]> git.proxmox.com Git - mirror_qemu.git/blob - migration/postcopy-ram.c
3952d78e6b7498fc035a89b5c4e12da674d20a6d
[mirror_qemu.git] / migration / postcopy-ram.c
1 /*
2 * Postcopy migration for RAM
3 *
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
17 */
18
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "qapi/error.h"
27 #include "qemu/notify.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/balloon.h"
30 #include "qemu/error-report.h"
31 #include "trace.h"
32
33 /* Arbitrary limit on size of each discard command,
34 * keeps them around ~200 bytes
35 */
36 #define MAX_DISCARDS_PER_COMMAND 12
37
38 struct PostcopyDiscardState {
39 const char *ramblock_name;
40 uint16_t cur_entry;
41 /*
42 * Start and length of a discard range (bytes)
43 */
44 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
45 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
46 unsigned int nsentwords;
47 unsigned int nsentcmds;
48 };
49
50 static NotifierWithReturnList postcopy_notifier_list;
51
52 void postcopy_infrastructure_init(void)
53 {
54 notifier_with_return_list_init(&postcopy_notifier_list);
55 }
56
57 void postcopy_add_notifier(NotifierWithReturn *nn)
58 {
59 notifier_with_return_list_add(&postcopy_notifier_list, nn);
60 }
61
62 void postcopy_remove_notifier(NotifierWithReturn *n)
63 {
64 notifier_with_return_remove(n);
65 }
66
67 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
68 {
69 struct PostcopyNotifyData pnd;
70 pnd.reason = reason;
71 pnd.errp = errp;
72
73 return notifier_with_return_list_notify(&postcopy_notifier_list,
74 &pnd);
75 }
76
77 /* Postcopy needs to detect accesses to pages that haven't yet been copied
78 * across, and efficiently map new pages in, the techniques for doing this
79 * are target OS specific.
80 */
81 #if defined(__linux__)
82
83 #include <poll.h>
84 #include <sys/ioctl.h>
85 #include <sys/syscall.h>
86 #include <asm/types.h> /* for __u64 */
87 #endif
88
89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
90 #include <sys/eventfd.h>
91 #include <linux/userfaultfd.h>
92
93 typedef struct PostcopyBlocktimeContext {
94 /* time when page fault initiated per vCPU */
95 uint32_t *page_fault_vcpu_time;
96 /* page address per vCPU */
97 uintptr_t *vcpu_addr;
98 uint32_t total_blocktime;
99 /* blocktime per vCPU */
100 uint32_t *vcpu_blocktime;
101 /* point in time when last page fault was initiated */
102 uint32_t last_begin;
103 /* number of vCPU are suspended */
104 int smp_cpus_down;
105 uint64_t start_time;
106
107 /*
108 * Handler for exit event, necessary for
109 * releasing whole blocktime_ctx
110 */
111 Notifier exit_notifier;
112 } PostcopyBlocktimeContext;
113
114 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
115 {
116 g_free(ctx->page_fault_vcpu_time);
117 g_free(ctx->vcpu_addr);
118 g_free(ctx->vcpu_blocktime);
119 g_free(ctx);
120 }
121
122 static void migration_exit_cb(Notifier *n, void *data)
123 {
124 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
125 exit_notifier);
126 destroy_blocktime_context(ctx);
127 }
128
129 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
130 {
131 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
132 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
133 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
134 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
135
136 ctx->exit_notifier.notify = migration_exit_cb;
137 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
138 qemu_add_exit_notifier(&ctx->exit_notifier);
139 return ctx;
140 }
141
142 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
143 {
144 uint32List *list = NULL, *entry = NULL;
145 int i;
146
147 for (i = smp_cpus - 1; i >= 0; i--) {
148 entry = g_new0(uint32List, 1);
149 entry->value = ctx->vcpu_blocktime[i];
150 entry->next = list;
151 list = entry;
152 }
153
154 return list;
155 }
156
157 /*
158 * This function just populates MigrationInfo from postcopy's
159 * blocktime context. It will not populate MigrationInfo,
160 * unless postcopy-blocktime capability was set.
161 *
162 * @info: pointer to MigrationInfo to populate
163 */
164 void fill_destination_postcopy_migration_info(MigrationInfo *info)
165 {
166 MigrationIncomingState *mis = migration_incoming_get_current();
167 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
168
169 if (!bc) {
170 return;
171 }
172
173 info->has_postcopy_blocktime = true;
174 info->postcopy_blocktime = bc->total_blocktime;
175 info->has_postcopy_vcpu_blocktime = true;
176 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
177 }
178
179 static uint32_t get_postcopy_total_blocktime(void)
180 {
181 MigrationIncomingState *mis = migration_incoming_get_current();
182 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
183
184 if (!bc) {
185 return 0;
186 }
187
188 return bc->total_blocktime;
189 }
190
191 /**
192 * receive_ufd_features: check userfault fd features, to request only supported
193 * features in the future.
