]> git.proxmox.com Git - mirror_qemu.git/blob - migration/postcopy-ram.c
migration: Move migration.h to migration/
[mirror_qemu.git] / migration / postcopy-ram.c
1 /*
2 * Postcopy migration for RAM
3 *
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
17 */
18
19 #include "qemu/osdep.h"
20
21 #include "qemu-common.h"
22 #include "exec/target_page.h"
23 #include "migration.h"
24 #include "qemu-file.h"
25 #include "savevm.h"
26 #include "postcopy-ram.h"
27 #include "ram.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/balloon.h"
30 #include "qemu/error-report.h"
31 #include "trace.h"
32
33 /* Arbitrary limit on size of each discard command,
34 * keeps them around ~200 bytes
35 */
36 #define MAX_DISCARDS_PER_COMMAND 12
37
38 struct PostcopyDiscardState {
39 const char *ramblock_name;
40 uint16_t cur_entry;
41 /*
42 * Start and length of a discard range (bytes)
43 */
44 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
45 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
46 unsigned int nsentwords;
47 unsigned int nsentcmds;
48 };
49
50 /* Postcopy needs to detect accesses to pages that haven't yet been copied
51 * across, and efficiently map new pages in, the techniques for doing this
52 * are target OS specific.
53 */
54 #if defined(__linux__)
55
56 #include <poll.h>
57 #include <sys/ioctl.h>
58 #include <sys/syscall.h>
59 #include <asm/types.h> /* for __u64 */
60 #endif
61
62 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
63 #include <sys/eventfd.h>
64 #include <linux/userfaultfd.h>
65
66 static bool ufd_version_check(int ufd)
67 {
68 struct uffdio_api api_struct;
69 uint64_t ioctl_mask;
70
71 api_struct.api = UFFD_API;
72 api_struct.features = 0;
73 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
74 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s",
75 strerror(errno));
76 return false;
77 }
78
79 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
80 (__u64)1 << _UFFDIO_UNREGISTER;
81 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
82 error_report("Missing userfault features: %" PRIx64,
83 (uint64_t)(~api_struct.ioctls & ioctl_mask));
84 return false;
85 }
86
87 if (getpagesize() != ram_pagesize_summary()) {
88 bool have_hp = false;
89 /* We've got a huge page */
90 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
91 have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS;
92 #endif
93 if (!have_hp) {
94 error_report("Userfault on this host does not support huge pages");
95 return false;
96 }
97 }
98 return true;
99 }
100
101 /* Callback from postcopy_ram_supported_by_host block iterator.
102 */
103 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
104 ram_addr_t offset, ram_addr_t length, void *opaque)
105 {
106 RAMBlock *rb = qemu_ram_block_by_name(block_name);
107 size_t pagesize = qemu_ram_pagesize(rb);
108
109 if (qemu_ram_is_shared(rb)) {
110 error_report("Postcopy on shared RAM (%s) is not yet supported",
111 block_name);
112 return 1;
113 }
114
115 if (length % pagesize) {
116 error_report("Postcopy requires RAM blocks to be a page size multiple,"
117 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
118 "page size of 0x%zx", block_name, length, pagesize);
119 return 1;
120 }
121 return 0;
122 }
123
124 /*
125 * Note: This has the side effect of munlock'ing all of RAM, that's
126 * normally fine since if the postcopy succeeds it gets turned back on at the
127 * end.
128 */
129 bool postcopy_ram_supported_by_host(void)
130 {
131 long pagesize = getpagesize();
132 int ufd = -1;
133 bool ret = false; /* Error unless we change it */
134 void *testarea = NULL;
135 struct uffdio_register reg_struct;
136 struct uffdio_range range_struct;
137 uint64_t feature_mask;
138
139 if (qemu_target_page_size() > pagesize) {
140 error_report("Target page size bigger than host page size");
141 goto out;
142 }
143
144 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
145 if (ufd == -1) {
146 error_report("%s: userfaultfd not available: %s", __func__,
147 strerror(errno));
148 goto out;
149 }
150
151 /* Version and features check */
152 if (!ufd_version_check(ufd)) {
153 goto out;
154 }
155
156 /* We don't support postcopy with shared RAM yet */
157 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
158 goto out;
159 }
160
161 /*
162 * userfault and mlock don't go together; we'll put it back later if
163 * it was enabled.
164 */
165 if (munlockall()) {
166 error_report("%s: munlockall: %s", __func__, strerror(errno));
167 return -1;
168 }
169
170 /*
171 * We need to check that the ops we need are supported on anon memory
172 * To do that we need to register a chunk and see the flags that
173 * are returned.
