]> git.proxmox.com Git - mirror_qemu.git/blob - migration/qemu-file.c
Merge tag 'for_upstream' of git://git.kernel.org/pub/scm/virt/kvm/mst/qemu into staging
[mirror_qemu.git] / migration / qemu-file.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include <zlib.h>
26 #include "qemu/madvise.h"
27 #include "qemu/error-report.h"
28 #include "qemu/iov.h"
29 #include "migration.h"
30 #include "qemu-file.h"
31 #include "trace.h"
32 #include "qapi/error.h"
33
34 #define IO_BUF_SIZE 32768
35 #define MAX_IOV_SIZE MIN_CONST(IOV_MAX, 64)
36
37 struct QEMUFile {
38 const QEMUFileOps *ops;
39 const QEMUFileHooks *hooks;
40 void *opaque;
41
42 int64_t bytes_xfer;
43 int64_t xfer_limit;
44
45 int64_t pos; /* start of buffer when writing, end of buffer
46 when reading */
47 int buf_index;
48 int buf_size; /* 0 when writing */
49 uint8_t buf[IO_BUF_SIZE];
50
51 DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
52 struct iovec iov[MAX_IOV_SIZE];
53 unsigned int iovcnt;
54
55 int last_error;
56 Error *last_error_obj;
57 /* has the file has been shutdown */
58 bool shutdown;
59 /* Whether opaque points to a QIOChannel */
60 bool has_ioc;
61 };
62
63 /*
64 * Stop a file from being read/written - not all backing files can do this
65 * typically only sockets can.
66 */
67 int qemu_file_shutdown(QEMUFile *f)
68 {
69 int ret;
70
71 f->shutdown = true;
72 if (!f->ops->shut_down) {
73 return -ENOSYS;
74 }
75 ret = f->ops->shut_down(f->opaque, true, true, NULL);
76
77 if (!f->last_error) {
78 qemu_file_set_error(f, -EIO);
79 }
80 return ret;
81 }
82
83 /*
84 * Result: QEMUFile* for a 'return path' for comms in the opposite direction
85 * NULL if not available
86 */
87 QEMUFile *qemu_file_get_return_path(QEMUFile *f)
88 {
89 if (!f->ops->get_return_path) {
90 return NULL;
91 }
92 return f->ops->get_return_path(f->opaque);
93 }
94
95 bool qemu_file_mode_is_not_valid(const char *mode)
96 {
97 if (mode == NULL ||
98 (mode[0] != 'r' && mode[0] != 'w') ||
99 mode[1] != 'b' || mode[2] != 0) {
100 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
101 return true;
102 }
103
104 return false;
105 }
106
107 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops, bool has_ioc)
108 {
109 QEMUFile *f;
110
111 f = g_new0(QEMUFile, 1);
112
113 f->opaque = opaque;
114 f->ops = ops;
115 f->has_ioc = has_ioc;
116 return f;
117 }
118
119
120 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
121 {
122 f->hooks = hooks;
123 }
124
125 /*
126 * Get last error for stream f with optional Error*
127 *
128 * Return negative error value if there has been an error on previous
129 * operations, return 0 if no error happened.
130 * Optional, it returns Error* in errp, but it may be NULL even if return value
131 * is not 0.
132 *
133 */
134 int qemu_file_get_error_obj(QEMUFile *f, Error **errp)
135 {
136 if (errp) {
137 *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL;
138 }
139 return f->last_error;
140 }
141
142 /*
143 * Set the last error for stream f with optional Error*
144 */
145 void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err)
146 {
147 if (f->last_error == 0 && ret) {
148 f->last_error = ret;
149 error_propagate(&f->last_error_obj, err);
150 } else if (err) {
151 error_report_err(err);
152 }
153 }
154
155 /*
156 * Get last error for stream f
157 *
158 * Return negative error value if there has been an error on previous
159 * operations, return 0 if no error happened.
