]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
mtree: remove write-only field
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 /* flat_view_mutex is taken around reading as->current_map; the critical
37 * section is extremely short, so I'm using a single mutex for every AS.
38 * We could also RCU for the read-side.
39 *
40 * The BQL is taken around transaction commits, hence both locks are taken
41 * while writing to as->current_map (with the BQL taken outside).
42 */
43 static QemuMutex flat_view_mutex;
44
45 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static void memory_init(void)
52 {
53 qemu_mutex_init(&flat_view_mutex);
54 }
55
56 typedef struct AddrRange AddrRange;
57
58 /*
59 * Note using signed integers limits us to physical addresses at most
60 * 63 bits wide. They are needed for negative offsetting in aliases
61 * (large MemoryRegion::alias_offset).
62 */
63 struct AddrRange {
64 Int128 start;
65 Int128 size;
66 };
67
68 static AddrRange addrrange_make(Int128 start, Int128 size)
69 {
70 return (AddrRange) { start, size };
71 }
72
73 static bool addrrange_equal(AddrRange r1, AddrRange r2)
74 {
75 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
76 }
77
78 static Int128 addrrange_end(AddrRange r)
79 {
80 return int128_add(r.start, r.size);
81 }
82
83 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
84 {
85 int128_addto(&range.start, delta);
86 return range;
87 }
88
89 static bool addrrange_contains(AddrRange range, Int128 addr)
90 {
91 return int128_ge(addr, range.start)
92 && int128_lt(addr, addrrange_end(range));
93 }
94
95 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
96 {
97 return addrrange_contains(r1, r2.start)
98 || addrrange_contains(r2, r1.start);
99 }
100
101 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
102 {
103 Int128 start = int128_max(r1.start, r2.start);
104 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
105 return addrrange_make(start, int128_sub(end, start));
106 }
107
108 enum ListenerDirection { Forward, Reverse };
109
110 static bool memory_listener_match(MemoryListener *listener,
111 MemoryRegionSection *section)
112 {
113 return !listener->address_space_filter
114 || listener->address_space_filter == section->address_space;
115 }
116
117 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
118 do { \
119 MemoryListener *_listener; \
120 \
121 switch (_direction) { \
122 case Forward: \
123 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
124 if (_listener->_callback) { \
125 _listener->_callback(_listener, ##_args); \
126 } \
127 } \
128 break; \
129 case Reverse: \
130 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
131 memory_listeners, link) { \
132 if (_listener->_callback) { \
133 _listener->_callback(_listener, ##_args); \
134 } \
135 } \
136 break; \
137 default: \
138 abort(); \
139 } \
140 } while (0)
141
142 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
143 do { \
144 MemoryListener *_listener; \
145 \
146 switch (_direction) { \
147 case Forward: \
148 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
149 if (_listener->_callback \
150 && memory_listener_match(_listener, _section)) { \
151 _listener->_callback(_listener, _section, ##_args); \
152 } \
153 } \
154 break; \
155 case Reverse: \
156 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
157 memory_listeners, link) { \
158 if (_listener->_callback \
159 && memory_listener_match(_listener, _section)) { \
160 _listener->_callback(_listener, _section, ##_args); \
161 } \
162 } \
163 break; \
164 default: \
165 abort(); \
166 } \
167 } while (0)
168
169 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
170 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
171 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
172 .mr = (fr)->mr, \
173 .address_space = (as), \
174 .offset_within_region = (fr)->offset_in_region, \
175 .size = (fr)->addr.size, \
176 .offset_within_address_space = int128_get64((fr)->addr.start), \
177 .readonly = (fr)->readonly, \
178 }))
179
180 struct CoalescedMemoryRange {
181 AddrRange addr;
182 QTAILQ_ENTRY(CoalescedMemoryRange) link;
183 };
184
185 struct MemoryRegionIoeventfd {
186 AddrRange addr;
187 bool match_data;
188 uint64_t data;
189 EventNotifier *e;
190 };
191
192 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
193 MemoryRegionIoeventfd b)
194 {
195 if (int128_lt(a.addr.start, b.addr.start)) {
196 return true;
197 } else if (int128_gt(a.addr.start, b.addr.start)) {
198 return false;
199 } else if (int128_lt(a.addr.size, b.addr.size)) {
200 return true;
201 } else if (int128_gt(a.addr.size, b.addr.size)) {
202 return false;
203 } else if (a.match_data < b.match_data) {
204 return true;
205 } else if (a.match_data > b.match_data) {
206 return false;
207 } else if (a.match_data) {
208 if (a.data < b.data) {
209 return true;
210 } else if (a.data > b.data) {
211 return false;
212 }
213 }
214 if (a.e < b.e) {
215 return true;
216 } else if (a.e > b.e) {
217 return false;
218 }
219 return false;
220 }
221
222 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
223 MemoryRegionIoeventfd b)
224 {
225 return !memory_region_ioeventfd_before(a, b)
226 && !memory_region_ioeventfd_before(b, a);
227 }
228
229 typedef struct FlatRange FlatRange;
230 typedef struct FlatView FlatView;
231
232 /* Range of memory in the global map. Addresses are absolute. */
233 struct FlatRange {
234 MemoryRegion *mr;
235 hwaddr offset_in_region;
236 AddrRange addr;
237 uint8_t dirty_log_mask;
238 bool romd_mode;
239 bool readonly;
240 };
241
242 /* Flattened global view of current active memory hierarchy. Kept in sorted
243 * order.
244 */
245 struct FlatView {
246 unsigned ref;
247 FlatRange *ranges;
248 unsigned nr;
249 unsigned nr_allocated;
250 };
251
252 typedef struct AddressSpaceOps AddressSpaceOps;
253
254 #define FOR_EACH_FLAT_RANGE(var, view) \
255 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
256
257 static bool flatrange_equal(FlatRange *a, FlatRange *b)
258 {
259 return a->mr == b->mr
260 && addrrange_equal(a->addr, b->addr)
261 && a->offset_in_region == b->offset_in_region
262 && a->romd_mode == b->romd_mode
263 && a->readonly == b->readonly;
264 }
265
266 static void flatview_init(FlatView *view)
267 {
268 view->ref = 1;
269 view->ranges = NULL;
270 view->nr = 0;
271 view->nr_allocated = 0;
272 }
273
274 /* Insert a range into a given position. Caller is responsible for maintaining
275 * sorting order.
