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
546 } else if (mr == &io_mem_notdirty) {
547 /* Accesses to code which has previously been translated into a TB show
548 * up in the MMIO path, as accesses to the io_mem_notdirty
549 * MemoryRegion. */
550 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
551 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
552 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
553 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
554 }
555 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
556 }
557
558 static MemTxResult access_with_adjusted_size(hwaddr addr,
559 uint64_t *value,
560 unsigned size,
561 unsigned access_size_min,
562 unsigned access_size_max,
563 MemTxResult (*access_fn)
564 (MemoryRegion *mr,
565 hwaddr addr,
566 uint64_t *value,
567 unsigned size,
568 unsigned shift,
569 uint64_t mask,
570 MemTxAttrs attrs),
571 MemoryRegion *mr,
572 MemTxAttrs attrs)
573 {
574 uint64_t access_mask;
575 unsigned access_size;
576 unsigned i;
577 MemTxResult r = MEMTX_OK;
578
579 if (!access_size_min) {
580 access_size_min = 1;
581 }
582 if (!access_size_max) {
583 access_size_max = 4;
584 }
585
586 /* FIXME: support unaligned access? */
587 access_size = MAX(MIN(size, access_size_max), access_size_min);
588 access_mask = -1ULL >> (64 - access_size * 8);
589 if (memory_region_big_endian(mr)) {
590 for (i = 0; i < size; i += access_size) {
591 r |= access_fn(mr, addr + i, value, access_size,
592 (size - access_size - i) * 8, access_mask, attrs);
593 }
594 } else {
595 for (i = 0; i < size; i += access_size) {
596 r |= access_fn(mr, addr + i, value, access_size, i * 8,
597 access_mask, attrs);
598 }
599 }
600 return r;
601 }
602
603 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
604 {
605 AddressSpace *as;
606
607 while (mr->container) {
608 mr = mr->container;
609 }
610 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
611 if (mr == as->root) {
612 return as;
613 }
614 }
615 return NULL;
616 }
617
618 /* Render a memory region into the global view. Ranges in @view obscure
619 * ranges in @mr.
620 */
621 static void render_memory_region(FlatView *view,
622 MemoryRegion *mr,
623 Int128 base,
624 AddrRange clip,
625 bool readonly)
626 {
627 MemoryRegion *subregion;
628 unsigned i;
629 hwaddr offset_in_region;
630 Int128 remain;
631 Int128 now;
632 FlatRange fr;
633 AddrRange tmp;
634
635 if (!mr->enabled) {
636 return;
637 }
638
639 int128_addto(&base, int128_make64(mr->addr));
640 readonly |= mr->readonly;
641
642 tmp = addrrange_make(base, mr->size);
643
644 if (!addrrange_intersects(tmp, clip)) {
645 return;
646 }
647
648 clip = addrrange_intersection(tmp, clip);
649
650 if (mr->alias) {
651 int128_subfrom(&base, int128_make64(mr->alias->addr));
652 int128_subfrom(&base, int128_make64(mr->alias_offset));
653 render_memory_region(view, mr->alias, base, clip, readonly);
654 return;
655 }
656
657 /* Render subregions in priority order. */
658 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
659 render_memory_region(view, subregion, base, clip, readonly);
660 }
661
662 if (!mr->terminates) {
663 return;
664 }
665
666 offset_in_region = int128_get64(int128_sub(clip.start, base));
667 base = clip.start;
668 remain = clip.size;
669
670 fr.mr = mr;
671 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
672 fr.romd_mode = mr->romd_mode;
673 fr.readonly = readonly;
674
675 /* Render the region itself into any gaps left by the current view. */
676 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
677 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
678 continue;
679 }
680 if (int128_lt(base, view->ranges[i].addr.start)) {
681 now = int128_min(remain,
682 int128_sub(view->ranges[i].addr.start, base));
683 fr.offset_in_region = offset_in_region;
684 fr.addr = addrrange_make(base, now);
685 flatview_insert(view, i, &fr);
686 ++i;
687 int128_addto(&base, now);
688 offset_in_region += int128_get64(now);
689 int128_subfrom(&remain, now);
690 }
691 now = int128_sub(int128_min(int128_add(base, remain),
692 addrrange_end(view->ranges[i].addr)),
693 base);
694 int128_addto(&base, now);
695 offset_in_region += int128_get64(now);
696 int128_subfrom(&remain, now);
697 }
698 if (int128_nz(remain)) {
699 fr.offset_in_region = offset_in_region;
700 fr.addr = addrrange_make(base, remain);
701 flatview_insert(view, i, &fr);
702 }
703 }
704
705 /* Render a memory topology into a list of disjoint absolute ranges. */
706 static FlatView *generate_memory_topology(MemoryRegion *mr)
707 {
708 FlatView *view;
709
710 view = g_new(FlatView, 1);
711 flatview_init(view);
712
713 if (mr) {
714 render_memory_region(view, mr, int128_zero(),
715 addrrange_make(int128_zero(), int128_2_64()), false);
716 }
717 flatview_simplify(view);
718
719 return view;
720 }
721
722 static void address_space_add_del_ioeventfds(AddressSpace *as,
723 MemoryRegionIoeventfd *fds_new,
724 unsigned fds_new_nb,
725 MemoryRegionIoeventfd *fds_old,
726 unsigned fds_old_nb)
727 {
728 unsigned iold, inew;
729 MemoryRegionIoeventfd *fd;
730 MemoryRegionSection section;
731
732 /* Generate a symmetric difference of the old and new fd sets, adding
733 * and deleting as necessary.
734 */
735
736 iold = inew = 0;
737 while (iold < fds_old_nb || inew < fds_new_nb) {
738 if (iold < fds_old_nb
739 && (inew == fds_new_nb
740 || memory_region_ioeventfd_before(fds_old[iold],
741 fds_new[inew]))) {
742 fd = &fds_old[iold];
743 section = (MemoryRegionSection) {
744 .address_space = as,
745 .offset_within_address_space = int128_get64(fd->addr.start),
746 .size = fd->addr.size,
747 };
748 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
749 fd->match_data, fd->data, fd->e);
750 ++iold;
751 } else if (inew < fds_new_nb
752 && (iold == fds_old_nb
753 || memory_region_ioeventfd_before(fds_new[inew],
754 fds_old[iold]))) {
755 fd = &fds_new[inew];
756 section = (MemoryRegionSection) {
757 .address_space = as,
758 .offset_within_address_space = int128_get64(fd->addr.start),
759 .size = fd->addr.size,
760 };
761 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
762 fd->match_data, fd->data, fd->e);
763 ++inew;
764 } else {
765 ++iold;
766 ++inew;
767 }
768 }
769 }
770
771 static FlatView *address_space_get_flatview(AddressSpace *as)
772 {
773 FlatView *view;
774
775 rcu_read_lock();
776 view = atomic_rcu_read(&as->current_map);
777 flatview_ref(view);
778 rcu_read_unlock();
779 return view;
780 }
781
782 static void address_space_update_ioeventfds(AddressSpace *as)
783 {
784 FlatView *view;
785 FlatRange *fr;
786 unsigned ioeventfd_nb = 0;
787 MemoryRegionIoeventfd *ioeventfds = NULL;
788 AddrRange tmp;
789 unsigned i;
790
791 view = address_space_get_flatview(as);
792 FOR_EACH_FLAT_RANGE(fr, view) {
793 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
794 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
795 int128_sub(fr->addr.start,
796 int128_make64(fr->offset_in_region)));
797 if (addrrange_intersects(fr->addr, tmp)) {
798 ++ioeventfd_nb;
799 ioeventfds = g_realloc(ioeventfds,
800 ioeventfd_nb * sizeof(*ioeventfds));
801 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
802 ioeventfds[ioeventfd_nb-1].addr = tmp;
803 }
804 }
805 }
806
807 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
808 as->ioeventfds, as->ioeventfd_nb);
809
810 g_free(as->ioeventfds);
811 as->ioeventfds = ioeventfds;
812 as->ioeventfd_nb = ioeventfd_nb;
813 flatview_unref(view);
814 }
815
816 static void address_space_update_topology_pass(AddressSpace *as,
817 const FlatView *old_view,
818 const FlatView *new_view,
819 bool adding)
820 {
821 unsigned iold, inew;
822 FlatRange *frold, *frnew;
823
824 /* Generate a symmetric difference of the old and new memory maps.
825 * Kill ranges in the old map, and instantiate ranges in the new map.
