]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
memory: drop find_ram_block()
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33
34 //#define DEBUG_UNASSIGNED
35
36 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
37
38 static unsigned memory_region_transaction_depth;
39 static bool memory_region_update_pending;
40 static bool ioeventfd_update_pending;
41 static bool global_dirty_log = false;
42
43 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
45
46 static QTAILQ_HEAD(, AddressSpace) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces);
48
49 typedef struct AddrRange AddrRange;
50
51 /*
52 * Note that signed integers are needed for negative offsetting in aliases
53 * (large MemoryRegion::alias_offset).
54 */
55 struct AddrRange {
56 Int128 start;
57 Int128 size;
58 };
59
60 static AddrRange addrrange_make(Int128 start, Int128 size)
61 {
62 return (AddrRange) { start, size };
63 }
64
65 static bool addrrange_equal(AddrRange r1, AddrRange r2)
66 {
67 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
68 }
69
70 static Int128 addrrange_end(AddrRange r)
71 {
72 return int128_add(r.start, r.size);
73 }
74
75 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
76 {
77 int128_addto(&range.start, delta);
78 return range;
79 }
80
81 static bool addrrange_contains(AddrRange range, Int128 addr)
82 {
83 return int128_ge(addr, range.start)
84 && int128_lt(addr, addrrange_end(range));
85 }
86
87 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
88 {
89 return addrrange_contains(r1, r2.start)
90 || addrrange_contains(r2, r1.start);
91 }
92
93 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
94 {
95 Int128 start = int128_max(r1.start, r2.start);
96 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
97 return addrrange_make(start, int128_sub(end, start));
98 }
99
100 enum ListenerDirection { Forward, Reverse };
101
102 static bool memory_listener_match(MemoryListener *listener,
103 MemoryRegionSection *section)
104 {
105 return !listener->address_space_filter
106 || listener->address_space_filter == section->address_space;
107 }
108
109 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
110 do { \
111 MemoryListener *_listener; \
112 \
113 switch (_direction) { \
114 case Forward: \
115 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
116 if (_listener->_callback) { \
117 _listener->_callback(_listener, ##_args); \
118 } \
119 } \
120 break; \
121 case Reverse: \
122 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
123 memory_listeners, link) { \
124 if (_listener->_callback) { \
125 _listener->_callback(_listener, ##_args); \
126 } \
127 } \
128 break; \
129 default: \
130 abort(); \
131 } \
132 } while (0)
133
134 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
135 do { \
136 MemoryListener *_listener; \
137 \
138 switch (_direction) { \
139 case Forward: \
140 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
141 if (_listener->_callback \
142 && memory_listener_match(_listener, _section)) { \
143 _listener->_callback(_listener, _section, ##_args); \
144 } \
145 } \
146 break; \
147 case Reverse: \
148 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
149 memory_listeners, link) { \
150 if (_listener->_callback \
151 && memory_listener_match(_listener, _section)) { \
152 _listener->_callback(_listener, _section, ##_args); \
153 } \
154 } \
155 break; \
156 default: \
157 abort(); \
158 } \
159 } while (0)
160
161 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
162 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
163 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
164 .mr = (fr)->mr, \
165 .address_space = (as), \
166 .offset_within_region = (fr)->offset_in_region, \
167 .size = (fr)->addr.size, \
168 .offset_within_address_space = int128_get64((fr)->addr.start), \
169 .readonly = (fr)->readonly, \
170 }), ##_args)
171
172 struct CoalescedMemoryRange {
173 AddrRange addr;
174 QTAILQ_ENTRY(CoalescedMemoryRange) link;
175 };
176
177 struct MemoryRegionIoeventfd {
178 AddrRange addr;
179 bool match_data;
180 uint64_t data;
181 EventNotifier *e;
182 };
183
184 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
185 MemoryRegionIoeventfd b)
186 {
187 if (int128_lt(a.addr.start, b.addr.start)) {
188 return true;
189 } else if (int128_gt(a.addr.start, b.addr.start)) {
190 return false;
191 } else if (int128_lt(a.addr.size, b.addr.size)) {
192 return true;
193 } else if (int128_gt(a.addr.size, b.addr.size)) {
194 return false;
195 } else if (a.match_data < b.match_data) {
196 return true;
197 } else if (a.match_data > b.match_data) {
198 return false;
199 } else if (a.match_data) {
200 if (a.data < b.data) {
201 return true;
202 } else if (a.data > b.data) {
203 return false;
204 }
205 }
206 if (a.e < b.e) {
207 return true;
208 } else if (a.e > b.e) {
209 return false;
210 }
211 return false;
212 }
213
214 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
215 MemoryRegionIoeventfd b)
216 {
217 return !memory_region_ioeventfd_before(a, b)
218 && !memory_region_ioeventfd_before(b, a);
219 }
220
221 typedef struct FlatRange FlatRange;
222 typedef struct FlatView FlatView;
223
224 /* Range of memory in the global map. Addresses are absolute. */
225 struct FlatRange {
226 MemoryRegion *mr;
227 hwaddr offset_in_region;
228 AddrRange addr;
229 uint8_t dirty_log_mask;
230 bool romd_mode;
231 bool readonly;
232 };
233
234 /* Flattened global view of current active memory hierarchy. Kept in sorted
235 * order.
236 */
237 struct FlatView {
238 struct rcu_head rcu;
239 unsigned ref;
240 FlatRange *ranges;
241 unsigned nr;
242 unsigned nr_allocated;
243 };
244
245 typedef struct AddressSpaceOps AddressSpaceOps;
246
247 #define FOR_EACH_FLAT_RANGE(var, view) \
248 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
249
250 static bool flatrange_equal(FlatRange *a, FlatRange *b)
251 {
252 return a->mr == b->mr
253 && addrrange_equal(a->addr, b->addr)
254 && a->offset_in_region == b->offset_in_region
255 && a->romd_mode == b->romd_mode
256 && a->readonly == b->readonly;
257 }
258
259 static void flatview_init(FlatView *view)
260 {
261 view->ref = 1;
262 view->ranges = NULL;
263 view->nr = 0;
264 view->nr_allocated = 0;
265 }
266
267 /* Insert a range into a given position. Caller is responsible for maintaining
268 * sorting order.