276 */
277 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
278 {
279 if (view->nr == view->nr_allocated) {
280 view->nr_allocated = MAX(2 * view->nr, 10);
281 view->ranges = g_realloc(view->ranges,
282 view->nr_allocated * sizeof(*view->ranges));
283 }
284 memmove(view->ranges + pos + 1, view->ranges + pos,
285 (view->nr - pos) * sizeof(FlatRange));
286 view->ranges[pos] = *range;
287 memory_region_ref(range->mr);
288 ++view->nr;
289 }
290
291 static void flatview_destroy(FlatView *view)
292 {
293 int i;
294
295 for (i = 0; i < view->nr; i++) {
296 memory_region_unref(view->ranges[i].mr);
297 }
298 g_free(view->ranges);
299 g_free(view);
300 }
301
302 static void flatview_ref(FlatView *view)
303 {
304 atomic_inc(&view->ref);
305 }
306
307 static void flatview_unref(FlatView *view)
308 {
309 if (atomic_fetch_dec(&view->ref) == 1) {
310 flatview_destroy(view);
311 }
312 }
313
314 static bool can_merge(FlatRange *r1, FlatRange *r2)
315 {
316 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
317 && r1->mr == r2->mr
318 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
319 r1->addr.size),
320 int128_make64(r2->offset_in_region))
321 && r1->dirty_log_mask == r2->dirty_log_mask
322 && r1->romd_mode == r2->romd_mode
323 && r1->readonly == r2->readonly;
324 }
325
326 /* Attempt to simplify a view by merging adjacent ranges */
327 static void flatview_simplify(FlatView *view)
328 {
329 unsigned i, j;
330
331 i = 0;
332 while (i < view->nr) {
333 j = i + 1;
334 while (j < view->nr
335 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
336 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
337 ++j;
338 }
339 ++i;
340 memmove(&view->ranges[i], &view->ranges[j],
341 (view->nr - j) * sizeof(view->ranges[j]));
342 view->nr -= j - i;
343 }
344 }
345
346 static bool memory_region_big_endian(MemoryRegion *mr)
347 {
348 #ifdef TARGET_WORDS_BIGENDIAN
349 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
350 #else
351 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
352 #endif
353 }
354
355 static bool memory_region_wrong_endianness(MemoryRegion *mr)
356 {
357 #ifdef TARGET_WORDS_BIGENDIAN
358 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
359 #else
360 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
361 #endif
362 }
363
364 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
365 {
366 if (memory_region_wrong_endianness(mr)) {
367 switch (size) {
368 case 1:
369 break;
370 case 2:
371 *data = bswap16(*data);
372 break;
373 case 4:
374 *data = bswap32(*data);
375 break;
376 case 8:
377 *data = bswap64(*data);
378 break;
379 default:
380 abort();
381 }
382 }
383 }
384
385 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
386 hwaddr addr,
387 uint64_t *value,
388 unsigned size,
389 unsigned shift,
390 uint64_t mask)
391 {
392 uint64_t tmp;
393
394 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
395 trace_memory_region_ops_read(mr, addr, tmp, size);
396 *value |= (tmp & mask) << shift;
397 }
398
399 static void memory_region_read_accessor(MemoryRegion *mr,
400 hwaddr addr,
401 uint64_t *value,
402 unsigned size,
403 unsigned shift,
404 uint64_t mask)
405 {
406 uint64_t tmp;
407
408 if (mr->flush_coalesced_mmio) {
409 qemu_flush_coalesced_mmio_buffer();
410 }
411 tmp = mr->ops->read(mr->opaque, addr, size);
412 trace_memory_region_ops_read(mr, addr, tmp, size);
413 *value |= (tmp & mask) << shift;
414 }
415
416 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
417 hwaddr addr,
418 uint64_t *value,
419 unsigned size,
420 unsigned shift,
421 uint64_t mask)
422 {
423 uint64_t tmp;
424
425 tmp = (*value >> shift) & mask;
426 trace_memory_region_ops_write(mr, addr, tmp, size);
427 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
428 }
429
430 static void memory_region_write_accessor(MemoryRegion *mr,
431 hwaddr addr,
432 uint64_t *value,
433 unsigned size,
434 unsigned shift,
435 uint64_t mask)
436 {
437 uint64_t tmp;
438
439 if (mr->flush_coalesced_mmio) {
440 qemu_flush_coalesced_mmio_buffer();
441 }
442 tmp = (*value >> shift) & mask;
443 trace_memory_region_ops_write(mr, addr, tmp, size);
444 mr->ops->write(mr->opaque, addr, tmp, size);
445 }
446
447 static void access_with_adjusted_size(hwaddr addr,
448 uint64_t *value,
449 unsigned size,
450 unsigned access_size_min,
451 unsigned access_size_max,
452 void (*access)(MemoryRegion *mr,
453 hwaddr addr,
454 uint64_t *value,
455 unsigned size,
456 unsigned shift,
457 uint64_t mask),
458 MemoryRegion *mr)
459 {
460 uint64_t access_mask;
461 unsigned access_size;
462 unsigned i;
463
464 if (!access_size_min) {
465 access_size_min = 1;
466 }
467 if (!access_size_max) {
468 access_size_max = 4;
469 }
470
471 /* FIXME: support unaligned access? */
472 access_size = MAX(MIN(size, access_size_max), access_size_min);
473 access_mask = -1ULL >> (64 - access_size * 8);
474 if (memory_region_big_endian(mr)) {
475 for (i = 0; i < size; i += access_size) {
476 access(mr, addr + i, value, access_size,
477 (size - access_size - i) * 8, access_mask);
478 }
479 } else {
480 for (i = 0; i < size; i += access_size) {
481 access(mr, addr + i, value, access_size, i * 8, access_mask);
482 }
483 }
484 }
485
486 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
487 {
488 AddressSpace *as;
489
490 while (mr->container) {
491 mr = mr->container;
492 }
493 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
494 if (mr == as->root) {
495 return as;
496 }
497 }
498 return NULL;
499 }
500
501 /* Render a memory region into the global view. Ranges in @view obscure
502 * ranges in @mr.
503 */
504 static void render_memory_region(FlatView *view,
505 MemoryRegion *mr,
506 Int128 base,
507 AddrRange clip,
508 bool readonly)
509 {
510 MemoryRegion *subregion;
511 unsigned i;
512 hwaddr offset_in_region;
513 Int128 remain;
514 Int128 now;
515 FlatRange fr;
516 AddrRange tmp;
517
518 if (!mr->enabled) {
519 return;
520 }
521
522 int128_addto(&base, int128_make64(mr->addr));
523 readonly |= mr->readonly;
524
525 tmp = addrrange_make(base, mr->size);
526
527 if (!addrrange_intersects(tmp, clip)) {
528 return;
529 }
530
531 clip = addrrange_intersection(tmp, clip);
532
533 if (mr->alias) {
534 int128_subfrom(&base, int128_make64(mr->alias->addr));
535 int128_subfrom(&base, int128_make64(mr->alias_offset));
536 render_memory_region(view, mr->alias, base, clip, readonly);
537 return;
538 }
539
540 /* Render subregions in priority order. */
541 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
542 render_memory_region(view, subregion, base, clip, readonly);
543 }
544
545 if (!mr->terminates) {
546 return;
547 }
548
549 offset_in_region = int128_get64(int128_sub(clip.start, base));
550 base = clip.start;
551 remain = clip.size;
552
553 fr.mr = mr;
554 fr.dirty_log_mask = mr->dirty_log_mask;
555 fr.romd_mode = mr->romd_mode;
556 fr.readonly = readonly;
557
558 /* Render the region itself into any gaps left by the current view. */
559 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
560 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
561 continue;
562 }
563 if (int128_lt(base, view->ranges[i].addr.start)) {
564 now = int128_min(remain,
565 int128_sub(view->ranges[i].addr.start, base));
566 fr.offset_in_region = offset_in_region;
567 fr.addr = addrrange_make(base, now);
568 flatview_insert(view, i, &fr);
569 ++i;
570 int128_addto(&base, now);
571 offset_in_region += int128_get64(now);
572 int128_subfrom(&remain, now);
573 }
574 now = int128_sub(int128_min(int128_add(base, remain),
575 addrrange_end(view->ranges[i].addr)),
576 base);
577 int128_addto(&base, now);
578 offset_in_region += int128_get64(now);
579 int128_subfrom(&remain, now);
580 }
581 if (int128_nz(remain)) {
582 fr.offset_in_region = offset_in_region;
583 fr.addr = addrrange_make(base, remain);
584 flatview_insert(view, i, &fr);
585 }
586 }
587
588 /* Render a memory topology into a list of disjoint absolute ranges. */
589 static FlatView *generate_memory_topology(MemoryRegion *mr)
590 {
591 FlatView *view;
592
593 view = g_new(FlatView, 1);
594 flatview_init(view);
595
596 if (mr) {
597 render_memory_region(view, mr, int128_zero(),
598 addrrange_make(int128_zero(), int128_2_64()), false);
599 }
600 flatview_simplify(view);
601
602 return view;
603 }
604
605 static void address_space_add_del_ioeventfds(AddressSpace *as,
606 MemoryRegionIoeventfd *fds_new,
607 unsigned fds_new_nb,
608 MemoryRegionIoeventfd *fds_old,
609 unsigned fds_old_nb)
610 {
611 unsigned iold, inew;
612 MemoryRegionIoeventfd *fd;
613 MemoryRegionSection section;
614
615 /* Generate a symmetric difference of the old and new fd sets, adding
616 * and deleting as necessary.
