]> git.proxmox.com Git - mirror_qemu.git/blob - migration/postcopy-ram.c
qcow2: Inform block layer about discard boundaries
[mirror_qemu.git] / migration / postcopy-ram.c
1 /*
2 * Postcopy migration for RAM
3 *
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
17 */
18
19 #include "qemu/osdep.h"
20
21 #include "qemu-common.h"
22 #include "migration/migration.h"
23 #include "migration/postcopy-ram.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/balloon.h"
26 #include "qemu/error-report.h"
27 #include "trace.h"
28
29 /* Arbitrary limit on size of each discard command,
30 * keeps them around ~200 bytes
31 */
32 #define MAX_DISCARDS_PER_COMMAND 12
33
34 struct PostcopyDiscardState {
35 const char *ramblock_name;
36 uint64_t offset; /* Bitmap entry for the 1st bit of this RAMBlock */
37 uint16_t cur_entry;
38 /*
39 * Start and length of a discard range (bytes)
40 */
41 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
42 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
43 unsigned int nsentwords;
44 unsigned int nsentcmds;
45 };
46
47 /* Postcopy needs to detect accesses to pages that haven't yet been copied
48 * across, and efficiently map new pages in, the techniques for doing this
49 * are target OS specific.
50 */
51 #if defined(__linux__)
52
53 #include <poll.h>
54 #include <sys/ioctl.h>
55 #include <sys/syscall.h>
56 #include <asm/types.h> /* for __u64 */
57 #endif
58
59 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
60 #include <sys/eventfd.h>
61 #include <linux/userfaultfd.h>
62
63 static bool ufd_version_check(int ufd)
64 {
65 struct uffdio_api api_struct;
66 uint64_t ioctl_mask;
67
68 api_struct.api = UFFD_API;
69 api_struct.features = 0;
70 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
71 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s",
72 strerror(errno));
73 return false;
74 }
75
76 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
77 (__u64)1 << _UFFDIO_UNREGISTER;
78 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
79 error_report("Missing userfault features: %" PRIx64,
80 (uint64_t)(~api_struct.ioctls & ioctl_mask));
81 return false;
82 }
83
84 return true;
85 }
86
87 /*
88 * Note: This has the side effect of munlock'ing all of RAM, that's
89 * normally fine since if the postcopy succeeds it gets turned back on at the
90 * end.
91 */
92 bool postcopy_ram_supported_by_host(void)
93 {
94 long pagesize = getpagesize();
95 int ufd = -1;
96 bool ret = false; /* Error unless we change it */
97 void *testarea = NULL;
98 struct uffdio_register reg_struct;
99 struct uffdio_range range_struct;
100 uint64_t feature_mask;
101
102 if ((1ul << qemu_target_page_bits()) > pagesize) {
103 error_report("Target page size bigger than host page size");
104 goto out;
105 }
106
107 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
108 if (ufd == -1) {
109 error_report("%s: userfaultfd not available: %s", __func__,
110 strerror(errno));
111 goto out;
112 }
113
114 /* Version and features check */
115 if (!ufd_version_check(ufd)) {
116 goto out;
117 }
118
119 /*
120 * userfault and mlock don't go together; we'll put it back later if
121 * it was enabled.
122 */
123 if (munlockall()) {
124 error_report("%s: munlockall: %s", __func__, strerror(errno));
125 return -1;
126 }
127
128 /*
129 * We need to check that the ops we need are supported on anon memory
130 * To do that we need to register a chunk and see the flags that
131 * are returned.