269 */
270 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
271 {
272 if (view->nr == view->nr_allocated) {
273 view->nr_allocated = MAX(2 * view->nr, 10);
274 view->ranges = g_realloc(view->ranges,
275 view->nr_allocated * sizeof(*view->ranges));
276 }
277 memmove(view->ranges + pos + 1, view->ranges + pos,
278 (view->nr - pos) * sizeof(FlatRange));
279 view->ranges[pos] = *range;
280 memory_region_ref(range->mr);
281 ++view->nr;
282 }
283
284 static void flatview_destroy(FlatView *view)
285 {
286 int i;
287
288 for (i = 0; i < view->nr; i++) {
289 memory_region_unref(view->ranges[i].mr);
290 }
291 g_free(view->ranges);
292 g_free(view);
293 }
294
295 static void flatview_ref(FlatView *view)
296 {
297 atomic_inc(&view->ref);
298 }
299
300 static void flatview_unref(FlatView *view)
301 {
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 flatview_destroy(view);
304 }
305 }
306
307 static bool can_merge(FlatRange *r1, FlatRange *r2)
308 {
309 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
310 && r1->mr == r2->mr
311 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
312 r1->addr.size),
313 int128_make64(r2->offset_in_region))
314 && r1->dirty_log_mask == r2->dirty_log_mask
315 && r1->romd_mode == r2->romd_mode
316 && r1->readonly == r2->readonly;
317 }
318
319 /* Attempt to simplify a view by merging adjacent ranges */
320 static void flatview_simplify(FlatView *view)
321 {
322 unsigned i, j;
323
324 i = 0;
325 while (i < view->nr) {
326 j = i + 1;
327 while (j < view->nr
328 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
329 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
330 ++j;
331 }
332 ++i;
333 memmove(&view->ranges[i], &view->ranges[j],
334 (view->nr - j) * sizeof(view->ranges[j]));
335 view->nr -= j - i;
336 }
337 }
338
339 static bool memory_region_big_endian(MemoryRegion *mr)
340 {
341 #ifdef TARGET_WORDS_BIGENDIAN
342 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
343 #else
344 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
345 #endif
346 }
347
348 static bool memory_region_wrong_endianness(MemoryRegion *mr)
349 {
350 #ifdef TARGET_WORDS_BIGENDIAN
351 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
352 #else
353 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
354 #endif
355 }
356
357 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
358 {
359 if (memory_region_wrong_endianness(mr)) {
360 switch (size) {
361 case 1:
362 break;
363 case 2:
364 *data = bswap16(*data);
365 break;
366 case 4:
367 *data = bswap32(*data);
368 break;
369 case 8:
370 *data = bswap64(*data);
371 break;
372 default:
373 abort();
374 }
375 }
376 }
377
378 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
379 {
380 MemoryRegion *root;
381 hwaddr abs_addr = offset;
382
383 abs_addr += mr->addr;
384 for (root = mr; root->container; ) {
385 root = root->container;
386 abs_addr += root->addr;
387 }
388
389 return abs_addr;
390 }
391
392 static int get_cpu_index(void)
393 {
394 if (current_cpu) {
395 return current_cpu->cpu_index;
396 }
397 return -1;
398 }
399
400 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
401 hwaddr addr,
402 uint64_t *value,
403 unsigned size,
404 unsigned shift,
405 uint64_t mask,
406 MemTxAttrs attrs)
407 {
408 uint64_t tmp;
409
410 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
411 if (mr->subpage) {
412 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
413 } else if (mr == &io_mem_notdirty) {
414 /* Accesses to code which has previously been translated into a TB show
415 * up in the MMIO path, as accesses to the io_mem_notdirty
416 * MemoryRegion. */
417 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
418 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
419 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
420 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
421 }
422 *value |= (tmp & mask) << shift;
423 return MEMTX_OK;
424 }
425
426 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
427 hwaddr addr,
428 uint64_t *value,
429 unsigned size,
430 unsigned shift,
431 uint64_t mask,
432 MemTxAttrs attrs)
433 {
434 uint64_t tmp;
435
436 tmp = mr->ops->read(mr->opaque, addr, size);
437 if (mr->subpage) {
438 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
439 } else if (mr == &io_mem_notdirty) {
440 /* Accesses to code which has previously been translated into a TB show
441 * up in the MMIO path, as accesses to the io_mem_notdirty
442 * MemoryRegion. */
443 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
444 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
445 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
446 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
447 }
448 *value |= (tmp & mask) << shift;
449 return MEMTX_OK;
450 }
451
452 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
453 hwaddr addr,
454 uint64_t *value,
455 unsigned size,
456 unsigned shift,
457 uint64_t mask,
458 MemTxAttrs attrs)
459 {
460 uint64_t tmp = 0;
461 MemTxResult r;
462
463 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
464 if (mr->subpage) {
465 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
466 } else if (mr == &io_mem_notdirty) {
467 /* Accesses to code which has previously been translated into a TB show
468 * up in the MMIO path, as accesses to the io_mem_notdirty
469 * MemoryRegion. */
470 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
471 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
472 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
474 }
475 *value |= (tmp & mask) << shift;
476 return r;
477 }
478
479 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
480 hwaddr addr,
481 uint64_t *value,
482 unsigned size,
483 unsigned shift,
484 uint64_t mask,
485 MemTxAttrs attrs)
486 {
487 uint64_t tmp;
488
489 tmp = (*value >> shift) & mask;
490 if (mr->subpage) {
491 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492 } else if (mr == &io_mem_notdirty) {
493 /* Accesses to code which has previously been translated into a TB show
494 * up in the MMIO path, as accesses to the io_mem_notdirty
495 * MemoryRegion. */
496 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
497 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
498 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
499 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
500 }
501 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
502 return MEMTX_OK;
503 }
504
505 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
506 hwaddr addr,
507 uint64_t *value,
508 unsigned size,
509 unsigned shift,
510 uint64_t mask,
511 MemTxAttrs attrs)
512 {
513 uint64_t tmp;
514
515 tmp = (*value >> shift) & mask;
516 if (mr->subpage) {
517 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
518 } else if (mr == &io_mem_notdirty) {
519 /* Accesses to code which has previously been translated into a TB show
520 * up in the MMIO path, as accesses to the io_mem_notdirty
521 * MemoryRegion. */
522 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
523 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
524 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
525 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
526 }
527 mr->ops->write(mr->opaque, addr, tmp, size);
528 return MEMTX_OK;
529 }
530
531 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
532 hwaddr addr,
533 uint64_t *value,
534 unsigned size,
535 unsigned shift,
536 uint64_t mask,
537 MemTxAttrs attrs)
538 {
539 uint64_t tmp;
540
541 tmp = (*value >> shift) & mask;
542 if (mr->subpage) {
543 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
544 } else if (mr == &io_mem_notdirty) {
545 /* Accesses to code which has previously been translated into a TB show
546 * up in the MMIO path, as accesses to the io_mem_notdirty
547 * MemoryRegion. */
548 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
549 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
550 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
551 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
552 }
553 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
554 }
555
556 static MemTxResult access_with_adjusted_size(hwaddr addr,
557 uint64_t *value,
558 unsigned size,
559 unsigned access_size_min,
560 unsigned access_size_max,
561 MemTxResult (*access)(MemoryRegion *mr,
562 hwaddr addr,
563 uint64_t *value,
564 unsigned size,
565 unsigned shift,
566 uint64_t mask,
567 MemTxAttrs attrs),
568 MemoryRegion *mr,
569 MemTxAttrs attrs)
570 {
571 uint64_t access_mask;
572 unsigned access_size;
573 unsigned i;
574 MemTxResult r = MEMTX_OK;
575
576 if (!access_size_min) {
577 access_size_min = 1;
578 }
579 if (!access_size_max) {
580 access_size_max = 4;
581 }
582
583 /* FIXME: support unaligned access? */
584 access_size = MAX(MIN(size, access_size_max), access_size_min);
585 access_mask = -1ULL >> (64 - access_size * 8);
586 if (memory_region_big_endian(mr)) {
587 for (i = 0; i < size; i += access_size) {
588 r |= access(mr, addr + i, value, access_size,
589 (size - access_size - i) * 8, access_mask, attrs);
590 }
591 } else {
592 for (i = 0; i < size; i += access_size) {
593 r |= access(mr, addr + i, value, access_size, i * 8,
594 access_mask, attrs);
595 }
596 }
597 return r;
598 }
599
600 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
601 {
602 AddressSpace *as;
603
604 while (mr->container) {
605 mr = mr->container;
606 }
607 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
608 if (mr == as->root) {
609 return as;
610 }
611 }
612 return NULL;
613 }
614
615 /* Render a memory region into the global view. Ranges in @view obscure
616 * ranges in @mr.
617 */
618 static void render_memory_region(FlatView *view,
619 MemoryRegion *mr,
620 Int128 base,
621 AddrRange clip,
622 bool readonly)
623 {
624 MemoryRegion *subregion;
625 unsigned i;
626 hwaddr offset_in_region;
627 Int128 remain;
628 Int128 now;
629 FlatRange fr;
630 AddrRange tmp;
631
632 if (!mr->enabled) {
633 return;
634 }
635
636 int128_addto(&base, int128_make64(mr->addr));
637 readonly |= mr->readonly;
638
639 tmp = addrrange_make(base, mr->size);
640
641 if (!addrrange_intersects(tmp, clip)) {
642 return;
643 }
644
645 clip = addrrange_intersection(tmp, clip);
646
647 if (mr->alias) {
648 int128_subfrom(&base, int128_make64(mr->alias->addr));
649 int128_subfrom(&base, int128_make64(mr->alias_offset));
650 render_memory_region(view, mr->alias, base, clip, readonly);
651 return;
652 }
653
654 /* Render subregions in priority order. */
655 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
656 render_memory_region(view, subregion, base, clip, readonly);
657 }
658
659 if (!mr->terminates) {
660 return;
661 }
662
663 offset_in_region = int128_get64(int128_sub(clip.start, base));
664 base = clip.start;
665 remain = clip.size;
666
667 fr.mr = mr;
668 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
669 fr.romd_mode = mr->romd_mode;
670 fr.readonly = readonly;
671
672 /* Render the region itself into any gaps left by the current view. */
673 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
674 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
675 continue;
676 }
677 if (int128_lt(base, view->ranges[i].addr.start)) {
678 now = int128_min(remain,
679 int128_sub(view->ranges[i].addr.start, base));
680 fr.offset_in_region = offset_in_region;
681 fr.addr = addrrange_make(base, now);
682 flatview_insert(view, i, &fr);
683 ++i;
684 int128_addto(&base, now);
685 offset_in_region += int128_get64(now);
686 int128_subfrom(&remain, now);
687 }
688 now = int128_sub(int128_min(int128_add(base, remain),
689 addrrange_end(view->ranges[i].addr)),
690 base);
691 int128_addto(&base, now);
692 offset_in_region += int128_get64(now);
693 int128_subfrom(&remain, now);
694 }
695 if (int128_nz(remain)) {
696 fr.offset_in_region = offset_in_region;
697 fr.addr = addrrange_make(base, remain);
698 flatview_insert(view, i, &fr);
699 }
700 }
701
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView *generate_memory_topology(MemoryRegion *mr)
704 {
705 FlatView *view;
706
707 view = g_new(FlatView, 1);
708 flatview_init(view);
709
710 if (mr) {
711 render_memory_region(view, mr, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()), false);
713 }
714 flatview_simplify(view);
715
716 return view;
717 }
718
719 static void address_space_add_del_ioeventfds(AddressSpace *as,
720 MemoryRegionIoeventfd *fds_new,
721 unsigned fds_new_nb,
722 MemoryRegionIoeventfd *fds_old,
723 unsigned fds_old_nb)
724 {
725 unsigned iold, inew;
726 MemoryRegionIoeventfd *fd;
727 MemoryRegionSection section;
728
729 /* Generate a symmetric difference of the old and new fd sets, adding
730 * and deleting as necessary.