826 */
827 iold = inew = 0;
828 while (iold < old_view->nr || inew < new_view->nr) {
829 if (iold < old_view->nr) {
830 frold = &old_view->ranges[iold];
831 } else {
832 frold = NULL;
833 }
834 if (inew < new_view->nr) {
835 frnew = &new_view->ranges[inew];
836 } else {
837 frnew = NULL;
838 }
839
840 if (frold
841 && (!frnew
842 || int128_lt(frold->addr.start, frnew->addr.start)
843 || (int128_eq(frold->addr.start, frnew->addr.start)
844 && !flatrange_equal(frold, frnew)))) {
845 /* In old but not in new, or in both but attributes changed. */
846
847 if (!adding) {
848 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
849 }
850
851 ++iold;
852 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
853 /* In both and unchanged (except logging may have changed) */
854
855 if (adding) {
856 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
857 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
858 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
859 frold->dirty_log_mask,
860 frnew->dirty_log_mask);
861 }
862 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
863 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
864 frold->dirty_log_mask,
865 frnew->dirty_log_mask);
866 }
867 }
868
869 ++iold;
870 ++inew;
871 } else {
872 /* In new */
873
874 if (adding) {
875 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
876 }
877
878 ++inew;
879 }
880 }
881 }
882
883
884 static void address_space_update_topology(AddressSpace *as)
885 {
886 FlatView *old_view = address_space_get_flatview(as);
887 FlatView *new_view = generate_memory_topology(as->root);
888
889 address_space_update_topology_pass(as, old_view, new_view, false);
890 address_space_update_topology_pass(as, old_view, new_view, true);
891
892 /* Writes are protected by the BQL. */
893 atomic_rcu_set(&as->current_map, new_view);
894 call_rcu(old_view, flatview_unref, rcu);
895
896 /* Note that all the old MemoryRegions are still alive up to this
897 * point. This relieves most MemoryListeners from the need to
898 * ref/unref the MemoryRegions they get---unless they use them
899 * outside the iothread mutex, in which case precise reference
900 * counting is necessary.
901 */
902 flatview_unref(old_view);
903
904 address_space_update_ioeventfds(as);
905 }
906
907 void memory_region_transaction_begin(void)
908 {
909 qemu_flush_coalesced_mmio_buffer();
910 ++memory_region_transaction_depth;
911 }
912
913 void memory_region_transaction_commit(void)
914 {
915 AddressSpace *as;
916
917 assert(memory_region_transaction_depth);
918 assert(qemu_mutex_iothread_locked());
919
920 --memory_region_transaction_depth;
921 if (!memory_region_transaction_depth) {
922 if (memory_region_update_pending) {
923 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
924
925 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
926 address_space_update_topology(as);
927 }
928 memory_region_update_pending = false;
929 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
930 } else if (ioeventfd_update_pending) {
931 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
932 address_space_update_ioeventfds(as);
933 }
934 ioeventfd_update_pending = false;
935 }
936 }
937 }
938
939 static void memory_region_destructor_none(MemoryRegion *mr)
940 {
941 }
942
943 static void memory_region_destructor_ram(MemoryRegion *mr)
944 {
945 qemu_ram_free(mr->ram_block);
946 }
947
948 static bool memory_region_need_escape(char c)
949 {
950 return c == '/' || c == '[' || c == '\\' || c == ']';
951 }
952
953 static char *memory_region_escape_name(const char *name)
954 {
955 const char *p;
956 char *escaped, *q;
957 uint8_t c;
958 size_t bytes = 0;
959
960 for (p = name; *p; p++) {
961 bytes += memory_region_need_escape(*p) ? 4 : 1;
962 }
963 if (bytes == p - name) {
964 return g_memdup(name, bytes + 1);
965 }
966
967 escaped = g_malloc(bytes + 1);
968 for (p = name, q = escaped; *p; p++) {
969 c = *p;
970 if (unlikely(memory_region_need_escape(c))) {
971 *q++ = '\\';
972 *q++ = 'x';
973 *q++ = "0123456789abcdef"[c >> 4];
974 c = "0123456789abcdef"[c & 15];
975 }
976 *q++ = c;
977 }
978 *q = 0;
979 return escaped;
980 }
981
982 static void memory_region_do_init(MemoryRegion *mr,
983 Object *owner,
984 const char *name,
985 uint64_t size)
986 {
987 mr->size = int128_make64(size);
988 if (size == UINT64_MAX) {
989 mr->size = int128_2_64();
990 }
991 mr->name = g_strdup(name);
992 mr->owner = owner;
993 mr->ram_block = NULL;
994
995 if (name) {
996 char *escaped_name = memory_region_escape_name(name);
997 char *name_array = g_strdup_printf("%s[*]", escaped_name);
998
999 if (!owner) {
1000 owner = container_get(qdev_get_machine(), "/unattached");
1001 }
1002
1003 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1004 object_unref(OBJECT(mr));
1005 g_free(name_array);
1006 g_free(escaped_name);
1007 }
1008 }
1009
1010 void memory_region_init(MemoryRegion *mr,
1011 Object *owner,
1012 const char *name,
1013 uint64_t size)
1014 {
1015 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1016 memory_region_do_init(mr, owner, name, size);
1017 }
1018
1019 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1020 void *opaque, Error **errp)
1021 {
1022 MemoryRegion *mr = MEMORY_REGION(obj);
1023 uint64_t value = mr->addr;
1024
1025 visit_type_uint64(v, name, &value, errp);
1026 }
1027
1028 static void memory_region_get_container(Object *obj, Visitor *v,
1029 const char *name, void *opaque,
1030 Error **errp)
1031 {
1032 MemoryRegion *mr = MEMORY_REGION(obj);
1033 gchar *path = (gchar *)"";
1034
1035 if (mr->container) {
1036 path = object_get_canonical_path(OBJECT(mr->container));
1037 }
1038 visit_type_str(v, name, &path, errp);
1039 if (mr->container) {
1040 g_free(path);
1041 }
1042 }
1043
1044 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1045 const char *part)
1046 {
1047 MemoryRegion *mr = MEMORY_REGION(obj);
1048
1049 return OBJECT(mr->container);
1050 }
1051
1052 static void memory_region_get_priority(Object *obj, Visitor *v,
1053 const char *name, void *opaque,
1054 Error **errp)
1055 {
1056 MemoryRegion *mr = MEMORY_REGION(obj);
1057 int32_t value = mr->priority;
1058
1059 visit_type_int32(v, name, &value, errp);
1060 }
1061
1062 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1063 void *opaque, Error **errp)
1064 {
1065 MemoryRegion *mr = MEMORY_REGION(obj);
1066 uint64_t value = memory_region_size(mr);
1067
1068 visit_type_uint64(v, name, &value, errp);
1069 }
1070
1071 static void memory_region_initfn(Object *obj)
1072 {
1073 MemoryRegion *mr = MEMORY_REGION(obj);
1074 ObjectProperty *op;
1075
1076 mr->ops = &unassigned_mem_ops;
1077 mr->enabled = true;
1078 mr->romd_mode = true;
1079 mr->global_locking = true;
1080 mr->destructor = memory_region_destructor_none;
1081 QTAILQ_INIT(&mr->subregions);
1082 QTAILQ_INIT(&mr->coalesced);
1083
1084 op = object_property_add(OBJECT(mr), "container",
1085 "link<" TYPE_MEMORY_REGION ">",
1086 memory_region_get_container,
1087 NULL, /* memory_region_set_container */
1088 NULL, NULL, &error_abort);
1089 op->resolve = memory_region_resolve_container;
1090
1091 object_property_add(OBJECT(mr), "addr", "uint64",
1092 memory_region_get_addr,
1093 NULL, /* memory_region_set_addr */
1094 NULL, NULL, &error_abort);
1095 object_property_add(OBJECT(mr), "priority", "uint32",
1096 memory_region_get_priority,
1097 NULL, /* memory_region_set_priority */
1098 NULL, NULL, &error_abort);
1099 object_property_add(OBJECT(mr), "size", "uint64",
1100 memory_region_get_size,
1101 NULL, /* memory_region_set_size, */
1102 NULL, NULL, &error_abort);
1103 }
1104
1105 static void iommu_memory_region_initfn(Object *obj)
1106 {
1107 MemoryRegion *mr = MEMORY_REGION(obj);
1108
1109 mr->is_iommu = true;
1110 }
1111
1112 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1113 unsigned size)
1114 {
1115 #ifdef DEBUG_UNASSIGNED
1116 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1117 #endif
1118 if (current_cpu != NULL) {
1119 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1120 }
1121 return 0;
1122 }
1123
1124 static void unassigned_mem_write(void *opaque, hwaddr addr,
1125 uint64_t val, unsigned size)
1126 {
1127 #ifdef DEBUG_UNASSIGNED
1128 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1129 #endif
