]> git.proxmox.com Git - mirror_qemu.git/blob - migration/qemu-file.c
102ab3b4392c2f71aeb18ed5053bd95bfb56d81b
[mirror_qemu.git] / migration / qemu-file.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include <zlib.h>
26 #include "qemu/madvise.h"
27 #include "qemu/error-report.h"
28 #include "qemu/iov.h"
29 #include "migration.h"
30 #include "qemu-file.h"
31 #include "trace.h"
32 #include "qapi/error.h"
33
34 #define IO_BUF_SIZE 32768
35 #define MAX_IOV_SIZE MIN_CONST(IOV_MAX, 64)
36
37 struct QEMUFile {
38 const QEMUFileHooks *hooks;
39 QIOChannel *ioc;
40 bool is_writable;
41
42 /*
43 * Maximum amount of data in bytes to transfer during one
44 * rate limiting time window
45 */
46 int64_t rate_limit_max;
47 /*
48 * Total amount of data in bytes queued for transfer
49 * during this rate limiting time window
50 */
51 int64_t rate_limit_used;
52
53 /* The sum of bytes transferred on the wire */
54 int64_t total_transferred;
55
56 int buf_index;
57 int buf_size; /* 0 when writing */
58 uint8_t buf[IO_BUF_SIZE];
59
60 DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
61 struct iovec iov[MAX_IOV_SIZE];
62 unsigned int iovcnt;
63
64 int last_error;
65 Error *last_error_obj;
66 /* has the file has been shutdown */
67 bool shutdown;
68 };
69
70 /*
71 * Stop a file from being read/written - not all backing files can do this
72 * typically only sockets can.
73 *
74 * TODO: convert to propagate Error objects instead of squashing
75 * to a fixed errno value
76 */
77 int qemu_file_shutdown(QEMUFile *f)
78 {
79 int ret = 0;
80
81 f->shutdown = true;
82
83 /*
84 * We must set qemufile error before the real shutdown(), otherwise
85 * there can be a race window where we thought IO all went though
86 * (because last_error==NULL) but actually IO has already stopped.
87 *
88 * If without correct ordering, the race can happen like this:
89 *
90 * page receiver other thread
91 * ------------- ------------
92 * qemu_get_buffer()
93 * do shutdown()
94 * returns 0 (buffer all zero)
95 * (we didn't check this retcode)
96 * try to detect IO error
97 * last_error==NULL, IO okay
98 * install ALL-ZERO page
99 * set last_error
100 * --> guest crash!
101 */
102 if (!f->last_error) {
103 qemu_file_set_error(f, -EIO);
104 }
105
106 if (!qio_channel_has_feature(f->ioc,
107 QIO_CHANNEL_FEATURE_SHUTDOWN)) {
108 return -ENOSYS;
109 }
110
111 if (qio_channel_shutdown(f->ioc, QIO_CHANNEL_SHUTDOWN_BOTH, NULL) < 0) {
112 ret = -EIO;
113 }
114
115 return ret;
116 }
117
118 bool qemu_file_mode_is_not_valid(const char *mode)
119 {
120 if (mode == NULL ||
121 (mode[0] != 'r' && mode[0] != 'w') ||
122 mode[1] != 'b' || mode[2] != 0) {
123 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
124 return true;
125 }
126
127 return false;
128 }
129
130 static QEMUFile *qemu_file_new_impl(QIOChannel *ioc, bool is_writable)
131 {
132 QEMUFile *f;
133
134 f = g_new0(QEMUFile, 1);
135
136 object_ref(ioc);
137 f->ioc = ioc;
138 f->is_writable = is_writable;
139
140 return f;
141 }
142
143 /*
144 * Result: QEMUFile* for a 'return path' for comms in the opposite direction
145 * NULL if not available
146 */
147 QEMUFile *qemu_file_get_return_path(QEMUFile *f)
148 {
149 return qemu_file_new_impl(f->ioc, !f->is_writable);
150 }
151
152 QEMUFile *qemu_file_new_output(QIOChannel *ioc)
153 {
154 return qemu_file_new_impl(ioc, true);
155 }
156
157 QEMUFile *qemu_file_new_input(QIOChannel *ioc)
158 {
159 return qemu_file_new_impl(ioc, false);
160 }
161
162 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
163 {
164 f->hooks = hooks;
165 }
166
167 /*
168 * Get last error for stream f with optional Error*
169 *
170 * Return negative error value if there has been an error on previous
171 * operations, return 0 if no error happened.