731 */
732
733 iold = inew = 0;
734 while (iold < fds_old_nb || inew < fds_new_nb) {
735 if (iold < fds_old_nb
736 && (inew == fds_new_nb
737 || memory_region_ioeventfd_before(fds_old[iold],
738 fds_new[inew]))) {
739 fd = &fds_old[iold];
740 section = (MemoryRegionSection) {
741 .address_space = as,
742 .offset_within_address_space = int128_get64(fd->addr.start),
743 .size = fd->addr.size,
744 };
745 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
746 fd->match_data, fd->data, fd->e);
747 ++iold;
748 } else if (inew < fds_new_nb
749 && (iold == fds_old_nb
750 || memory_region_ioeventfd_before(fds_new[inew],
751 fds_old[iold]))) {
752 fd = &fds_new[inew];
753 section = (MemoryRegionSection) {
754 .address_space = as,
755 .offset_within_address_space = int128_get64(fd->addr.start),
756 .size = fd->addr.size,
757 };
758 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
759 fd->match_data, fd->data, fd->e);
760 ++inew;
761 } else {
762 ++iold;
763 ++inew;
764 }
765 }
766 }
767
768 static FlatView *address_space_get_flatview(AddressSpace *as)
769 {
770 FlatView *view;
771
772 rcu_read_lock();
773 view = atomic_rcu_read(&as->current_map);
774 flatview_ref(view);
775 rcu_read_unlock();
776 return view;
777 }
778
779 static void address_space_update_ioeventfds(AddressSpace *as)
780 {
781 FlatView *view;
782 FlatRange *fr;
783 unsigned ioeventfd_nb = 0;
784 MemoryRegionIoeventfd *ioeventfds = NULL;
785 AddrRange tmp;
786 unsigned i;
787
788 view = address_space_get_flatview(as);
789 FOR_EACH_FLAT_RANGE(fr, view) {
790 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
791 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
792 int128_sub(fr->addr.start,
793 int128_make64(fr->offset_in_region)));
794 if (addrrange_intersects(fr->addr, tmp)) {
795 ++ioeventfd_nb;
796 ioeventfds = g_realloc(ioeventfds,
797 ioeventfd_nb * sizeof(*ioeventfds));
798 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
799 ioeventfds[ioeventfd_nb-1].addr = tmp;
800 }
801 }
802 }
803
804 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
805 as->ioeventfds, as->ioeventfd_nb);
806
807 g_free(as->ioeventfds);
808 as->ioeventfds = ioeventfds;
809 as->ioeventfd_nb = ioeventfd_nb;
810 flatview_unref(view);
811 }
812
813 static void address_space_update_topology_pass(AddressSpace *as,
814 const FlatView *old_view,
815 const FlatView *new_view,
816 bool adding)
817 {
818 unsigned iold, inew;
819 FlatRange *frold, *frnew;
820
821 /* Generate a symmetric difference of the old and new memory maps.
822 * Kill ranges in the old map, and instantiate ranges in the new map.
823 */
824 iold = inew = 0;
825 while (iold < old_view->nr || inew < new_view->nr) {
826 if (iold < old_view->nr) {
827 frold = &old_view->ranges[iold];
828 } else {
829 frold = NULL;
830 }
831 if (inew < new_view->nr) {
832 frnew = &new_view->ranges[inew];
833 } else {
834 frnew = NULL;
835 }
836
837 if (frold
838 && (!frnew
839 || int128_lt(frold->addr.start, frnew->addr.start)
840 || (int128_eq(frold->addr.start, frnew->addr.start)
841 && !flatrange_equal(frold, frnew)))) {
842 /* In old but not in new, or in both but attributes changed. */
843
844 if (!adding) {
845 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
846 }
847
848 ++iold;
849 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
850 /* In both and unchanged (except logging may have changed) */
851
852 if (adding) {
853 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
854 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
855 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
856 frold->dirty_log_mask,
857 frnew->dirty_log_mask);
858 }
859 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
860 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
861 frold->dirty_log_mask,
862 frnew->dirty_log_mask);
863 }
864 }
865
866 ++iold;
867 ++inew;
868 } else {
869 /* In new */
870
871 if (adding) {
872 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
873 }
874
875 ++inew;
876 }
877 }
878 }
879
880
881 static void address_space_update_topology(AddressSpace *as)
882 {
883 FlatView *old_view = address_space_get_flatview(as);
884 FlatView *new_view = generate_memory_topology(as->root);
885
886 address_space_update_topology_pass(as, old_view, new_view, false);
887 address_space_update_topology_pass(as, old_view, new_view, true);
888
889 /* Writes are protected by the BQL. */
890 atomic_rcu_set(&as->current_map, new_view);
891 call_rcu(old_view, flatview_unref, rcu);
892
893 /* Note that all the old MemoryRegions are still alive up to this
894 * point. This relieves most MemoryListeners from the need to
895 * ref/unref the MemoryRegions they get---unless they use them
896 * outside the iothread mutex, in which case precise reference
897 * counting is necessary.