1130 if (current_cpu != NULL) {
1131 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1132 }
1133 }
1134
1135 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1136 unsigned size, bool is_write)
1137 {
1138 return false;
1139 }
1140
1141 const MemoryRegionOps unassigned_mem_ops = {
1142 .valid.accepts = unassigned_mem_accepts,
1143 .endianness = DEVICE_NATIVE_ENDIAN,
1144 };
1145
1146 static uint64_t memory_region_ram_device_read(void *opaque,
1147 hwaddr addr, unsigned size)
1148 {
1149 MemoryRegion *mr = opaque;
1150 uint64_t data = (uint64_t)~0;
1151
1152 switch (size) {
1153 case 1:
1154 data = *(uint8_t *)(mr->ram_block->host + addr);
1155 break;
1156 case 2:
1157 data = *(uint16_t *)(mr->ram_block->host + addr);
1158 break;
1159 case 4:
1160 data = *(uint32_t *)(mr->ram_block->host + addr);
1161 break;
1162 case 8:
1163 data = *(uint64_t *)(mr->ram_block->host + addr);
1164 break;
1165 }
1166
1167 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1168
1169 return data;
1170 }
1171
1172 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1173 uint64_t data, unsigned size)
1174 {
1175 MemoryRegion *mr = opaque;
1176
1177 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1178
1179 switch (size) {
1180 case 1:
1181 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1182 break;
1183 case 2:
1184 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1185 break;
1186 case 4:
1187 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1188 break;
1189 case 8:
1190 *(uint64_t *)(mr->ram_block->host + addr) = data;
1191 break;
1192 }
1193 }
1194
1195 static const MemoryRegionOps ram_device_mem_ops = {
1196 .read = memory_region_ram_device_read,
1197 .write = memory_region_ram_device_write,
1198 .endianness = DEVICE_HOST_ENDIAN,
1199 .valid = {
1200 .min_access_size = 1,
1201 .max_access_size = 8,
1202 .unaligned = true,
1203 },
1204 .impl = {
1205 .min_access_size = 1,
1206 .max_access_size = 8,
1207 .unaligned = true,
1208 },
1209 };
1210
1211 bool memory_region_access_valid(MemoryRegion *mr,
1212 hwaddr addr,
1213 unsigned size,
1214 bool is_write)
1215 {
1216 int access_size_min, access_size_max;
1217 int access_size, i;
1218
1219 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1220 return false;
1221 }
1222
1223 if (!mr->ops->valid.accepts) {
1224 return true;
1225 }
1226
1227 access_size_min = mr->ops->valid.min_access_size;
1228 if (!mr->ops->valid.min_access_size) {
1229 access_size_min = 1;
1230 }
1231
1232 access_size_max = mr->ops->valid.max_access_size;
1233 if (!mr->ops->valid.max_access_size) {
1234 access_size_max = 4;
1235 }
1236
1237 access_size = MAX(MIN(size, access_size_max), access_size_min);
1238 for (i = 0; i < size; i += access_size) {
1239 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1240 is_write)) {
1241 return false;
1242 }
1243 }
1244
1245 return true;
1246 }
1247
1248 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1249 hwaddr addr,
1250 uint64_t *pval,
1251 unsigned size,
1252 MemTxAttrs attrs)
1253 {
1254 *pval = 0;
1255
1256 if (mr->ops->read) {
1257 return access_with_adjusted_size(addr, pval, size,
1258 mr->ops->impl.min_access_size,
1259 mr->ops->impl.max_access_size,
1260 memory_region_read_accessor,
1261 mr, attrs);
1262 } else if (mr->ops->read_with_attrs) {
1263 return access_with_adjusted_size(addr, pval, size,
1264 mr->ops->impl.min_access_size,
1265 mr->ops->impl.max_access_size,
1266 memory_region_read_with_attrs_accessor,
1267 mr, attrs);
1268 } else {
1269 return access_with_adjusted_size(addr, pval, size, 1, 4,
1270 memory_region_oldmmio_read_accessor,
1271 mr, attrs);
1272 }
1273 }
1274
1275 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1276 hwaddr addr,
1277 uint64_t *pval,
1278 unsigned size,
1279 MemTxAttrs attrs)
1280 {
1281 MemTxResult r;
1282
1283 if (!memory_region_access_valid(mr, addr, size, false)) {
1284 *pval = unassigned_mem_read(mr, addr, size);
1285 return MEMTX_DECODE_ERROR;
1286 }
1287
1288 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1289 adjust_endianness(mr, pval, size);
1290 return r;
1291 }
1292
1293 /* Return true if an eventfd was signalled */
1294 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1295 hwaddr addr,
1296 uint64_t data,
1297 unsigned size,
1298 MemTxAttrs attrs)
1299 {
1300 MemoryRegionIoeventfd ioeventfd = {
1301 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1302 .data = data,
1303 };
1304 unsigned i;
1305
1306 for (i = 0; i < mr->ioeventfd_nb; i++) {
1307 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1308 ioeventfd.e = mr->ioeventfds[i].e;
1309
1310 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1311 event_notifier_set(ioeventfd.e);
1312 return true;
1313 }
1314 }
1315
1316 return false;
1317 }
1318
1319 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1320 hwaddr addr,
1321 uint64_t data,
1322 unsigned size,
1323 MemTxAttrs attrs)
1324 {
1325 if (!memory_region_access_valid(mr, addr, size, true)) {
1326 unassigned_mem_write(mr, addr, data, size);
1327 return MEMTX_DECODE_ERROR;
1328 }
1329
1330 adjust_endianness(mr, &data, size);
1331
1332 if ((!kvm_eventfds_enabled()) &&
1333 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1334 return MEMTX_OK;
1335 }
1336
1337 if (mr->ops->write) {
1338 return access_with_adjusted_size(addr, &data, size,
1339 mr->ops->impl.min_access_size,
1340 mr->ops->impl.max_access_size,
1341 memory_region_write_accessor, mr,
1342 attrs);
1343 } else if (mr->ops->write_with_attrs) {
1344 return
1345 access_with_adjusted_size(addr, &data, size,
1346 mr->ops->impl.min_access_size,
1347 mr->ops->impl.max_access_size,
1348 memory_region_write_with_attrs_accessor,
1349 mr, attrs);
1350 } else {
1351 return access_with_adjusted_size(addr, &data, size, 1, 4,
1352 memory_region_oldmmio_write_accessor,
1353 mr, attrs);
1354 }
1355 }
1356
1357 void memory_region_init_io(MemoryRegion *mr,
1358 Object *owner,
1359 const MemoryRegionOps *ops,
1360 void *opaque,
1361 const char *name,
1362 uint64_t size)
1363 {
1364 memory_region_init(mr, owner, name, size);
1365 mr->ops = ops ? ops : &unassigned_mem_ops;
1366 mr->opaque = opaque;
1367 mr->terminates = true;
1368 }
1369
1370 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1371 Object *owner,
1372 const char *name,
1373 uint64_t size,
1374 Error **errp)
1375 {
1376 memory_region_init(mr, owner, name, size);
1377 mr->ram = true;
1378 mr->terminates = true;
1379 mr->destructor = memory_region_destructor_ram;
1380 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1381 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1382 }
1383
1384 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1385 Object *owner,
1386 const char *name,
1387 uint64_t size,
1388 uint64_t max_size,
1389 void (*resized)(const char*,
1390 uint64_t length,
1391 void *host),
1392 Error **errp)
1393 {
1394 memory_region_init(mr, owner, name, size);
1395 mr->ram = true;
1396 mr->terminates = true;
1397 mr->destructor = memory_region_destructor_ram;
1398 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1399 mr, errp);
1400 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1401 }
1402
1403 #ifdef __linux__
1404 void memory_region_init_ram_from_file(MemoryRegion *mr,
1405 struct Object *owner,
1406 const char *name,
1407 uint64_t size,
1408 bool share,
1409 const char *path,
1410 Error **errp)
1411 {
1412 memory_region_init(mr, owner, name, size);
1413 mr->ram = true;
1414 mr->terminates = true;
1415 mr->destructor = memory_region_destructor_ram;
1416 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1417 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1418 }
1419
1420 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1421 struct Object *owner,
1422 const char *name,
1423 uint64_t size,
1424 bool share,
1425 int fd,
1426 Error **errp)
1427 {
1428 memory_region_init(mr, owner, name, size);
1429 mr->ram = true;
1430 mr->terminates = true;
1431 mr->destructor = memory_region_destructor_ram;
1432 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
1433 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1434 }
1435 #endif
1436
1437 void memory_region_init_ram_ptr(MemoryRegion *mr,
1438 Object *owner,
1439 const char *name,
1440 uint64_t size,
1441 void *ptr)