132 */
133 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
134 MAP_ANONYMOUS, -1, 0);
135 if (testarea == MAP_FAILED) {
136 error_report("%s: Failed to map test area: %s", __func__,
137 strerror(errno));
138 goto out;
139 }
140 g_assert(((size_t)testarea & (pagesize-1)) == 0);
141
142 reg_struct.range.start = (uintptr_t)testarea;
143 reg_struct.range.len = pagesize;
144 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
145
146 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
147 error_report("%s userfault register: %s", __func__, strerror(errno));
148 goto out;
149 }
150
151 range_struct.start = (uintptr_t)testarea;
152 range_struct.len = pagesize;
153 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
154 error_report("%s userfault unregister: %s", __func__, strerror(errno));
155 goto out;
156 }
157
158 feature_mask = (__u64)1 << _UFFDIO_WAKE |
159 (__u64)1 << _UFFDIO_COPY |
160 (__u64)1 << _UFFDIO_ZEROPAGE;
161 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
162 error_report("Missing userfault map features: %" PRIx64,
163 (uint64_t)(~reg_struct.ioctls & feature_mask));
164 goto out;
165 }
166
167 /* Success! */
168 ret = true;
169 out:
170 if (testarea) {
171 munmap(testarea, pagesize);
172 }
173 if (ufd != -1) {
174 close(ufd);
175 }
176 return ret;
177 }
178
179 /**
180 * postcopy_ram_discard_range: Discard a range of memory.
181 * We can assume that if we've been called postcopy_ram_hosttest returned true.
182 *
183 * @mis: Current incoming migration state.
184 * @start, @length: range of memory to discard.
185 *
186 * returns: 0 on success.
187 */
188 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start,
189 size_t length)
190 {
191 trace_postcopy_ram_discard_range(start, length);
192 if (madvise(start, length, MADV_DONTNEED)) {
193 error_report("%s MADV_DONTNEED: %s", __func__, strerror(errno));
194 return -1;
195 }
196
197 return 0;
198 }
199
200 /*
201 * Setup an area of RAM so that it *can* be used for postcopy later; this
202 * must be done right at the start prior to pre-copy.
203 * opaque should be the MIS.
204 */
205 static int init_range(const char *block_name, void *host_addr,
206 ram_addr_t offset, ram_addr_t length, void *opaque)
207 {
208 MigrationIncomingState *mis = opaque;
209
210 trace_postcopy_init_range(block_name, host_addr, offset, length);
211
212 /*
213 * We need the whole of RAM to be truly empty for postcopy, so things
214 * like ROMs and any data tables built during init must be zero'd
215 * - we're going to get the copy from the source anyway.
216 * (Precopy will just overwrite this data, so doesn't need the discard)
217 */
218 if (postcopy_ram_discard_range(mis, host_addr, length)) {
219 return -1;
220 }
221
222 return 0;
223 }
224
225 /*
226 * At the end of migration, undo the effects of init_range
227 * opaque should be the MIS.
228 */
229 static int cleanup_range(const char *block_name, void *host_addr,
230 ram_addr_t offset, ram_addr_t length, void *opaque)
231 {
232 MigrationIncomingState *mis = opaque;
233 struct uffdio_range range_struct;
234 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
235
236 /*
237 * We turned off hugepage for the precopy stage with postcopy enabled
238 * we can turn it back on now.
239 */
240 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
241
242 /*
243 * We can also turn off userfault now since we should have all the
244 * pages. It can be useful to leave it on to debug postcopy
245 * if you're not sure it's always getting every page.
246 */
247 range_struct.start = (uintptr_t)host_addr;
248 range_struct.len = length;
249
250 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
251 error_report("%s: userfault unregister %s", __func__, strerror(errno));
252
253 return -1;
254 }
255
256 return 0;
257 }
258
259 /*
260 * Initialise postcopy-ram, setting the RAM to a state where we can go into
261 * postcopy later; must be called prior to any precopy.
262 * called from arch_init's similarly named ram_postcopy_incoming_init
263 */
264 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
265 {
266 if (qemu_ram_foreach_block(init_range, mis)) {
267 return -1;
268 }
269
270 return 0;
271 }
272
273 /*
274 * At the end of a migration where postcopy_ram_incoming_init was called.
275 */
276 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
277 {
278 trace_postcopy_ram_incoming_cleanup_entry();
279
280 if (mis->have_fault_thread) {
281 uint64_t tmp64;
282
283 if (qemu_ram_foreach_block(cleanup_range, mis)) {
284 return -1;
285 }
286 /*
287 * Tell the fault_thread to exit, it's an eventfd that should
288 * currently be at 0, we're going to increment it to 1
289 */
290 tmp64 = 1;
291 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
292 trace_postcopy_ram_incoming_cleanup_join();
293 qemu_thread_join(&mis->fault_thread);
294 } else {
295 /* Not much we can do here, but may as well report it */
296 error_report("%s: incrementing userfault_quit_fd: %s", __func__,
297 strerror(errno));
298 }
299 trace_postcopy_ram_incoming_cleanup_closeuf();
300 close(mis->userfault_fd);
301 close(mis->userfault_quit_fd);
302 mis->have_fault_thread = false;
303 }
304
305 qemu_balloon_inhibit(false);
306
307 if (enable_mlock) {
308 if (os_mlock() < 0) {
309 error_report("mlock: %s", strerror(errno));
310 /*
311 * It doesn't feel right to fail at this point, we have a valid
312 * VM state.