898 */
899 flatview_unref(old_view);
900
901 address_space_update_ioeventfds(as);
902 }
903
904 void memory_region_transaction_begin(void)
905 {
906 qemu_flush_coalesced_mmio_buffer();
907 ++memory_region_transaction_depth;
908 }
909
910 static void memory_region_clear_pending(void)
911 {
912 memory_region_update_pending = false;
913 ioeventfd_update_pending = false;
914 }
915
916 void memory_region_transaction_commit(void)
917 {
918 AddressSpace *as;
919
920 assert(memory_region_transaction_depth);
921 --memory_region_transaction_depth;
922 if (!memory_region_transaction_depth) {
923 if (memory_region_update_pending) {
924 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
925
926 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
927 address_space_update_topology(as);
928 }
929
930 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
931 } else if (ioeventfd_update_pending) {
932 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
933 address_space_update_ioeventfds(as);
934 }
935 }
936 memory_region_clear_pending();
937 }
938 }
939
940 static void memory_region_destructor_none(MemoryRegion *mr)
941 {
942 }
943
944 static void memory_region_destructor_ram(MemoryRegion *mr)
945 {
946 qemu_ram_free(mr->ram_block);
947 }
948
949 static void memory_region_destructor_rom_device(MemoryRegion *mr)
950 {
951 qemu_ram_free(mr->ram_block);
952 }
953
954 static bool memory_region_need_escape(char c)
955 {
956 return c == '/' || c == '[' || c == '\\' || c == ']';
957 }
958
959 static char *memory_region_escape_name(const char *name)
960 {
961 const char *p;
962 char *escaped, *q;
963 uint8_t c;
964 size_t bytes = 0;
965
966 for (p = name; *p; p++) {
967 bytes += memory_region_need_escape(*p) ? 4 : 1;
968 }
969 if (bytes == p - name) {
970 return g_memdup(name, bytes + 1);
971 }
972
973 escaped = g_malloc(bytes + 1);
974 for (p = name, q = escaped; *p; p++) {
975 c = *p;
976 if (unlikely(memory_region_need_escape(c))) {
977 *q++ = '\\';
978 *q++ = 'x';
979 *q++ = "0123456789abcdef"[c >> 4];
980 c = "0123456789abcdef"[c & 15];
981 }
982 *q++ = c;
983 }
984 *q = 0;
985 return escaped;
986 }
987
988 void memory_region_init(MemoryRegion *mr,
989 Object *owner,
990 const char *name,
991 uint64_t size)
992 {
993 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
994 mr->size = int128_make64(size);
995 if (size == UINT64_MAX) {
996 mr->size = int128_2_64();
997 }
998 mr->name = g_strdup(name);
999 mr->owner = owner;
1000 mr->ram_block = NULL;
1001
1002 if (name) {
1003 char *escaped_name = memory_region_escape_name(name);
1004 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1005
1006 if (!owner) {
1007 owner = container_get(qdev_get_machine(), "/unattached");
1008 }
1009
1010 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1011 object_unref(OBJECT(mr));
1012 g_free(name_array);
1013 g_free(escaped_name);
1014 }
1015 }
1016
1017 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1018 void *opaque, Error **errp)
1019 {
1020 MemoryRegion *mr = MEMORY_REGION(obj);
1021 uint64_t value = mr->addr;
1022
1023 visit_type_uint64(v, name, &value, errp);
1024 }
1025
1026 static void memory_region_get_container(Object *obj, Visitor *v,
1027 const char *name, void *opaque,
1028 Error **errp)
1029 {
1030 MemoryRegion *mr = MEMORY_REGION(obj);
1031 gchar *path = (gchar *)"";
1032
1033 if (mr->container) {
1034 path = object_get_canonical_path(OBJECT(mr->container));
1035 }
1036 visit_type_str(v, name, &path, errp);
1037 if (mr->container) {
1038 g_free(path);
1039 }
1040 }
1041
1042 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1043 const char *part)
1044 {
1045 MemoryRegion *mr = MEMORY_REGION(obj);
1046
1047 return OBJECT(mr->container);
1048 }
1049
1050 static void memory_region_get_priority(Object *obj, Visitor *v,
1051 const char *name, void *opaque,
1052 Error **errp)
1053 {
1054 MemoryRegion *mr = MEMORY_REGION(obj);
1055 int32_t value = mr->priority;
1056
1057 visit_type_int32(v, name, &value, errp);
1058 }
1059
1060 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
1061 {
1062 MemoryRegion *mr = MEMORY_REGION(obj);
1063
1064 return mr->may_overlap;
1065 }
1066
1067 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1068 void *opaque, Error **errp)
1069 {
1070 MemoryRegion *mr = MEMORY_REGION(obj);
1071 uint64_t value = memory_region_size(mr);
1072
1073 visit_type_uint64(v, name, &value, errp);
1074 }
1075
1076 static void memory_region_initfn(Object *obj)
1077 {
1078 MemoryRegion *mr = MEMORY_REGION(obj);
1079 ObjectProperty *op;
1080
1081 mr->ops = &unassigned_mem_ops;
1082 mr->enabled = true;
1083 mr->romd_mode = true;
1084 mr->global_locking = true;
1085 mr->destructor = memory_region_destructor_none;
1086 QTAILQ_INIT(&mr->subregions);
1087 QTAILQ_INIT(&mr->coalesced);
1088
1089 op = object_property_add(OBJECT(mr), "container",
1090 "link<" TYPE_MEMORY_REGION ">",
1091 memory_region_get_container,
1092 NULL, /* memory_region_set_container */
1093 NULL, NULL, &error_abort);
1094 op->resolve = memory_region_resolve_container;
1095
1096 object_property_add(OBJECT(mr), "addr", "uint64",
1097 memory_region_get_addr,
1098 NULL, /* memory_region_set_addr */
1099 NULL, NULL, &error_abort);
1100 object_property_add(OBJECT(mr), "priority", "uint32",
1101 memory_region_get_priority,
1102 NULL, /* memory_region_set_priority */
1103 NULL, NULL, &error_abort);
1104 object_property_add_bool(OBJECT(mr), "may-overlap",
1105 memory_region_get_may_overlap,
1106 NULL, /* memory_region_set_may_overlap */
1107 &error_abort);
1108 object_property_add(OBJECT(mr), "size", "uint64",
1109 memory_region_get_size,
1110 NULL, /* memory_region_set_size, */
1111 NULL, NULL, &error_abort);
1112 }
1113
1114 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1115 unsigned size)
1116 {
1117 #ifdef DEBUG_UNASSIGNED
1118 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1119 #endif
1120 if (current_cpu != NULL) {
1121 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1122 }
1123 return 0;
1124 }
1125
1126 static void unassigned_mem_write(void *opaque, hwaddr addr,
1127 uint64_t val, unsigned size)
1128 {
1129 #ifdef DEBUG_UNASSIGNED
1130 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1131 #endif
1132 if (current_cpu != NULL) {
1133 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1134 }
1135 }
1136
1137 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1138 unsigned size, bool is_write)
1139 {
1140 return false;
1141 }
1142
1143 const MemoryRegionOps unassigned_mem_ops = {
1144 .valid.accepts = unassigned_mem_accepts,
1145 .endianness = DEVICE_NATIVE_ENDIAN,
1146 };
1147
1148 bool memory_region_access_valid(MemoryRegion *mr,
1149 hwaddr addr,
1150 unsigned size,
1151 bool is_write)
1152 {
1153 int access_size_min, access_size_max;
1154 int access_size, i;
1155
1156 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1157 return false;
1158 }
1159
1160 if (!mr->ops->valid.accepts) {
1161 return true;
1162 }
1163
1164 access_size_min = mr->ops->valid.min_access_size;
1165 if (!mr->ops->valid.min_access_size) {
1166 access_size_min = 1;
1167 }
1168
1169 access_size_max = mr->ops->valid.max_access_size;
1170 if (!mr->ops->valid.max_access_size) {
1171 access_size_max = 4;
1172 }
1173
1174 access_size = MAX(MIN(size, access_size_max), access_size_min);
1175 for (i = 0; i < size; i += access_size) {
1176 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1177 is_write)) {
1178 return false;
1179 }
1180 }
1181
1182 return true;
1183 }
1184
1185 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1186 hwaddr addr,
1187 uint64_t *pval,
1188 unsigned size,
1189 MemTxAttrs attrs)
1190 {
1191 *pval = 0;
1192
1193 if (mr->ops->read) {
1194 return access_with_adjusted_size(addr, pval, size,
1195 mr->ops->impl.min_access_size,