174 */
175 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
176 MAP_ANONYMOUS, -1, 0);
177 if (testarea == MAP_FAILED) {
178 error_report("%s: Failed to map test area: %s", __func__,
179 strerror(errno));
180 goto out;
181 }
182 g_assert(((size_t)testarea & (pagesize-1)) == 0);
183
184 reg_struct.range.start = (uintptr_t)testarea;
185 reg_struct.range.len = pagesize;
186 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
187
188 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
189 error_report("%s userfault register: %s", __func__, strerror(errno));
190 goto out;
191 }
192
193 range_struct.start = (uintptr_t)testarea;
194 range_struct.len = pagesize;
195 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
196 error_report("%s userfault unregister: %s", __func__, strerror(errno));
197 goto out;
198 }
199
200 feature_mask = (__u64)1 << _UFFDIO_WAKE |
201 (__u64)1 << _UFFDIO_COPY |
202 (__u64)1 << _UFFDIO_ZEROPAGE;
203 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
204 error_report("Missing userfault map features: %" PRIx64,
205 (uint64_t)(~reg_struct.ioctls & feature_mask));
206 goto out;
207 }
208
209 /* Success! */
210 ret = true;
211 out:
212 if (testarea) {
213 munmap(testarea, pagesize);
214 }
215 if (ufd != -1) {
216 close(ufd);
217 }
218 return ret;
219 }
220
221 /*
222 * Setup an area of RAM so that it *can* be used for postcopy later; this
223 * must be done right at the start prior to pre-copy.
224 * opaque should be the MIS.
225 */
226 static int init_range(const char *block_name, void *host_addr,
227 ram_addr_t offset, ram_addr_t length, void *opaque)
228 {
229 trace_postcopy_init_range(block_name, host_addr, offset, length);
230
231 /*
232 * We need the whole of RAM to be truly empty for postcopy, so things
233 * like ROMs and any data tables built during init must be zero'd
234 * - we're going to get the copy from the source anyway.
235 * (Precopy will just overwrite this data, so doesn't need the discard)
236 */
237 if (ram_discard_range(block_name, 0, length)) {
238 return -1;
239 }
240
241 return 0;
242 }
243
244 /*
245 * At the end of migration, undo the effects of init_range
246 * opaque should be the MIS.
247 */
248 static int cleanup_range(const char *block_name, void *host_addr,
249 ram_addr_t offset, ram_addr_t length, void *opaque)
250 {
251 MigrationIncomingState *mis = opaque;
252 struct uffdio_range range_struct;
253 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
254
255 /*
256 * We turned off hugepage for the precopy stage with postcopy enabled
257 * we can turn it back on now.
258 */
259 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
260
261 /*
262 * We can also turn off userfault now since we should have all the
263 * pages. It can be useful to leave it on to debug postcopy
264 * if you're not sure it's always getting every page.
265 */
266 range_struct.start = (uintptr_t)host_addr;
267 range_struct.len = length;
268
269 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
270 error_report("%s: userfault unregister %s", __func__, strerror(errno));
271
272 return -1;
273 }
274
275 return 0;
276 }
277
278 /*
279 * Initialise postcopy-ram, setting the RAM to a state where we can go into
280 * postcopy later; must be called prior to any precopy.
281 * called from arch_init's similarly named ram_postcopy_incoming_init
282 */
283 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
284 {
285 if (qemu_ram_foreach_block(init_range, NULL)) {
286 return -1;
287 }
288
289 return 0;
290 }
291
292 /*
293 * At the end of a migration where postcopy_ram_incoming_init was called.
294 */
295 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
296 {
297 trace_postcopy_ram_incoming_cleanup_entry();
298
299 if (mis->have_fault_thread) {
300 uint64_t tmp64;
301
302 if (qemu_ram_foreach_block(cleanup_range, mis)) {
303 return -1;
304 }
305 /*
306 * Tell the fault_thread to exit, it's an eventfd that should
307 * currently be at 0, we're going to increment it to 1
308 */
309 tmp64 = 1;
310 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
311 trace_postcopy_ram_incoming_cleanup_join();
312 qemu_thread_join(&mis->fault_thread);
313 } else {
314 /* Not much we can do here, but may as well report it */
315 error_report("%s: incrementing userfault_quit_fd: %s", __func__,
316 strerror(errno));
317 }
318 trace_postcopy_ram_incoming_cleanup_closeuf();
319 close(mis->userfault_fd);
320 close(mis->userfault_quit_fd);
321 mis->have_fault_thread = false;
322 }
323
324 qemu_balloon_inhibit(false);
325
326 if (enable_mlock) {
327 if (os_mlock() < 0) {
328 error_report("mlock: %s", strerror(errno));
329 /*
330 * It doesn't feel right to fail at this point, we have a valid
331 * VM state.