160 *
161 */
162 int qemu_file_get_error(QEMUFile *f)
163 {
164 return qemu_file_get_error_obj(f, NULL);
165 }
166
167 /*
168 * Set the last error for stream f
169 */
170 void qemu_file_set_error(QEMUFile *f, int ret)
171 {
172 qemu_file_set_error_obj(f, ret, NULL);
173 }
174
175 bool qemu_file_is_writable(QEMUFile *f)
176 {
177 return f->ops->writev_buffer;
178 }
179
180 static void qemu_iovec_release_ram(QEMUFile *f)
181 {
182 struct iovec iov;
183 unsigned long idx;
184
185 /* Find and release all the contiguous memory ranges marked as may_free. */
186 idx = find_next_bit(f->may_free, f->iovcnt, 0);
187 if (idx >= f->iovcnt) {
188 return;
189 }
190 iov = f->iov[idx];
191
192 /* The madvise() in the loop is called for iov within a continuous range and
193 * then reinitialize the iov. And in the end, madvise() is called for the
194 * last iov.
195 */
196 while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
197 /* check for adjacent buffer and coalesce them */
198 if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
199 iov.iov_len += f->iov[idx].iov_len;
200 continue;
201 }
202 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
203 error_report("migrate: madvise DONTNEED failed %p %zd: %s",
204 iov.iov_base, iov.iov_len, strerror(errno));
205 }
206 iov = f->iov[idx];
207 }
208 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
209 error_report("migrate: madvise DONTNEED failed %p %zd: %s",
210 iov.iov_base, iov.iov_len, strerror(errno));
211 }
212 memset(f->may_free, 0, sizeof(f->may_free));
213 }
214
215 /**
216 * Flushes QEMUFile buffer
217 *
218 * This will flush all pending data. If data was only partially flushed, it
219 * will set an error state.
220 */
221 void qemu_fflush(QEMUFile *f)
222 {
223 ssize_t ret = 0;
224 ssize_t expect = 0;
225 Error *local_error = NULL;
226
227 if (!qemu_file_is_writable(f)) {
228 return;
229 }
230
231 if (f->shutdown) {
232 return;
233 }
234 if (f->iovcnt > 0) {
235 expect = iov_size(f->iov, f->iovcnt);
236 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos,
237 &local_error);
238
239 qemu_iovec_release_ram(f);
240 }
241
242 if (ret >= 0) {
243 f->pos += ret;
244 }
245 /* We expect the QEMUFile write impl to send the full
246 * data set we requested, so sanity check that.
247 */
248 if (ret != expect) {
249 qemu_file_set_error_obj(f, ret < 0 ? ret : -EIO, local_error);
250 }
251 f->buf_index = 0;
252 f->iovcnt = 0;
253 }
254
255 void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
256 {
257 int ret = 0;
258
259 if (f->hooks && f->hooks->before_ram_iterate) {
260 ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL);
261 if (ret < 0) {
262 qemu_file_set_error(f, ret);
263 }
264 }
265 }
266
267 void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
268 {
269 int ret = 0;
270
271 if (f->hooks && f->hooks->after_ram_iterate) {
272 ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL);
273 if (ret < 0) {
274 qemu_file_set_error(f, ret);
275 }
276 }
277 }
278
279 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
280 {
281 int ret = -EINVAL;
282
283 if (f->hooks && f->hooks->hook_ram_load) {
284 ret = f->hooks->hook_ram_load(f, f->opaque, flags, data);
285 if (ret < 0) {
286 qemu_file_set_error(f, ret);
287 }
288 } else {
289 /*
290 * Hook is a hook specifically requested by the source sending a flag
291 * that expects there to be a hook on the destination.