172 * Optional, it returns Error* in errp, but it may be NULL even if return value
173 * is not 0.
174 *
175 */
176 int qemu_file_get_error_obj(QEMUFile *f, Error **errp)
177 {
178 if (errp) {
179 *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL;
180 }
181 return f->last_error;
182 }
183
184 /*
185 * Get last error for either stream f1 or f2 with optional Error*.
186 * The error returned (non-zero) can be either from f1 or f2.
187 *
188 * If any of the qemufile* is NULL, then skip the check on that file.
189 *
190 * When there is no error on both qemufile, zero is returned.
191 */
192 int qemu_file_get_error_obj_any(QEMUFile *f1, QEMUFile *f2, Error **errp)
193 {
194 int ret = 0;
195
196 if (f1) {
197 ret = qemu_file_get_error_obj(f1, errp);
198 /* If there's already error detected, return */
199 if (ret) {
200 return ret;
201 }
202 }
203
204 if (f2) {
205 ret = qemu_file_get_error_obj(f2, errp);
206 }
207
208 return ret;
209 }
210
211 /*
212 * Set the last error for stream f with optional Error*
213 */
214 void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err)
215 {
216 if (f->last_error == 0 && ret) {
217 f->last_error = ret;
218 error_propagate(&f->last_error_obj, err);
219 } else if (err) {
220 error_report_err(err);
221 }
222 }
223
224 /*
225 * Get last error for stream f
226 *
227 * Return negative error value if there has been an error on previous
228 * operations, return 0 if no error happened.
229 *
230 */
231 int qemu_file_get_error(QEMUFile *f)
232 {
233 return qemu_file_get_error_obj(f, NULL);
234 }
235
236 /*
237 * Set the last error for stream f
238 */
239 void qemu_file_set_error(QEMUFile *f, int ret)
240 {
241 qemu_file_set_error_obj(f, ret, NULL);
242 }
243
244 bool qemu_file_is_writable(QEMUFile *f)
245 {
246 return f->is_writable;
247 }
248
249 static void qemu_iovec_release_ram(QEMUFile *f)
250 {
251 struct iovec iov;
252 unsigned long idx;
253
254 /* Find and release all the contiguous memory ranges marked as may_free. */
255 idx = find_next_bit(f->may_free, f->iovcnt, 0);
256 if (idx >= f->iovcnt) {
257 return;
258 }
259 iov = f->iov[idx];
260
261 /* The madvise() in the loop is called for iov within a continuous range and
262 * then reinitialize the iov. And in the end, madvise() is called for the
263 * last iov.
264 */
265 while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
266 /* check for adjacent buffer and coalesce them */
267 if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
268 iov.iov_len += f->iov[idx].iov_len;
269 continue;
270 }
271 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
272 error_report("migrate: madvise DONTNEED failed %p %zd: %s",
273 iov.iov_base, iov.iov_len, strerror(errno));
274 }
275 iov = f->iov[idx];
276 }
277 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
278 error_report("migrate: madvise DONTNEED failed %p %zd: %s",
279 iov.iov_base, iov.iov_len, strerror(errno));
280 }
281 memset(f->may_free, 0, sizeof(f->may_free));
282 }
283
284
285 /**
286 * Flushes QEMUFile buffer
287 *
288 * This will flush all pending data. If data was only partially flushed, it
289 * will set an error state.
290 */
291 void qemu_fflush(QEMUFile *f)
292 {
293 if (!qemu_file_is_writable(f)) {
294 return;
295 }
296
297 if (f->shutdown) {
298 return;
299 }
300 if (f->iovcnt > 0) {
301 Error *local_error = NULL;
302 if (qio_channel_writev_all(f->ioc,
303 f->iov, f->iovcnt,
304 &local_error) < 0) {
305 qemu_file_set_error_obj(f, -EIO, local_error);
306 } else {
307 f->total_transferred += iov_size(f->iov, f->iovcnt);
308 }
309
310 qemu_iovec_release_ram(f);
311 }
312
313 f->buf_index = 0;
314 f->iovcnt = 0;
315 }
316
317 void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
318 {
319 int ret = 0;
320
321 if (f->hooks && f->hooks->before_ram_iterate) {
322 ret = f->hooks->before_ram_iterate(f, flags, NULL);
323 if (ret < 0) {
324 qemu_file_set_error(f, ret);
325 }
326 }
327 }
328
329 void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
330 {
331 int ret = 0;
332
333 if (f->hooks && f->hooks->after_ram_iterate) {
334 ret = f->hooks->after_ram_iterate(f, flags, NULL);
335 if (ret < 0) {
336 qemu_file_set_error(f, ret);
337 }
338 }
339 }
340
341 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
342 {
343 int ret = -EINVAL;
344
345 if (f->hooks && f->hooks->hook_ram_load) {
346 ret = f->hooks->hook_ram_load(f, flags, data);
347 if (ret < 0) {
348 qemu_file_set_error(f, ret);
349 }
350 } else {
351 /*
352 * Hook is a hook specifically requested by the source sending a flag
353 * that expects there to be a hook on the destination.