1442 {
1443 memory_region_init(mr, owner, name, size);
1444 mr->ram = true;
1445 mr->terminates = true;
1446 mr->destructor = memory_region_destructor_ram;
1447 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1448
1449 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1450 assert(ptr != NULL);
1451 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1452 }
1453
1454 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1455 Object *owner,
1456 const char *name,
1457 uint64_t size,
1458 void *ptr)
1459 {
1460 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1461 mr->ram_device = true;
1462 mr->ops = &ram_device_mem_ops;
1463 mr->opaque = mr;
1464 }
1465
1466 void memory_region_init_alias(MemoryRegion *mr,
1467 Object *owner,
1468 const char *name,
1469 MemoryRegion *orig,
1470 hwaddr offset,
1471 uint64_t size)
1472 {
1473 memory_region_init(mr, owner, name, size);
1474 mr->alias = orig;
1475 mr->alias_offset = offset;
1476 }
1477
1478 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1479 struct Object *owner,
1480 const char *name,
1481 uint64_t size,
1482 Error **errp)
1483 {
1484 memory_region_init(mr, owner, name, size);
1485 mr->ram = true;
1486 mr->readonly = true;
1487 mr->terminates = true;
1488 mr->destructor = memory_region_destructor_ram;
1489 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1490 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1491 }
1492
1493 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1494 Object *owner,
1495 const MemoryRegionOps *ops,
1496 void *opaque,
1497 const char *name,
1498 uint64_t size,
1499 Error **errp)
1500 {
1501 assert(ops);
1502 memory_region_init(mr, owner, name, size);
1503 mr->ops = ops;
1504 mr->opaque = opaque;
1505 mr->terminates = true;
1506 mr->rom_device = true;
1507 mr->destructor = memory_region_destructor_ram;
1508 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1509 }
1510
1511 void memory_region_init_iommu(void *_iommu_mr,
1512 size_t instance_size,
1513 const char *mrtypename,
1514 Object *owner,
1515 const char *name,
1516 uint64_t size)
1517 {
1518 struct IOMMUMemoryRegion *iommu_mr;
1519 struct MemoryRegion *mr;
1520
1521 object_initialize(_iommu_mr, instance_size, mrtypename);
1522 mr = MEMORY_REGION(_iommu_mr);
1523 memory_region_do_init(mr, owner, name, size);
1524 iommu_mr = IOMMU_MEMORY_REGION(mr);
1525 mr->terminates = true; /* then re-forwards */
1526 QLIST_INIT(&iommu_mr->iommu_notify);
1527 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1528 }
1529
1530 static void memory_region_finalize(Object *obj)
1531 {
1532 MemoryRegion *mr = MEMORY_REGION(obj);
1533
1534 assert(!mr->container);
1535
1536 /* We know the region is not visible in any address space (it
1537 * does not have a container and cannot be a root either because
1538 * it has no references, so we can blindly clear mr->enabled.
1539 * memory_region_set_enabled instead could trigger a transaction
1540 * and cause an infinite loop.
1541 */
1542 mr->enabled = false;
1543 memory_region_transaction_begin();
1544 while (!QTAILQ_EMPTY(&mr->subregions)) {
1545 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1546 memory_region_del_subregion(mr, subregion);
1547 }
1548 memory_region_transaction_commit();
1549
1550 mr->destructor(mr);
1551 memory_region_clear_coalescing(mr);
1552 g_free((char *)mr->name);
1553 g_free(mr->ioeventfds);
1554 }
1555
1556 Object *memory_region_owner(MemoryRegion *mr)
1557 {
1558 Object *obj = OBJECT(mr);
1559 return obj->parent;
1560 }
1561
1562 void memory_region_ref(MemoryRegion *mr)
1563 {
1564 /* MMIO callbacks most likely will access data that belongs
1565 * to the owner, hence the need to ref/unref the owner whenever
1566 * the memory region is in use.
1567 *
1568 * The memory region is a child of its owner. As long as the
1569 * owner doesn't call unparent itself on the memory region,
1570 * ref-ing the owner will also keep the memory region alive.
1571 * Memory regions without an owner are supposed to never go away;
1572 * we do not ref/unref them because it slows down DMA sensibly.
1573 */
1574 if (mr && mr->owner) {
1575 object_ref(mr->owner);
1576 }
1577 }
1578
1579 void memory_region_unref(MemoryRegion *mr)
1580 {
1581 if (mr && mr->owner) {
1582 object_unref(mr->owner);
1583 }
1584 }
1585
1586 uint64_t memory_region_size(MemoryRegion *mr)
1587 {
1588 if (int128_eq(mr->size, int128_2_64())) {
1589 return UINT64_MAX;
1590 }
1591 return int128_get64(mr->size);
1592 }
1593
1594 const char *memory_region_name(const MemoryRegion *mr)
1595 {
1596 if (!mr->name) {
1597 ((MemoryRegion *)mr)->name =
1598 object_get_canonical_path_component(OBJECT(mr));
1599 }
1600 return mr->name;
1601 }
1602
1603 bool memory_region_is_ram_device(MemoryRegion *mr)
1604 {
1605 return mr->ram_device;
1606 }
1607
1608 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1609 {
1610 uint8_t mask = mr->dirty_log_mask;
1611 if (global_dirty_log && mr->ram_block) {
1612 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1613 }
1614 return mask;
1615 }
1616
1617 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1618 {
1619 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1620 }
1621
1622 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1623 {
1624 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1625 IOMMUNotifier *iommu_notifier;
1626 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1627
1628 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1629 flags |= iommu_notifier->notifier_flags;
1630 }
1631
1632 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1633 imrc->notify_flag_changed(iommu_mr,
1634 iommu_mr->iommu_notify_flags,
1635 flags);
1636 }
1637
1638 iommu_mr->iommu_notify_flags = flags;
1639 }
1640
1641 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1642 IOMMUNotifier *n)
1643 {
1644 IOMMUMemoryRegion *iommu_mr;
1645
1646 if (mr->alias) {
1647 memory_region_register_iommu_notifier(mr->alias, n);
1648 return;
1649 }
1650
1651 /* We need to register for at least one bitfield */
1652 iommu_mr = IOMMU_MEMORY_REGION(mr);
1653 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1654 assert(n->start <= n->end);
1655 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1656 memory_region_update_iommu_notify_flags(iommu_mr);
1657 }
1658
1659 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1660 {
1661 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1662
1663 if (imrc->get_min_page_size) {
1664 return imrc->get_min_page_size(iommu_mr);
1665 }
1666 return TARGET_PAGE_SIZE;
1667 }
1668
1669 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1670 {
1671 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1672 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1673 hwaddr addr, granularity;
1674 IOMMUTLBEntry iotlb;
1675
1676 /* If the IOMMU has its own replay callback, override */
1677 if (imrc->replay) {
1678 imrc->replay(iommu_mr, n);
1679 return;
1680 }
1681
1682 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1683
1684 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1685 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE);
1686 if (iotlb.perm != IOMMU_NONE) {
1687 n->notify(n, &iotlb);
1688 }
1689
1690 /* if (2^64 - MR size) < granularity, it's possible to get an
1691 * infinite loop here. This should catch such a wraparound */
1692 if ((addr + granularity) < addr) {
1693 break;
1694 }
1695 }
1696 }
1697
1698 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1699 {
1700 IOMMUNotifier *notifier;
1701
1702 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1703 memory_region_iommu_replay(iommu_mr, notifier);
1704 }
1705 }
1706
1707 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1708 IOMMUNotifier *n)
1709 {
1710 IOMMUMemoryRegion *iommu_mr;
1711
1712 if (mr->alias) {
1713 memory_region_unregister_iommu_notifier(mr->alias, n);
1714 return;
1715 }
1716 QLIST_REMOVE(n, node);
1717 iommu_mr = IOMMU_MEMORY_REGION(mr);
1718 memory_region_update_iommu_notify_flags(iommu_mr);
1719 }
1720
1721 void memory_region_notify_one(IOMMUNotifier *notifier,
1722 IOMMUTLBEntry *entry)
1723 {
1724 IOMMUNotifierFlag request_flags;
1725
1726 /*
1727 * Skip the notification if the notification does not overlap
1728 * with registered range.