194 *
195 * Returns: true on success
196 *
197 * __NR_userfaultfd - should be checked before
198 * @features: out parameter will contain uffdio_api.features provided by kernel
199 * in case of success
200 */
201 static bool receive_ufd_features(uint64_t *features)
202 {
203 struct uffdio_api api_struct = {0};
204 int ufd;
205 bool ret = true;
206
207 /* if we are here __NR_userfaultfd should exists */
208 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
209 if (ufd == -1) {
210 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
211 strerror(errno));
212 return false;
213 }
214
215 /* ask features */
216 api_struct.api = UFFD_API;
217 api_struct.features = 0;
218 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
219 error_report("%s: UFFDIO_API failed: %s", __func__,
220 strerror(errno));
221 ret = false;
222 goto release_ufd;
223 }
224
225 *features = api_struct.features;
226
227 release_ufd:
228 close(ufd);
229 return ret;
230 }
231
232 /**
233 * request_ufd_features: this function should be called only once on a newly
234 * opened ufd, subsequent calls will lead to error.
235 *
236 * Returns: true on succes
237 *
238 * @ufd: fd obtained from userfaultfd syscall
239 * @features: bit mask see UFFD_API_FEATURES
240 */
241 static bool request_ufd_features(int ufd, uint64_t features)
242 {
243 struct uffdio_api api_struct = {0};
244 uint64_t ioctl_mask;
245
246 api_struct.api = UFFD_API;
247 api_struct.features = features;
248 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
249 error_report("%s failed: UFFDIO_API failed: %s", __func__,
250 strerror(errno));
251 return false;
252 }
253
254 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
255 (__u64)1 << _UFFDIO_UNREGISTER;
256 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
257 error_report("Missing userfault features: %" PRIx64,
258 (uint64_t)(~api_struct.ioctls & ioctl_mask));
259 return false;
260 }
261
262 return true;
263 }
264
265 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
266 {
267 uint64_t asked_features = 0;
268 static uint64_t supported_features;
269
270 /*
271 * it's not possible to
272 * request UFFD_API twice per one fd
273 * userfault fd features is persistent
274 */
275 if (!supported_features) {
276 if (!receive_ufd_features(&supported_features)) {
277 error_report("%s failed", __func__);
278 return false;
279 }
280 }
281
282 #ifdef UFFD_FEATURE_THREAD_ID
283 if (migrate_postcopy_blocktime() && mis &&
284 UFFD_FEATURE_THREAD_ID & supported_features) {
285 /* kernel supports that feature */
286 /* don't create blocktime_context if it exists */
287 if (!mis->blocktime_ctx) {
288 mis->blocktime_ctx = blocktime_context_new();
289 }
290
291 asked_features |= UFFD_FEATURE_THREAD_ID;
292 }
293 #endif
294
295 /*
296 * request features, even if asked_features is 0, due to
297 * kernel expects UFFD_API before UFFDIO_REGISTER, per
298 * userfault file descriptor
299 */
300 if (!request_ufd_features(ufd, asked_features)) {
301 error_report("%s failed: features %" PRIu64, __func__,
302 asked_features);
303 return false;
304 }
305
306 if (getpagesize() != ram_pagesize_summary()) {
307 bool have_hp = false;
308 /* We've got a huge page */
309 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
310 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
311 #endif
312 if (!have_hp) {
313 error_report("Userfault on this host does not support huge pages");
314 return false;
315 }
316 }
317 return true;
318 }
319
320 /* Callback from postcopy_ram_supported_by_host block iterator.
321 */
322 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
323 ram_addr_t offset, ram_addr_t length, void *opaque)
324 {
325 RAMBlock *rb = qemu_ram_block_by_name(block_name);
326 size_t pagesize = qemu_ram_pagesize(rb);
327
328 if (length % pagesize) {
329 error_report("Postcopy requires RAM blocks to be a page size multiple,"
330 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
331 "page size of 0x%zx", block_name, length, pagesize);
332 return 1;
333 }
334 return 0;
335 }
336
337 /*
338 * Note: This has the side effect of munlock'ing all of RAM, that's
339 * normally fine since if the postcopy succeeds it gets turned back on at the
340 * end.
341 */
342 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
343 {
344 long pagesize = getpagesize();
345 int ufd = -1;
346 bool ret = false; /* Error unless we change it */
347 void *testarea = NULL;
348 struct uffdio_register reg_struct;
349 struct uffdio_range range_struct;
350 uint64_t feature_mask;
351 Error *local_err = NULL;
352
353 if (qemu_target_page_size() > pagesize) {
354 error_report("Target page size bigger than host page size");
355 goto out;
356 }
357
358 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
359 if (ufd == -1) {
360 error_report("%s: userfaultfd not available: %s", __func__,
361 strerror(errno));
362 goto out;
363 }
364
365 /* Give devices a chance to object */
366 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
367 error_report_err(local_err);
368 goto out;
369 }
370
371 /* Version and features check */
372 if (!ufd_check_and_apply(ufd, mis)) {
373 goto out;
374 }
375
376 /* We don't support postcopy with shared RAM yet */
377 if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable, NULL)) {
378 goto out;
379 }
380
381 /*
382 * userfault and mlock don't go together; we'll put it back later if
383 * it was enabled.
384 */
385 if (munlockall()) {
386 error_report("%s: munlockall: %s", __func__, strerror(errno));
387 return -1;
388 }
389
390 /*
391 * We need to check that the ops we need are supported on anon memory
392 * To do that we need to register a chunk and see the flags that
393 * are returned.