354 */
355 if (flags == RAM_CONTROL_HOOK) {
356 qemu_file_set_error(f, ret);
357 }
358 }
359 }
360
361 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
362 ram_addr_t offset, size_t size,
363 uint64_t *bytes_sent)
364 {
365 if (f->hooks && f->hooks->save_page) {
366 int ret = f->hooks->save_page(f, block_offset,
367 offset, size, bytes_sent);
368 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
369 f->rate_limit_used += size;
370 }
371
372 if (ret != RAM_SAVE_CONTROL_DELAYED &&
373 ret != RAM_SAVE_CONTROL_NOT_SUPP) {
374 if (bytes_sent && *bytes_sent > 0) {
375 qemu_file_credit_transfer(f, *bytes_sent);
376 } else if (ret < 0) {
377 qemu_file_set_error(f, ret);
378 }
379 }
380
381 return ret;
382 }
383
384 return RAM_SAVE_CONTROL_NOT_SUPP;
385 }
386
387 /*
388 * Attempt to fill the buffer from the underlying file
389 * Returns the number of bytes read, or negative value for an error.
390 *
391 * Note that it can return a partially full buffer even in a not error/not EOF
392 * case if the underlying file descriptor gives a short read, and that can
393 * happen even on a blocking fd.
394 */
395 static ssize_t qemu_fill_buffer(QEMUFile *f)
396 {
397 int len;
398 int pending;
399 Error *local_error = NULL;
400
401 assert(!qemu_file_is_writable(f));
402
403 pending = f->buf_size - f->buf_index;
404 if (pending > 0) {
405 memmove(f->buf, f->buf + f->buf_index, pending);
406 }
407 f->buf_index = 0;
408 f->buf_size = pending;
409
410 if (f->shutdown) {
411 return 0;
412 }
413
414 do {
415 len = qio_channel_read(f->ioc,
416 (char *)f->buf + pending,
417 IO_BUF_SIZE - pending,
418 &local_error);
419 if (len == QIO_CHANNEL_ERR_BLOCK) {
420 if (qemu_in_coroutine()) {
421 qio_channel_yield(f->ioc, G_IO_IN);
422 } else {
423 qio_channel_wait(f->ioc, G_IO_IN);
424 }
425 } else if (len < 0) {
426 len = -EIO;
427 }
428 } while (len == QIO_CHANNEL_ERR_BLOCK);
429
430 if (len > 0) {
431 f->buf_size += len;
432 f->total_transferred += len;
433 } else if (len == 0) {
434 qemu_file_set_error_obj(f, -EIO, local_error);
435 } else {
436 qemu_file_set_error_obj(f, len, local_error);
437 }
438
439 return len;
440 }
441
442 void qemu_file_credit_transfer(QEMUFile *f, size_t size)
443 {
444 f->total_transferred += size;
445 }
446
447 /** Closes the file
448 *
449 * Returns negative error value if any error happened on previous operations or
450 * while closing the file. Returns 0 or positive number on success.
451 *
452 * The meaning of return value on success depends on the specific backend
453 * being used.
454 */
455 int qemu_fclose(QEMUFile *f)
456 {
457 int ret, ret2;
458 qemu_fflush(f);
459 ret = qemu_file_get_error(f);
460
461 ret2 = qio_channel_close(f->ioc, NULL);
462 if (ret >= 0) {
463 ret = ret2;
464 }
465 g_clear_pointer(&f->ioc, object_unref);
466
467 /* If any error was spotted before closing, we should report it
468 * instead of the close() return value.
469 */
470 if (f->last_error) {
471 ret = f->last_error;
472 }
473 error_free(f->last_error_obj);
474 g_free(f);
475 trace_qemu_file_fclose();
476 return ret;
477 }
478
479 /*
480 * Add buf to iovec. Do flush if iovec is full.