292 */
293 if (flags == RAM_CONTROL_HOOK) {
294 qemu_file_set_error(f, ret);
295 }
296 }
297 }
298
299 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
300 ram_addr_t offset, size_t size,
301 uint64_t *bytes_sent)
302 {
303 if (f->hooks && f->hooks->save_page) {
304 int ret = f->hooks->save_page(f, f->opaque, block_offset,
305 offset, size, bytes_sent);
306 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
307 f->bytes_xfer += size;
308 }
309
310 if (ret != RAM_SAVE_CONTROL_DELAYED &&
311 ret != RAM_SAVE_CONTROL_NOT_SUPP) {
312 if (bytes_sent && *bytes_sent > 0) {
313 qemu_update_position(f, *bytes_sent);
314 } else if (ret < 0) {
315 qemu_file_set_error(f, ret);
316 }
317 }
318
319 return ret;
320 }
321
322 return RAM_SAVE_CONTROL_NOT_SUPP;
323 }
324
325 /*
326 * Attempt to fill the buffer from the underlying file
327 * Returns the number of bytes read, or negative value for an error.
328 *
329 * Note that it can return a partially full buffer even in a not error/not EOF
330 * case if the underlying file descriptor gives a short read, and that can
331 * happen even on a blocking fd.
332 */
333 static ssize_t qemu_fill_buffer(QEMUFile *f)
334 {
335 int len;
336 int pending;
337 Error *local_error = NULL;
338
339 assert(!qemu_file_is_writable(f));
340
341 pending = f->buf_size - f->buf_index;
342 if (pending > 0) {
343 memmove(f->buf, f->buf + f->buf_index, pending);
344 }
345 f->buf_index = 0;
346 f->buf_size = pending;
347
348 if (f->shutdown) {
349 return 0;
350 }
351
352 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
353 IO_BUF_SIZE - pending, &local_error);
354 if (len > 0) {
355 f->buf_size += len;
356 f->pos += len;
357 } else if (len == 0) {
358 qemu_file_set_error_obj(f, -EIO, local_error);
359 } else if (len != -EAGAIN) {
360 qemu_file_set_error_obj(f, len, local_error);
361 } else {
362 error_free(local_error);
363 }
364
365 return len;
366 }
367
368 void qemu_update_position(QEMUFile *f, size_t size)
369 {
370 f->pos += size;
371 }
372
373 /** Closes the file
374 *
375 * Returns negative error value if any error happened on previous operations or
376 * while closing the file. Returns 0 or positive number on success.
377 *
378 * The meaning of return value on success depends on the specific backend
379 * being used.
380 */
381 int qemu_fclose(QEMUFile *f)
382 {
383 int ret;
384 qemu_fflush(f);
385 ret = qemu_file_get_error(f);
386
387 if (f->ops->close) {
388 int ret2 = f->ops->close(f->opaque, NULL);
389 if (ret >= 0) {
390 ret = ret2;
391 }
392 }
393 /* If any error was spotted before closing, we should report it
394 * instead of the close() return value.
395 */
396 if (f->last_error) {
397 ret = f->last_error;
398 }
399 error_free(f->last_error_obj);
400 g_free(f);
401 trace_qemu_file_fclose();
402 return ret;
403 }
404
405 /*
406 * Add buf to iovec. Do flush if iovec is full.