332 */
333 }
334 }
335
336 postcopy_state_set(POSTCOPY_INCOMING_END);
337
338 if (mis->postcopy_tmp_page) {
339 munmap(mis->postcopy_tmp_page, mis->largest_page_size);
340 mis->postcopy_tmp_page = NULL;
341 }
342 if (mis->postcopy_tmp_zero_page) {
343 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
344 mis->postcopy_tmp_zero_page = NULL;
345 }
346 trace_postcopy_ram_incoming_cleanup_exit();
347 return 0;
348 }
349
350 /*
351 * Disable huge pages on an area
352 */
353 static int nhp_range(const char *block_name, void *host_addr,
354 ram_addr_t offset, ram_addr_t length, void *opaque)
355 {
356 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
357
358 /*
359 * Before we do discards we need to ensure those discards really
360 * do delete areas of the page, even if THP thinks a hugepage would
361 * be a good idea, so force hugepages off.
362 */
363 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
364
365 return 0;
366 }
367
368 /*
369 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
370 * however leaving it until after precopy means that most of the precopy
371 * data is still THPd
372 */
373 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
374 {
375 if (qemu_ram_foreach_block(nhp_range, mis)) {
376 return -1;
377 }
378
379 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
380
381 return 0;
382 }
383
384 /*
385 * Mark the given area of RAM as requiring notification to unwritten areas
386 * Used as a callback on qemu_ram_foreach_block.
387 * host_addr: Base of area to mark
388 * offset: Offset in the whole ram arena
389 * length: Length of the section
390 * opaque: MigrationIncomingState pointer
391 * Returns 0 on success
392 */
393 static int ram_block_enable_notify(const char *block_name, void *host_addr,
394 ram_addr_t offset, ram_addr_t length,
395 void *opaque)
396 {
397 MigrationIncomingState *mis = opaque;
398 struct uffdio_register reg_struct;
399
400 reg_struct.range.start = (uintptr_t)host_addr;
401 reg_struct.range.len = length;
402 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
403
404 /* Now tell our userfault_fd that it's responsible for this area */
405 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
406 error_report("%s userfault register: %s", __func__, strerror(errno));
407 return -1;
408 }
409 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
410 error_report("%s userfault: Region doesn't support COPY", __func__);
411 return -1;
412 }
413
414 return 0;
415 }
416
417 /*
418 * Handle faults detected by the USERFAULT markings
419 */
420 static void *postcopy_ram_fault_thread(void *opaque)
421 {
422 MigrationIncomingState *mis = opaque;
423 struct uffd_msg msg;
424 int ret;
425 RAMBlock *rb = NULL;
426 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
427
428 trace_postcopy_ram_fault_thread_entry();
429 qemu_sem_post(&mis->fault_thread_sem);
430
431 while (true) {
432 ram_addr_t rb_offset;
433 struct pollfd pfd[2];
434
435 /*
436 * We're mainly waiting for the kernel to give us a faulting HVA,
437 * however we can be told to quit via userfault_quit_fd which is
438 * an eventfd
439 */
440 pfd[0].fd = mis->userfault_fd;
441 pfd[0].events = POLLIN;
442 pfd[0].revents = 0;
443 pfd[1].fd = mis->userfault_quit_fd;
444 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
445 pfd[1].revents = 0;
446
447 if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
448 error_report("%s: userfault poll: %s", __func__, strerror(errno));
449 break;
450 }
451
452 if (pfd[1].revents) {
453 trace_postcopy_ram_fault_thread_quit();
454 break;
455 }
456
457 ret = read(mis->userfault_fd, &msg, sizeof(msg));
458 if (ret != sizeof(msg)) {
459 if (errno == EAGAIN) {
460 /*
461 * if a wake up happens on the other thread just after
462 * the poll, there is nothing to read.