481 *
482 * Return values:
483 * 1 iovec is full and flushed
484 * 0 iovec is not flushed
485 *
486 */
487 static int add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
488 bool may_free)
489 {
490 /* check for adjacent buffer and coalesce them */
491 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
492 f->iov[f->iovcnt - 1].iov_len &&
493 may_free == test_bit(f->iovcnt - 1, f->may_free))
494 {
495 f->iov[f->iovcnt - 1].iov_len += size;
496 } else {
497 if (f->iovcnt >= MAX_IOV_SIZE) {
498 /* Should only happen if a previous fflush failed */
499 assert(f->shutdown || !qemu_file_is_writable(f));
500 return 1;
501 }
502 if (may_free) {
503 set_bit(f->iovcnt, f->may_free);
504 }
505 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
506 f->iov[f->iovcnt++].iov_len = size;
507 }
508
509 if (f->iovcnt >= MAX_IOV_SIZE) {
510 qemu_fflush(f);
511 return 1;
512 }
513
514 return 0;
515 }
516
517 static void add_buf_to_iovec(QEMUFile *f, size_t len)
518 {
519 if (!add_to_iovec(f, f->buf + f->buf_index, len, false)) {
520 f->buf_index += len;
521 if (f->buf_index == IO_BUF_SIZE) {
522 qemu_fflush(f);
523 }
524 }
525 }
526
527 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
528 bool may_free)
529 {
530 if (f->last_error) {
531 return;
532 }
533
534 f->rate_limit_used += size;
535 add_to_iovec(f, buf, size, may_free);
536 }
537
538 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
539 {
540 size_t l;
541
542 if (f->last_error) {
543 return;
544 }
545
546 while (size > 0) {
547 l = IO_BUF_SIZE - f->buf_index;
548 if (l > size) {
549 l = size;
550 }
551 memcpy(f->buf + f->buf_index, buf, l);
552 f->rate_limit_used += l;
553 add_buf_to_iovec(f, l);
554 if (qemu_file_get_error(f)) {
555 break;
556 }
557 buf += l;
558 size -= l;
559 }
560 }
561
562 void qemu_put_byte(QEMUFile *f, int v)
563 {
564 if (f->last_error) {
565 return;
566 }
567
568 f->buf[f->buf_index] = v;
569 f->rate_limit_used++;
570 add_buf_to_iovec(f, 1);
571 }
572
573 void qemu_file_skip(QEMUFile *f, int size)
574 {
575 if (f->buf_index + size <= f->buf_size) {
576 f->buf_index += size;
577 }
578 }
579
580 /*
581 * Read 'size' bytes from file (at 'offset') without moving the
582 * pointer and set 'buf' to point to that data.
583 *
584 * It will return size bytes unless there was an error, in which case it will
585 * return as many as it managed to read (assuming blocking fd's which
586 * all current QEMUFile are)
587 */
588 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
589 {
590 ssize_t pending;
591 size_t index;
592
593 assert(!qemu_file_is_writable(f));
594 assert(offset < IO_BUF_SIZE);
595 assert(size <= IO_BUF_SIZE - offset);
596
597 /* The 1st byte to read from */
598 index = f->buf_index + offset;
599 /* The number of available bytes starting at index */
600 pending = f->buf_size - index;
601
602 /*
603 * qemu_fill_buffer might return just a few bytes, even when there isn't
604 * an error, so loop collecting them until we get enough.
605 */
606 while (pending < size) {
607 int received = qemu_fill_buffer(f);
608
609 if (received <= 0) {
610 break;
611 }
612
613 index = f->buf_index + offset;
614 pending = f->buf_size - index;
615 }
616
617 if (pending <= 0) {
618 return 0;
619 }
620 if (size > pending) {
621 size = pending;
622 }
623
624 *buf = f->buf + index;
625 return size;
626 }
627
628 /*
629 * Read 'size' bytes of data from the file into buf.
630 * 'size' can be larger than the internal buffer.
631 *
632 * It will return size bytes unless there was an error, in which case it will
633 * return as many as it managed to read (assuming blocking fd's which
634 * all current QEMUFile are)
635 */
636 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
637 {
638 size_t pending = size;
639 size_t done = 0;
640
641 while (pending > 0) {
642 size_t res;
643 uint8_t *src;
644
645 res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
646 if (res == 0) {
647 return done;
648 }
649 memcpy(buf, src, res);
650 qemu_file_skip(f, res);
651 buf += res;
652 pending -= res;
653 done += res;
654 }
655 return done;
656 }
657
658 /*
659 * Read 'size' bytes of data from the file.