394 */
395 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
396 MAP_ANONYMOUS, -1, 0);
397 if (testarea == MAP_FAILED) {
398 error_report("%s: Failed to map test area: %s", __func__,
399 strerror(errno));
400 goto out;
401 }
402 g_assert(((size_t)testarea & (pagesize-1)) == 0);
403
404 reg_struct.range.start = (uintptr_t)testarea;
405 reg_struct.range.len = pagesize;
406 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
407
408 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
409 error_report("%s userfault register: %s", __func__, strerror(errno));
410 goto out;
411 }
412
413 range_struct.start = (uintptr_t)testarea;
414 range_struct.len = pagesize;
415 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
416 error_report("%s userfault unregister: %s", __func__, strerror(errno));
417 goto out;
418 }
419
420 feature_mask = (__u64)1 << _UFFDIO_WAKE |
421 (__u64)1 << _UFFDIO_COPY |
422 (__u64)1 << _UFFDIO_ZEROPAGE;
423 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
424 error_report("Missing userfault map features: %" PRIx64,
425 (uint64_t)(~reg_struct.ioctls & feature_mask));
426 goto out;
427 }
428
429 /* Success! */
430 ret = true;
431 out:
432 if (testarea) {
433 munmap(testarea, pagesize);
434 }
435 if (ufd != -1) {
436 close(ufd);
437 }
438 return ret;
439 }
440
441 /*
442 * Setup an area of RAM so that it *can* be used for postcopy later; this
443 * must be done right at the start prior to pre-copy.
444 * opaque should be the MIS.
445 */
446 static int init_range(const char *block_name, void *host_addr,
447 ram_addr_t offset, ram_addr_t length, void *opaque)
448 {
449 trace_postcopy_init_range(block_name, host_addr, offset, length);
450
451 /*
452 * We need the whole of RAM to be truly empty for postcopy, so things
453 * like ROMs and any data tables built during init must be zero'd
454 * - we're going to get the copy from the source anyway.
455 * (Precopy will just overwrite this data, so doesn't need the discard)
456 */
457 if (ram_discard_range(block_name, 0, length)) {
458 return -1;
459 }
460
461 return 0;
462 }
463
464 /*
465 * At the end of migration, undo the effects of init_range
466 * opaque should be the MIS.
467 */
468 static int cleanup_range(const char *block_name, void *host_addr,
469 ram_addr_t offset, ram_addr_t length, void *opaque)
470 {
471 MigrationIncomingState *mis = opaque;
472 struct uffdio_range range_struct;
473 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
474
475 /*
476 * We turned off hugepage for the precopy stage with postcopy enabled
477 * we can turn it back on now.
478 */
479 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
480
481 /*
482 * We can also turn off userfault now since we should have all the
483 * pages. It can be useful to leave it on to debug postcopy
484 * if you're not sure it's always getting every page.
485 */
486 range_struct.start = (uintptr_t)host_addr;
487 range_struct.len = length;
488
489 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
490 error_report("%s: userfault unregister %s", __func__, strerror(errno));
491
492 return -1;
493 }
494
495 return 0;
496 }
497
498 /*
499 * Initialise postcopy-ram, setting the RAM to a state where we can go into
500 * postcopy later; must be called prior to any precopy.
501 * called from arch_init's similarly named ram_postcopy_incoming_init
502 */
503 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
504 {
505 if (qemu_ram_foreach_migratable_block(init_range, NULL)) {
506 return -1;
507 }
508
509 return 0;
510 }
511
512 /*
513 * At the end of a migration where postcopy_ram_incoming_init was called.
514 */
515 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
516 {
517 trace_postcopy_ram_incoming_cleanup_entry();
518
519 if (mis->have_fault_thread) {
520 Error *local_err = NULL;
521
522 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
523 error_report_err(local_err);
524 return -1;
525 }
526
527 if (qemu_ram_foreach_migratable_block(cleanup_range, mis)) {
528 return -1;
529 }
530 /* Let the fault thread quit */
531 atomic_set(&mis->fault_thread_quit, 1);
532 postcopy_fault_thread_notify(mis);
533 trace_postcopy_ram_incoming_cleanup_join();
534 qemu_thread_join(&mis->fault_thread);
535
536 trace_postcopy_ram_incoming_cleanup_closeuf();
537 close(mis->userfault_fd);
538 close(mis->userfault_event_fd);
539 mis->have_fault_thread = false;
540 }
541
542 qemu_balloon_inhibit(false);
543
544 if (enable_mlock) {
545 if (os_mlock() < 0) {
546 error_report("mlock: %s", strerror(errno));
547 /*
548 * It doesn't feel right to fail at this point, we have a valid
549 * VM state.
550 */
551 }
552 }
553
554 postcopy_state_set(POSTCOPY_INCOMING_END);
555
556 if (mis->postcopy_tmp_page) {
557 munmap(mis->postcopy_tmp_page, mis->largest_page_size);
558 mis->postcopy_tmp_page = NULL;
559 }
560 if (mis->postcopy_tmp_zero_page) {
561 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
562 mis->postcopy_tmp_zero_page = NULL;
563 }
564 trace_postcopy_ram_incoming_cleanup_blocktime(
565 get_postcopy_total_blocktime());
566
567 trace_postcopy_ram_incoming_cleanup_exit();
568 return 0;
569 }
570
571 /*
572 * Disable huge pages on an area
573 */
574 static int nhp_range(const char *block_name, void *host_addr,
575 ram_addr_t offset, ram_addr_t length, void *opaque)
576 {
577 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
578
579 /*
580 * Before we do discards we need to ensure those discards really
581 * do delete areas of the page, even if THP thinks a hugepage would
582 * be a good idea, so force hugepages off.