1729 */
1730 if (notifier->start > entry->iova + entry->addr_mask + 1 ||
1731 notifier->end < entry->iova) {
1732 return;
1733 }
1734
1735 if (entry->perm & IOMMU_RW) {
1736 request_flags = IOMMU_NOTIFIER_MAP;
1737 } else {
1738 request_flags = IOMMU_NOTIFIER_UNMAP;
1739 }
1740
1741 if (notifier->notifier_flags & request_flags) {
1742 notifier->notify(notifier, entry);
1743 }
1744 }
1745
1746 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1747 IOMMUTLBEntry entry)
1748 {
1749 IOMMUNotifier *iommu_notifier;
1750
1751 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1752
1753 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1754 memory_region_notify_one(iommu_notifier, &entry);
1755 }
1756 }
1757
1758 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1759 {
1760 uint8_t mask = 1 << client;
1761 uint8_t old_logging;
1762
1763 assert(client == DIRTY_MEMORY_VGA);
1764 old_logging = mr->vga_logging_count;
1765 mr->vga_logging_count += log ? 1 : -1;
1766 if (!!old_logging == !!mr->vga_logging_count) {
1767 return;
1768 }
1769
1770 memory_region_transaction_begin();
1771 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1772 memory_region_update_pending |= mr->enabled;
1773 memory_region_transaction_commit();
1774 }
1775
1776 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1777 hwaddr size, unsigned client)
1778 {
1779 assert(mr->ram_block);
1780 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1781 size, client);
1782 }
1783
1784 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1785 hwaddr size)
1786 {
1787 assert(mr->ram_block);
1788 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1789 size,
1790 memory_region_get_dirty_log_mask(mr));
1791 }
1792
1793 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1794 hwaddr size, unsigned client)
1795 {
1796 assert(mr->ram_block);
1797 return cpu_physical_memory_test_and_clear_dirty(
1798 memory_region_get_ram_addr(mr) + addr, size, client);
1799 }
1800
1801 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1802 hwaddr addr,
1803 hwaddr size,
1804 unsigned client)
1805 {
1806 assert(mr->ram_block);
1807 return cpu_physical_memory_snapshot_and_clear_dirty(
1808 memory_region_get_ram_addr(mr) + addr, size, client);
1809 }
1810
1811 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
1812 hwaddr addr, hwaddr size)
1813 {
1814 assert(mr->ram_block);
1815 return cpu_physical_memory_snapshot_get_dirty(snap,
1816 memory_region_get_ram_addr(mr) + addr, size);
1817 }
1818
1819 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1820 {
1821 MemoryListener *listener;
1822 AddressSpace *as;
1823 FlatView *view;
1824 FlatRange *fr;
1825
1826 /* If the same address space has multiple log_sync listeners, we
1827 * visit that address space's FlatView multiple times. But because
1828 * log_sync listeners are rare, it's still cheaper than walking each
1829 * address space once.
1830 */
1831 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1832 if (!listener->log_sync) {
1833 continue;
1834 }
1835 as = listener->address_space;
1836 view = address_space_get_flatview(as);
1837 FOR_EACH_FLAT_RANGE(fr, view) {
1838 if (fr->mr == mr) {
1839 MemoryRegionSection mrs = section_from_flat_range(fr, as);
1840 listener->log_sync(listener, &mrs);
1841 }
1842 }
1843 flatview_unref(view);
1844 }
1845 }
1846
1847 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1848 {
1849 if (mr->readonly != readonly) {
1850 memory_region_transaction_begin();
1851 mr->readonly = readonly;
1852 memory_region_update_pending |= mr->enabled;
1853 memory_region_transaction_commit();
1854 }
1855 }
1856
1857 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1858 {
1859 if (mr->romd_mode != romd_mode) {
1860 memory_region_transaction_begin();
1861 mr->romd_mode = romd_mode;
1862 memory_region_update_pending |= mr->enabled;
1863 memory_region_transaction_commit();
1864 }
1865 }
1866
1867 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1868 hwaddr size, unsigned client)
1869 {
1870 assert(mr->ram_block);
1871 cpu_physical_memory_test_and_clear_dirty(
1872 memory_region_get_ram_addr(mr) + addr, size, client);
1873 }
1874
1875 int memory_region_get_fd(MemoryRegion *mr)
1876 {
1877 int fd;
1878
1879 rcu_read_lock();
1880 while (mr->alias) {
1881 mr = mr->alias;
1882 }
1883 fd = mr->ram_block->fd;
1884 rcu_read_unlock();
1885
1886 return fd;
1887 }
1888
1889 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1890 {
1891 void *ptr;
1892 uint64_t offset = 0;
1893
1894 rcu_read_lock();
1895 while (mr->alias) {
1896 offset += mr->alias_offset;
1897 mr = mr->alias;
1898 }
1899 assert(mr->ram_block);
1900 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
1901 rcu_read_unlock();
1902
1903 return ptr;
1904 }
1905
1906 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
1907 {
1908 RAMBlock *block;
1909
1910 block = qemu_ram_block_from_host(ptr, false, offset);
1911 if (!block) {
1912 return NULL;
1913 }
1914
1915 return block->mr;
1916 }
1917
1918 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1919 {
1920 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1921 }
1922
1923 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1924 {
1925 assert(mr->ram_block);
1926
1927 qemu_ram_resize(mr->ram_block, newsize, errp);
1928 }
1929
1930 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1931 {
1932 FlatView *view;
1933 FlatRange *fr;
1934 CoalescedMemoryRange *cmr;
1935 AddrRange tmp;
1936 MemoryRegionSection section;
1937
1938 view = address_space_get_flatview(as);
1939 FOR_EACH_FLAT_RANGE(fr, view) {
1940 if (fr->mr == mr) {
1941 section = (MemoryRegionSection) {
1942 .address_space = as,
1943 .offset_within_address_space = int128_get64(fr->addr.start),
1944 .size = fr->addr.size,
1945 };
1946
1947 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
1948 int128_get64(fr->addr.start),
1949 int128_get64(fr->addr.size));
1950 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1951 tmp = addrrange_shift(cmr->addr,
1952 int128_sub(fr->addr.start,
1953 int128_make64(fr->offset_in_region)));
1954 if (!addrrange_intersects(tmp, fr->addr)) {
1955 continue;
1956 }
1957 tmp = addrrange_intersection(tmp, fr->addr);
1958 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
1959 int128_get64(tmp.start),
1960 int128_get64(tmp.size));
1961 }
1962 }
1963 }
1964 flatview_unref(view);
1965 }
1966
1967 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1968 {
1969 AddressSpace *as;
1970
1971 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1972 memory_region_update_coalesced_range_as(mr, as);
1973 }
1974 }
1975
1976 void memory_region_set_coalescing(MemoryRegion *mr)
1977 {
1978 memory_region_clear_coalescing(mr);
1979 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1980 }
1981
1982 void memory_region_add_coalescing(MemoryRegion *mr,
1983 hwaddr offset,
1984 uint64_t size)
1985 {
1986 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1987
1988 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1989 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1990 memory_region_update_coalesced_range(mr);
1991 memory_region_set_flush_coalesced(mr);
1992 }
1993
1994 void memory_region_clear_coalescing(MemoryRegion *mr)
1995 {
1996 CoalescedMemoryRange *cmr;
1997 bool updated = false;
1998
1999 qemu_flush_coalesced_mmio_buffer();
2000 mr->flush_coalesced_mmio = false;
2001
2002 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2003 cmr = QTAILQ_FIRST(&mr->coalesced);
2004 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2005 g_free(cmr);
2006 updated = true;
2007 }
2008
2009 if (updated) {
2010 memory_region_update_coalesced_range(mr);
2011 }
2012 }
2013
2014 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2015 {
2016 mr->flush_coalesced_mmio = true;
2017 }
2018
2019 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2020 {
2021 qemu_flush_coalesced_mmio_buffer();
2022 if (QTAILQ_EMPTY(&mr->coalesced)) {
2023 mr->flush_coalesced_mmio = false;
2024 }
2025 }
2026
2027 void memory_region_set_global_locking(MemoryRegion *mr)
2028 {
2029 mr->global_locking = true;
2030 }
2031
2032 void memory_region_clear_global_locking(MemoryRegion *mr)
2033 {
2034 mr->global_locking = false;
2035 }
2036
2037 static bool userspace_eventfd_warning;
2038
2039 void memory_region_add_eventfd(MemoryRegion *mr,
2040 hwaddr addr,
2041 unsigned size,
2042 bool match_data,
2043 uint64_t data,
2044 EventNotifier *e)
2045 {
2046 MemoryRegionIoeventfd mrfd = {
2047 .addr.start = int128_make64(addr),
2048 .addr.size = int128_make64(size),
2049 .match_data = match_data,
2050 .data = data,
2051 .e = e,
2052 };
2053 unsigned i;
2054
2055 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2056 userspace_eventfd_warning))) {