1196 mr->ops->impl.max_access_size,
1197 memory_region_read_accessor,
1198 mr, attrs);
1199 } else if (mr->ops->read_with_attrs) {
1200 return access_with_adjusted_size(addr, pval, size,
1201 mr->ops->impl.min_access_size,
1202 mr->ops->impl.max_access_size,
1203 memory_region_read_with_attrs_accessor,
1204 mr, attrs);
1205 } else {
1206 return access_with_adjusted_size(addr, pval, size, 1, 4,
1207 memory_region_oldmmio_read_accessor,
1208 mr, attrs);
1209 }
1210 }
1211
1212 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1213 hwaddr addr,
1214 uint64_t *pval,
1215 unsigned size,
1216 MemTxAttrs attrs)
1217 {
1218 MemTxResult r;
1219
1220 if (!memory_region_access_valid(mr, addr, size, false)) {
1221 *pval = unassigned_mem_read(mr, addr, size);
1222 return MEMTX_DECODE_ERROR;
1223 }
1224
1225 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1226 adjust_endianness(mr, pval, size);
1227 return r;
1228 }
1229
1230 /* Return true if an eventfd was signalled */
1231 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1232 hwaddr addr,
1233 uint64_t data,
1234 unsigned size,
1235 MemTxAttrs attrs)
1236 {
1237 MemoryRegionIoeventfd ioeventfd = {
1238 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1239 .data = data,
1240 };
1241 unsigned i;
1242
1243 for (i = 0; i < mr->ioeventfd_nb; i++) {
1244 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1245 ioeventfd.e = mr->ioeventfds[i].e;
1246
1247 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1248 event_notifier_set(ioeventfd.e);
1249 return true;
1250 }
1251 }
1252
1253 return false;
1254 }
1255
1256 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1257 hwaddr addr,
1258 uint64_t data,
1259 unsigned size,
1260 MemTxAttrs attrs)
1261 {
1262 if (!memory_region_access_valid(mr, addr, size, true)) {
1263 unassigned_mem_write(mr, addr, data, size);
1264 return MEMTX_DECODE_ERROR;
1265 }
1266
1267 adjust_endianness(mr, &data, size);
1268
1269 if ((!kvm_eventfds_enabled()) &&
1270 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1271 return MEMTX_OK;
1272 }
1273
1274 if (mr->ops->write) {
1275 return access_with_adjusted_size(addr, &data, size,
1276 mr->ops->impl.min_access_size,
1277 mr->ops->impl.max_access_size,
1278 memory_region_write_accessor, mr,
1279 attrs);
1280 } else if (mr->ops->write_with_attrs) {
1281 return
1282 access_with_adjusted_size(addr, &data, size,
1283 mr->ops->impl.min_access_size,
1284 mr->ops->impl.max_access_size,
1285 memory_region_write_with_attrs_accessor,
1286 mr, attrs);
1287 } else {
1288 return access_with_adjusted_size(addr, &data, size, 1, 4,
1289 memory_region_oldmmio_write_accessor,
1290 mr, attrs);
1291 }
1292 }
1293
1294 void memory_region_init_io(MemoryRegion *mr,
1295 Object *owner,
1296 const MemoryRegionOps *ops,
1297 void *opaque,
1298 const char *name,
1299 uint64_t size)
1300 {
1301 memory_region_init(mr, owner, name, size);
1302 mr->ops = ops ? ops : &unassigned_mem_ops;
1303 mr->opaque = opaque;
1304 mr->terminates = true;
1305 }
1306
1307 void memory_region_init_ram(MemoryRegion *mr,
1308 Object *owner,
1309 const char *name,
1310 uint64_t size,
1311 Error **errp)
1312 {
1313 memory_region_init(mr, owner, name, size);
1314 mr->ram = true;
1315 mr->terminates = true;
1316 mr->destructor = memory_region_destructor_ram;
1317 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1318 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1319 }
1320
1321 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1322 Object *owner,
1323 const char *name,
1324 uint64_t size,
1325 uint64_t max_size,
1326 void (*resized)(const char*,
1327 uint64_t length,
1328 void *host),
1329 Error **errp)
1330 {
1331 memory_region_init(mr, owner, name, size);
1332 mr->ram = true;
1333 mr->terminates = true;
1334 mr->destructor = memory_region_destructor_ram;
1335 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1336 mr, errp);
1337 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1338 }
1339
1340 #ifdef __linux__
1341 void memory_region_init_ram_from_file(MemoryRegion *mr,
1342 struct Object *owner,
1343 const char *name,
1344 uint64_t size,
1345 bool share,
1346 const char *path,
1347 Error **errp)
1348 {
1349 memory_region_init(mr, owner, name, size);
1350 mr->ram = true;
1351 mr->terminates = true;
1352 mr->destructor = memory_region_destructor_ram;
1353 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1354 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1355 }
1356 #endif
1357
1358 void memory_region_init_ram_ptr(MemoryRegion *mr,
1359 Object *owner,
1360 const char *name,
1361 uint64_t size,
1362 void *ptr)
1363 {
1364 memory_region_init(mr, owner, name, size);
1365 mr->ram = true;
1366 mr->terminates = true;
1367 mr->destructor = memory_region_destructor_ram;
1368 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1369
1370 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1371 assert(ptr != NULL);
1372 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1373 }
1374
1375 void memory_region_set_skip_dump(MemoryRegion *mr)
1376 {
1377 mr->skip_dump = true;
1378 }
1379
1380 void memory_region_init_alias(MemoryRegion *mr,
1381 Object *owner,
1382 const char *name,
1383 MemoryRegion *orig,
1384 hwaddr offset,
1385 uint64_t size)
1386 {
1387 memory_region_init(mr, owner, name, size);
1388 mr->alias = orig;
1389 mr->alias_offset = offset;
1390 }
1391
1392 void memory_region_init_rom_device(MemoryRegion *mr,
1393 Object *owner,
1394 const MemoryRegionOps *ops,
1395 void *opaque,
1396 const char *name,
1397 uint64_t size,
1398 Error **errp)
1399 {
1400 memory_region_init(mr, owner, name, size);
1401 mr->ops = ops;
1402 mr->opaque = opaque;
1403 mr->terminates = true;
1404 mr->rom_device = true;
1405 mr->destructor = memory_region_destructor_rom_device;
1406 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1407 }
1408
1409 void memory_region_init_iommu(MemoryRegion *mr,
1410 Object *owner,
1411 const MemoryRegionIOMMUOps *ops,
1412 const char *name,
1413 uint64_t size)
1414 {
1415 memory_region_init(mr, owner, name, size);
1416 mr->iommu_ops = ops,
1417 mr->terminates = true; /* then re-forwards */
1418 notifier_list_init(&mr->iommu_notify);
1419 }
1420
1421 static void memory_region_finalize(Object *obj)
1422 {
1423 MemoryRegion *mr = MEMORY_REGION(obj);
1424
1425 assert(!mr->container);
1426
1427 /* We know the region is not visible in any address space (it
1428 * does not have a container and cannot be a root either because
1429 * it has no references, so we can blindly clear mr->enabled.
1430 * memory_region_set_enabled instead could trigger a transaction
1431 * and cause an infinite loop.
1432 */
1433 mr->enabled = false;
1434 memory_region_transaction_begin();
1435 while (!QTAILQ_EMPTY(&mr->subregions)) {
1436 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1437 memory_region_del_subregion(mr, subregion);
1438 }
1439 memory_region_transaction_commit();
1440
1441 mr->destructor(mr);
1442 memory_region_clear_coalescing(mr);
1443 g_free((char *)mr->name);
1444 g_free(mr->ioeventfds);
1445 }
1446
1447 Object *memory_region_owner(MemoryRegion *mr)
1448 {
1449 Object *obj = OBJECT(mr);
1450 return obj->parent;
1451 }
1452
1453 void memory_region_ref(MemoryRegion *mr)
1454 {
1455 /* MMIO callbacks most likely will access data that belongs
1456 * to the owner, hence the need to ref/unref the owner whenever
1457 * the memory region is in use.
1458 *
1459 * The memory region is a child of its owner. As long as the
1460 * owner doesn't call unparent itself on the memory region,
1461 * ref-ing the owner will also keep the memory region alive.
1462 * Memory regions without an owner are supposed to never go away;
1463 * we do not ref/unref them because it slows down DMA sensibly.