617 */
618
619 iold = inew = 0;
620 while (iold < fds_old_nb || inew < fds_new_nb) {
621 if (iold < fds_old_nb
622 && (inew == fds_new_nb
623 || memory_region_ioeventfd_before(fds_old[iold],
624 fds_new[inew]))) {
625 fd = &fds_old[iold];
626 section = (MemoryRegionSection) {
627 .address_space = as,
628 .offset_within_address_space = int128_get64(fd->addr.start),
629 .size = fd->addr.size,
630 };
631 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
632 fd->match_data, fd->data, fd->e);
633 ++iold;
634 } else if (inew < fds_new_nb
635 && (iold == fds_old_nb
636 || memory_region_ioeventfd_before(fds_new[inew],
637 fds_old[iold]))) {
638 fd = &fds_new[inew];
639 section = (MemoryRegionSection) {
640 .address_space = as,
641 .offset_within_address_space = int128_get64(fd->addr.start),
642 .size = fd->addr.size,
643 };
644 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
645 fd->match_data, fd->data, fd->e);
646 ++inew;
647 } else {
648 ++iold;
649 ++inew;
650 }
651 }
652 }
653
654 static FlatView *address_space_get_flatview(AddressSpace *as)
655 {
656 FlatView *view;
657
658 qemu_mutex_lock(&flat_view_mutex);
659 view = as->current_map;
660 flatview_ref(view);
661 qemu_mutex_unlock(&flat_view_mutex);
662 return view;
663 }
664
665 static void address_space_update_ioeventfds(AddressSpace *as)
666 {
667 FlatView *view;
668 FlatRange *fr;
669 unsigned ioeventfd_nb = 0;
670 MemoryRegionIoeventfd *ioeventfds = NULL;
671 AddrRange tmp;
672 unsigned i;
673
674 view = address_space_get_flatview(as);
675 FOR_EACH_FLAT_RANGE(fr, view) {
676 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
677 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
678 int128_sub(fr->addr.start,
679 int128_make64(fr->offset_in_region)));
680 if (addrrange_intersects(fr->addr, tmp)) {
681 ++ioeventfd_nb;
682 ioeventfds = g_realloc(ioeventfds,
683 ioeventfd_nb * sizeof(*ioeventfds));
684 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
685 ioeventfds[ioeventfd_nb-1].addr = tmp;
686 }
687 }
688 }
689
690 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
691 as->ioeventfds, as->ioeventfd_nb);
692
693 g_free(as->ioeventfds);
694 as->ioeventfds = ioeventfds;
695 as->ioeventfd_nb = ioeventfd_nb;
696 flatview_unref(view);
697 }
698
699 static void address_space_update_topology_pass(AddressSpace *as,
700 const FlatView *old_view,
701 const FlatView *new_view,
702 bool adding)
703 {
704 unsigned iold, inew;
705 FlatRange *frold, *frnew;
706
707 /* Generate a symmetric difference of the old and new memory maps.
708 * Kill ranges in the old map, and instantiate ranges in the new map.
709 */
710 iold = inew = 0;
711 while (iold < old_view->nr || inew < new_view->nr) {
712 if (iold < old_view->nr) {
713 frold = &old_view->ranges[iold];
714 } else {
715 frold = NULL;
716 }
717 if (inew < new_view->nr) {
718 frnew = &new_view->ranges[inew];
719 } else {
720 frnew = NULL;
721 }
722
723 if (frold
724 && (!frnew
725 || int128_lt(frold->addr.start, frnew->addr.start)
726 || (int128_eq(frold->addr.start, frnew->addr.start)
727 && !flatrange_equal(frold, frnew)))) {
728 /* In old but not in new, or in both but attributes changed. */
729
730 if (!adding) {
731 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
732 }
733
734 ++iold;
735 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
736 /* In both and unchanged (except logging may have changed) */
737
738 if (adding) {
739 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
740 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
741 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
742 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
743 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
744 }
745 }
746
747 ++iold;
748 ++inew;
749 } else {
750 /* In new */
751
752 if (adding) {
753 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
754 }
755
756 ++inew;
757 }
758 }
759 }
760
761
762 static void address_space_update_topology(AddressSpace *as)
763 {
764 FlatView *old_view = address_space_get_flatview(as);
765 FlatView *new_view = generate_memory_topology(as->root);
766
767 address_space_update_topology_pass(as, old_view, new_view, false);
768 address_space_update_topology_pass(as, old_view, new_view, true);
769
770 qemu_mutex_lock(&flat_view_mutex);
771 flatview_unref(as->current_map);
772 as->current_map = new_view;
773 qemu_mutex_unlock(&flat_view_mutex);
774
775 /* Note that all the old MemoryRegions are still alive up to this
776 * point. This relieves most MemoryListeners from the need to
777 * ref/unref the MemoryRegions they get---unless they use them
778 * outside the iothread mutex, in which case precise reference
779 * counting is necessary.
