]> git.proxmox.com Git - mirror_qemu.git/blob - migration/postcopy-ram.c
migration: fix hardcoded function name in error report
[mirror_qemu.git] / migration / postcopy-ram.c
1 /*
2 * Postcopy migration for RAM
3 *
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
17 */
18
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/balloon.h"
28 #include "qemu/error-report.h"
29 #include "trace.h"
30
31 /* Arbitrary limit on size of each discard command,
32 * keeps them around ~200 bytes
33 */
34 #define MAX_DISCARDS_PER_COMMAND 12
35
36 struct PostcopyDiscardState {
37 const char *ramblock_name;
38 uint16_t cur_entry;
39 /*
40 * Start and length of a discard range (bytes)
41 */
42 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
43 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
44 unsigned int nsentwords;
45 unsigned int nsentcmds;
46 };
47
48 /* Postcopy needs to detect accesses to pages that haven't yet been copied
49 * across, and efficiently map new pages in, the techniques for doing this
50 * are target OS specific.
51 */
52 #if defined(__linux__)
53
54 #include <poll.h>
55 #include <sys/ioctl.h>
56 #include <sys/syscall.h>
57 #include <asm/types.h> /* for __u64 */
58 #endif
59
60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
61 #include <sys/eventfd.h>
62 #include <linux/userfaultfd.h>
63
64 static bool ufd_version_check(int ufd, MigrationIncomingState *mis)
65 {
66 struct uffdio_api api_struct;
67 uint64_t ioctl_mask;
68
69 api_struct.api = UFFD_API;
70 api_struct.features = 0;
71 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
72 error_report("%s: UFFDIO_API failed: %s", __func__,
73 strerror(errno));
74 return false;
75 }
76
77 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
78 (__u64)1 << _UFFDIO_UNREGISTER;
79 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
80 error_report("Missing userfault features: %" PRIx64,
81 (uint64_t)(~api_struct.ioctls & ioctl_mask));
82 return false;
83 }
84
85 if (getpagesize() != ram_pagesize_summary()) {
86 bool have_hp = false;
87 /* We've got a huge page */
88 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
89 have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS;
90 #endif
91 if (!have_hp) {
92 error_report("Userfault on this host does not support huge pages");
93 return false;
94 }
95 }
96 return true;
97 }
98
99 /* Callback from postcopy_ram_supported_by_host block iterator.
100 */
101 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
102 ram_addr_t offset, ram_addr_t length, void *opaque)
103 {
104 RAMBlock *rb = qemu_ram_block_by_name(block_name);
105 size_t pagesize = qemu_ram_pagesize(rb);
106
107 if (qemu_ram_is_shared(rb)) {
108 error_report("Postcopy on shared RAM (%s) is not yet supported",
109 block_name);
110 return 1;
111 }
112
113 if (length % pagesize) {
114 error_report("Postcopy requires RAM blocks to be a page size multiple,"
115 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
116 "page size of 0x%zx", block_name, length, pagesize);
117 return 1;
118 }
119 return 0;
120 }
121
122 /*
123 * Note: This has the side effect of munlock'ing all of RAM, that's
124 * normally fine since if the postcopy succeeds it gets turned back on at the
125 * end.
126 */
127 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
128 {
129 long pagesize = getpagesize();
130 int ufd = -1;
131 bool ret = false; /* Error unless we change it */
132 void *testarea = NULL;
133 struct uffdio_register reg_struct;
134 struct uffdio_range range_struct;
135 uint64_t feature_mask;
136
137 if (qemu_target_page_size() > pagesize) {
138 error_report("Target page size bigger than host page size");
139 goto out;
140 }
141
142 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
143 if (ufd == -1) {
144 error_report("%s: userfaultfd not available: %s", __func__,
145 strerror(errno));
146 goto out;
147 }
148
149 /* Version and features check */
150 if (!ufd_version_check(ufd, mis)) {
151 goto out;
152 }
153
154 /* We don't support postcopy with shared RAM yet */
155 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
156 goto out;
157 }
158
159 /*
160 * userfault and mlock don't go together; we'll put it back later if
161 * it was enabled.
162 */
163 if (munlockall()) {
164 error_report("%s: munlockall: %s", __func__, strerror(errno));
165 return -1;
166 }
167
168 /*
169 * We need to check that the ops we need are supported on anon memory
170 * To do that we need to register a chunk and see the flags that
171 * are returned.