407 *
408 * Return values:
409 * 1 iovec is full and flushed
410 * 0 iovec is not flushed
411 *
412 */
413 static int add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
414 bool may_free)
415 {
416 /* check for adjacent buffer and coalesce them */
417 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
418 f->iov[f->iovcnt - 1].iov_len &&
419 may_free == test_bit(f->iovcnt - 1, f->may_free))
420 {
421 f->iov[f->iovcnt - 1].iov_len += size;
422 } else {
423 if (f->iovcnt >= MAX_IOV_SIZE) {
424 /* Should only happen if a previous fflush failed */
425 assert(f->shutdown || !qemu_file_is_writable(f));
426 return 1;
427 }
428 if (may_free) {
429 set_bit(f->iovcnt, f->may_free);
430 }
431 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
432 f->iov[f->iovcnt++].iov_len = size;
433 }
434
435 if (f->iovcnt >= MAX_IOV_SIZE) {
436 qemu_fflush(f);
437 return 1;
438 }
439
440 return 0;
441 }
442
443 static void add_buf_to_iovec(QEMUFile *f, size_t len)
444 {
445 if (!add_to_iovec(f, f->buf + f->buf_index, len, false)) {
446 f->buf_index += len;
447 if (f->buf_index == IO_BUF_SIZE) {
448 qemu_fflush(f);
449 }
450 }
451 }
452
453 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
454 bool may_free)
455 {
456 if (f->last_error) {
457 return;
458 }
459
460 f->bytes_xfer += size;
461 add_to_iovec(f, buf, size, may_free);
462 }
463
464 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
465 {
466 size_t l;
467
468 if (f->last_error) {
469 return;
470 }
471
472 while (size > 0) {
473 l = IO_BUF_SIZE - f->buf_index;
474 if (l > size) {
475 l = size;
476 }
477 memcpy(f->buf + f->buf_index, buf, l);
478 f->bytes_xfer += l;
479 add_buf_to_iovec(f, l);
480 if (qemu_file_get_error(f)) {
481 break;
482 }
483 buf += l;
484 size -= l;
485 }
486 }
487
488 void qemu_put_byte(QEMUFile *f, int v)
489 {
490 if (f->last_error) {
491 return;
492 }
493
494 f->buf[f->buf_index] = v;
495 f->bytes_xfer++;
496 add_buf_to_iovec(f, 1);
497 }
498
499 void qemu_file_skip(QEMUFile *f, int size)
500 {
501 if (f->buf_index + size <= f->buf_size) {
502 f->buf_index += size;
503 }
504 }
505
506 /*
507 * Read 'size' bytes from file (at 'offset') without moving the
508 * pointer and set 'buf' to point to that data.
509 *
510 * It will return size bytes unless there was an error, in which case it will
511 * return as many as it managed to read (assuming blocking fd's which
512 * all current QEMUFile are)
513 */
514 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
515 {
516 ssize_t pending;
517 size_t index;
518
519 assert(!qemu_file_is_writable(f));
520 assert(offset < IO_BUF_SIZE);
521 assert(size <= IO_BUF_SIZE - offset);
522
523 /* The 1st byte to read from */
524 index = f->buf_index + offset;
525 /* The number of available bytes starting at index */
526 pending = f->buf_size - index;
527
528 /*
529 * qemu_fill_buffer might return just a few bytes, even when there isn't
530 * an error, so loop collecting them until we get enough.
531 */
532 while (pending < size) {
533 int received = qemu_fill_buffer(f);
534
535 if (received <= 0) {
536 break;
537 }
538
539 index = f->buf_index + offset;
540 pending = f->buf_size - index;
541 }
542
543 if (pending <= 0) {
544 return 0;
545 }
546 if (size > pending) {
547 size = pending;
548 }
549
550 *buf = f->buf + index;
551 return size;
552 }
553
554 /*
555 * Read 'size' bytes of data from the file into buf.
556 * 'size' can be larger than the internal buffer.
557 *
558 * It will return size bytes unless there was an error, in which case it will
559 * return as many as it managed to read (assuming blocking fd's which
560 * all current QEMUFile are)
561 */
562 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
563 {
564 size_t pending = size;
565 size_t done = 0;
566
567 while (pending > 0) {
568 size_t res;
569 uint8_t *src;
570
571 res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
572 if (res == 0) {
573 return done;
574 }
575 memcpy(buf, src, res);
576 qemu_file_skip(f, res);
577 buf += res;
578 pending -= res;
579 done += res;
580 }
581 return done;
582 }
583
584 /*
585 * Read 'size' bytes of data from the file.
586 * 'size' can be larger than the internal buffer.
587 *
588 * The data:
589 * may be held on an internal buffer (in which case *buf is updated
590 * to point to it) that is valid until the next qemu_file operation.