583 */
584 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
585
586 return 0;
587 }
588
589 /*
590 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
591 * however leaving it until after precopy means that most of the precopy
592 * data is still THPd
593 */
594 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
595 {
596 if (qemu_ram_foreach_migratable_block(nhp_range, mis)) {
597 return -1;
598 }
599
600 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
601
602 return 0;
603 }
604
605 /*
606 * Mark the given area of RAM as requiring notification to unwritten areas
607 * Used as a callback on qemu_ram_foreach_migratable_block.
608 * host_addr: Base of area to mark
609 * offset: Offset in the whole ram arena
610 * length: Length of the section
611 * opaque: MigrationIncomingState pointer
612 * Returns 0 on success
613 */
614 static int ram_block_enable_notify(const char *block_name, void *host_addr,
615 ram_addr_t offset, ram_addr_t length,
616 void *opaque)
617 {
618 MigrationIncomingState *mis = opaque;
619 struct uffdio_register reg_struct;
620
621 reg_struct.range.start = (uintptr_t)host_addr;
622 reg_struct.range.len = length;
623 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
624
625 /* Now tell our userfault_fd that it's responsible for this area */
626 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
627 error_report("%s userfault register: %s", __func__, strerror(errno));
628 return -1;
629 }
630 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
631 error_report("%s userfault: Region doesn't support COPY", __func__);
632 return -1;
633 }
634 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
635 RAMBlock *rb = qemu_ram_block_by_name(block_name);
636 qemu_ram_set_uf_zeroable(rb);
637 }
638
639 return 0;
640 }
641
642 int postcopy_wake_shared(struct PostCopyFD *pcfd,
643 uint64_t client_addr,
644 RAMBlock *rb)
645 {
646 size_t pagesize = qemu_ram_pagesize(rb);
647 struct uffdio_range range;
648 int ret;
649 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
650 range.start = client_addr & ~(pagesize - 1);
651 range.len = pagesize;
652 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
653 if (ret) {
654 error_report("%s: Failed to wake: %zx in %s (%s)",
655 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
656 strerror(errno));
657 }
658 return ret;
659 }
660
661 /*
662 * Callback from shared fault handlers to ask for a page,
663 * the page must be specified by a RAMBlock and an offset in that rb
664 * Note: Only for use by shared fault handlers (in fault thread)
665 */
666 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
667 uint64_t client_addr, uint64_t rb_offset)
668 {
669 size_t pagesize = qemu_ram_pagesize(rb);
670 uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
671 MigrationIncomingState *mis = migration_incoming_get_current();
672
673 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
674 rb_offset);
675 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
676 trace_postcopy_request_shared_page_present(pcfd->idstr,
677 qemu_ram_get_idstr(rb), rb_offset);
678 return postcopy_wake_shared(pcfd, client_addr, rb);
679 }
680 if (rb != mis->last_rb) {
681 mis->last_rb = rb;
682 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
683 aligned_rbo, pagesize);
684 } else {
685 /* Save some space */
686 migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
687 }
688 return 0;
689 }
690
691 static int get_mem_fault_cpu_index(uint32_t pid)
692 {
693 CPUState *cpu_iter;
694
695 CPU_FOREACH(cpu_iter) {
696 if (cpu_iter->thread_id == pid) {
697 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
698 return cpu_iter->cpu_index;
699 }
700 }
701 trace_get_mem_fault_cpu_index(-1, pid);
702 return -1;
703 }
704
705 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
706 {
707 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
708 dc->start_time;
709 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
710 }
711
712 /*
713 * This function is being called when pagefault occurs. It
714 * tracks down vCPU blocking time.
715 *
716 * @addr: faulted host virtual address
717 * @ptid: faulted process thread id
718 * @rb: ramblock appropriate to addr
719 */
720 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
721 RAMBlock *rb)
722 {
723 int cpu, already_received;
724 MigrationIncomingState *mis = migration_incoming_get_current();
725 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
726 uint32_t low_time_offset;
727
728 if (!dc || ptid == 0) {
729 return;
730 }
731 cpu = get_mem_fault_cpu_index(ptid);
732 if (cpu < 0) {
733 return;
734 }
735
736 low_time_offset = get_low_time_offset(dc);
737 if (dc->vcpu_addr[cpu] == 0) {
738 atomic_inc(&dc->smp_cpus_down);
739 }
740
741 atomic_xchg(&dc->last_begin, low_time_offset);
742 atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
743 atomic_xchg(&dc->vcpu_addr[cpu], addr);
744
745 /* check it here, not at the begining of the function,
746 * due to, check could accur early than bitmap_set in
747 * qemu_ufd_copy_ioctl */
748 already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
749 if (already_received) {
750 atomic_xchg(&dc->vcpu_addr[cpu], 0);
751 atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
752 atomic_dec(&dc->smp_cpus_down);
753 }
754 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
755 cpu, already_received);
756 }
757
758 /*
759 * This function just provide calculated blocktime per cpu and trace it.