172 */
173 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
174 MAP_ANONYMOUS, -1, 0);
175 if (testarea == MAP_FAILED) {
176 error_report("%s: Failed to map test area: %s", __func__,
177 strerror(errno));
178 goto out;
179 }
180 g_assert(((size_t)testarea & (pagesize-1)) == 0);
181
182 reg_struct.range.start = (uintptr_t)testarea;
183 reg_struct.range.len = pagesize;
184 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
185
186 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
187 error_report("%s userfault register: %s", __func__, strerror(errno));
188 goto out;
189 }
190
191 range_struct.start = (uintptr_t)testarea;
192 range_struct.len = pagesize;
193 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
194 error_report("%s userfault unregister: %s", __func__, strerror(errno));
195 goto out;
196 }
197
198 feature_mask = (__u64)1 << _UFFDIO_WAKE |
199 (__u64)1 << _UFFDIO_COPY |
200 (__u64)1 << _UFFDIO_ZEROPAGE;
201 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
202 error_report("Missing userfault map features: %" PRIx64,
203 (uint64_t)(~reg_struct.ioctls & feature_mask));
204 goto out;
205 }
206
207 /* Success! */
208 ret = true;
209 out:
210 if (testarea) {
211 munmap(testarea, pagesize);
212 }
213 if (ufd != -1) {
214 close(ufd);
215 }
216 return ret;
217 }
218
219 /*
220 * Setup an area of RAM so that it *can* be used for postcopy later; this
221 * must be done right at the start prior to pre-copy.
222 * opaque should be the MIS.
223 */
224 static int init_range(const char *block_name, void *host_addr,
225 ram_addr_t offset, ram_addr_t length, void *opaque)
226 {
227 trace_postcopy_init_range(block_name, host_addr, offset, length);
228
229 /*
230 * We need the whole of RAM to be truly empty for postcopy, so things
231 * like ROMs and any data tables built during init must be zero'd
232 * - we're going to get the copy from the source anyway.
233 * (Precopy will just overwrite this data, so doesn't need the discard)
234 */
235 if (ram_discard_range(block_name, 0, length)) {
236 return -1;
237 }
238
239 return 0;
240 }
241
242 /*
243 * At the end of migration, undo the effects of init_range
244 * opaque should be the MIS.
245 */
246 static int cleanup_range(const char *block_name, void *host_addr,
247 ram_addr_t offset, ram_addr_t length, void *opaque)
248 {
249 MigrationIncomingState *mis = opaque;
250 struct uffdio_range range_struct;
251 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
252
253 /*
254 * We turned off hugepage for the precopy stage with postcopy enabled
255 * we can turn it back on now.
256 */
257 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
258
259 /*
260 * We can also turn off userfault now since we should have all the
261 * pages. It can be useful to leave it on to debug postcopy
262 * if you're not sure it's always getting every page.
263 */
264 range_struct.start = (uintptr_t)host_addr;
265 range_struct.len = length;
266
267 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
268 error_report("%s: userfault unregister %s", __func__, strerror(errno));
269
270 return -1;
271 }
272
273 return 0;
274 }
275
276 /*
277 * Initialise postcopy-ram, setting the RAM to a state where we can go into
278 * postcopy later; must be called prior to any precopy.
279 * called from arch_init's similarly named ram_postcopy_incoming_init
280 */
281 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
282 {
283 if (qemu_ram_foreach_block(init_range, NULL)) {
284 return -1;
285 }
286
287 return 0;
288 }
289
290 /*
291 * At the end of a migration where postcopy_ram_incoming_init was called.
292 */
293 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
294 {
295 trace_postcopy_ram_incoming_cleanup_entry();
296
297 if (mis->have_fault_thread) {
298 uint64_t tmp64;
299
300 if (qemu_ram_foreach_block(cleanup_range, mis)) {
301 return -1;
302 }
303 /*
304 * Tell the fault_thread to exit, it's an eventfd that should
305 * currently be at 0, we're going to increment it to 1
306 */
307 tmp64 = 1;
308 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
309 trace_postcopy_ram_incoming_cleanup_join();
310 qemu_thread_join(&mis->fault_thread);
311 } else {
312 /* Not much we can do here, but may as well report it */
313 error_report("%s: incrementing userfault_quit_fd: %s", __func__,
314 strerror(errno));
315 }
316 trace_postcopy_ram_incoming_cleanup_closeuf();
317 close(mis->userfault_fd);
318 close(mis->userfault_quit_fd);
319 mis->have_fault_thread = false;
320 }
321
322 qemu_balloon_inhibit(false);
323
324 if (enable_mlock) {
325 if (os_mlock() < 0) {
326 error_report("mlock: %s", strerror(errno));
327 /*
328 * It doesn't feel right to fail at this point, we have a valid
329 * VM state.
