]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
migrate/cpu-throttle: Add max-cpu-throttle migration parameter
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60
61 /***********************************************************/
62 /* ram save/restore */
63
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 {
82 return buffer_is_zero(p, size);
83 }
84
85 XBZRLECacheStats xbzrle_counters;
86
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
102
103 static void XBZRLE_cache_lock(void)
104 {
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107 }
108
109 static void XBZRLE_cache_unlock(void)
110 {
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113 }
114
115 /**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
123 * Returns 0 for success or -1 for error
124 *
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
127 */
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 {
130 PageCache *new_cache;
131 int64_t ret = 0;
132
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
143 }
144
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
160 }
161
162 /* Should be holding either ram_list.mutex, or the RCU lock. */
163 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
164 INTERNAL_RAMBLOCK_FOREACH(block) \
165 if (!qemu_ram_is_migratable(block)) {} else
166
167 #undef RAMBLOCK_FOREACH
168
169 static void ramblock_recv_map_init(void)
170 {
171 RAMBlock *rb;
172
173 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
174 assert(!rb->receivedmap);
175 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
176 }
177 }
178
179 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
180 {
181 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
182 rb->receivedmap);
183 }
184
185 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
186 {
187 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
188 }
189
190 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
191 {
192 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
193 }
194
195 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
196 size_t nr)
197 {
198 bitmap_set_atomic(rb->receivedmap,
199 ramblock_recv_bitmap_offset(host_addr, rb),
200 nr);
201 }
202
203 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
204
205 /*
206 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
207 *
208 * Returns >0 if success with sent bytes, or <0 if error.
209 */
210 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
211 const char *block_name)
212 {
213 RAMBlock *block = qemu_ram_block_by_name(block_name);
214 unsigned long *le_bitmap, nbits;
215 uint64_t size;
216
217 if (!block) {
218 error_report("%s: invalid block name: %s", __func__, block_name);
219 return -1;
220 }
221
222 nbits = block->used_length >> TARGET_PAGE_BITS;
223
224 /*
225 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
226 * machines we may need 4 more bytes for padding (see below
227 * comment). So extend it a bit before hand.
228 */
229 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
230
231 /*
232 * Always use little endian when sending the bitmap. This is
233 * required that when source and destination VMs are not using the
234 * same endianess. (Note: big endian won't work.)
235 */
236 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
237
238 /* Size of the bitmap, in bytes */
239 size = DIV_ROUND_UP(nbits, 8);
240
241 /*
242 * size is always aligned to 8 bytes for 64bit machines, but it
243 * may not be true for 32bit machines. We need this padding to
244 * make sure the migration can survive even between 32bit and
245 * 64bit machines.
246 */
247 size = ROUND_UP(size, 8);
248
249 qemu_put_be64(file, size);
250 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
251 /*
252 * Mark as an end, in case the middle part is screwed up due to
253 * some "misterious" reason.
254 */
255 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
256 qemu_fflush(file);
257
258 g_free(le_bitmap);
259
260 if (qemu_file_get_error(file)) {
261 return qemu_file_get_error(file);
262 }
263
264 return size + sizeof(size);
265 }
266
267 /*
268 * An outstanding page request, on the source, having been received
269 * and queued
270 */
271 struct RAMSrcPageRequest {
272 RAMBlock *rb;
273 hwaddr offset;
274 hwaddr len;
275
276 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
277 };
278
279 /* State of RAM for migration */
280 struct RAMState {
281 /* QEMUFile used for this migration */
282 QEMUFile *f;
283 /* Last block that we have visited searching for dirty pages */
284 RAMBlock *last_seen_block;
285 /* Last block from where we have sent data */
286 RAMBlock *last_sent_block;
287 /* Last dirty target page we have sent */
288 ram_addr_t last_page;
289 /* last ram version we have seen */
290 uint32_t last_version;
291 /* We are in the first round */
292 bool ram_bulk_stage;
293 /* How many times we have dirty too many pages */
294 int dirty_rate_high_cnt;
295 /* these variables are used for bitmap sync */
296 /* last time we did a full bitmap_sync */
297 int64_t time_last_bitmap_sync;
298 /* bytes transferred at start_time */
299 uint64_t bytes_xfer_prev;
300 /* number of dirty pages since start_time */
301 uint64_t num_dirty_pages_period;
302 /* xbzrle misses since the beginning of the period */
303 uint64_t xbzrle_cache_miss_prev;
304 /* number of iterations at the beginning of period */
305 uint64_t iterations_prev;
306 /* Iterations since start */
307 uint64_t iterations;
308 /* number of dirty bits in the bitmap */
309 uint64_t migration_dirty_pages;
310 /* protects modification of the bitmap */
311 QemuMutex bitmap_mutex;
312 /* The RAMBlock used in the last src_page_requests */
313 RAMBlock *last_req_rb;
314 /* Queue of outstanding page requests from the destination */
315 QemuMutex src_page_req_mutex;
316 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
317 };
318 typedef struct RAMState RAMState;
319
320 static RAMState *ram_state;
321
322 uint64_t ram_bytes_remaining(void)
323 {
324 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
325 0;
326 }
327
328 MigrationStats ram_counters;
329
330 /* used by the search for pages to send */
331 struct PageSearchStatus {
332 /* Current block being searched */
333 RAMBlock *block;
334 /* Current page to search from */
335 unsigned long page;
336 /* Set once we wrap around */
337 bool complete_round;
338 };
339 typedef struct PageSearchStatus PageSearchStatus;
340
341 struct CompressParam {
342 bool done;
343 bool quit;
344 QEMUFile *file;
345 QemuMutex mutex;
346 QemuCond cond;
347 RAMBlock *block;
348 ram_addr_t offset;
349
350 /* internally used fields */
351 z_stream stream;
352 uint8_t *originbuf;
353 };
354 typedef struct CompressParam CompressParam;
355
356 struct DecompressParam {
357 bool done;
358 bool quit;
359 QemuMutex mutex;
360 QemuCond cond;
361 void *des;
362 uint8_t *compbuf;
363 int len;
364 z_stream stream;
365 };
366 typedef struct DecompressParam DecompressParam;
367
368 static CompressParam *comp_param;
369 static QemuThread *compress_threads;
370 /* comp_done_cond is used to wake up the migration thread when
371 * one of the compression threads has finished the compression.