760 * Total blocktime is calculated in mark_postcopy_blocktime_end.
761 *
762 *
763 * Assume we have 3 CPU
764 *
765 * S1 E1 S1 E1
766 * -----***********------------xxx***************------------------------> CPU1
767 *
768 * S2 E2
769 * ------------****************xxx---------------------------------------> CPU2
770 *
771 * S3 E3
772 * ------------------------****xxx********-------------------------------> CPU3
773 *
774 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
775 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
776 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
777 * it's a part of total blocktime.
778 * S1 - here is last_begin
779 * Legend of the picture is following:
780 * * - means blocktime per vCPU
781 * x - means overlapped blocktime (total blocktime)
782 *
783 * @addr: host virtual address
784 */
785 static void mark_postcopy_blocktime_end(uintptr_t addr)
786 {
787 MigrationIncomingState *mis = migration_incoming_get_current();
788 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
789 int i, affected_cpu = 0;
790 bool vcpu_total_blocktime = false;
791 uint32_t read_vcpu_time, low_time_offset;
792
793 if (!dc) {
794 return;
795 }
796
797 low_time_offset = get_low_time_offset(dc);
798 /* lookup cpu, to clear it,
799 * that algorithm looks straighforward, but it's not
800 * optimal, more optimal algorithm is keeping tree or hash
801 * where key is address value is a list of */
802 for (i = 0; i < smp_cpus; i++) {
803 uint32_t vcpu_blocktime = 0;
804
805 read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
806 if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
807 read_vcpu_time == 0) {
808 continue;
809 }
810 atomic_xchg(&dc->vcpu_addr[i], 0);
811 vcpu_blocktime = low_time_offset - read_vcpu_time;
812 affected_cpu += 1;
813 /* we need to know is that mark_postcopy_end was due to
814 * faulted page, another possible case it's prefetched
815 * page and in that case we shouldn't be here */
816 if (!vcpu_total_blocktime &&
817 atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
818 vcpu_total_blocktime = true;
819 }
820 /* continue cycle, due to one page could affect several vCPUs */
821 dc->vcpu_blocktime[i] += vcpu_blocktime;
822 }
823
824 atomic_sub(&dc->smp_cpus_down, affected_cpu);
825 if (vcpu_total_blocktime) {
826 dc->total_blocktime += low_time_offset - atomic_fetch_add(
827 &dc->last_begin, 0);
828 }
829 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
830 affected_cpu);
831 }
832
833 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
834 {
835 trace_postcopy_pause_fault_thread();
836
837 qemu_sem_wait(&mis->postcopy_pause_sem_fault);
838
839 trace_postcopy_pause_fault_thread_continued();
840
841 return true;
842 }
843
844 /*
845 * Handle faults detected by the USERFAULT markings
846 */
847 static void *postcopy_ram_fault_thread(void *opaque)
848 {
849 MigrationIncomingState *mis = opaque;
850 struct uffd_msg msg;
851 int ret;
852 size_t index;
853 RAMBlock *rb = NULL;
854
855 trace_postcopy_ram_fault_thread_entry();
856 rcu_register_thread();
857 mis->last_rb = NULL; /* last RAMBlock we sent part of */
858 qemu_sem_post(&mis->fault_thread_sem);
859
860 struct pollfd *pfd;
861 size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
862
863 pfd = g_new0(struct pollfd, pfd_len);
864
865 pfd[0].fd = mis->userfault_fd;
866 pfd[0].events = POLLIN;
867 pfd[1].fd = mis->userfault_event_fd;
868 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
869 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
870 for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
871 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
872 struct PostCopyFD, index);
873 pfd[2 + index].fd = pcfd->fd;
874 pfd[2 + index].events = POLLIN;
875 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
876 pcfd->fd);
877 }
878
879 while (true) {
880 ram_addr_t rb_offset;
881 int poll_result;
882
883 /*
884 * We're mainly waiting for the kernel to give us a faulting HVA,
885 * however we can be told to quit via userfault_quit_fd which is
886 * an eventfd
887 */
888
889 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
890 if (poll_result == -1) {
891 error_report("%s: userfault poll: %s", __func__, strerror(errno));
892 break;
893 }
894
895 if (!mis->to_src_file) {
896 /*
897 * Possibly someone tells us that the return path is
898 * broken already using the event. We should hold until
899 * the channel is rebuilt.
900 */
901 if (postcopy_pause_fault_thread(mis)) {
902 mis->last_rb = NULL;
903 /* Continue to read the userfaultfd */
904 } else {
905 error_report("%s: paused but don't allow to continue",
906 __func__);
907 break;
908 }
909 }
910
911 if (pfd[1].revents) {
912 uint64_t tmp64 = 0;
913
914 /* Consume the signal */
915 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
916 /* Nothing obviously nicer than posting this error. */
917 error_report("%s: read() failed", __func__);
918 }
919
920 if (atomic_read(&mis->fault_thread_quit)) {
921 trace_postcopy_ram_fault_thread_quit();
922 break;
923 }
924 }
925
926 if (pfd[0].revents) {
927 poll_result--;
928 ret = read(mis->userfault_fd, &msg, sizeof(msg));
929 if (ret != sizeof(msg)) {
930 if (errno == EAGAIN) {
931 /*
932 * if a wake up happens on the other thread just after
933 * the poll, there is nothing to read.