780 */
781 flatview_unref(old_view);
782
783 address_space_update_ioeventfds(as);
784 }
785
786 void memory_region_transaction_begin(void)
787 {
788 qemu_flush_coalesced_mmio_buffer();
789 ++memory_region_transaction_depth;
790 }
791
792 static void memory_region_clear_pending(void)
793 {
794 memory_region_update_pending = false;
795 ioeventfd_update_pending = false;
796 }
797
798 void memory_region_transaction_commit(void)
799 {
800 AddressSpace *as;
801
802 assert(memory_region_transaction_depth);
803 --memory_region_transaction_depth;
804 if (!memory_region_transaction_depth) {
805 if (memory_region_update_pending) {
806 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
807
808 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
809 address_space_update_topology(as);
810 }
811
812 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
813 } else if (ioeventfd_update_pending) {
814 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
815 address_space_update_ioeventfds(as);
816 }
817 }
818 memory_region_clear_pending();
819 }
820 }
821
822 static void memory_region_destructor_none(MemoryRegion *mr)
823 {
824 }
825
826 static void memory_region_destructor_ram(MemoryRegion *mr)
827 {
828 qemu_ram_free(mr->ram_addr);
829 }
830
831 static void memory_region_destructor_alias(MemoryRegion *mr)
832 {
833 memory_region_unref(mr->alias);
834 }
835
836 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
837 {
838 qemu_ram_free_from_ptr(mr->ram_addr);
839 }
840
841 static void memory_region_destructor_rom_device(MemoryRegion *mr)
842 {
843 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
844 }
845
846 static bool memory_region_need_escape(char c)
847 {
848 return c == '/' || c == '[' || c == '\\' || c == ']';
849 }
850
851 static char *memory_region_escape_name(const char *name)
852 {
853 const char *p;
854 char *escaped, *q;
855 uint8_t c;
856 size_t bytes = 0;
857
858 for (p = name; *p; p++) {
859 bytes += memory_region_need_escape(*p) ? 4 : 1;
860 }
861 if (bytes == p - name) {
862 return g_memdup(name, bytes + 1);
863 }
864
865 escaped = g_malloc(bytes + 1);
866 for (p = name, q = escaped; *p; p++) {
867 c = *p;
868 if (unlikely(memory_region_need_escape(c))) {
869 *q++ = '\\';
870 *q++ = 'x';
871 *q++ = "0123456789abcdef"[c >> 4];
872 c = "0123456789abcdef"[c & 15];
873 }
874 *q++ = c;
875 }
876 *q = 0;
877 return escaped;
878 }
879
880 static void object_property_add_child_array(Object *owner,
881 const char *name,
882 Object *child)
883 {
884 int i;
885 char *base_name = memory_region_escape_name(name);
886
887 for (i = 0; ; i++) {
888 char *full_name = g_strdup_printf("%s[%d]", base_name, i);
889 Error *local_err = NULL;
890
891 object_property_add_child(owner, full_name, child, &local_err);
892 g_free(full_name);
893 if (!local_err) {
894 break;
895 }
896
897 error_free(local_err);
898 }
899
900 g_free(base_name);
901 }
902
903
904 void memory_region_init(MemoryRegion *mr,
905 Object *owner,
906 const char *name,
907 uint64_t size)
908 {
909 if (!owner) {
910 owner = qdev_get_machine();
911 }
912
913 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
914 mr->size = int128_make64(size);
915 if (size == UINT64_MAX) {
916 mr->size = int128_2_64();
917 }
918
919 if (name) {
920 object_property_add_child_array(owner, name, OBJECT(mr));
921 object_unref(OBJECT(mr));
922 }
923 }
924
925 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
926 const char *name, Error **errp)
927 {
928 MemoryRegion *mr = MEMORY_REGION(obj);
929 uint64_t value = mr->addr;
930
931 visit_type_uint64(v, &value, name, errp);
932 }
933
934 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
935 const char *name, Error **errp)
936 {
937 MemoryRegion *mr = MEMORY_REGION(obj);
938 gchar *path = (gchar *)"";
939
940 if (mr->container) {
941 path = object_get_canonical_path(OBJECT(mr->container));
942 }
943 visit_type_str(v, &path, name, errp);
944 if (mr->container) {
945 g_free(path);
946 }
947 }
948
949 static Object *memory_region_resolve_container(Object *obj, void *opaque,
950 const char *part)
951 {
952 MemoryRegion *mr = MEMORY_REGION(obj);
953
954 return OBJECT(mr->container);
955 }
956
957 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
958 const char *name, Error **errp)
959 {
960 MemoryRegion *mr = MEMORY_REGION(obj);
961 int32_t value = mr->priority;
962
963 visit_type_int32(v, &value, name, errp);
964 }
965
966 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
967 {
968 MemoryRegion *mr = MEMORY_REGION(obj);
969
970 return mr->may_overlap;
971 }
972
973 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
974 const char *name, Error **errp)
975 {
976 MemoryRegion *mr = MEMORY_REGION(obj);
977 uint64_t value = memory_region_size(mr);
978
979 visit_type_uint64(v, &value, name, errp);
980 }
981
982 static void memory_region_initfn(Object *obj)
983 {
984 MemoryRegion *mr = MEMORY_REGION(obj);
985 ObjectProperty *op;
986
987 mr->ops = &unassigned_mem_ops;
988 mr->enabled = true;
989 mr->romd_mode = true;
990 mr->destructor = memory_region_destructor_none;
991 QTAILQ_INIT(&mr->subregions);
992 QTAILQ_INIT(&mr->coalesced);
993
994 op = object_property_add(OBJECT(mr), "container",
995 "link<" TYPE_MEMORY_REGION ">",
996 memory_region_get_container,
997 NULL, /* memory_region_set_container */
998 NULL, NULL, &error_abort);
999 op->resolve = memory_region_resolve_container;
1000
1001 object_property_add(OBJECT(mr), "addr", "uint64",
1002 memory_region_get_addr,
1003 NULL, /* memory_region_set_addr */
1004 NULL, NULL, &error_abort);
1005 object_property_add(OBJECT(mr), "priority", "uint32",
1006 memory_region_get_priority,
1007 NULL, /* memory_region_set_priority */
1008 NULL, NULL, &error_abort);
1009 object_property_add_bool(OBJECT(mr), "may-overlap",
1010 memory_region_get_may_overlap,
1011 NULL, /* memory_region_set_may_overlap */
1012 &error_abort);
1013 object_property_add(OBJECT(mr), "size", "uint64",
1014 memory_region_get_size,
1015 NULL, /* memory_region_set_size, */
1016 NULL, NULL, &error_abort);
1017 }
1018
1019 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1020 unsigned size)
1021 {
1022 #ifdef DEBUG_UNASSIGNED
1023 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1024 #endif
1025 if (current_cpu != NULL) {
1026 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1027 }
1028 return 0;
1029 }
1030
1031 static void unassigned_mem_write(void *opaque, hwaddr addr,
1032 uint64_t val, unsigned size)
1033 {
1034 #ifdef DEBUG_UNASSIGNED
1035 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1036 #endif
1037 if (current_cpu != NULL) {