660 * 'size' can be larger than the internal buffer.
661 *
662 * The data:
663 * may be held on an internal buffer (in which case *buf is updated
664 * to point to it) that is valid until the next qemu_file operation.
665 * OR
666 * will be copied to the *buf that was passed in.
667 *
668 * The code tries to avoid the copy if possible.
669 *
670 * It will return size bytes unless there was an error, in which case it will
671 * return as many as it managed to read (assuming blocking fd's which
672 * all current QEMUFile are)
673 *
674 * Note: Since **buf may get changed, the caller should take care to
675 * keep a pointer to the original buffer if it needs to deallocate it.
676 */
677 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
678 {
679 if (size < IO_BUF_SIZE) {
680 size_t res;
681 uint8_t *src = NULL;
682
683 res = qemu_peek_buffer(f, &src, size, 0);
684
685 if (res == size) {
686 qemu_file_skip(f, res);
687 *buf = src;
688 return res;
689 }
690 }
691
692 return qemu_get_buffer(f, *buf, size);
693 }
694
695 /*
696 * Peeks a single byte from the buffer; this isn't guaranteed to work if
697 * offset leaves a gap after the previous read/peeked data.
698 */
699 int qemu_peek_byte(QEMUFile *f, int offset)
700 {
701 int index = f->buf_index + offset;
702
703 assert(!qemu_file_is_writable(f));
704 assert(offset < IO_BUF_SIZE);
705
706 if (index >= f->buf_size) {
707 qemu_fill_buffer(f);
708 index = f->buf_index + offset;
709 if (index >= f->buf_size) {
710 return 0;
711 }
712 }
713 return f->buf[index];
714 }
715
716 int qemu_get_byte(QEMUFile *f)
717 {
718 int result;
719
720 result = qemu_peek_byte(f, 0);
721 qemu_file_skip(f, 1);
722 return result;
723 }
724
725 int64_t qemu_file_total_transferred_fast(QEMUFile *f)
726 {
727 int64_t ret = f->total_transferred;
728 int i;
729
730 for (i = 0; i < f->iovcnt; i++) {
731 ret += f->iov[i].iov_len;
732 }
733
734 return ret;
735 }
736
737 int64_t qemu_file_total_transferred(QEMUFile *f)
738 {
739 qemu_fflush(f);
740 return f->total_transferred;
741 }
742
743 int qemu_file_rate_limit(QEMUFile *f)
744 {
745 if (f->shutdown) {
746 return 1;
747 }
748 if (qemu_file_get_error(f)) {
749 return 1;
750 }
751 if (f->rate_limit_max > 0 && f->rate_limit_used > f->rate_limit_max) {
752 return 1;
753 }
754 return 0;
755 }
756
757 int64_t qemu_file_get_rate_limit(QEMUFile *f)
758 {
759 return f->rate_limit_max;
760 }
761
762 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
763 {
764 f->rate_limit_max = limit;
765 }
766
767 void qemu_file_reset_rate_limit(QEMUFile *f)
768 {
769 f->rate_limit_used = 0;
770 }
771
772 void qemu_file_acct_rate_limit(QEMUFile *f, int64_t len)
773 {
774 f->rate_limit_used += len;
775 }
776
777 void qemu_put_be16(QEMUFile *f, unsigned int v)
778 {
779 qemu_put_byte(f, v >> 8);
780 qemu_put_byte(f, v);
781 }
782
783 void qemu_put_be32(QEMUFile *f, unsigned int v)
784 {
785 qemu_put_byte(f, v >> 24);
786 qemu_put_byte(f, v >> 16);
787 qemu_put_byte(f, v >> 8);
788 qemu_put_byte(f, v);
789 }
790
791 void qemu_put_be64(QEMUFile *f, uint64_t v)
792 {
793 qemu_put_be32(f, v >> 32);
794 qemu_put_be32(f, v);
795 }
796
797 unsigned int qemu_get_be16(QEMUFile *f)
798 {
799 unsigned int v;
800 v = qemu_get_byte(f) << 8;
801 v |= qemu_get_byte(f);
802 return v;
803 }
804
805 unsigned int qemu_get_be32(QEMUFile *f)
806 {
807 unsigned int v;
808 v = (unsigned int)qemu_get_byte(f) << 24;
809 v |= qemu_get_byte(f) << 16;
810 v |= qemu_get_byte(f) << 8;
811 v |= qemu_get_byte(f);
812 return v;
813 }
814
815 uint64_t qemu_get_be64(QEMUFile *f)
816 {
817 uint64_t v;
818 v = (uint64_t)qemu_get_be32(f) << 32;
819 v |= qemu_get_be32(f);
820 return v;
821 }
822
823 /* return the size after compression, or negative value on error */
824 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
825 const uint8_t *source, size_t source_len)
826 {
827 int err;
828
829 err = deflateReset(stream);
830 if (err != Z_OK) {
831 return -1;
832 }
833
834 stream->avail_in = source_len;
835 stream->next_in = (uint8_t *)source;
836 stream->avail_out = dest_len;
837 stream->next_out = dest;
838
839 err = deflate(stream, Z_FINISH);
840 if (err != Z_STREAM_END) {
841 return -1;
842 }
843
844 return stream->next_out - dest;
845 }
846
847 /* Compress size bytes of data start at p and store the compressed
848 * data to the buffer of f.