934 */
935 continue;
936 }
937 if (ret < 0) {
938 error_report("%s: Failed to read full userfault "
939 "message: %s",
940 __func__, strerror(errno));
941 break;
942 } else {
943 error_report("%s: Read %d bytes from userfaultfd "
944 "expected %zd",
945 __func__, ret, sizeof(msg));
946 break; /* Lost alignment, don't know what we'd read next */
947 }
948 }
949 if (msg.event != UFFD_EVENT_PAGEFAULT) {
950 error_report("%s: Read unexpected event %ud from userfaultfd",
951 __func__, msg.event);
952 continue; /* It's not a page fault, shouldn't happen */
953 }
954
955 rb = qemu_ram_block_from_host(
956 (void *)(uintptr_t)msg.arg.pagefault.address,
957 true, &rb_offset);
958 if (!rb) {
959 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
960 PRIx64, (uint64_t)msg.arg.pagefault.address);
961 break;
962 }
963
964 rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
965 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
966 qemu_ram_get_idstr(rb),
967 rb_offset,
968 msg.arg.pagefault.feat.ptid);
969 mark_postcopy_blocktime_begin(
970 (uintptr_t)(msg.arg.pagefault.address),
971 msg.arg.pagefault.feat.ptid, rb);
972
973 retry:
974 /*
975 * Send the request to the source - we want to request one
976 * of our host page sizes (which is >= TPS)
977 */
978 if (rb != mis->last_rb) {
979 mis->last_rb = rb;
980 ret = migrate_send_rp_req_pages(mis,
981 qemu_ram_get_idstr(rb),
982 rb_offset,
983 qemu_ram_pagesize(rb));
984 } else {
985 /* Save some space */
986 ret = migrate_send_rp_req_pages(mis,
987 NULL,
988 rb_offset,
989 qemu_ram_pagesize(rb));
990 }
991
992 if (ret) {
993 /* May be network failure, try to wait for recovery */
994 if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
995 /* We got reconnected somehow, try to continue */
996 mis->last_rb = NULL;
997 goto retry;
998 } else {
999 /* This is a unavoidable fault */
1000 error_report("%s: migrate_send_rp_req_pages() get %d",
1001 __func__, ret);
1002 break;
1003 }
1004 }
1005 }
1006
1007 /* Now handle any requests from external processes on shared memory */
1008 /* TODO: May need to handle devices deregistering during postcopy */
1009 for (index = 2; index < pfd_len && poll_result; index++) {
1010 if (pfd[index].revents) {
1011 struct PostCopyFD *pcfd =
1012 &g_array_index(mis->postcopy_remote_fds,
1013 struct PostCopyFD, index - 2);
1014
1015 poll_result--;
1016 if (pfd[index].revents & POLLERR) {
1017 error_report("%s: POLLERR on poll %zd fd=%d",
1018 __func__, index, pcfd->fd);
1019 pfd[index].events = 0;
1020 continue;
1021 }
1022
1023 ret = read(pcfd->fd, &msg, sizeof(msg));
1024 if (ret != sizeof(msg)) {
1025 if (errno == EAGAIN) {
1026 /*
1027 * if a wake up happens on the other thread just after
1028 * the poll, there is nothing to read.
1029 */
1030 continue;
1031 }
1032 if (ret < 0) {
1033 error_report("%s: Failed to read full userfault "
1034 "message: %s (shared) revents=%d",
1035 __func__, strerror(errno),
1036 pfd[index].revents);
1037 /*TODO: Could just disable this sharer */
1038 break;
1039 } else {
1040 error_report("%s: Read %d bytes from userfaultfd "
1041 "expected %zd (shared)",
1042 __func__, ret, sizeof(msg));
1043 /*TODO: Could just disable this sharer */
1044 break; /*Lost alignment,don't know what we'd read next*/
1045 }
1046 }
1047 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1048 error_report("%s: Read unexpected event %ud "
1049 "from userfaultfd (shared)",
1050 __func__, msg.event);
1051 continue; /* It's not a page fault, shouldn't happen */
1052 }
1053 /* Call the device handler registered with us */
1054 ret = pcfd->handler(pcfd, &msg);
1055 if (ret) {
1056 error_report("%s: Failed to resolve shared fault on %zd/%s",
1057 __func__, index, pcfd->idstr);
1058 /* TODO: Fail? Disable this sharer? */
1059 }
1060 }
1061 }
1062 }
1063 rcu_unregister_thread();
1064 trace_postcopy_ram_fault_thread_exit();
1065 g_free(pfd);
1066 return NULL;
1067 }
1068
1069 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1070 {
1071 /* Open the fd for the kernel to give us userfaults */
1072 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1073 if (mis->userfault_fd == -1) {
1074 error_report("%s: Failed to open userfault fd: %s", __func__,
1075 strerror(errno));
1076 return -1;
1077 }
1078
1079 /*
1080 * Although the host check already tested the API, we need to
1081 * do the check again as an ABI handshake on the new fd.