1038 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1039 }
1040 }
1041
1042 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1043 unsigned size, bool is_write)
1044 {
1045 return false;
1046 }
1047
1048 const MemoryRegionOps unassigned_mem_ops = {
1049 .valid.accepts = unassigned_mem_accepts,
1050 .endianness = DEVICE_NATIVE_ENDIAN,
1051 };
1052
1053 bool memory_region_access_valid(MemoryRegion *mr,
1054 hwaddr addr,
1055 unsigned size,
1056 bool is_write)
1057 {
1058 int access_size_min, access_size_max;
1059 int access_size, i;
1060
1061 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1062 return false;
1063 }
1064
1065 if (!mr->ops->valid.accepts) {
1066 return true;
1067 }
1068
1069 access_size_min = mr->ops->valid.min_access_size;
1070 if (!mr->ops->valid.min_access_size) {
1071 access_size_min = 1;
1072 }
1073
1074 access_size_max = mr->ops->valid.max_access_size;
1075 if (!mr->ops->valid.max_access_size) {
1076 access_size_max = 4;
1077 }
1078
1079 access_size = MAX(MIN(size, access_size_max), access_size_min);
1080 for (i = 0; i < size; i += access_size) {
1081 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1082 is_write)) {
1083 return false;
1084 }
1085 }
1086
1087 return true;
1088 }
1089
1090 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1091 hwaddr addr,
1092 unsigned size)
1093 {
1094 uint64_t data = 0;
1095
1096 if (mr->ops->read) {
1097 access_with_adjusted_size(addr, &data, size,
1098 mr->ops->impl.min_access_size,
1099 mr->ops->impl.max_access_size,
1100 memory_region_read_accessor, mr);
1101 } else {
1102 access_with_adjusted_size(addr, &data, size, 1, 4,
1103 memory_region_oldmmio_read_accessor, mr);
1104 }
1105
1106 return data;
1107 }
1108
1109 static bool memory_region_dispatch_read(MemoryRegion *mr,
1110 hwaddr addr,
1111 uint64_t *pval,
1112 unsigned size)
1113 {
1114 if (!memory_region_access_valid(mr, addr, size, false)) {
1115 *pval = unassigned_mem_read(mr, addr, size);
1116 return true;
1117 }
1118
1119 *pval = memory_region_dispatch_read1(mr, addr, size);
1120 adjust_endianness(mr, pval, size);
1121 return false;
1122 }
1123
1124 static bool memory_region_dispatch_write(MemoryRegion *mr,
1125 hwaddr addr,
1126 uint64_t data,
1127 unsigned size)
1128 {
1129 if (!memory_region_access_valid(mr, addr, size, true)) {
1130 unassigned_mem_write(mr, addr, data, size);
1131 return true;
1132 }
1133
1134 adjust_endianness(mr, &data, size);
1135
1136 if (mr->ops->write) {
1137 access_with_adjusted_size(addr, &data, size,
1138 mr->ops->impl.min_access_size,
1139 mr->ops->impl.max_access_size,
1140 memory_region_write_accessor, mr);
1141 } else {
1142 access_with_adjusted_size(addr, &data, size, 1, 4,
1143 memory_region_oldmmio_write_accessor, mr);
1144 }
1145 return false;
1146 }
1147
1148 void memory_region_init_io(MemoryRegion *mr,
1149 Object *owner,
1150 const MemoryRegionOps *ops,
1151 void *opaque,
1152 const char *name,
1153 uint64_t size)
1154 {
1155 memory_region_init(mr, owner, name, size);
1156 mr->ops = ops;
1157 mr->opaque = opaque;
1158 mr->terminates = true;
1159 mr->ram_addr = ~(ram_addr_t)0;
1160 }
1161
1162 void memory_region_init_ram(MemoryRegion *mr,
1163 Object *owner,
1164 const char *name,
1165 uint64_t size)
1166 {
1167 memory_region_init(mr, owner, name, size);
1168 mr->ram = true;
1169 mr->terminates = true;
1170 mr->destructor = memory_region_destructor_ram;
1171 mr->ram_addr = qemu_ram_alloc(size, mr);
1172 }
1173
1174 #ifdef __linux__
1175 void memory_region_init_ram_from_file(MemoryRegion *mr,
1176 struct Object *owner,
1177 const char *name,
1178 uint64_t size,
1179 bool share,
1180 const char *path,
1181 Error **errp)
1182 {
1183 memory_region_init(mr, owner, name, size);
1184 mr->ram = true;
1185 mr->terminates = true;
1186 mr->destructor = memory_region_destructor_ram;
1187 mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1188 }
1189 #endif
1190
1191 void memory_region_init_ram_ptr(MemoryRegion *mr,
1192 Object *owner,
1193 const char *name,
1194 uint64_t size,
1195 void *ptr)
1196 {
1197 memory_region_init(mr, owner, name, size);
1198 mr->ram = true;
1199 mr->terminates = true;
1200 mr->destructor = memory_region_destructor_ram_from_ptr;
1201 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1202 }
1203
1204 void memory_region_init_alias(MemoryRegion *mr,
1205 Object *owner,
1206 const char *name,
1207 MemoryRegion *orig,
1208 hwaddr offset,
1209 uint64_t size)
1210 {
1211 memory_region_init(mr, owner, name, size);
1212 memory_region_ref(orig);
1213 mr->destructor = memory_region_destructor_alias;
1214 mr->alias = orig;
1215 mr->alias_offset = offset;
1216 }
1217
1218 void memory_region_init_rom_device(MemoryRegion *mr,
1219 Object *owner,
1220 const MemoryRegionOps *ops,
1221 void *opaque,
1222 const char *name,
1223 uint64_t size)
1224 {
1225 memory_region_init(mr, owner, name, size);
1226 mr->ops = ops;
1227 mr->opaque = opaque;
1228 mr->terminates = true;
1229 mr->rom_device = true;
1230 mr->destructor = memory_region_destructor_rom_device;
1231 mr->ram_addr = qemu_ram_alloc(size, mr);
1232 }
1233
1234 void memory_region_init_iommu(MemoryRegion *mr,
1235 Object *owner,
1236 const MemoryRegionIOMMUOps *ops,
1237 const char *name,
1238 uint64_t size)
1239 {
1240 memory_region_init(mr, owner, name, size);
1241 mr->iommu_ops = ops,
1242 mr->terminates = true; /* then re-forwards */
1243 notifier_list_init(&mr->iommu_notify);
1244 }
1245
1246 void memory_region_init_reservation(MemoryRegion *mr,
1247 Object *owner,
1248 const char *name,
1249 uint64_t size)
1250 {
1251 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1252 }
1253
1254 static void memory_region_finalize(Object *obj)
1255 {
1256 MemoryRegion *mr = MEMORY_REGION(obj);
1257
1258 assert(QTAILQ_EMPTY(&mr->subregions));
1259 assert(memory_region_transaction_depth == 0);
1260 mr->destructor(mr);
1261 memory_region_clear_coalescing(mr);
1262 g_free(mr->ioeventfds);
1263 }
1264
1265 Object *memory_region_owner(MemoryRegion *mr)
1266 {
1267 Object *obj = OBJECT(mr);
1268 return obj->parent;
1269 }
1270
1271 void memory_region_ref(MemoryRegion *mr)
1272 {
1273 /* MMIO callbacks most likely will access data that belongs
1274 * to the owner, hence the need to ref/unref the owner whenever
1275 * the memory region is in use.
1276 *
1277 * The memory region is a child of its owner. As long as the
1278 * owner doesn't call unparent itself on the memory region,
1279 * ref-ing the owner will also keep the memory region alive.
1280 * Memory regions without an owner are supposed to never go away,
1281 * but we still ref/unref them for debugging purposes.