849 *
850 * Since the file is dummy file with empty_ops, return -1 if f has no space to
851 * save the compressed data.
852 */
853 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
854 const uint8_t *p, size_t size)
855 {
856 ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
857
858 if (blen < compressBound(size)) {
859 return -1;
860 }
861
862 blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
863 blen, p, size);
864 if (blen < 0) {
865 return -1;
866 }
867
868 qemu_put_be32(f, blen);
869 add_buf_to_iovec(f, blen);
870 return blen + sizeof(int32_t);
871 }
872
873 /* Put the data in the buffer of f_src to the buffer of f_des, and
874 * then reset the buf_index of f_src to 0.
875 */
876
877 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
878 {
879 int len = 0;
880
881 if (f_src->buf_index > 0) {
882 len = f_src->buf_index;
883 qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
884 f_src->buf_index = 0;
885 f_src->iovcnt = 0;
886 }
887 return len;
888 }
889
890 /*
891 * Get a string whose length is determined by a single preceding byte
892 * A preallocated 256 byte buffer must be passed in.
893 * Returns: len on success and a 0 terminated string in the buffer
894 * else 0
895 * (Note a 0 length string will return 0 either way)
896 */
897 size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
898 {
899 size_t len = qemu_get_byte(f);
900 size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
901
902 buf[res] = 0;
903
904 return res == len ? res : 0;
905 }
906
907 /*
908 * Put a string with one preceding byte containing its length. The length of
909 * the string should be less than 256.
910 */
911 void qemu_put_counted_string(QEMUFile *f, const char *str)
912 {
913 size_t len = strlen(str);
914
915 assert(len < 256);
916 qemu_put_byte(f, len);
917 qemu_put_buffer(f, (const uint8_t *)str, len);
918 }
919
920 /*
921 * Set the blocking state of the QEMUFile.
922 * Note: On some transports the OS only keeps a single blocking state for
923 * both directions, and thus changing the blocking on the main
924 * QEMUFile can also affect the return path.
925 */
926 void qemu_file_set_blocking(QEMUFile *f, bool block)
927 {
928 qio_channel_set_blocking(f->ioc, block, NULL);
929 }
930
931 /*
932 * qemu_file_get_ioc:
933 *
934 * Get the ioc object for the file, without incrementing
935 * the reference count.
936 *
937 * Returns: the ioc object
938 */
939 QIOChannel *qemu_file_get_ioc(QEMUFile *file)
940 {
941 return file->ioc;
942 }
943
944 /*
945 * Read size bytes from QEMUFile f and write them to fd.
946 */
947 int qemu_file_get_to_fd(QEMUFile *f, int fd, size_t size)
948 {
949 while (size) {
950 size_t pending = f->buf_size - f->buf_index;
951 ssize_t rc;
952
953 if (!pending) {
954 rc = qemu_fill_buffer(f);
955 if (rc < 0) {
956 return rc;
957 }
958 if (rc == 0) {
959 return -EIO;
960 }
961 continue;
962 }
963
964 rc = write(fd, f->buf + f->buf_index, MIN(pending, size));
965 if (rc < 0) {
966 return -errno;
967 }
968 if (rc == 0) {
969 return -EIO;
970 }
971 f->buf_index += rc;
972 size -= rc;
973 }
974
975 return 0;
976 }