463 */
464 continue;
465 }
466 if (ret < 0) {
467 error_report("%s: Failed to read full userfault message: %s",
468 __func__, strerror(errno));
469 break;
470 } else {
471 error_report("%s: Read %d bytes from userfaultfd expected %zd",
472 __func__, ret, sizeof(msg));
473 break; /* Lost alignment, don't know what we'd read next */
474 }
475 }
476 if (msg.event != UFFD_EVENT_PAGEFAULT) {
477 error_report("%s: Read unexpected event %ud from userfaultfd",
478 __func__, msg.event);
479 continue; /* It's not a page fault, shouldn't happen */
480 }
481
482 rb = qemu_ram_block_from_host(
483 (void *)(uintptr_t)msg.arg.pagefault.address,
484 true, &rb_offset);
485 if (!rb) {
486 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
487 PRIx64, (uint64_t)msg.arg.pagefault.address);
488 break;
489 }
490
491 rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
492 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
493 qemu_ram_get_idstr(rb),
494 rb_offset);
495
496 /*
497 * Send the request to the source - we want to request one
498 * of our host page sizes (which is >= TPS)
499 */
500 if (rb != last_rb) {
501 last_rb = rb;
502 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
503 rb_offset, qemu_ram_pagesize(rb));
504 } else {
505 /* Save some space */
506 migrate_send_rp_req_pages(mis, NULL,
507 rb_offset, qemu_ram_pagesize(rb));
508 }
509 }
510 trace_postcopy_ram_fault_thread_exit();
511 return NULL;
512 }
513
514 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
515 {
516 /* Open the fd for the kernel to give us userfaults */
517 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
518 if (mis->userfault_fd == -1) {
519 error_report("%s: Failed to open userfault fd: %s", __func__,
520 strerror(errno));
521 return -1;
522 }
523
524 /*
525 * Although the host check already tested the API, we need to
526 * do the check again as an ABI handshake on the new fd.
527 */
528 if (!ufd_version_check(mis->userfault_fd)) {
529 return -1;
530 }
531
532 /* Now an eventfd we use to tell the fault-thread to quit */
533 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
534 if (mis->userfault_quit_fd == -1) {
535 error_report("%s: Opening userfault_quit_fd: %s", __func__,
536 strerror(errno));
537 close(mis->userfault_fd);
538 return -1;
539 }
540
541 qemu_sem_init(&mis->fault_thread_sem, 0);
542 qemu_thread_create(&mis->fault_thread, "postcopy/fault",
543 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
544 qemu_sem_wait(&mis->fault_thread_sem);
545 qemu_sem_destroy(&mis->fault_thread_sem);
546 mis->have_fault_thread = true;
547
548 /* Mark so that we get notified of accesses to unwritten areas */
549 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
550 return -1;
551 }
552
553 /*
554 * Ballooning can mark pages as absent while we're postcopying
555 * that would cause false userfaults.
556 */
557 qemu_balloon_inhibit(true);
558
559 trace_postcopy_ram_enable_notify();
560
561 return 0;
562 }
563
564 /*
565 * Place a host page (from) at (host) atomically
566 * returns 0 on success
567 */
568 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
569 size_t pagesize)
570 {
571 struct uffdio_copy copy_struct;
572
573 copy_struct.dst = (uint64_t)(uintptr_t)host;
574 copy_struct.src = (uint64_t)(uintptr_t)from;
575 copy_struct.len = pagesize;
576 copy_struct.mode = 0;
577
578 /* copy also acks to the kernel waking the stalled thread up
579 * TODO: We can inhibit that ack and only do it if it was requested
580 * which would be slightly cheaper, but we'd have to be careful
581 * of the order of updating our page state.
582 */
583 if (ioctl(mis->userfault_fd, UFFDIO_COPY, &copy_struct)) {
584 int e = errno;
585 error_report("%s: %s copy host: %p from: %p (size: %zd)",
586 __func__, strerror(e), host, from, pagesize);
587
588 return -e;
589 }
590
591 trace_postcopy_place_page(host);
592 return 0;
593 }
594
595 /*
596 * Place a zero page at (host) atomically
597 * returns 0 on success
598 */
599 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
600 size_t pagesize)
601 {
602 trace_postcopy_place_page_zero(host);
603
604 if (pagesize == getpagesize()) {
605 struct uffdio_zeropage zero_struct;
606 zero_struct.range.start = (uint64_t)(uintptr_t)host;
607 zero_struct.range.len = getpagesize();
608 zero_struct.mode = 0;
609
610 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
611 int e = errno;
612 error_report("%s: %s zero host: %p",
613 __func__, strerror(e), host);
614
615 return -e;
616 }
617 } else {
618 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
619 if (!mis->postcopy_tmp_zero_page) {
620 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
621 PROT_READ | PROT_WRITE,
622 MAP_PRIVATE | MAP_ANONYMOUS,
623 -1, 0);
624 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
625 int e = errno;
626 mis->postcopy_tmp_zero_page = NULL;
627 error_report("%s: %s mapping large zero page",
628 __func__, strerror(e));
629 return -e;
630 }
631 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
632 }
633 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
634 pagesize);
635 }
636
637 return 0;
638 }
639
640 /*
641 * Returns a target page of memory that can be mapped at a later point in time
642 * using postcopy_place_page
643 * The same address is used repeatedly, postcopy_place_page just takes the
644 * backing page away.