2057 userspace_eventfd_warning = true;
2058 error_report("Using eventfd without MMIO binding in KVM. "
2059 "Suboptimal performance expected");
2060 }
2061
2062 if (size) {
2063 adjust_endianness(mr, &mrfd.data, size);
2064 }
2065 memory_region_transaction_begin();
2066 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2067 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
2068 break;
2069 }
2070 }
2071 ++mr->ioeventfd_nb;
2072 mr->ioeventfds = g_realloc(mr->ioeventfds,
2073 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2074 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2075 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2076 mr->ioeventfds[i] = mrfd;
2077 ioeventfd_update_pending |= mr->enabled;
2078 memory_region_transaction_commit();
2079 }
2080
2081 void memory_region_del_eventfd(MemoryRegion *mr,
2082 hwaddr addr,
2083 unsigned size,
2084 bool match_data,
2085 uint64_t data,
2086 EventNotifier *e)
2087 {
2088 MemoryRegionIoeventfd mrfd = {
2089 .addr.start = int128_make64(addr),
2090 .addr.size = int128_make64(size),
2091 .match_data = match_data,
2092 .data = data,
2093 .e = e,
2094 };
2095 unsigned i;
2096
2097 if (size) {
2098 adjust_endianness(mr, &mrfd.data, size);
2099 }
2100 memory_region_transaction_begin();
2101 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2102 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
2103 break;
2104 }
2105 }
2106 assert(i != mr->ioeventfd_nb);
2107 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2108 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2109 --mr->ioeventfd_nb;
2110 mr->ioeventfds = g_realloc(mr->ioeventfds,
2111 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2112 ioeventfd_update_pending |= mr->enabled;
2113 memory_region_transaction_commit();
2114 }
2115
2116 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2117 {
2118 MemoryRegion *mr = subregion->container;
2119 MemoryRegion *other;
2120
2121 memory_region_transaction_begin();
2122
2123 memory_region_ref(subregion);
2124 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2125 if (subregion->priority >= other->priority) {
2126 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2127 goto done;
2128 }
2129 }
2130 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2131 done:
2132 memory_region_update_pending |= mr->enabled && subregion->enabled;
2133 memory_region_transaction_commit();
2134 }
2135
2136 static void memory_region_add_subregion_common(MemoryRegion *mr,
2137 hwaddr offset,
2138 MemoryRegion *subregion)
2139 {
2140 assert(!subregion->container);
2141 subregion->container = mr;
2142 subregion->addr = offset;
2143 memory_region_update_container_subregions(subregion);
2144 }
2145
2146 void memory_region_add_subregion(MemoryRegion *mr,
2147 hwaddr offset,
2148 MemoryRegion *subregion)
2149 {
2150 subregion->priority = 0;
2151 memory_region_add_subregion_common(mr, offset, subregion);
2152 }
2153
2154 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2155 hwaddr offset,
2156 MemoryRegion *subregion,
2157 int priority)
2158 {
2159 subregion->priority = priority;
2160 memory_region_add_subregion_common(mr, offset, subregion);
2161 }
2162
2163 void memory_region_del_subregion(MemoryRegion *mr,
2164 MemoryRegion *subregion)
2165 {
2166 memory_region_transaction_begin();
2167 assert(subregion->container == mr);
2168 subregion->container = NULL;
2169 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2170 memory_region_unref(subregion);
2171 memory_region_update_pending |= mr->enabled && subregion->enabled;
2172 memory_region_transaction_commit();
2173 }
2174
2175 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2176 {
2177 if (enabled == mr->enabled) {
2178 return;
2179 }
2180 memory_region_transaction_begin();
2181 mr->enabled = enabled;
2182 memory_region_update_pending = true;
2183 memory_region_transaction_commit();
2184 }
2185
2186 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2187 {
2188 Int128 s = int128_make64(size);
2189
2190 if (size == UINT64_MAX) {
2191 s = int128_2_64();
2192 }
2193 if (int128_eq(s, mr->size)) {
2194 return;
2195 }
2196 memory_region_transaction_begin();
2197 mr->size = s;
2198 memory_region_update_pending = true;
2199 memory_region_transaction_commit();
2200 }
2201
2202 static void memory_region_readd_subregion(MemoryRegion *mr)
2203 {
2204 MemoryRegion *container = mr->container;
2205
2206 if (container) {
2207 memory_region_transaction_begin();
2208 memory_region_ref(mr);
2209 memory_region_del_subregion(container, mr);
2210 mr->container = container;
2211 memory_region_update_container_subregions(mr);
2212 memory_region_unref(mr);
2213 memory_region_transaction_commit();
2214 }
2215 }
2216
2217 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2218 {
2219 if (addr != mr->addr) {
2220 mr->addr = addr;
2221 memory_region_readd_subregion(mr);
2222 }
2223 }
2224
2225 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2226 {
2227 assert(mr->alias);
2228
2229 if (offset == mr->alias_offset) {
2230 return;
2231 }
2232
2233 memory_region_transaction_begin();
2234 mr->alias_offset = offset;
2235 memory_region_update_pending |= mr->enabled;
2236 memory_region_transaction_commit();
2237 }
2238
2239 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2240 {
2241 return mr->align;
2242 }
2243
2244 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2245 {
2246 const AddrRange *addr = addr_;
2247 const FlatRange *fr = fr_;
2248
2249 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2250 return -1;
2251 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2252 return 1;
2253 }
2254 return 0;
2255 }
2256
2257 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2258 {
2259 return bsearch(&addr, view->ranges, view->nr,
2260 sizeof(FlatRange), cmp_flatrange_addr);
2261 }
2262
2263 bool memory_region_is_mapped(MemoryRegion *mr)
2264 {
2265 return mr->container ? true : false;
2266 }
2267
2268 /* Same as memory_region_find, but it does not add a reference to the
2269 * returned region. It must be called from an RCU critical section.
2270 */
2271 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2272 hwaddr addr, uint64_t size)
2273 {
2274 MemoryRegionSection ret = { .mr = NULL };
2275 MemoryRegion *root;
2276 AddressSpace *as;
2277 AddrRange range;
2278 FlatView *view;
2279 FlatRange *fr;
2280
2281 addr += mr->addr;
2282 for (root = mr; root->container; ) {
2283 root = root->container;
2284 addr += root->addr;
2285 }
2286
2287 as = memory_region_to_address_space(root);
2288 if (!as) {
2289 return ret;
2290 }
2291 range = addrrange_make(int128_make64(addr), int128_make64(size));
2292
2293 view = atomic_rcu_read(&as->current_map);
2294 fr = flatview_lookup(view, range);
2295 if (!fr) {
2296 return ret;
2297 }
2298
2299 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2300 --fr;
2301 }
2302
2303 ret.mr = fr->mr;
2304 ret.address_space = as;
2305 range = addrrange_intersection(range, fr->addr);
2306 ret.offset_within_region = fr->offset_in_region;
2307 ret.offset_within_region += int128_get64(int128_sub(range.start,
2308 fr->addr.start));
2309 ret.size = range.size;
2310 ret.offset_within_address_space = int128_get64(range.start);
2311 ret.readonly = fr->readonly;
2312 return ret;
2313 }
2314
2315 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2316 hwaddr addr, uint64_t size)
2317 {
2318 MemoryRegionSection ret;
2319 rcu_read_lock();
2320 ret = memory_region_find_rcu(mr, addr, size);
2321 if (ret.mr) {
2322 memory_region_ref(ret.mr);
2323 }
2324 rcu_read_unlock();
2325 return ret;
2326 }
2327
2328 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2329 {
2330 MemoryRegion *mr;
2331
2332 rcu_read_lock();
2333 mr = memory_region_find_rcu(container, addr, 1).mr;
2334 rcu_read_unlock();
2335 return mr && mr != container;
2336 }
2337
2338 void memory_global_dirty_log_sync(void)
2339 {
2340 MemoryListener *listener;
2341 AddressSpace *as;
2342 FlatView *view;
2343 FlatRange *fr;
2344
2345 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2346 if (!listener->log_sync) {
2347 continue;
2348 }
2349 as = listener->address_space;
2350 view = address_space_get_flatview(as);
2351 FOR_EACH_FLAT_RANGE(fr, view) {
2352 if (fr->dirty_log_mask) {
2353 MemoryRegionSection mrs = section_from_flat_range(fr, as);
2354 listener->log_sync(listener, &mrs);
2355 }
2356 }
2357 flatview_unref(view);
2358 }
2359 }
2360
2361 static VMChangeStateEntry *vmstate_change;
2362
2363 void memory_global_dirty_log_start(void)
2364 {
2365 if (vmstate_change) {
2366 qemu_del_vm_change_state_handler(vmstate_change);
2367 vmstate_change = NULL;
2368 }
2369
2370 global_dirty_log = true;
2371
2372 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2373