330 */
331 }
332 }
333
334 postcopy_state_set(POSTCOPY_INCOMING_END);
335
336 if (mis->postcopy_tmp_page) {
337 munmap(mis->postcopy_tmp_page, mis->largest_page_size);
338 mis->postcopy_tmp_page = NULL;
339 }
340 if (mis->postcopy_tmp_zero_page) {
341 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
342 mis->postcopy_tmp_zero_page = NULL;
343 }
344 trace_postcopy_ram_incoming_cleanup_exit();
345 return 0;
346 }
347
348 /*
349 * Disable huge pages on an area
350 */
351 static int nhp_range(const char *block_name, void *host_addr,
352 ram_addr_t offset, ram_addr_t length, void *opaque)
353 {
354 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
355
356 /*
357 * Before we do discards we need to ensure those discards really
358 * do delete areas of the page, even if THP thinks a hugepage would
359 * be a good idea, so force hugepages off.
360 */
361 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
362
363 return 0;
364 }
365
366 /*
367 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
368 * however leaving it until after precopy means that most of the precopy
369 * data is still THPd
370 */
371 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
372 {
373 if (qemu_ram_foreach_block(nhp_range, mis)) {
374 return -1;
375 }
376
377 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
378
379 return 0;
380 }
381
382 /*
383 * Mark the given area of RAM as requiring notification to unwritten areas
384 * Used as a callback on qemu_ram_foreach_block.
385 * host_addr: Base of area to mark
386 * offset: Offset in the whole ram arena
387 * length: Length of the section
388 * opaque: MigrationIncomingState pointer
389 * Returns 0 on success
390 */
391 static int ram_block_enable_notify(const char *block_name, void *host_addr,
392 ram_addr_t offset, ram_addr_t length,
393 void *opaque)
394 {
395 MigrationIncomingState *mis = opaque;
396 struct uffdio_register reg_struct;
397
398 reg_struct.range.start = (uintptr_t)host_addr;
399 reg_struct.range.len = length;
400 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
401
402 /* Now tell our userfault_fd that it's responsible for this area */
403 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
404 error_report("%s userfault register: %s", __func__, strerror(errno));
405 return -1;
406 }
407 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
408 error_report("%s userfault: Region doesn't support COPY", __func__);
409 return -1;
410 }
411
412 return 0;
413 }
414
415 /*
416 * Handle faults detected by the USERFAULT markings
417 */
418 static void *postcopy_ram_fault_thread(void *opaque)
419 {
420 MigrationIncomingState *mis = opaque;
421 struct uffd_msg msg;
422 int ret;
423 RAMBlock *rb = NULL;
424 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
425
426 trace_postcopy_ram_fault_thread_entry();
427 qemu_sem_post(&mis->fault_thread_sem);
428
429 while (true) {
430 ram_addr_t rb_offset;
431 struct pollfd pfd[2];
432
433 /*
434 * We're mainly waiting for the kernel to give us a faulting HVA,
435 * however we can be told to quit via userfault_quit_fd which is
436 * an eventfd
437 */
438 pfd[0].fd = mis->userfault_fd;
439 pfd[0].events = POLLIN;
440 pfd[0].revents = 0;
441 pfd[1].fd = mis->userfault_quit_fd;
442 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
443 pfd[1].revents = 0;
444
445 if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
446 error_report("%s: userfault poll: %s", __func__, strerror(errno));
447 break;
448 }
449
450 if (pfd[1].revents) {
451 trace_postcopy_ram_fault_thread_quit();
452 break;
453 }
454
455 ret = read(mis->userfault_fd, &msg, sizeof(msg));
456 if (ret != sizeof(msg)) {
457 if (errno == EAGAIN) {
458 /*
459 * if a wake up happens on the other thread just after
460 * the poll, there is nothing to read.