313 */
314 }
315 }
316
317 postcopy_state_set(POSTCOPY_INCOMING_END);
318 migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0);
319
320 if (mis->postcopy_tmp_page) {
321 munmap(mis->postcopy_tmp_page, getpagesize());
322 mis->postcopy_tmp_page = NULL;
323 }
324 trace_postcopy_ram_incoming_cleanup_exit();
325 return 0;
326 }
327
328 /*
329 * Disable huge pages on an area
330 */
331 static int nhp_range(const char *block_name, void *host_addr,
332 ram_addr_t offset, ram_addr_t length, void *opaque)
333 {
334 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
335
336 /*
337 * Before we do discards we need to ensure those discards really
338 * do delete areas of the page, even if THP thinks a hugepage would
339 * be a good idea, so force hugepages off.
340 */
341 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
342
343 return 0;
344 }
345
346 /*
347 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
348 * however leaving it until after precopy means that most of the precopy
349 * data is still THPd
350 */
351 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
352 {
353 if (qemu_ram_foreach_block(nhp_range, mis)) {
354 return -1;
355 }
356
357 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
358
359 return 0;
360 }
361
362 /*
363 * Mark the given area of RAM as requiring notification to unwritten areas
364 * Used as a callback on qemu_ram_foreach_block.
365 * host_addr: Base of area to mark
366 * offset: Offset in the whole ram arena
367 * length: Length of the section
368 * opaque: MigrationIncomingState pointer
369 * Returns 0 on success
370 */
371 static int ram_block_enable_notify(const char *block_name, void *host_addr,
372 ram_addr_t offset, ram_addr_t length,
373 void *opaque)
374 {
375 MigrationIncomingState *mis = opaque;
376 struct uffdio_register reg_struct;
377
378 reg_struct.range.start = (uintptr_t)host_addr;
379 reg_struct.range.len = length;
380 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
381
382 /* Now tell our userfault_fd that it's responsible for this area */
383 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
384 error_report("%s userfault register: %s", __func__, strerror(errno));
385 return -1;
386 }
387
388 return 0;
389 }
390
391 /*
392 * Handle faults detected by the USERFAULT markings
393 */
394 static void *postcopy_ram_fault_thread(void *opaque)
395 {
396 MigrationIncomingState *mis = opaque;
397 struct uffd_msg msg;
398 int ret;
399 size_t hostpagesize = getpagesize();
400 RAMBlock *rb = NULL;
401 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
402
403 trace_postcopy_ram_fault_thread_entry();
404 qemu_sem_post(&mis->fault_thread_sem);
405
406 while (true) {
407 ram_addr_t rb_offset;
408 struct pollfd pfd[2];
409
410 /*
411 * We're mainly waiting for the kernel to give us a faulting HVA,
412 * however we can be told to quit via userfault_quit_fd which is
413 * an eventfd
414 */
415 pfd[0].fd = mis->userfault_fd;
416 pfd[0].events = POLLIN;
417 pfd[0].revents = 0;
418 pfd[1].fd = mis->userfault_quit_fd;
419 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
420 pfd[1].revents = 0;
421
422 if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
423 error_report("%s: userfault poll: %s", __func__, strerror(errno));
424 break;
425 }
426
427 if (pfd[1].revents) {
428 trace_postcopy_ram_fault_thread_quit();
429 break;
430 }
431
432 ret = read(mis->userfault_fd, &msg, sizeof(msg));
433 if (ret != sizeof(msg)) {
434 if (errno == EAGAIN) {
435 /*
436 * if a wake up happens on the other thread just after
437 * the poll, there is nothing to read.