1282 */
1283 Object *obj = OBJECT(mr);
1284 if (obj && obj->parent) {
1285 object_ref(obj->parent);
1286 } else {
1287 object_ref(obj);
1288 }
1289 }
1290
1291 void memory_region_unref(MemoryRegion *mr)
1292 {
1293 Object *obj = OBJECT(mr);
1294 if (obj && obj->parent) {
1295 object_unref(obj->parent);
1296 } else {
1297 object_unref(obj);
1298 }
1299 }
1300
1301 uint64_t memory_region_size(MemoryRegion *mr)
1302 {
1303 if (int128_eq(mr->size, int128_2_64())) {
1304 return UINT64_MAX;
1305 }
1306 return int128_get64(mr->size);
1307 }
1308
1309 const char *memory_region_name(const MemoryRegion *mr)
1310 {
1311 return object_get_canonical_path_component(OBJECT(mr));
1312 }
1313
1314 bool memory_region_is_ram(MemoryRegion *mr)
1315 {
1316 return mr->ram;
1317 }
1318
1319 bool memory_region_is_logging(MemoryRegion *mr)
1320 {
1321 return mr->dirty_log_mask;
1322 }
1323
1324 bool memory_region_is_rom(MemoryRegion *mr)
1325 {
1326 return mr->ram && mr->readonly;
1327 }
1328
1329 bool memory_region_is_iommu(MemoryRegion *mr)
1330 {
1331 return mr->iommu_ops;
1332 }
1333
1334 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1335 {
1336 notifier_list_add(&mr->iommu_notify, n);
1337 }
1338
1339 void memory_region_unregister_iommu_notifier(Notifier *n)
1340 {
1341 notifier_remove(n);
1342 }
1343
1344 void memory_region_notify_iommu(MemoryRegion *mr,
1345 IOMMUTLBEntry entry)
1346 {
1347 assert(memory_region_is_iommu(mr));
1348 notifier_list_notify(&mr->iommu_notify, &entry);
1349 }
1350
1351 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1352 {
1353 uint8_t mask = 1 << client;
1354
1355 memory_region_transaction_begin();
1356 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1357 memory_region_update_pending |= mr->enabled;
1358 memory_region_transaction_commit();
1359 }
1360
1361 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1362 hwaddr size, unsigned client)
1363 {
1364 assert(mr->terminates);
1365 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1366 }
1367
1368 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1369 hwaddr size)
1370 {
1371 assert(mr->terminates);
1372 cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1373 }
1374
1375 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1376 hwaddr size, unsigned client)
1377 {
1378 bool ret;
1379 assert(mr->terminates);
1380 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1381 if (ret) {
1382 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1383 }
1384 return ret;
1385 }
1386
1387
1388 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1389 {
1390 AddressSpace *as;
1391 FlatRange *fr;
1392
1393 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1394 FlatView *view = address_space_get_flatview(as);
1395 FOR_EACH_FLAT_RANGE(fr, view) {
1396 if (fr->mr == mr) {
1397 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1398 }
1399 }
1400 flatview_unref(view);
1401 }
1402 }
1403
1404 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1405 {
1406 if (mr->readonly != readonly) {
1407 memory_region_transaction_begin();
1408 mr->readonly = readonly;
1409 memory_region_update_pending |= mr->enabled;
1410 memory_region_transaction_commit();
1411 }
1412 }
1413
1414 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1415 {
1416 if (mr->romd_mode != romd_mode) {
1417 memory_region_transaction_begin();
1418 mr->romd_mode = romd_mode;
1419 memory_region_update_pending |= mr->enabled;
1420 memory_region_transaction_commit();
1421 }
1422 }
1423
1424 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1425 hwaddr size, unsigned client)
1426 {
1427 assert(mr->terminates);
1428 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1429 }
1430
1431 int memory_region_get_fd(MemoryRegion *mr)
1432 {
1433 if (mr->alias) {
1434 return memory_region_get_fd(mr->alias);
1435 }
1436
1437 assert(mr->terminates);
1438
1439 return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1440 }
1441
1442 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1443 {
1444 if (mr->alias) {
1445 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1446 }
1447
1448 assert(mr->terminates);
1449
1450 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1451 }
1452
1453 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1454 {
1455 FlatView *view;
1456 FlatRange *fr;
1457 CoalescedMemoryRange *cmr;
1458 AddrRange tmp;
1459 MemoryRegionSection section;
1460
1461 view = address_space_get_flatview(as);
1462 FOR_EACH_FLAT_RANGE(fr, view) {
1463 if (fr->mr == mr) {
1464 section = (MemoryRegionSection) {
1465 .address_space = as,
1466 .offset_within_address_space = int128_get64(fr->addr.start),
1467 .size = fr->addr.size,
1468 };
1469
1470 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1471 int128_get64(fr->addr.start),
1472 int128_get64(fr->addr.size));
1473 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1474 tmp = addrrange_shift(cmr->addr,
1475 int128_sub(fr->addr.start,
1476 int128_make64(fr->offset_in_region)));
1477 if (!addrrange_intersects(tmp, fr->addr)) {
1478 continue;
1479 }
1480 tmp = addrrange_intersection(tmp, fr->addr);
1481 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1482 int128_get64(tmp.start),
1483 int128_get64(tmp.size));
1484 }
1485 }
1486 }
1487 flatview_unref(view);
1488 }
1489
1490 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1491 {
1492 AddressSpace *as;
1493
1494 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1495 memory_region_update_coalesced_range_as(mr, as);
1496 }
1497 }
1498
1499 void memory_region_set_coalescing(MemoryRegion *mr)
1500 {
1501 memory_region_clear_coalescing(mr);
1502 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1503 }
1504
1505 void memory_region_add_coalescing(MemoryRegion *mr,
1506 hwaddr offset,
1507 uint64_t size)
1508 {
1509 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1510
1511 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1512 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1513 memory_region_update_coalesced_range(mr);
1514 memory_region_set_flush_coalesced(mr);
1515 }
1516
1517 void memory_region_clear_coalescing(MemoryRegion *mr)
1518 {
1519 CoalescedMemoryRange *cmr;
1520 bool updated = false;
1521
1522 qemu_flush_coalesced_mmio_buffer();
1523 mr->flush_coalesced_mmio = false;
1524
1525 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1526 cmr = QTAILQ_FIRST(&mr->coalesced);
1527 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1528 g_free(cmr);
1529 updated = true;
1530 }
1531
1532 if (updated) {
1533 memory_region_update_coalesced_range(mr);
1534 }
1535 }
1536
1537 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1538 {
1539 mr->flush_coalesced_mmio = true;
1540 }
1541
1542 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1543 {
1544 qemu_flush_coalesced_mmio_buffer();
1545 if (QTAILQ_EMPTY(&mr->coalesced)) {
1546 mr->flush_coalesced_mmio = false;
1547 }
1548 }
1549
1550 void memory_region_add_eventfd(MemoryRegion *mr,
1551 hwaddr addr,
1552 unsigned size,
1553 bool match_data,
1554 uint64_t data,
1555 EventNotifier *e)
1556 {
1557 MemoryRegionIoeventfd mrfd = {
1558 .addr.start = int128_make64(addr),
1559 .addr.size = int128_make64(size),
1560 .match_data = match_data,
1561 .data = data,
1562 .e = e,
1563 };
1564 unsigned i;
1565
1566 adjust_endianness(mr, &mrfd.data, size);
1567 memory_region_transaction_begin();
1568 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1569 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1570 break;
1571 }
1572 }
1573 ++mr->ioeventfd_nb;
1574 mr->ioeventfds = g_realloc(mr->ioeventfds,