1082 */
1083 if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1084 return -1;
1085 }
1086
1087 /* Now an eventfd we use to tell the fault-thread to quit */
1088 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1089 if (mis->userfault_event_fd == -1) {
1090 error_report("%s: Opening userfault_event_fd: %s", __func__,
1091 strerror(errno));
1092 close(mis->userfault_fd);
1093 return -1;
1094 }
1095
1096 qemu_sem_init(&mis->fault_thread_sem, 0);
1097 qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1098 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1099 qemu_sem_wait(&mis->fault_thread_sem);
1100 qemu_sem_destroy(&mis->fault_thread_sem);
1101 mis->have_fault_thread = true;
1102
1103 /* Mark so that we get notified of accesses to unwritten areas */
1104 if (qemu_ram_foreach_migratable_block(ram_block_enable_notify, mis)) {
1105 return -1;
1106 }
1107
1108 /*
1109 * Ballooning can mark pages as absent while we're postcopying
1110 * that would cause false userfaults.
1111 */
1112 qemu_balloon_inhibit(true);
1113
1114 trace_postcopy_ram_enable_notify();
1115
1116 return 0;
1117 }
1118
1119 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1120 void *from_addr, uint64_t pagesize, RAMBlock *rb)
1121 {
1122 int ret;
1123 if (from_addr) {
1124 struct uffdio_copy copy_struct;
1125 copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1126 copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1127 copy_struct.len = pagesize;
1128 copy_struct.mode = 0;
1129 ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1130 } else {
1131 struct uffdio_zeropage zero_struct;
1132 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1133 zero_struct.range.len = pagesize;
1134 zero_struct.mode = 0;
1135 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1136 }
1137 if (!ret) {
1138 ramblock_recv_bitmap_set_range(rb, host_addr,
1139 pagesize / qemu_target_page_size());
1140 mark_postcopy_blocktime_end((uintptr_t)host_addr);
1141
1142 }
1143 return ret;
1144 }
1145
1146 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1147 {
1148 int i;
1149 MigrationIncomingState *mis = migration_incoming_get_current();
1150 GArray *pcrfds = mis->postcopy_remote_fds;
1151
1152 for (i = 0; i < pcrfds->len; i++) {
1153 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1154 int ret = cur->waker(cur, rb, offset);
1155 if (ret) {
1156 return ret;
1157 }
1158 }
1159 return 0;
1160 }
1161
1162 /*
1163 * Place a host page (from) at (host) atomically
1164 * returns 0 on success
1165 */
1166 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1167 RAMBlock *rb)
1168 {
1169 size_t pagesize = qemu_ram_pagesize(rb);
1170
1171 /* copy also acks to the kernel waking the stalled thread up
1172 * TODO: We can inhibit that ack and only do it if it was requested
1173 * which would be slightly cheaper, but we'd have to be careful
1174 * of the order of updating our page state.
1175 */
1176 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1177 int e = errno;
1178 error_report("%s: %s copy host: %p from: %p (size: %zd)",
1179 __func__, strerror(e), host, from, pagesize);
1180
1181 return -e;
1182 }
1183
1184 trace_postcopy_place_page(host);
1185 return postcopy_notify_shared_wake(rb,
1186 qemu_ram_block_host_offset(rb, host));
1187 }
1188
1189 /*
1190 * Place a zero page at (host) atomically
1191 * returns 0 on success
1192 */
1193 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1194 RAMBlock *rb)
1195 {
1196 size_t pagesize = qemu_ram_pagesize(rb);
1197 trace_postcopy_place_page_zero(host);
1198
1199 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1200 * but it's not available for everything (e.g. hugetlbpages)
1201 */
1202 if (qemu_ram_is_uf_zeroable(rb)) {
1203 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1204 int e = errno;
1205 error_report("%s: %s zero host: %p",
1206 __func__, strerror(e), host);
1207
1208 return -e;
1209 }
1210 return postcopy_notify_shared_wake(rb,
1211 qemu_ram_block_host_offset(rb,
1212 host));
1213 } else {
1214 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1215 if (!mis->postcopy_tmp_zero_page) {
1216 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1217 PROT_READ | PROT_WRITE,
1218 MAP_PRIVATE | MAP_ANONYMOUS,
1219 -1, 0);
1220 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1221 int e = errno;
1222 mis->postcopy_tmp_zero_page = NULL;
1223 error_report("%s: %s mapping large zero page",
1224 __func__, strerror(e));
1225 return -e;
1226 }
1227 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1228 }
1229 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1230 rb);
1231 }
1232 }
1233
1234 /*
1235 * Returns a target page of memory that can be mapped at a later point in time
1236 * using postcopy_place_page
1237 * The same address is used repeatedly, postcopy_place_page just takes the
1238 * backing page away.