591 * OR
592 * will be copied to the *buf that was passed in.
593 *
594 * The code tries to avoid the copy if possible.
595 *
596 * It will return size bytes unless there was an error, in which case it will
597 * return as many as it managed to read (assuming blocking fd's which
598 * all current QEMUFile are)
599 *
600 * Note: Since **buf may get changed, the caller should take care to
601 * keep a pointer to the original buffer if it needs to deallocate it.
602 */
603 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
604 {
605 if (size < IO_BUF_SIZE) {
606 size_t res;
607 uint8_t *src = NULL;
608
609 res = qemu_peek_buffer(f, &src, size, 0);
610
611 if (res == size) {
612 qemu_file_skip(f, res);
613 *buf = src;
614 return res;
615 }
616 }
617
618 return qemu_get_buffer(f, *buf, size);
619 }
620
621 /*
622 * Peeks a single byte from the buffer; this isn't guaranteed to work if
623 * offset leaves a gap after the previous read/peeked data.
624 */
625 int qemu_peek_byte(QEMUFile *f, int offset)
626 {
627 int index = f->buf_index + offset;
628
629 assert(!qemu_file_is_writable(f));
630 assert(offset < IO_BUF_SIZE);
631
632 if (index >= f->buf_size) {
633 qemu_fill_buffer(f);
634 index = f->buf_index + offset;
635 if (index >= f->buf_size) {
636 return 0;
637 }
638 }
639 return f->buf[index];
640 }
641
642 int qemu_get_byte(QEMUFile *f)
643 {
644 int result;
645
646 result = qemu_peek_byte(f, 0);
647 qemu_file_skip(f, 1);
648 return result;
649 }
650
651 int64_t qemu_ftell_fast(QEMUFile *f)
652 {
653 int64_t ret = f->pos;
654 int i;
655
656 for (i = 0; i < f->iovcnt; i++) {
657 ret += f->iov[i].iov_len;
658 }
659
660 return ret;
661 }
662
663 int64_t qemu_ftell(QEMUFile *f)
664 {
665 qemu_fflush(f);
666 return f->pos;
667 }
668
669 int qemu_file_rate_limit(QEMUFile *f)
670 {
671 if (f->shutdown) {
672 return 1;
673 }
674 if (qemu_file_get_error(f)) {
675 return 1;
676 }
677 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
678 return 1;
679 }
680 return 0;
681 }
682
683 int64_t qemu_file_get_rate_limit(QEMUFile *f)
684 {
685 return f->xfer_limit;
686 }
687
688 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
689 {
690 f->xfer_limit = limit;
691 }
692
693 void qemu_file_reset_rate_limit(QEMUFile *f)
694 {
695 f->bytes_xfer = 0;
696 }
697
698 void qemu_file_update_transfer(QEMUFile *f, int64_t len)
699 {
700 f->bytes_xfer += len;
701 }
702
703 void qemu_put_be16(QEMUFile *f, unsigned int v)
704 {
705 qemu_put_byte(f, v >> 8);
706 qemu_put_byte(f, v);
707 }
708
709 void qemu_put_be32(QEMUFile *f, unsigned int v)
710 {
711 qemu_put_byte(f, v >> 24);
712 qemu_put_byte(f, v >> 16);
713 qemu_put_byte(f, v >> 8);
714 qemu_put_byte(f, v);
715 }
716
717 void qemu_put_be64(QEMUFile *f, uint64_t v)
718 {
719 qemu_put_be32(f, v >> 32);
720 qemu_put_be32(f, v);
721 }
722
723 unsigned int qemu_get_be16(QEMUFile *f)
724 {
725 unsigned int v;
726 v = qemu_get_byte(f) << 8;
727 v |= qemu_get_byte(f);
728 return v;
729 }
730
731 unsigned int qemu_get_be32(QEMUFile *f)
732 {
733 unsigned int v;
734 v = (unsigned int)qemu_get_byte(f) << 24;
735 v |= qemu_get_byte(f) << 16;
736 v |= qemu_get_byte(f) << 8;
737 v |= qemu_get_byte(f);
738 return v;
739 }
740
741 uint64_t qemu_get_be64(QEMUFile *f)
742 {
743 uint64_t v;
744 v = (uint64_t)qemu_get_be32(f) << 32;
745 v |= qemu_get_be32(f);
746 return v;
747 }
748
749 /* return the size after compression, or negative value on error */
750 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
751 const uint8_t *source, size_t source_len)
752 {
753 int err;
754
755 err = deflateReset(stream);
756 if (err != Z_OK) {
757 return -1;
758 }
759
760 stream->avail_in = source_len;
761 stream->next_in = (uint8_t *)source;
762 stream->avail_out = dest_len;
763 stream->next_out = dest;
764
765 err = deflate(stream, Z_FINISH);
766 if (err != Z_STREAM_END) {
767 return -1;
768 }
769
770 return stream->next_out - dest;
771 }
772
773 /* Compress size bytes of data start at p and store the compressed
774 * data to the buffer of f.