1575 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1576 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1577 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1578 mr->ioeventfds[i] = mrfd;
1579 ioeventfd_update_pending |= mr->enabled;
1580 memory_region_transaction_commit();
1581 }
1582
1583 void memory_region_del_eventfd(MemoryRegion *mr,
1584 hwaddr addr,
1585 unsigned size,
1586 bool match_data,
1587 uint64_t data,
1588 EventNotifier *e)
1589 {
1590 MemoryRegionIoeventfd mrfd = {
1591 .addr.start = int128_make64(addr),
1592 .addr.size = int128_make64(size),
1593 .match_data = match_data,
1594 .data = data,
1595 .e = e,
1596 };
1597 unsigned i;
1598
1599 adjust_endianness(mr, &mrfd.data, size);
1600 memory_region_transaction_begin();
1601 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1602 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1603 break;
1604 }
1605 }
1606 assert(i != mr->ioeventfd_nb);
1607 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1608 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1609 --mr->ioeventfd_nb;
1610 mr->ioeventfds = g_realloc(mr->ioeventfds,
1611 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1612 ioeventfd_update_pending |= mr->enabled;
1613 memory_region_transaction_commit();
1614 }
1615
1616 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1617 {
1618 hwaddr offset = subregion->addr;
1619 MemoryRegion *mr = subregion->container;
1620 MemoryRegion *other;
1621
1622 memory_region_transaction_begin();
1623
1624 memory_region_ref(subregion);
1625 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1626 if (subregion->may_overlap || other->may_overlap) {
1627 continue;
1628 }
1629 if (int128_ge(int128_make64(offset),
1630 int128_add(int128_make64(other->addr), other->size))
1631 || int128_le(int128_add(int128_make64(offset), subregion->size),
1632 int128_make64(other->addr))) {
1633 continue;
1634 }
1635 #if 0
1636 printf("warning: subregion collision %llx/%llx (%s) "
1637 "vs %llx/%llx (%s)\n",
1638 (unsigned long long)offset,
1639 (unsigned long long)int128_get64(subregion->size),
1640 subregion->name,
1641 (unsigned long long)other->addr,
1642 (unsigned long long)int128_get64(other->size),
1643 other->name);
1644 #endif
1645 }
1646 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1647 if (subregion->priority >= other->priority) {
1648 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1649 goto done;
1650 }
1651 }
1652 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1653 done:
1654 memory_region_update_pending |= mr->enabled && subregion->enabled;
1655 memory_region_transaction_commit();
1656 }
1657
1658 static void memory_region_add_subregion_common(MemoryRegion *mr,
1659 hwaddr offset,
1660 MemoryRegion *subregion)
1661 {
1662 assert(!subregion->container);
1663 subregion->container = mr;
1664 subregion->addr = offset;
1665 memory_region_update_container_subregions(subregion);
1666 }
1667
1668 void memory_region_add_subregion(MemoryRegion *mr,
1669 hwaddr offset,
1670 MemoryRegion *subregion)
1671 {
1672 subregion->may_overlap = false;
1673 subregion->priority = 0;
1674 memory_region_add_subregion_common(mr, offset, subregion);
1675 }
1676
1677 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1678 hwaddr offset,
1679 MemoryRegion *subregion,
1680 int priority)
1681 {
1682 subregion->may_overlap = true;
1683 subregion->priority = priority;
1684 memory_region_add_subregion_common(mr, offset, subregion);
1685 }
1686
1687 void memory_region_del_subregion(MemoryRegion *mr,
1688 MemoryRegion *subregion)
1689 {
1690 memory_region_transaction_begin();
1691 assert(subregion->container == mr);
1692 subregion->container = NULL;
1693 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1694 memory_region_unref(subregion);
1695 memory_region_update_pending |= mr->enabled && subregion->enabled;
1696 memory_region_transaction_commit();
1697 }
1698
1699 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1700 {
1701 if (enabled == mr->enabled) {
1702 return;
1703 }
1704 memory_region_transaction_begin();
1705 mr->enabled = enabled;
1706 memory_region_update_pending = true;
1707 memory_region_transaction_commit();
1708 }
1709
1710 static void memory_region_readd_subregion(MemoryRegion *mr)
1711 {
1712 MemoryRegion *container = mr->container;
1713
1714 if (container) {
1715 memory_region_transaction_begin();
1716 memory_region_ref(mr);
1717 memory_region_del_subregion(container, mr);
1718 mr->container = container;
1719 memory_region_update_container_subregions(mr);
1720 memory_region_unref(mr);
1721 memory_region_transaction_commit();
1722 }
1723 }
1724
1725 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1726 {
1727 if (addr != mr->addr) {
1728 mr->addr = addr;
1729 memory_region_readd_subregion(mr);
1730 }
1731 }
1732
1733 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1734 {
1735 assert(mr->alias);
1736
1737 if (offset == mr->alias_offset) {
1738 return;
1739 }
1740
1741 memory_region_transaction_begin();
1742 mr->alias_offset = offset;
1743 memory_region_update_pending |= mr->enabled;
1744 memory_region_transaction_commit();
1745 }
1746
1747 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1748 {
1749 return mr->ram_addr;
1750 }
1751
1752 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1753 {
1754 const AddrRange *addr = addr_;
1755 const FlatRange *fr = fr_;
1756
1757 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1758 return -1;
1759 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1760 return 1;
1761 }
1762 return 0;
1763 }
1764
1765 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1766 {
1767 return bsearch(&addr, view->ranges, view->nr,
1768 sizeof(FlatRange), cmp_flatrange_addr);
1769 }
1770
1771 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1772 {
1773 MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1774 if (!mr || (mr == container)) {
1775 return false;
1776 }
1777 memory_region_unref(mr);
1778 return true;
1779 }
1780
1781 bool memory_region_is_mapped(MemoryRegion *mr)
1782 {
1783 return mr->container ? true : false;
1784 }
1785
1786 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1787 hwaddr addr, uint64_t size)
1788 {
1789 MemoryRegionSection ret = { .mr = NULL };
1790 MemoryRegion *root;
1791 AddressSpace *as;
1792 AddrRange range;
1793 FlatView *view;
1794 FlatRange *fr;
1795
1796 addr += mr->addr;
1797 for (root = mr; root->container; ) {
1798 root = root->container;
1799 addr += root->addr;
1800 }
1801
1802 as = memory_region_to_address_space(root);
1803 if (!as) {
1804 return ret;
1805 }
1806 range = addrrange_make(int128_make64(addr), int128_make64(size));
1807
1808 view = address_space_get_flatview(as);
1809 fr = flatview_lookup(view, range);
1810 if (!fr) {
1811 flatview_unref(view);
1812 return ret;
1813 }
1814
1815 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1816 --fr;
1817 }
1818
1819 ret.mr = fr->mr;
1820 ret.address_space = as;
1821 range = addrrange_intersection(range, fr->addr);
1822 ret.offset_within_region = fr->offset_in_region;
1823 ret.offset_within_region += int128_get64(int128_sub(range.start,
1824 fr->addr.start));
1825 ret.size = range.size;
1826 ret.offset_within_address_space = int128_get64(range.start);
1827 ret.readonly = fr->readonly;
1828 memory_region_ref(ret.mr);
1829
1830 flatview_unref(view);
1831 return ret;
1832 }
1833
1834 void address_space_sync_dirty_bitmap(AddressSpace *as)
1835 {
1836 FlatView *view;
1837 FlatRange *fr;
1838
1839 view = address_space_get_flatview(as);
1840 FOR_EACH_FLAT_RANGE(fr, view) {
1841 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1842 }