461 */
462 continue;
463 }
464 if (ret < 0) {
465 error_report("%s: Failed to read full userfault message: %s",
466 __func__, strerror(errno));
467 break;
468 } else {
469 error_report("%s: Read %d bytes from userfaultfd expected %zd",
470 __func__, ret, sizeof(msg));
471 break; /* Lost alignment, don't know what we'd read next */
472 }
473 }
474 if (msg.event != UFFD_EVENT_PAGEFAULT) {
475 error_report("%s: Read unexpected event %ud from userfaultfd",
476 __func__, msg.event);
477 continue; /* It's not a page fault, shouldn't happen */
478 }
479
480 rb = qemu_ram_block_from_host(
481 (void *)(uintptr_t)msg.arg.pagefault.address,
482 true, &rb_offset);
483 if (!rb) {
484 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
485 PRIx64, (uint64_t)msg.arg.pagefault.address);
486 break;
487 }
488
489 rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
490 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
491 qemu_ram_get_idstr(rb),
492 rb_offset);
493
494 /*
495 * Send the request to the source - we want to request one
496 * of our host page sizes (which is >= TPS)
497 */
498 if (rb != last_rb) {
499 last_rb = rb;
500 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
501 rb_offset, qemu_ram_pagesize(rb));
502 } else {
503 /* Save some space */
504 migrate_send_rp_req_pages(mis, NULL,
505 rb_offset, qemu_ram_pagesize(rb));
506 }
507 }
508 trace_postcopy_ram_fault_thread_exit();
509 return NULL;
510 }
511
512 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
513 {
514 /* Open the fd for the kernel to give us userfaults */
515 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
516 if (mis->userfault_fd == -1) {
517 error_report("%s: Failed to open userfault fd: %s", __func__,
518 strerror(errno));
519 return -1;
520 }
521
522 /*
523 * Although the host check already tested the API, we need to
524 * do the check again as an ABI handshake on the new fd.
525 */
526 if (!ufd_version_check(mis->userfault_fd, mis)) {
527 return -1;
528 }
529
530 /* Now an eventfd we use to tell the fault-thread to quit */
531 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
532 if (mis->userfault_quit_fd == -1) {
533 error_report("%s: Opening userfault_quit_fd: %s", __func__,
534 strerror(errno));
535 close(mis->userfault_fd);
536 return -1;
537 }
538
539 qemu_sem_init(&mis->fault_thread_sem, 0);
540 qemu_thread_create(&mis->fault_thread, "postcopy/fault",
541 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
542 qemu_sem_wait(&mis->fault_thread_sem);
543 qemu_sem_destroy(&mis->fault_thread_sem);
544 mis->have_fault_thread = true;
545
546 /* Mark so that we get notified of accesses to unwritten areas */
547 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
548 return -1;
549 }
550
551 /*
552 * Ballooning can mark pages as absent while we're postcopying
553 * that would cause false userfaults.
554 */
555 qemu_balloon_inhibit(true);
556
557 trace_postcopy_ram_enable_notify();
558
559 return 0;
560 }
561
562 /*
563 * Place a host page (from) at (host) atomically
564 * returns 0 on success
565 */
566 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
567 size_t pagesize)
568 {
569 struct uffdio_copy copy_struct;
570
571 copy_struct.dst = (uint64_t)(uintptr_t)host;
572 copy_struct.src = (uint64_t)(uintptr_t)from;
573 copy_struct.len = pagesize;
574 copy_struct.mode = 0;
575
576 /* copy also acks to the kernel waking the stalled thread up
577 * TODO: We can inhibit that ack and only do it if it was requested
578 * which would be slightly cheaper, but we'd have to be careful
579 * of the order of updating our page state.
580 */
581 if (ioctl(mis->userfault_fd, UFFDIO_COPY, &copy_struct)) {
582 int e = errno;
583 error_report("%s: %s copy host: %p from: %p (size: %zd)",
584 __func__, strerror(e), host, from, pagesize);
585
586 return -e;
587 }
588
589 trace_postcopy_place_page(host);
590 return 0;
591 }
592
593 /*
594 * Place a zero page at (host) atomically
595 * returns 0 on success
596 */
597 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
598 size_t pagesize)
599 {
600 trace_postcopy_place_page_zero(host);
601
602 if (pagesize == getpagesize()) {
603 struct uffdio_zeropage zero_struct;
604 zero_struct.range.start = (uint64_t)(uintptr_t)host;
605 zero_struct.range.len = getpagesize();
606 zero_struct.mode = 0;
607
608 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
609 int e = errno;
610 error_report("%s: %s zero host: %p",
611 __func__, strerror(e), host);
612
613 return -e;
614 }
615 } else {
616 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
617 if (!mis->postcopy_tmp_zero_page) {
618 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
619 PROT_READ | PROT_WRITE,
620 MAP_PRIVATE | MAP_ANONYMOUS,
621 -1, 0);
622 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
623 int e = errno;
624 mis->postcopy_tmp_zero_page = NULL;
625 error_report("%s: %s mapping large zero page",
626 __func__, strerror(e));
627 return -e;
628 }
629 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
630 }
631 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
632 pagesize);
633 }
634
635 return 0;
636 }
637
638 /*
639 * Returns a target page of memory that can be mapped at a later point in time
640 * using postcopy_place_page
641 * The same address is used repeatedly, postcopy_place_page just takes the
642 * backing page away.