1464 */
1465 if (mr && mr->owner) {
1466 object_ref(mr->owner);
1467 }
1468 }
1469
1470 void memory_region_unref(MemoryRegion *mr)
1471 {
1472 if (mr && mr->owner) {
1473 object_unref(mr->owner);
1474 }
1475 }
1476
1477 uint64_t memory_region_size(MemoryRegion *mr)
1478 {
1479 if (int128_eq(mr->size, int128_2_64())) {
1480 return UINT64_MAX;
1481 }
1482 return int128_get64(mr->size);
1483 }
1484
1485 const char *memory_region_name(const MemoryRegion *mr)
1486 {
1487 if (!mr->name) {
1488 ((MemoryRegion *)mr)->name =
1489 object_get_canonical_path_component(OBJECT(mr));
1490 }
1491 return mr->name;
1492 }
1493
1494 bool memory_region_is_skip_dump(MemoryRegion *mr)
1495 {
1496 return mr->skip_dump;
1497 }
1498
1499 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1500 {
1501 uint8_t mask = mr->dirty_log_mask;
1502 if (global_dirty_log) {
1503 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1504 }
1505 return mask;
1506 }
1507
1508 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1509 {
1510 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1511 }
1512
1513 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1514 {
1515 notifier_list_add(&mr->iommu_notify, n);
1516 }
1517
1518 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1519 hwaddr granularity, bool is_write)
1520 {
1521 hwaddr addr;
1522 IOMMUTLBEntry iotlb;
1523
1524 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1525 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1526 if (iotlb.perm != IOMMU_NONE) {
1527 n->notify(n, &iotlb);
1528 }
1529
1530 /* if (2^64 - MR size) < granularity, it's possible to get an
1531 * infinite loop here. This should catch such a wraparound */
1532 if ((addr + granularity) < addr) {
1533 break;
1534 }
1535 }
1536 }
1537
1538 void memory_region_unregister_iommu_notifier(Notifier *n)
1539 {
1540 notifier_remove(n);
1541 }
1542
1543 void memory_region_notify_iommu(MemoryRegion *mr,
1544 IOMMUTLBEntry entry)
1545 {
1546 assert(memory_region_is_iommu(mr));
1547 notifier_list_notify(&mr->iommu_notify, &entry);
1548 }
1549
1550 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1551 {
1552 uint8_t mask = 1 << client;
1553 uint8_t old_logging;
1554
1555 assert(client == DIRTY_MEMORY_VGA);
1556 old_logging = mr->vga_logging_count;
1557 mr->vga_logging_count += log ? 1 : -1;
1558 if (!!old_logging == !!mr->vga_logging_count) {
1559 return;
1560 }
1561
1562 memory_region_transaction_begin();
1563 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1564 memory_region_update_pending |= mr->enabled;
1565 memory_region_transaction_commit();
1566 }
1567
1568 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1569 hwaddr size, unsigned client)
1570 {
1571 assert(mr->ram_block);
1572 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1573 size, client);
1574 }
1575
1576 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1577 hwaddr size)
1578 {
1579 assert(mr->ram_block);
1580 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1581 size,
1582 memory_region_get_dirty_log_mask(mr));
1583 }
1584
1585 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1586 hwaddr size, unsigned client)
1587 {
1588 assert(mr->ram_block);
1589 return cpu_physical_memory_test_and_clear_dirty(
1590 memory_region_get_ram_addr(mr) + addr, size, client);
1591 }
1592
1593
1594 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1595 {
1596 AddressSpace *as;
1597 FlatRange *fr;
1598
1599 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1600 FlatView *view = address_space_get_flatview(as);
1601 FOR_EACH_FLAT_RANGE(fr, view) {
1602 if (fr->mr == mr) {
1603 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1604 }
1605 }
1606 flatview_unref(view);
1607 }
1608 }
1609
1610 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1611 {
1612 if (mr->readonly != readonly) {
1613 memory_region_transaction_begin();
1614 mr->readonly = readonly;
1615 memory_region_update_pending |= mr->enabled;
1616 memory_region_transaction_commit();
1617 }
1618 }
1619
1620 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1621 {
1622 if (mr->romd_mode != romd_mode) {
1623 memory_region_transaction_begin();
1624 mr->romd_mode = romd_mode;
1625 memory_region_update_pending |= mr->enabled;
1626 memory_region_transaction_commit();
1627 }
1628 }
1629
1630 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1631 hwaddr size, unsigned client)
1632 {
1633 assert(mr->ram_block);
1634 cpu_physical_memory_test_and_clear_dirty(
1635 memory_region_get_ram_addr(mr) + addr, size, client);
1636 }
1637
1638 int memory_region_get_fd(MemoryRegion *mr)
1639 {
1640 if (mr->alias) {
1641 return memory_region_get_fd(mr->alias);
1642 }
1643
1644 assert(mr->ram_block);
1645
1646 return qemu_get_ram_fd(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1647 }
1648
1649 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1650 {
1651 void *ptr;
1652 uint64_t offset = 0;
1653
1654 rcu_read_lock();
1655 while (mr->alias) {
1656 offset += mr->alias_offset;
1657 mr = mr->alias;
1658 }
1659 assert(mr->ram_block);
1660 ptr = qemu_get_ram_ptr(mr->ram_block,
1661 memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1662 rcu_read_unlock();
1663
1664 return ptr + offset;
1665 }
1666
1667 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1668 {
1669 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1670 }
1671
1672 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1673 {
1674 assert(mr->ram_block);
1675
1676 qemu_ram_resize(mr->ram_block, newsize, errp);
1677 }
1678
1679 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1680 {
1681 FlatView *view;
1682 FlatRange *fr;
1683 CoalescedMemoryRange *cmr;
1684 AddrRange tmp;
1685 MemoryRegionSection section;
1686
1687 view = address_space_get_flatview(as);
1688 FOR_EACH_FLAT_RANGE(fr, view) {
1689 if (fr->mr == mr) {
1690 section = (MemoryRegionSection) {
1691 .address_space = as,
1692 .offset_within_address_space = int128_get64(fr->addr.start),
1693 .size = fr->addr.size,
1694 };
1695
1696 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1697 int128_get64(fr->addr.start),
1698 int128_get64(fr->addr.size));
1699 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1700 tmp = addrrange_shift(cmr->addr,
1701 int128_sub(fr->addr.start,
1702 int128_make64(fr->offset_in_region)));
1703 if (!addrrange_intersects(tmp, fr->addr)) {
1704 continue;
1705 }
1706 tmp = addrrange_intersection(tmp, fr->addr);
1707 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1708 int128_get64(tmp.start),
1709 int128_get64(tmp.size));
1710 }
1711 }
1712 }
1713 flatview_unref(view);
1714 }
1715
1716 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1717 {
1718 AddressSpace *as;
1719
1720 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1721 memory_region_update_coalesced_range_as(mr, as);
1722 }
1723 }
1724
1725 void memory_region_set_coalescing(MemoryRegion *mr)
1726 {
1727 memory_region_clear_coalescing(mr);
1728 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1729 }
1730
1731 void memory_region_add_coalescing(MemoryRegion *mr,
1732 hwaddr offset,
1733 uint64_t size)
1734 {
1735 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1736
1737 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1738 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1739 memory_region_update_coalesced_range(mr);
1740 memory_region_set_flush_coalesced(mr);
1741 }
1742
1743 void memory_region_clear_coalescing(MemoryRegion *mr)
1744 {
1745 CoalescedMemoryRange *cmr;
1746 bool updated = false;
1747
1748 qemu_flush_coalesced_mmio_buffer();
1749 mr->flush_coalesced_mmio = false;
1750
1751 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1752 cmr = QTAILQ_FIRST(&mr->coalesced);
1753 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1754 g_free(cmr);
1755 updated = true;
1756 }
1757
1758 if (updated) {
1759 memory_region_update_coalesced_range(mr);
1760 }
1761 }
1762
1763 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1764 {
1765 mr->flush_coalesced_mmio = true;
1766 }
1767
1768 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1769 {
1770 qemu_flush_coalesced_mmio_buffer();
1771 if (QTAILQ_EMPTY(&mr->coalesced)) {
1772 mr->flush_coalesced_mmio = false;
1773 }
1774 }
1775
1776 void memory_region_set_global_locking(MemoryRegion *mr)
1777 {
1778 mr->global_locking = true;
1779 }
1780
1781 void memory_region_clear_global_locking(MemoryRegion *mr)
1782 {
1783 mr->global_locking = false;
1784 }
1785
1786 static bool userspace_eventfd_warning;
1787
1788 void memory_region_add_eventfd(MemoryRegion *mr,
1789 hwaddr addr,
1790 unsigned size,
1791 bool match_data,
1792 uint64_t data,
1793 EventNotifier *e)
1794 {
1795 MemoryRegionIoeventfd mrfd = {
1796 .addr.start = int128_make64(addr),
1797 .addr.size = int128_make64(size),
1798 .match_data = match_data,
1799 .data = data,
1800 .e = e,
1801 };
1802 unsigned i;
1803
1804 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1805 userspace_eventfd_warning))) {