1843 flatview_unref(view);
1844 }
1845
1846 void memory_global_dirty_log_start(void)
1847 {
1848 global_dirty_log = true;
1849 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1850 }
1851
1852 void memory_global_dirty_log_stop(void)
1853 {
1854 global_dirty_log = false;
1855 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1856 }
1857
1858 static void listener_add_address_space(MemoryListener *listener,
1859 AddressSpace *as)
1860 {
1861 FlatView *view;
1862 FlatRange *fr;
1863
1864 if (listener->address_space_filter
1865 && listener->address_space_filter != as) {
1866 return;
1867 }
1868
1869 if (global_dirty_log) {
1870 if (listener->log_global_start) {
1871 listener->log_global_start(listener);
1872 }
1873 }
1874
1875 view = address_space_get_flatview(as);
1876 FOR_EACH_FLAT_RANGE(fr, view) {
1877 MemoryRegionSection section = {
1878 .mr = fr->mr,
1879 .address_space = as,
1880 .offset_within_region = fr->offset_in_region,
1881 .size = fr->addr.size,
1882 .offset_within_address_space = int128_get64(fr->addr.start),
1883 .readonly = fr->readonly,
1884 };
1885 if (listener->region_add) {
1886 listener->region_add(listener, &section);
1887 }
1888 }
1889 flatview_unref(view);
1890 }
1891
1892 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1893 {
1894 MemoryListener *other = NULL;
1895 AddressSpace *as;
1896
1897 listener->address_space_filter = filter;
1898 if (QTAILQ_EMPTY(&memory_listeners)
1899 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1900 memory_listeners)->priority) {
1901 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1902 } else {
1903 QTAILQ_FOREACH(other, &memory_listeners, link) {
1904 if (listener->priority < other->priority) {
1905 break;
1906 }
1907 }
1908 QTAILQ_INSERT_BEFORE(other, listener, link);
1909 }
1910
1911 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1912 listener_add_address_space(listener, as);
1913 }
1914 }
1915
1916 void memory_listener_unregister(MemoryListener *listener)
1917 {
1918 QTAILQ_REMOVE(&memory_listeners, listener, link);
1919 }
1920
1921 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1922 {
1923 if (QTAILQ_EMPTY(&address_spaces)) {
1924 memory_init();
1925 }
1926
1927 memory_region_transaction_begin();
1928 as->root = root;
1929 as->current_map = g_new(FlatView, 1);
1930 flatview_init(as->current_map);
1931 as->ioeventfd_nb = 0;
1932 as->ioeventfds = NULL;
1933 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1934 as->name = g_strdup(name ? name : "anonymous");
1935 address_space_init_dispatch(as);
1936 memory_region_update_pending |= root->enabled;
1937 memory_region_transaction_commit();
1938 }
1939
1940 void address_space_destroy(AddressSpace *as)
1941 {
1942 MemoryListener *listener;
1943
1944 /* Flush out anything from MemoryListeners listening in on this */
1945 memory_region_transaction_begin();
1946 as->root = NULL;
1947 memory_region_transaction_commit();
1948 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1949 address_space_destroy_dispatch(as);
1950
1951 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1952 assert(listener->address_space_filter != as);
1953 }
1954
1955 flatview_unref(as->current_map);
1956 g_free(as->name);
1957 g_free(as->ioeventfds);
1958 }
1959
1960 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1961 {
1962 return memory_region_dispatch_read(mr, addr, pval, size);
1963 }
1964
1965 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1966 uint64_t val, unsigned size)
1967 {
1968 return memory_region_dispatch_write(mr, addr, val, size);
1969 }
1970
1971 typedef struct MemoryRegionList MemoryRegionList;
1972
1973 struct MemoryRegionList {
1974 const MemoryRegion *mr;
1975 QTAILQ_ENTRY(MemoryRegionList) queue;
1976 };
1977
1978 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1979
1980 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1981 const MemoryRegion *mr, unsigned int level,
1982 hwaddr base,
1983 MemoryRegionListHead *alias_print_queue)
1984 {
1985 MemoryRegionList *new_ml, *ml, *next_ml;
1986 MemoryRegionListHead submr_print_queue;
1987 const MemoryRegion *submr;
1988 unsigned int i;
1989
1990 if (!mr || !mr->enabled) {
1991 return;
1992 }
1993
1994 for (i = 0; i < level; i++) {
1995 mon_printf(f, " ");
1996 }
1997
1998 if (mr->alias) {
1999 MemoryRegionList *ml;
2000 bool found = false;
2001
2002 /* check if the alias is already in the queue */
2003 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2004 if (ml->mr == mr->alias) {
2005 found = true;
2006 }
2007 }
2008
2009 if (!found) {
2010 ml = g_new(MemoryRegionList, 1);
2011 ml->mr = mr->alias;
2012 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2013 }
2014 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2015 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2016 "-" TARGET_FMT_plx "\n",
2017 base + mr->addr,
2018 base + mr->addr
2019 + (int128_nz(mr->size) ?
2020 (hwaddr)int128_get64(int128_sub(mr->size,
2021 int128_one())) : 0),
2022 mr->priority,
2023 mr->romd_mode ? 'R' : '-',
2024 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2025 : '-',
2026 memory_region_name(mr),
2027 memory_region_name(mr->alias),
2028 mr->alias_offset,
2029 mr->alias_offset
2030 + (int128_nz(mr->size) ?
2031 (hwaddr)int128_get64(int128_sub(mr->size,
2032 int128_one())) : 0));
2033 } else {
2034 mon_printf(f,
2035 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2036 base + mr->addr,
2037 base + mr->addr
2038 + (int128_nz(mr->size) ?
2039 (hwaddr)int128_get64(int128_sub(mr->size,
2040 int128_one())) : 0),
2041 mr->priority,
2042 mr->romd_mode ? 'R' : '-',
2043 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2044 : '-',
2045 memory_region_name(mr));
2046 }
2047
2048 QTAILQ_INIT(&submr_print_queue);
2049
2050 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2051 new_ml = g_new(MemoryRegionList, 1);
2052 new_ml->mr = submr;
2053 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2054 if (new_ml->mr->addr < ml->mr->addr ||
2055 (new_ml->mr->addr == ml->mr->addr &&
2056 new_ml->mr->priority > ml->mr->priority)) {
2057 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2058 new_ml = NULL;
2059 break;
2060 }
2061 }
2062 if (new_ml) {
2063 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2064 }
2065 }
2066
2067 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2068 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2069 alias_print_queue);
2070 }
2071
2072 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2073 g_free(ml);
2074 }
2075 }
2076
2077 void mtree_info(fprintf_function mon_printf, void *f)
2078 {
2079 MemoryRegionListHead ml_head;
2080 MemoryRegionList *ml, *ml2;
2081 AddressSpace *as;
2082
2083 QTAILQ_INIT(&ml_head);
2084
2085 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2086 mon_printf(f, "%s\n", as->name);
2087 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2088 }
2089
2090 mon_printf(f, "aliases\n");
2091 /* print aliased regions */
2092 QTAILQ_FOREACH(ml, &ml_head, queue) {
2093 mon_printf(f, "%s\n", memory_region_name(ml->mr));
2094 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2095 }
2096
2097 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2098 g_free(ml);
2099 }
2100 }
2101
2102 static const TypeInfo memory_region_info = {
2103 .parent = TYPE_OBJECT,
2104 .name = TYPE_MEMORY_REGION,
2105 .instance_size = sizeof(MemoryRegion),
2106 .instance_init = memory_region_initfn,
2107 .instance_finalize = memory_region_finalize,
2108 };
2109
2110 static void memory_register_types(void)
2111 {
2112 type_register_static(&memory_region_info);
2113 }
2114
2115 type_init(memory_register_types)