2374 /* Refresh DIRTY_LOG_MIGRATION bit. */
2375 memory_region_transaction_begin();
2376 memory_region_update_pending = true;
2377 memory_region_transaction_commit();
2378 }
2379
2380 static void memory_global_dirty_log_do_stop(void)
2381 {
2382 global_dirty_log = false;
2383
2384 /* Refresh DIRTY_LOG_MIGRATION bit. */
2385 memory_region_transaction_begin();
2386 memory_region_update_pending = true;
2387 memory_region_transaction_commit();
2388
2389 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2390 }
2391
2392 static void memory_vm_change_state_handler(void *opaque, int running,
2393 RunState state)
2394 {
2395 if (running) {
2396 memory_global_dirty_log_do_stop();
2397
2398 if (vmstate_change) {
2399 qemu_del_vm_change_state_handler(vmstate_change);
2400 vmstate_change = NULL;
2401 }
2402 }
2403 }
2404
2405 void memory_global_dirty_log_stop(void)
2406 {
2407 if (!runstate_is_running()) {
2408 if (vmstate_change) {
2409 return;
2410 }
2411 vmstate_change = qemu_add_vm_change_state_handler(
2412 memory_vm_change_state_handler, NULL);
2413 return;
2414 }
2415
2416 memory_global_dirty_log_do_stop();
2417 }
2418
2419 static void listener_add_address_space(MemoryListener *listener,
2420 AddressSpace *as)
2421 {
2422 FlatView *view;
2423 FlatRange *fr;
2424
2425 if (listener->begin) {
2426 listener->begin(listener);
2427 }
2428 if (global_dirty_log) {
2429 if (listener->log_global_start) {
2430 listener->log_global_start(listener);
2431 }
2432 }
2433
2434 view = address_space_get_flatview(as);
2435 FOR_EACH_FLAT_RANGE(fr, view) {
2436 MemoryRegionSection section = {
2437 .mr = fr->mr,
2438 .address_space = as,
2439 .offset_within_region = fr->offset_in_region,
2440 .size = fr->addr.size,
2441 .offset_within_address_space = int128_get64(fr->addr.start),
2442 .readonly = fr->readonly,
2443 };
2444 if (fr->dirty_log_mask && listener->log_start) {
2445 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2446 }
2447 if (listener->region_add) {
2448 listener->region_add(listener, &section);
2449 }
2450 }
2451 if (listener->commit) {
2452 listener->commit(listener);
2453 }
2454 flatview_unref(view);
2455 }
2456
2457 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2458 {
2459 MemoryListener *other = NULL;
2460
2461 listener->address_space = as;
2462 if (QTAILQ_EMPTY(&memory_listeners)
2463 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2464 memory_listeners)->priority) {
2465 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2466 } else {
2467 QTAILQ_FOREACH(other, &memory_listeners, link) {
2468 if (listener->priority < other->priority) {
2469 break;
2470 }
2471 }
2472 QTAILQ_INSERT_BEFORE(other, listener, link);
2473 }
2474
2475 if (QTAILQ_EMPTY(&as->listeners)
2476 || listener->priority >= QTAILQ_LAST(&as->listeners,
2477 memory_listeners)->priority) {
2478 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2479 } else {
2480 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2481 if (listener->priority < other->priority) {
2482 break;
2483 }
2484 }
2485 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2486 }
2487
2488 listener_add_address_space(listener, as);
2489 }
2490
2491 void memory_listener_unregister(MemoryListener *listener)
2492 {
2493 if (!listener->address_space) {
2494 return;
2495 }
2496
2497 QTAILQ_REMOVE(&memory_listeners, listener, link);
2498 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2499 listener->address_space = NULL;
2500 }
2501
2502 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
2503 {
2504 void *host;
2505 unsigned size = 0;
2506 unsigned offset = 0;
2507 Object *new_interface;
2508
2509 if (!mr || !mr->ops->request_ptr) {
2510 return false;
2511 }
2512
2513 /*
2514 * Avoid an update if the request_ptr call
2515 * memory_region_invalidate_mmio_ptr which seems to be likely when we use
2516 * a cache.
2517 */
2518 memory_region_transaction_begin();
2519
2520 host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
2521
2522 if (!host || !size) {
2523 memory_region_transaction_commit();
2524 return false;
2525 }
2526
2527 new_interface = object_new("mmio_interface");
2528 qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
2529 qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
2530 qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
2531 qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
2532 qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
2533 object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
2534
2535 memory_region_transaction_commit();
2536 return true;
2537 }
2538
2539 typedef struct MMIOPtrInvalidate {
2540 MemoryRegion *mr;
2541 hwaddr offset;
2542 unsigned size;
2543 int busy;
2544 int allocated;
2545 } MMIOPtrInvalidate;
2546
2547 #define MAX_MMIO_INVALIDATE 10
2548 static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
2549
2550 static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
2551 run_on_cpu_data data)
2552 {
2553 MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
2554 MemoryRegion *mr = invalidate_data->mr;
2555 hwaddr offset = invalidate_data->offset;
2556 unsigned size = invalidate_data->size;
2557 MemoryRegionSection section = memory_region_find(mr, offset, size);
2558
2559 qemu_mutex_lock_iothread();
2560
2561 /* Reset dirty so this doesn't happen later. */
2562 cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
2563
2564 if (section.mr != mr) {
2565 /* memory_region_find add a ref on section.mr */
2566 memory_region_unref(section.mr);
2567 if (MMIO_INTERFACE(section.mr->owner)) {
2568 /* We found the interface just drop it. */
2569 object_property_set_bool(section.mr->owner, false, "realized",
2570 NULL);
2571 object_unref(section.mr->owner);
2572 object_unparent(section.mr->owner);
2573 }
2574 }
2575
2576 qemu_mutex_unlock_iothread();
2577
2578 if (invalidate_data->allocated) {
2579 g_free(invalidate_data);
2580 } else {
2581 invalidate_data->busy = 0;
2582 }
2583 }
2584
2585 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
2586 unsigned size)
2587 {
2588 size_t i;
2589 MMIOPtrInvalidate *invalidate_data = NULL;
2590
2591 for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
2592 if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
2593 invalidate_data = &mmio_ptr_invalidate_list[i];
2594 break;
2595 }
2596 }
2597
2598 if (!invalidate_data) {
2599 invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
2600 invalidate_data->allocated = 1;
2601 }
2602
2603 invalidate_data->mr = mr;
2604 invalidate_data->offset = offset;
2605 invalidate_data->size = size;
2606
2607 async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
2608 RUN_ON_CPU_HOST_PTR(invalidate_data));
2609 }
2610
2611 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2612 {
2613 memory_region_ref(root);
2614 memory_region_transaction_begin();
2615 as->ref_count = 1;
2616 as->root = root;
2617 as->malloced = false;
2618 as->current_map = g_new(FlatView, 1);
2619 flatview_init(as->current_map);
2620 as->ioeventfd_nb = 0;
2621 as->ioeventfds = NULL;
2622 QTAILQ_INIT(&as->listeners);
2623 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2624 as->name = g_strdup(name ? name : "anonymous");
2625 address_space_init_dispatch(as);
2626 memory_region_update_pending |= root->enabled;
2627 memory_region_transaction_commit();
2628 }
2629
2630 static void do_address_space_destroy(AddressSpace *as)
2631 {
2632 bool do_free = as->malloced;
2633
2634 address_space_destroy_dispatch(as);
2635 assert(QTAILQ_EMPTY(&as->listeners));
2636
2637 flatview_unref(as->current_map);
2638 g_free(as->name);
2639 g_free(as->ioeventfds);
2640 memory_region_unref(as->root);
2641 if (do_free) {
2642 g_free(as);
2643 }
2644 }
2645
2646 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2647 {
2648 AddressSpace *as;
2649
2650 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2651 if (root == as->root && as->malloced) {
2652 as->ref_count++;
2653 return as;
2654 }
2655 }
2656
2657 as = g_malloc0(sizeof *as);
2658 address_space_init(as, root, name);
2659 as->malloced = true;
2660 return as;
2661 }
2662
2663 void address_space_destroy(AddressSpace *as)
2664 {
2665 MemoryRegion *root = as->root;
2666
2667 as->ref_count--;
2668 if (as->ref_count) {
2669 return;
2670 }
2671 /* Flush out anything from MemoryListeners listening in on this */
2672 memory_region_transaction_begin();
2673 as->root = NULL;
2674 memory_region_transaction_commit();
2675 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2676 address_space_unregister(as);
2677
2678 /* At this point, as->dispatch and as->current_map are dummy
2679 * entries that the guest should never use. Wait for the old
2680 * values to expire before freeing the data.