1806 userspace_eventfd_warning = true;
1807 error_report("Using eventfd without MMIO binding in KVM. "
1808 "Suboptimal performance expected");
1809 }
1810
1811 if (size) {
1812 adjust_endianness(mr, &mrfd.data, size);
1813 }
1814 memory_region_transaction_begin();
1815 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1816 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1817 break;
1818 }
1819 }
1820 ++mr->ioeventfd_nb;
1821 mr->ioeventfds = g_realloc(mr->ioeventfds,
1822 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1823 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1824 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1825 mr->ioeventfds[i] = mrfd;
1826 ioeventfd_update_pending |= mr->enabled;
1827 memory_region_transaction_commit();
1828 }
1829
1830 void memory_region_del_eventfd(MemoryRegion *mr,
1831 hwaddr addr,
1832 unsigned size,
1833 bool match_data,
1834 uint64_t data,
1835 EventNotifier *e)
1836 {
1837 MemoryRegionIoeventfd mrfd = {
1838 .addr.start = int128_make64(addr),
1839 .addr.size = int128_make64(size),
1840 .match_data = match_data,
1841 .data = data,
1842 .e = e,
1843 };
1844 unsigned i;
1845
1846 if (size) {
1847 adjust_endianness(mr, &mrfd.data, size);
1848 }
1849 memory_region_transaction_begin();
1850 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1851 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1852 break;
1853 }
1854 }
1855 assert(i != mr->ioeventfd_nb);
1856 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1857 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1858 --mr->ioeventfd_nb;
1859 mr->ioeventfds = g_realloc(mr->ioeventfds,
1860 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1861 ioeventfd_update_pending |= mr->enabled;
1862 memory_region_transaction_commit();
1863 }
1864
1865 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1866 {
1867 hwaddr offset = subregion->addr;
1868 MemoryRegion *mr = subregion->container;
1869 MemoryRegion *other;
1870
1871 memory_region_transaction_begin();
1872
1873 memory_region_ref(subregion);
1874 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1875 if (subregion->may_overlap || other->may_overlap) {
1876 continue;
1877 }
1878 if (int128_ge(int128_make64(offset),
1879 int128_add(int128_make64(other->addr), other->size))
1880 || int128_le(int128_add(int128_make64(offset), subregion->size),
1881 int128_make64(other->addr))) {
1882 continue;
1883 }
1884 #if 0
1885 printf("warning: subregion collision %llx/%llx (%s) "
1886 "vs %llx/%llx (%s)\n",
1887 (unsigned long long)offset,
1888 (unsigned long long)int128_get64(subregion->size),
1889 subregion->name,
1890 (unsigned long long)other->addr,
1891 (unsigned long long)int128_get64(other->size),
1892 other->name);
1893 #endif
1894 }
1895 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1896 if (subregion->priority >= other->priority) {
1897 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1898 goto done;
1899 }
1900 }
1901 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1902 done:
1903 memory_region_update_pending |= mr->enabled && subregion->enabled;
1904 memory_region_transaction_commit();
1905 }
1906
1907 static void memory_region_add_subregion_common(MemoryRegion *mr,
1908 hwaddr offset,
1909 MemoryRegion *subregion)
1910 {
1911 assert(!subregion->container);
1912 subregion->container = mr;
1913 subregion->addr = offset;
1914 memory_region_update_container_subregions(subregion);
1915 }
1916
1917 void memory_region_add_subregion(MemoryRegion *mr,
1918 hwaddr offset,
1919 MemoryRegion *subregion)
1920 {
1921 subregion->may_overlap = false;
1922 subregion->priority = 0;
1923 memory_region_add_subregion_common(mr, offset, subregion);
1924 }
1925
1926 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1927 hwaddr offset,
1928 MemoryRegion *subregion,
1929 int priority)
1930 {
1931 subregion->may_overlap = true;
1932 subregion->priority = priority;
1933 memory_region_add_subregion_common(mr, offset, subregion);
1934 }
1935
1936 void memory_region_del_subregion(MemoryRegion *mr,
1937 MemoryRegion *subregion)
1938 {
1939 memory_region_transaction_begin();
1940 assert(subregion->container == mr);
1941 subregion->container = NULL;
1942 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1943 memory_region_unref(subregion);
1944 memory_region_update_pending |= mr->enabled && subregion->enabled;
1945 memory_region_transaction_commit();
1946 }
1947
1948 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1949 {
1950 if (enabled == mr->enabled) {
1951 return;
1952 }
1953 memory_region_transaction_begin();
1954 mr->enabled = enabled;
1955 memory_region_update_pending = true;
1956 memory_region_transaction_commit();
1957 }
1958
1959 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1960 {
1961 Int128 s = int128_make64(size);
1962
1963 if (size == UINT64_MAX) {
1964 s = int128_2_64();
1965 }
1966 if (int128_eq(s, mr->size)) {
1967 return;
1968 }
1969 memory_region_transaction_begin();
1970 mr->size = s;
1971 memory_region_update_pending = true;
1972 memory_region_transaction_commit();
1973 }
1974
1975 static void memory_region_readd_subregion(MemoryRegion *mr)
1976 {
1977 MemoryRegion *container = mr->container;
1978
1979 if (container) {
1980 memory_region_transaction_begin();
1981 memory_region_ref(mr);
1982 memory_region_del_subregion(container, mr);
1983 mr->container = container;
1984 memory_region_update_container_subregions(mr);
1985 memory_region_unref(mr);
1986 memory_region_transaction_commit();
1987 }
1988 }
1989
1990 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1991 {
1992 if (addr != mr->addr) {
1993 mr->addr = addr;
1994 memory_region_readd_subregion(mr);
1995 }
1996 }
1997
1998 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1999 {
2000 assert(mr->alias);
2001
2002 if (offset == mr->alias_offset) {
2003 return;
2004 }
2005
2006 memory_region_transaction_begin();
2007 mr->alias_offset = offset;
2008 memory_region_update_pending |= mr->enabled;
2009 memory_region_transaction_commit();
2010 }
2011
2012 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2013 {
2014 return mr->align;
2015 }
2016
2017 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2018 {
2019 const AddrRange *addr = addr_;
2020 const FlatRange *fr = fr_;
2021
2022 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2023 return -1;
2024 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2025 return 1;
2026 }
2027 return 0;
2028 }
2029
2030 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2031 {
2032 return bsearch(&addr, view->ranges, view->nr,
2033 sizeof(FlatRange), cmp_flatrange_addr);
2034 }
2035
2036 bool memory_region_is_mapped(MemoryRegion *mr)
2037 {
2038 return mr->container ? true : false;
2039 }
2040
2041 /* Same as memory_region_find, but it does not add a reference to the
2042 * returned region. It must be called from an RCU critical section.
2043 */
2044 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2045 hwaddr addr, uint64_t size)
2046 {
2047 MemoryRegionSection ret = { .mr = NULL };
2048 MemoryRegion *root;
2049 AddressSpace *as;
2050 AddrRange range;
2051 FlatView *view;
2052 FlatRange *fr;
2053
2054 addr += mr->addr;
2055 for (root = mr; root->container; ) {
2056 root = root->container;
2057 addr += root->addr;
2058 }
2059
2060 as = memory_region_to_address_space(root);
2061 if (!as) {
2062 return ret;
2063 }
2064 range = addrrange_make(int128_make64(addr), int128_make64(size));
2065
2066 view = atomic_rcu_read(&as->current_map);
2067 fr = flatview_lookup(view, range);
2068 if (!fr) {
2069 return ret;
2070 }
2071
2072 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2073 --fr;
2074 }
2075
2076 ret.mr = fr->mr;
2077 ret.address_space = as;
2078 range = addrrange_intersection(range, fr->addr);
2079 ret.offset_within_region = fr->offset_in_region;
2080 ret.offset_within_region += int128_get64(int128_sub(range.start,
2081 fr->addr.start));
2082 ret.size = range.size;
2083 ret.offset_within_address_space = int128_get64(range.start);
2084 ret.readonly = fr->readonly;
2085 return ret;
2086 }
2087
2088 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2089 hwaddr addr, uint64_t size)
2090 {
2091 MemoryRegionSection ret;
2092 rcu_read_lock();
2093 ret = memory_region_find_rcu(mr, addr, size);
2094 if (ret.mr) {
2095 memory_region_ref(ret.mr);
2096 }
2097 rcu_read_unlock();
2098 return ret;
2099 }
2100
2101 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2102 {
2103 MemoryRegion *mr;
2104
2105 rcu_read_lock();
2106 mr = memory_region_find_rcu(container, addr, 1).mr;
2107 rcu_read_unlock();
2108 return mr && mr != container;
2109 }
2110
2111 void address_space_sync_dirty_bitmap(AddressSpace *as)
2112 {
2113 FlatView *view;
2114 FlatRange *fr;
2115
2116 view = address_space_get_flatview(as);
2117 FOR_EACH_FLAT_RANGE(fr, view) {
2118 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2119 }
2120 flatview_unref(view);
2121 }
2122