438 */
439 continue;
440 }
441 if (ret < 0) {
442 error_report("%s: Failed to read full userfault message: %s",
443 __func__, strerror(errno));
444 break;
445 } else {
446 error_report("%s: Read %d bytes from userfaultfd expected %zd",
447 __func__, ret, sizeof(msg));
448 break; /* Lost alignment, don't know what we'd read next */
449 }
450 }
451 if (msg.event != UFFD_EVENT_PAGEFAULT) {
452 error_report("%s: Read unexpected event %ud from userfaultfd",
453 __func__, msg.event);
454 continue; /* It's not a page fault, shouldn't happen */
455 }
456
457 rb = qemu_ram_block_from_host(
458 (void *)(uintptr_t)msg.arg.pagefault.address,
459 true, &rb_offset);
460 if (!rb) {
461 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
462 PRIx64, (uint64_t)msg.arg.pagefault.address);
463 break;
464 }
465
466 rb_offset &= ~(hostpagesize - 1);
467 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
468 qemu_ram_get_idstr(rb),
469 rb_offset);
470
471 /*
472 * Send the request to the source - we want to request one
473 * of our host page sizes (which is >= TPS)
474 */
475 if (rb != last_rb) {
476 last_rb = rb;
477 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
478 rb_offset, hostpagesize);
479 } else {
480 /* Save some space */
481 migrate_send_rp_req_pages(mis, NULL,
482 rb_offset, hostpagesize);
483 }
484 }
485 trace_postcopy_ram_fault_thread_exit();
486 return NULL;
487 }
488
489 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
490 {
491 /* Open the fd for the kernel to give us userfaults */
492 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
493 if (mis->userfault_fd == -1) {
494 error_report("%s: Failed to open userfault fd: %s", __func__,
495 strerror(errno));
496 return -1;
497 }
498
499 /*
500 * Although the host check already tested the API, we need to
501 * do the check again as an ABI handshake on the new fd.
502 */
503 if (!ufd_version_check(mis->userfault_fd)) {
504 return -1;
505 }
506
507 /* Now an eventfd we use to tell the fault-thread to quit */
508 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
509 if (mis->userfault_quit_fd == -1) {
510 error_report("%s: Opening userfault_quit_fd: %s", __func__,
511 strerror(errno));
512 close(mis->userfault_fd);
513 return -1;
514 }
515
516 qemu_sem_init(&mis->fault_thread_sem, 0);
517 qemu_thread_create(&mis->fault_thread, "postcopy/fault",
518 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
519 qemu_sem_wait(&mis->fault_thread_sem);
520 qemu_sem_destroy(&mis->fault_thread_sem);
521 mis->have_fault_thread = true;
522
523 /* Mark so that we get notified of accesses to unwritten areas */
524 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
525 return -1;
526 }
527
528 /*
529 * Ballooning can mark pages as absent while we're postcopying
530 * that would cause false userfaults.
531 */
532 qemu_balloon_inhibit(true);
533
534 trace_postcopy_ram_enable_notify();
535
536 return 0;
537 }
538
539 /*
540 * Place a host page (from) at (host) atomically
541 * returns 0 on success
542 */
543 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from)
544 {
545 struct uffdio_copy copy_struct;
546
547 copy_struct.dst = (uint64_t)(uintptr_t)host;
548 copy_struct.src = (uint64_t)(uintptr_t)from;
549 copy_struct.len = getpagesize();
550 copy_struct.mode = 0;
551
552 /* copy also acks to the kernel waking the stalled thread up
553 * TODO: We can inhibit that ack and only do it if it was requested
554 * which would be slightly cheaper, but we'd have to be careful
555 * of the order of updating our page state.
556 */
557 if (ioctl(mis->userfault_fd, UFFDIO_COPY, &copy_struct)) {
558 int e = errno;
559 error_report("%s: %s copy host: %p from: %p",
560 __func__, strerror(e), host, from);
561
562 return -e;
563 }
564
565 trace_postcopy_place_page(host);
566 return 0;
567 }
568
569 /*
570 * Place a zero page at (host) atomically
571 * returns 0 on success
572 */
573 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host)
574 {
575 struct uffdio_zeropage zero_struct;
576
577 zero_struct.range.start = (uint64_t)(uintptr_t)host;
578 zero_struct.range.len = getpagesize();
579 zero_struct.mode = 0;
580
581 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
582 int e = errno;
583 error_report("%s: %s zero host: %p",
584 __func__, strerror(e), host);
585
586 return -e;
587 }
588
589 trace_postcopy_place_page_zero(host);
590 return 0;
591 }
592
593 /*
594 * Returns a target page of memory that can be mapped at a later point in time
595 * using postcopy_place_page
596 * The same address is used repeatedly, postcopy_place_page just takes the
597 * backing page away.