2681 */
2682 as->root = root;
2683 call_rcu(as, do_address_space_destroy, rcu);
2684 }
2685
2686 static const char *memory_region_type(MemoryRegion *mr)
2687 {
2688 if (memory_region_is_ram_device(mr)) {
2689 return "ramd";
2690 } else if (memory_region_is_romd(mr)) {
2691 return "romd";
2692 } else if (memory_region_is_rom(mr)) {
2693 return "rom";
2694 } else if (memory_region_is_ram(mr)) {
2695 return "ram";
2696 } else {
2697 return "i/o";
2698 }
2699 }
2700
2701 typedef struct MemoryRegionList MemoryRegionList;
2702
2703 struct MemoryRegionList {
2704 const MemoryRegion *mr;
2705 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2706 };
2707
2708 typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2709
2710 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2711 int128_sub((size), int128_one())) : 0)
2712 #define MTREE_INDENT " "
2713
2714 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2715 const MemoryRegion *mr, unsigned int level,
2716 hwaddr base,
2717 MemoryRegionListHead *alias_print_queue)
2718 {
2719 MemoryRegionList *new_ml, *ml, *next_ml;
2720 MemoryRegionListHead submr_print_queue;
2721 const MemoryRegion *submr;
2722 unsigned int i;
2723 hwaddr cur_start, cur_end;
2724
2725 if (!mr) {
2726 return;
2727 }
2728
2729 for (i = 0; i < level; i++) {
2730 mon_printf(f, MTREE_INDENT);
2731 }
2732
2733 cur_start = base + mr->addr;
2734 cur_end = cur_start + MR_SIZE(mr->size);
2735
2736 /*
2737 * Try to detect overflow of memory region. This should never
2738 * happen normally. When it happens, we dump something to warn the
2739 * user who is observing this.
2740 */
2741 if (cur_start < base || cur_end < cur_start) {
2742 mon_printf(f, "[DETECTED OVERFLOW!] ");
2743 }
2744
2745 if (mr->alias) {
2746 MemoryRegionList *ml;
2747 bool found = false;
2748
2749 /* check if the alias is already in the queue */
2750 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2751 if (ml->mr == mr->alias) {
2752 found = true;
2753 }
2754 }
2755
2756 if (!found) {
2757 ml = g_new(MemoryRegionList, 1);
2758 ml->mr = mr->alias;
2759 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2760 }
2761 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2762 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2763 "-" TARGET_FMT_plx "%s\n",
2764 cur_start, cur_end,
2765 mr->priority,
2766 memory_region_type((MemoryRegion *)mr),
2767 memory_region_name(mr),
2768 memory_region_name(mr->alias),
2769 mr->alias_offset,
2770 mr->alias_offset + MR_SIZE(mr->size),
2771 mr->enabled ? "" : " [disabled]");
2772 } else {
2773 mon_printf(f,
2774 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
2775 cur_start, cur_end,
2776 mr->priority,
2777 memory_region_type((MemoryRegion *)mr),
2778 memory_region_name(mr),
2779 mr->enabled ? "" : " [disabled]");
2780 }
2781
2782 QTAILQ_INIT(&submr_print_queue);
2783
2784 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2785 new_ml = g_new(MemoryRegionList, 1);
2786 new_ml->mr = submr;
2787 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2788 if (new_ml->mr->addr < ml->mr->addr ||
2789 (new_ml->mr->addr == ml->mr->addr &&
2790 new_ml->mr->priority > ml->mr->priority)) {
2791 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2792 new_ml = NULL;
2793 break;
2794 }
2795 }
2796 if (new_ml) {
2797 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2798 }
2799 }
2800
2801 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2802 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2803 alias_print_queue);
2804 }
2805
2806 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2807 g_free(ml);
2808 }
2809 }
2810
2811 static void mtree_print_flatview(fprintf_function p, void *f,
2812 AddressSpace *as)
2813 {
2814 FlatView *view = address_space_get_flatview(as);
2815 FlatRange *range = &view->ranges[0];
2816 MemoryRegion *mr;
2817 int n = view->nr;
2818
2819 if (n <= 0) {
2820 p(f, MTREE_INDENT "No rendered FlatView for "
2821 "address space '%s'\n", as->name);
2822 flatview_unref(view);
2823 return;
2824 }
2825
2826 while (n--) {
2827 mr = range->mr;
2828 if (range->offset_in_region) {
2829 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2830 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx "\n",
2831 int128_get64(range->addr.start),
2832 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2833 mr->priority,
2834 range->readonly ? "rom" : memory_region_type(mr),
2835 memory_region_name(mr),
2836 range->offset_in_region);
2837 } else {
2838 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2839 TARGET_FMT_plx " (prio %d, %s): %s\n",
2840 int128_get64(range->addr.start),
2841 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2842 mr->priority,
2843 range->readonly ? "rom" : memory_region_type(mr),
2844 memory_region_name(mr));
2845 }
2846 range++;
2847 }
2848
2849 flatview_unref(view);
2850 }
2851
2852 void mtree_info(fprintf_function mon_printf, void *f, bool flatview)
2853 {
2854 MemoryRegionListHead ml_head;
2855 MemoryRegionList *ml, *ml2;
2856 AddressSpace *as;
2857
2858 if (flatview) {
2859 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2860 mon_printf(f, "address-space (flat view): %s\n", as->name);
2861 mtree_print_flatview(mon_printf, f, as);
2862 mon_printf(f, "\n");
2863 }
2864 return;
2865 }
2866
2867 QTAILQ_INIT(&ml_head);
2868
2869 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2870 mon_printf(f, "address-space: %s\n", as->name);
2871 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2872 mon_printf(f, "\n");
2873 }
2874
2875 /* print aliased regions */
2876 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
2877 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2878 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2879 mon_printf(f, "\n");
2880 }
2881
2882 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
2883 g_free(ml);
2884 }
2885 }
2886
2887 void memory_region_init_ram(MemoryRegion *mr,
2888 struct Object *owner,
2889 const char *name,
2890 uint64_t size,
2891 Error **errp)
2892 {
2893 DeviceState *owner_dev;
2894 Error *err = NULL;
2895
2896 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
2897 if (err) {
2898 error_propagate(errp, err);
2899 return;
2900 }
2901 /* This will assert if owner is neither NULL nor a DeviceState.
2902 * We only want the owner here for the purposes of defining a
2903 * unique name for migration. TODO: Ideally we should implement
2904 * a naming scheme for Objects which are not DeviceStates, in
2905 * which case we can relax this restriction.
2906 */
2907 owner_dev = DEVICE(owner);
2908 vmstate_register_ram(mr, owner_dev);
2909 }
2910
2911 void memory_region_init_rom(MemoryRegion *mr,
2912 struct Object *owner,
2913 const char *name,
2914 uint64_t size,
2915 Error **errp)
2916 {
2917 DeviceState *owner_dev;
2918 Error *err = NULL;
2919
2920 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
2921 if (err) {
2922 error_propagate(errp, err);
2923 return;
2924 }
2925 /* This will assert if owner is neither NULL nor a DeviceState.
2926 * We only want the owner here for the purposes of defining a
2927 * unique name for migration. TODO: Ideally we should implement
2928 * a naming scheme for Objects which are not DeviceStates, in
2929 * which case we can relax this restriction.
2930 */
2931 owner_dev = DEVICE(owner);
2932 vmstate_register_ram(mr, owner_dev);
2933 }
2934
2935 void memory_region_init_rom_device(MemoryRegion *mr,
2936 struct Object *owner,
2937 const MemoryRegionOps *ops,
2938 void *opaque,
2939 const char *name,
2940 uint64_t size,
2941 Error **errp)
2942 {
2943 DeviceState *owner_dev;
2944 Error *err = NULL;
2945
2946 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
2947 name, size, &err);
2948 if (err) {
2949 error_propagate(errp, err);
2950 return;
2951 }
2952 /* This will assert if owner is neither NULL nor a DeviceState.
2953 * We only want the owner here for the purposes of defining a
2954 * unique name for migration. TODO: Ideally we should implement
2955 * a naming scheme for Objects which are not DeviceStates, in
2956 * which case we can relax this restriction.
2957 */
2958 owner_dev = DEVICE(owner);
2959 vmstate_register_ram(mr, owner_dev);
2960 }
2961
2962 static const TypeInfo memory_region_info = {
2963 .parent = TYPE_OBJECT,
2964 .name = TYPE_MEMORY_REGION,
2965 .instance_size = sizeof(MemoryRegion),
2966 .instance_init = memory_region_initfn,
2967 .instance_finalize = memory_region_finalize,
2968 };
2969
2970 static const TypeInfo iommu_memory_region_info = {
2971 .parent = TYPE_MEMORY_REGION,
2972 .name = TYPE_IOMMU_MEMORY_REGION,
2973 .class_size = sizeof(IOMMUMemoryRegionClass),
2974 .instance_size = sizeof(IOMMUMemoryRegion),
2975 .instance_init = iommu_memory_region_initfn,
2976 .abstract = true,
2977 };
2978
2979 static void memory_register_types(void)
2980 {
2981 type_register_static(&memory_region_info);
2982 type_register_static(&iommu_memory_region_info);
2983 }
2984
2985 type_init(memory_register_types)