2123 void memory_global_dirty_log_start(void)
2124 {
2125 global_dirty_log = true;
2126
2127 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2128
2129 /* Refresh DIRTY_LOG_MIGRATION bit. */
2130 memory_region_transaction_begin();
2131 memory_region_update_pending = true;
2132 memory_region_transaction_commit();
2133 }
2134
2135 void memory_global_dirty_log_stop(void)
2136 {
2137 global_dirty_log = false;
2138
2139 /* Refresh DIRTY_LOG_MIGRATION bit. */
2140 memory_region_transaction_begin();
2141 memory_region_update_pending = true;
2142 memory_region_transaction_commit();
2143
2144 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2145 }
2146
2147 static void listener_add_address_space(MemoryListener *listener,
2148 AddressSpace *as)
2149 {
2150 FlatView *view;
2151 FlatRange *fr;
2152
2153 if (listener->address_space_filter
2154 && listener->address_space_filter != as) {
2155 return;
2156 }
2157
2158 if (listener->begin) {
2159 listener->begin(listener);
2160 }
2161 if (global_dirty_log) {
2162 if (listener->log_global_start) {
2163 listener->log_global_start(listener);
2164 }
2165 }
2166
2167 view = address_space_get_flatview(as);
2168 FOR_EACH_FLAT_RANGE(fr, view) {
2169 MemoryRegionSection section = {
2170 .mr = fr->mr,
2171 .address_space = as,
2172 .offset_within_region = fr->offset_in_region,
2173 .size = fr->addr.size,
2174 .offset_within_address_space = int128_get64(fr->addr.start),
2175 .readonly = fr->readonly,
2176 };
2177 if (fr->dirty_log_mask && listener->log_start) {
2178 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2179 }
2180 if (listener->region_add) {
2181 listener->region_add(listener, &section);
2182 }
2183 }
2184 if (listener->commit) {
2185 listener->commit(listener);
2186 }
2187 flatview_unref(view);
2188 }
2189
2190 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2191 {
2192 MemoryListener *other = NULL;
2193 AddressSpace *as;
2194
2195 listener->address_space_filter = filter;
2196 if (QTAILQ_EMPTY(&memory_listeners)
2197 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2198 memory_listeners)->priority) {
2199 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2200 } else {
2201 QTAILQ_FOREACH(other, &memory_listeners, link) {
2202 if (listener->priority < other->priority) {
2203 break;
2204 }
2205 }
2206 QTAILQ_INSERT_BEFORE(other, listener, link);
2207 }
2208
2209 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2210 listener_add_address_space(listener, as);
2211 }
2212 }
2213
2214 void memory_listener_unregister(MemoryListener *listener)
2215 {
2216 QTAILQ_REMOVE(&memory_listeners, listener, link);
2217 }
2218
2219 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2220 {
2221 memory_region_ref(root);
2222 memory_region_transaction_begin();
2223 as->ref_count = 1;
2224 as->root = root;
2225 as->malloced = false;
2226 as->current_map = g_new(FlatView, 1);
2227 flatview_init(as->current_map);
2228 as->ioeventfd_nb = 0;
2229 as->ioeventfds = NULL;
2230 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2231 as->name = g_strdup(name ? name : "anonymous");
2232 address_space_init_dispatch(as);
2233 memory_region_update_pending |= root->enabled;
2234 memory_region_transaction_commit();
2235 }
2236
2237 static void do_address_space_destroy(AddressSpace *as)
2238 {
2239 MemoryListener *listener;
2240 bool do_free = as->malloced;
2241
2242 address_space_destroy_dispatch(as);
2243
2244 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2245 assert(listener->address_space_filter != as);
2246 }
2247
2248 flatview_unref(as->current_map);
2249 g_free(as->name);
2250 g_free(as->ioeventfds);
2251 memory_region_unref(as->root);
2252 if (do_free) {
2253 g_free(as);
2254 }
2255 }
2256
2257 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2258 {
2259 AddressSpace *as;
2260
2261 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2262 if (root == as->root && as->malloced) {
2263 as->ref_count++;
2264 return as;
2265 }
2266 }
2267
2268 as = g_malloc0(sizeof *as);
2269 address_space_init(as, root, name);
2270 as->malloced = true;
2271 return as;
2272 }
2273
2274 void address_space_destroy(AddressSpace *as)
2275 {
2276 MemoryRegion *root = as->root;
2277
2278 as->ref_count--;
2279 if (as->ref_count) {
2280 return;
2281 }
2282 /* Flush out anything from MemoryListeners listening in on this */
2283 memory_region_transaction_begin();
2284 as->root = NULL;
2285 memory_region_transaction_commit();
2286 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2287 address_space_unregister(as);
2288
2289 /* At this point, as->dispatch and as->current_map are dummy
2290 * entries that the guest should never use. Wait for the old
2291 * values to expire before freeing the data.
2292 */
2293 as->root = root;
2294 call_rcu(as, do_address_space_destroy, rcu);
2295 }
2296
2297 typedef struct MemoryRegionList MemoryRegionList;
2298
2299 struct MemoryRegionList {
2300 const MemoryRegion *mr;
2301 QTAILQ_ENTRY(MemoryRegionList) queue;
2302 };
2303
2304 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2305
2306 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2307 const MemoryRegion *mr, unsigned int level,
2308 hwaddr base,
2309 MemoryRegionListHead *alias_print_queue)
2310 {
2311 MemoryRegionList *new_ml, *ml, *next_ml;
2312 MemoryRegionListHead submr_print_queue;
2313 const MemoryRegion *submr;
2314 unsigned int i;
2315
2316 if (!mr) {
2317 return;
2318 }
2319
2320 for (i = 0; i < level; i++) {
2321 mon_printf(f, " ");
2322 }
2323
2324 if (mr->alias) {
2325 MemoryRegionList *ml;
2326 bool found = false;
2327
2328 /* check if the alias is already in the queue */
2329 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2330 if (ml->mr == mr->alias) {
2331 found = true;
2332 }
2333 }
2334
2335 if (!found) {
2336 ml = g_new(MemoryRegionList, 1);
2337 ml->mr = mr->alias;
2338 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2339 }
2340 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2341 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2342 "-" TARGET_FMT_plx "%s\n",
2343 base + mr->addr,
2344 base + mr->addr
2345 + (int128_nz(mr->size) ?
2346 (hwaddr)int128_get64(int128_sub(mr->size,
2347 int128_one())) : 0),
2348 mr->priority,
2349 mr->romd_mode ? 'R' : '-',
2350 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2351 : '-',
2352 memory_region_name(mr),
2353 memory_region_name(mr->alias),
2354 mr->alias_offset,
2355 mr->alias_offset
2356 + (int128_nz(mr->size) ?
2357 (hwaddr)int128_get64(int128_sub(mr->size,
2358 int128_one())) : 0),
2359 mr->enabled ? "" : " [disabled]");
2360 } else {
2361 mon_printf(f,
2362 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2363 base + mr->addr,
2364 base + mr->addr
2365 + (int128_nz(mr->size) ?
2366 (hwaddr)int128_get64(int128_sub(mr->size,
2367 int128_one())) : 0),
2368 mr->priority,
2369 mr->romd_mode ? 'R' : '-',
2370 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2371 : '-',
2372 memory_region_name(mr),
2373 mr->enabled ? "" : " [disabled]");
2374 }
2375
2376 QTAILQ_INIT(&submr_print_queue);
2377
2378 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2379 new_ml = g_new(MemoryRegionList, 1);
2380 new_ml->mr = submr;
2381 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2382 if (new_ml->mr->addr < ml->mr->addr ||
2383 (new_ml->mr->addr == ml->mr->addr &&
2384 new_ml->mr->priority > ml->mr->priority)) {
2385 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2386 new_ml = NULL;
2387 break;
2388 }
2389 }
2390 if (new_ml) {
2391 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2392 }
2393 }
2394
2395 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2396 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2397 alias_print_queue);
2398 }
2399
2400 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2401 g_free(ml);
2402 }
2403 }
2404
2405 void mtree_info(fprintf_function mon_printf, void *f)
2406 {
2407 MemoryRegionListHead ml_head;
2408 MemoryRegionList *ml, *ml2;
2409 AddressSpace *as;
2410
2411 QTAILQ_INIT(&ml_head);
2412
2413 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2414 mon_printf(f, "address-space: %s\n", as->name);
2415 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2416 mon_printf(f, "\n");
2417 }
2418
2419 /* print aliased regions */
2420 QTAILQ_FOREACH(ml, &ml_head, queue) {
2421 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2422 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2423 mon_printf(f, "\n");
2424 }
2425
2426 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2427 g_free(ml);
2428 }
2429 }
2430
2431 static const TypeInfo memory_region_info = {
2432 .parent = TYPE_OBJECT,
2433 .name = TYPE_MEMORY_REGION,
2434 .instance_size = sizeof(MemoryRegion),
2435 .instance_init = memory_region_initfn,
2436 .instance_finalize = memory_region_finalize,
2437 };
2438
2439 static void memory_register_types(void)
2440 {
2441 type_register_static(&memory_region_info);
2442 }
2443
2444 type_init(memory_register_types)