598 * Returns: Pointer to allocated page
599 *
600 */
601 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
602 {
603 if (!mis->postcopy_tmp_page) {
604 mis->postcopy_tmp_page = mmap(NULL, getpagesize(),
605 PROT_READ | PROT_WRITE, MAP_PRIVATE |
606 MAP_ANONYMOUS, -1, 0);
607 if (mis->postcopy_tmp_page == MAP_FAILED) {
608 mis->postcopy_tmp_page = NULL;
609 error_report("%s: %s", __func__, strerror(errno));
610 return NULL;
611 }
612 }
613
614 return mis->postcopy_tmp_page;
615 }
616
617 #else
618 /* No target OS support, stubs just fail */
619 bool postcopy_ram_supported_by_host(void)
620 {
621 error_report("%s: No OS support", __func__);
622 return false;
623 }
624
625 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
626 {
627 error_report("postcopy_ram_incoming_init: No OS support");
628 return -1;
629 }
630
631 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
632 {
633 assert(0);
634 return -1;
635 }
636
637 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start,
638 size_t length)
639 {
640 assert(0);
641 return -1;
642 }
643
644 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
645 {
646 assert(0);
647 return -1;
648 }
649
650 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
651 {
652 assert(0);
653 return -1;
654 }
655
656 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from)
657 {
658 assert(0);
659 return -1;
660 }
661
662 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host)
663 {
664 assert(0);
665 return -1;
666 }
667
668 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
669 {
670 assert(0);
671 return NULL;
672 }
673
674 #endif
675
676 /* ------------------------------------------------------------------------- */
677
678 /**
679 * postcopy_discard_send_init: Called at the start of each RAMBlock before
680 * asking to discard individual ranges.
681 *
682 * @ms: The current migration state.
683 * @offset: the bitmap offset of the named RAMBlock in the migration
684 * bitmap.
685 * @name: RAMBlock that discards will operate on.
686 *
687 * returns: a new PDS.
688 */
689 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
690 unsigned long offset,
691 const char *name)
692 {
693 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
694
695 if (res) {
696 res->ramblock_name = name;
697 res->offset = offset;
698 }
699
700 return res;
701 }
702
703 /**
704 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
705 * discard. May send a discard message, may just leave it queued to
706 * be sent later.
707 *
708 * @ms: Current migration state.
709 * @pds: Structure initialised by postcopy_discard_send_init().
710 * @start,@length: a range of pages in the migration bitmap in the
711 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
712 */
713 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
714 unsigned long start, unsigned long length)
715 {
716 size_t tp_bits = qemu_target_page_bits();
717 /* Convert to byte offsets within the RAM block */
718 pds->start_list[pds->cur_entry] = (start - pds->offset) << tp_bits;
719 pds->length_list[pds->cur_entry] = length << tp_bits;
720 trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
721 pds->cur_entry++;
722 pds->nsentwords++;
723
724 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
725 /* Full set, ship it! */
726 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
727 pds->ramblock_name,
728 pds->cur_entry,
729 pds->start_list,
730 pds->length_list);
731 pds->nsentcmds++;
732 pds->cur_entry = 0;
733 }
734 }
735
736 /**
737 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
738 * bitmap code. Sends any outstanding discard messages, frees the PDS
739 *
740 * @ms: Current migration state.
741 * @pds: Structure initialised by postcopy_discard_send_init().
742 */
743 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
744 {
745 /* Anything unsent? */
746 if (pds->cur_entry) {
747 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
748 pds->ramblock_name,
749 pds->cur_entry,
750 pds->start_list,
751 pds->length_list);
752 pds->nsentcmds++;
753 }
754
755 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
756 pds->nsentcmds);
757
758 g_free(pds);
759 }