645 * Returns: Pointer to allocated page
646 *
647 */
648 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
649 {
650 if (!mis->postcopy_tmp_page) {
651 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
652 PROT_READ | PROT_WRITE, MAP_PRIVATE |
653 MAP_ANONYMOUS, -1, 0);
654 if (mis->postcopy_tmp_page == MAP_FAILED) {
655 mis->postcopy_tmp_page = NULL;
656 error_report("%s: %s", __func__, strerror(errno));
657 return NULL;
658 }
659 }
660
661 return mis->postcopy_tmp_page;
662 }
663
664 #else
665 /* No target OS support, stubs just fail */
666 bool postcopy_ram_supported_by_host(void)
667 {
668 error_report("%s: No OS support", __func__);
669 return false;
670 }
671
672 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
673 {
674 error_report("postcopy_ram_incoming_init: No OS support");
675 return -1;
676 }
677
678 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
679 {
680 assert(0);
681 return -1;
682 }
683
684 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
685 {
686 assert(0);
687 return -1;
688 }
689
690 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
691 {
692 assert(0);
693 return -1;
694 }
695
696 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
697 size_t pagesize)
698 {
699 assert(0);
700 return -1;
701 }
702
703 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
704 size_t pagesize)
705 {
706 assert(0);
707 return -1;
708 }
709
710 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
711 {
712 assert(0);
713 return NULL;
714 }
715
716 #endif
717
718 /* ------------------------------------------------------------------------- */
719
720 /**
721 * postcopy_discard_send_init: Called at the start of each RAMBlock before
722 * asking to discard individual ranges.
723 *
724 * @ms: The current migration state.
725 * @offset: the bitmap offset of the named RAMBlock in the migration
726 * bitmap.
727 * @name: RAMBlock that discards will operate on.
728 *
729 * returns: a new PDS.
730 */
731 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
732 const char *name)
733 {
734 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
735
736 if (res) {
737 res->ramblock_name = name;
738 }
739
740 return res;
741 }
742
743 /**
744 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
745 * discard. May send a discard message, may just leave it queued to
746 * be sent later.
747 *
748 * @ms: Current migration state.
749 * @pds: Structure initialised by postcopy_discard_send_init().
750 * @start,@length: a range of pages in the migration bitmap in the
751 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
752 */
753 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
754 unsigned long start, unsigned long length)
755 {
756 size_t tp_size = qemu_target_page_size();
757 /* Convert to byte offsets within the RAM block */
758 pds->start_list[pds->cur_entry] = start * tp_size;
759 pds->length_list[pds->cur_entry] = length * tp_size;
760 trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
761 pds->cur_entry++;
762 pds->nsentwords++;
763
764 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
765 /* Full set, ship it! */
766 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
767 pds->ramblock_name,
768 pds->cur_entry,
769 pds->start_list,
770 pds->length_list);
771 pds->nsentcmds++;
772 pds->cur_entry = 0;
773 }
774 }
775
776 /**
777 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
778 * bitmap code. Sends any outstanding discard messages, frees the PDS
779 *
780 * @ms: Current migration state.
781 * @pds: Structure initialised by postcopy_discard_send_init().
782 */
783 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
784 {
785 /* Anything unsent? */
786 if (pds->cur_entry) {
787 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
788 pds->ramblock_name,
789 pds->cur_entry,
790 pds->start_list,
791 pds->length_list);
792 pds->nsentcmds++;
793 }
794
795 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
796 pds->nsentcmds);
797
798 g_free(pds);
799 }
800
801 /*
802 * Current state of incoming postcopy; note this is not part of
803 * MigrationIncomingState since it's state is used during cleanup
804 * at the end as MIS is being freed.
805 */
806 static PostcopyState incoming_postcopy_state;
807
808 PostcopyState postcopy_state_get(void)
809 {
810 return atomic_mb_read(&incoming_postcopy_state);
811 }
812
813 /* Set the state and return the old state */
814 PostcopyState postcopy_state_set(PostcopyState new_state)
815 {
816 return atomic_xchg(&incoming_postcopy_state, new_state);
817 }