775 *
776 * Since the file is dummy file with empty_ops, return -1 if f has no space to
777 * save the compressed data.
778 */
779 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
780 const uint8_t *p, size_t size)
781 {
782 ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
783
784 if (blen < compressBound(size)) {
785 return -1;
786 }
787
788 blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
789 blen, p, size);
790 if (blen < 0) {
791 return -1;
792 }
793
794 qemu_put_be32(f, blen);
795 add_buf_to_iovec(f, blen);
796 return blen + sizeof(int32_t);
797 }
798
799 /* Put the data in the buffer of f_src to the buffer of f_des, and
800 * then reset the buf_index of f_src to 0.
801 */
802
803 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
804 {
805 int len = 0;
806
807 if (f_src->buf_index > 0) {
808 len = f_src->buf_index;
809 qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
810 f_src->buf_index = 0;
811 f_src->iovcnt = 0;
812 }
813 return len;
814 }
815
816 /*
817 * Get a string whose length is determined by a single preceding byte
818 * A preallocated 256 byte buffer must be passed in.
819 * Returns: len on success and a 0 terminated string in the buffer
820 * else 0
821 * (Note a 0 length string will return 0 either way)
822 */
823 size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
824 {
825 size_t len = qemu_get_byte(f);
826 size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
827
828 buf[res] = 0;
829
830 return res == len ? res : 0;
831 }
832
833 /*
834 * Put a string with one preceding byte containing its length. The length of
835 * the string should be less than 256.
836 */
837 void qemu_put_counted_string(QEMUFile *f, const char *str)
838 {
839 size_t len = strlen(str);
840
841 assert(len < 256);
842 qemu_put_byte(f, len);
843 qemu_put_buffer(f, (const uint8_t *)str, len);
844 }
845
846 /*
847 * Set the blocking state of the QEMUFile.
848 * Note: On some transports the OS only keeps a single blocking state for
849 * both directions, and thus changing the blocking on the main
850 * QEMUFile can also affect the return path.
851 */
852 void qemu_file_set_blocking(QEMUFile *f, bool block)
853 {
854 if (f->ops->set_blocking) {
855 f->ops->set_blocking(f->opaque, block, NULL);
856 }
857 }
858
859 /*
860 * Return the ioc object if it's a migration channel. Note: it can return NULL
861 * for callers passing in a non-migration qemufile. E.g. see qemu_fopen_bdrv()
862 * and its usage in e.g. load_snapshot(). So we need to check against NULL
863 * before using it. If without the check, migration_incoming_state_destroy()
864 * could fail for load_snapshot().
865 */
866 QIOChannel *qemu_file_get_ioc(QEMUFile *file)
867 {
868 return file->has_ioc ? QIO_CHANNEL(file->opaque) : NULL;
869 }