643 * Returns: Pointer to allocated page
644 *
645 */
646 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
647 {
648 if (!mis->postcopy_tmp_page) {
649 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
650 PROT_READ | PROT_WRITE, MAP_PRIVATE |
651 MAP_ANONYMOUS, -1, 0);
652 if (mis->postcopy_tmp_page == MAP_FAILED) {
653 mis->postcopy_tmp_page = NULL;
654 error_report("%s: %s", __func__, strerror(errno));
655 return NULL;
656 }
657 }
658
659 return mis->postcopy_tmp_page;
660 }
661
662 #else
663 /* No target OS support, stubs just fail */
664 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
665 {
666 error_report("%s: No OS support", __func__);
667 return false;
668 }
669
670 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
671 {
672 error_report("postcopy_ram_incoming_init: No OS support");
673 return -1;
674 }
675
676 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
677 {
678 assert(0);
679 return -1;
680 }
681
682 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
683 {
684 assert(0);
685 return -1;
686 }
687
688 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
689 {
690 assert(0);
691 return -1;
692 }
693
694 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
695 size_t pagesize)
696 {
697 assert(0);
698 return -1;
699 }
700
701 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
702 size_t pagesize)
703 {
704 assert(0);
705 return -1;
706 }
707
708 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
709 {
710 assert(0);
711 return NULL;
712 }
713
714 #endif
715
716 /* ------------------------------------------------------------------------- */
717
718 /**
719 * postcopy_discard_send_init: Called at the start of each RAMBlock before
720 * asking to discard individual ranges.
721 *
722 * @ms: The current migration state.
723 * @offset: the bitmap offset of the named RAMBlock in the migration
724 * bitmap.
725 * @name: RAMBlock that discards will operate on.
726 *
727 * returns: a new PDS.
728 */
729 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
730 const char *name)
731 {
732 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
733
734 if (res) {
735 res->ramblock_name = name;
736 }
737
738 return res;
739 }
740
741 /**
742 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
743 * discard. May send a discard message, may just leave it queued to
744 * be sent later.
745 *
746 * @ms: Current migration state.
747 * @pds: Structure initialised by postcopy_discard_send_init().
748 * @start,@length: a range of pages in the migration bitmap in the
749 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
750 */
751 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
752 unsigned long start, unsigned long length)
753 {
754 size_t tp_size = qemu_target_page_size();
755 /* Convert to byte offsets within the RAM block */
756 pds->start_list[pds->cur_entry] = start * tp_size;
757 pds->length_list[pds->cur_entry] = length * tp_size;
758 trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
759 pds->cur_entry++;
760 pds->nsentwords++;
761
762 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
763 /* Full set, ship it! */
764 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
765 pds->ramblock_name,
766 pds->cur_entry,
767 pds->start_list,
768 pds->length_list);
769 pds->nsentcmds++;
770 pds->cur_entry = 0;
771 }
772 }
773
774 /**
775 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
776 * bitmap code. Sends any outstanding discard messages, frees the PDS
777 *
778 * @ms: Current migration state.
779 * @pds: Structure initialised by postcopy_discard_send_init().
780 */
781 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
782 {
783 /* Anything unsent? */
784 if (pds->cur_entry) {
785 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
786 pds->ramblock_name,
787 pds->cur_entry,
788 pds->start_list,
789 pds->length_list);
790 pds->nsentcmds++;
791 }
792
793 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
794 pds->nsentcmds);
795
796 g_free(pds);
797 }
798
799 /*
800 * Current state of incoming postcopy; note this is not part of
801 * MigrationIncomingState since it's state is used during cleanup
802 * at the end as MIS is being freed.
803 */
804 static PostcopyState incoming_postcopy_state;
805
806 PostcopyState postcopy_state_get(void)
807 {
808 return atomic_mb_read(&incoming_postcopy_state);
809 }
810
811 /* Set the state and return the old state */
812 PostcopyState postcopy_state_set(PostcopyState new_state)
813 {
814 return atomic_xchg(&incoming_postcopy_state, new_state);
815 }