1239 * Returns: Pointer to allocated page
1240 *
1241 */
1242 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1243 {
1244 if (!mis->postcopy_tmp_page) {
1245 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1246 PROT_READ | PROT_WRITE, MAP_PRIVATE |
1247 MAP_ANONYMOUS, -1, 0);
1248 if (mis->postcopy_tmp_page == MAP_FAILED) {
1249 mis->postcopy_tmp_page = NULL;
1250 error_report("%s: %s", __func__, strerror(errno));
1251 return NULL;
1252 }
1253 }
1254
1255 return mis->postcopy_tmp_page;
1256 }
1257
1258 #else
1259 /* No target OS support, stubs just fail */
1260 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1261 {
1262 }
1263
1264 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1265 {
1266 error_report("%s: No OS support", __func__);
1267 return false;
1268 }
1269
1270 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1271 {
1272 error_report("postcopy_ram_incoming_init: No OS support");
1273 return -1;
1274 }
1275
1276 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1277 {
1278 assert(0);
1279 return -1;
1280 }
1281
1282 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1283 {
1284 assert(0);
1285 return -1;
1286 }
1287
1288 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1289 uint64_t client_addr, uint64_t rb_offset)
1290 {
1291 assert(0);
1292 return -1;
1293 }
1294
1295 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1296 {
1297 assert(0);
1298 return -1;
1299 }
1300
1301 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1302 RAMBlock *rb)
1303 {
1304 assert(0);
1305 return -1;
1306 }
1307
1308 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1309 RAMBlock *rb)
1310 {
1311 assert(0);
1312 return -1;
1313 }
1314
1315 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1316 {
1317 assert(0);
1318 return NULL;
1319 }
1320
1321 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1322 uint64_t client_addr,
1323 RAMBlock *rb)
1324 {
1325 assert(0);
1326 return -1;
1327 }
1328 #endif
1329
1330 /* ------------------------------------------------------------------------- */
1331
1332 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1333 {
1334 uint64_t tmp64 = 1;
1335
1336 /*
1337 * Wakeup the fault_thread. It's an eventfd that should currently
1338 * be at 0, we're going to increment it to 1
1339 */
1340 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1341 /* Not much we can do here, but may as well report it */
1342 error_report("%s: incrementing failed: %s", __func__,
1343 strerror(errno));
1344 }
1345 }
1346
1347 /**
1348 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1349 * asking to discard individual ranges.
1350 *
1351 * @ms: The current migration state.
1352 * @offset: the bitmap offset of the named RAMBlock in the migration
1353 * bitmap.
1354 * @name: RAMBlock that discards will operate on.
1355 *
1356 * returns: a new PDS.
1357 */
1358 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1359 const char *name)
1360 {
1361 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1362
1363 if (res) {
1364 res->ramblock_name = name;
1365 }
1366
1367 return res;
1368 }
1369
1370 /**
1371 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1372 * discard. May send a discard message, may just leave it queued to
1373 * be sent later.
1374 *
1375 * @ms: Current migration state.
1376 * @pds: Structure initialised by postcopy_discard_send_init().
1377 * @start,@length: a range of pages in the migration bitmap in the
1378 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1379 */
1380 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1381 unsigned long start, unsigned long length)
1382 {
1383 size_t tp_size = qemu_target_page_size();
1384 /* Convert to byte offsets within the RAM block */
1385 pds->start_list[pds->cur_entry] = start * tp_size;
1386 pds->length_list[pds->cur_entry] = length * tp_size;
1387 trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1388 pds->cur_entry++;
1389 pds->nsentwords++;
1390
1391 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1392 /* Full set, ship it! */
1393 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1394 pds->ramblock_name,
1395 pds->cur_entry,
1396 pds->start_list,
1397 pds->length_list);
1398 pds->nsentcmds++;
1399 pds->cur_entry = 0;
1400 }
1401 }
1402
1403 /**
1404 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1405 * bitmap code. Sends any outstanding discard messages, frees the PDS
1406 *
1407 * @ms: Current migration state.
1408 * @pds: Structure initialised by postcopy_discard_send_init().
1409 */
1410 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1411 {
1412 /* Anything unsent? */
1413 if (pds->cur_entry) {
1414 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1415 pds->ramblock_name,
1416 pds->cur_entry,
1417 pds->start_list,
1418 pds->length_list);
1419 pds->nsentcmds++;
1420 }
1421
1422 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1423 pds->nsentcmds);
1424
1425 g_free(pds);
1426 }
1427
1428 /*
1429 * Current state of incoming postcopy; note this is not part of
1430 * MigrationIncomingState since it's state is used during cleanup
1431 * at the end as MIS is being freed.
1432 */
1433 static PostcopyState incoming_postcopy_state;
1434
1435 PostcopyState postcopy_state_get(void)
1436 {
1437 return atomic_mb_read(&incoming_postcopy_state);
1438 }
1439
1440 /* Set the state and return the old state */
1441 PostcopyState postcopy_state_set(PostcopyState new_state)
1442 {
1443 return atomic_xchg(&incoming_postcopy_state, new_state);
1444 }
1445
1446 /* Register a handler for external shared memory postcopy
1447 * called on the destination.
1448 */
1449 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1450 {
1451 MigrationIncomingState *mis = migration_incoming_get_current();
1452
1453 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1454 *pcfd);
1455 }
1456
1457 /* Unregister a handler for external shared memory postcopy
1458 */
1459 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1460 {
1461 guint i;
1462 MigrationIncomingState *mis = migration_incoming_get_current();
1463 GArray *pcrfds = mis->postcopy_remote_fds;
1464
1465 for (i = 0; i < pcrfds->len; i++) {
1466 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1467 if (cur->fd == pcfd->fd) {
1468 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1469 return;
1470 }
1471 }
1472 }