372 * comp_done_lock is used to co-work with comp_done_cond.
373 */
374 static QemuMutex comp_done_lock;
375 static QemuCond comp_done_cond;
376 /* The empty QEMUFileOps will be used by file in CompressParam */
377 static const QEMUFileOps empty_ops = { };
378
379 static QEMUFile *decomp_file;
380 static DecompressParam *decomp_param;
381 static QemuThread *decompress_threads;
382 static QemuMutex decomp_done_lock;
383 static QemuCond decomp_done_cond;
384
385 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
386 ram_addr_t offset, uint8_t *source_buf);
387
388 static void *do_data_compress(void *opaque)
389 {
390 CompressParam *param = opaque;
391 RAMBlock *block;
392 ram_addr_t offset;
393
394 qemu_mutex_lock(&param->mutex);
395 while (!param->quit) {
396 if (param->block) {
397 block = param->block;
398 offset = param->offset;
399 param->block = NULL;
400 qemu_mutex_unlock(&param->mutex);
401
402 do_compress_ram_page(param->file, &param->stream, block, offset,
403 param->originbuf);
404
405 qemu_mutex_lock(&comp_done_lock);
406 param->done = true;
407 qemu_cond_signal(&comp_done_cond);
408 qemu_mutex_unlock(&comp_done_lock);
409
410 qemu_mutex_lock(&param->mutex);
411 } else {
412 qemu_cond_wait(&param->cond, &param->mutex);
413 }
414 }
415 qemu_mutex_unlock(&param->mutex);
416
417 return NULL;
418 }
419
420 static inline void terminate_compression_threads(void)
421 {
422 int idx, thread_count;
423
424 thread_count = migrate_compress_threads();
425
426 for (idx = 0; idx < thread_count; idx++) {
427 qemu_mutex_lock(&comp_param[idx].mutex);
428 comp_param[idx].quit = true;
429 qemu_cond_signal(&comp_param[idx].cond);
430 qemu_mutex_unlock(&comp_param[idx].mutex);
431 }
432 }
433
434 static void compress_threads_save_cleanup(void)
435 {
436 int i, thread_count;
437
438 if (!migrate_use_compression()) {
439 return;
440 }
441 terminate_compression_threads();
442 thread_count = migrate_compress_threads();
443 for (i = 0; i < thread_count; i++) {
444 /*
445 * we use it as a indicator which shows if the thread is
446 * properly init'd or not
447 */
448 if (!comp_param[i].file) {
449 break;
450 }
451 qemu_thread_join(compress_threads + i);
452 qemu_mutex_destroy(&comp_param[i].mutex);
453 qemu_cond_destroy(&comp_param[i].cond);
454 deflateEnd(&comp_param[i].stream);
455 g_free(comp_param[i].originbuf);
456 qemu_fclose(comp_param[i].file);
457 comp_param[i].file = NULL;
458 }
459 qemu_mutex_destroy(&comp_done_lock);
460 qemu_cond_destroy(&comp_done_cond);
461 g_free(compress_threads);
462 g_free(comp_param);
463 compress_threads = NULL;
464 comp_param = NULL;
465 }
466
467 static int compress_threads_save_setup(void)
468 {
469 int i, thread_count;
470
471 if (!migrate_use_compression()) {
472 return 0;
473 }
474 thread_count = migrate_compress_threads();
475 compress_threads = g_new0(QemuThread, thread_count);
476 comp_param = g_new0(CompressParam, thread_count);
477 qemu_cond_init(&comp_done_cond);
478 qemu_mutex_init(&comp_done_lock);
479 for (i = 0; i < thread_count; i++) {
480 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
481 if (!comp_param[i].originbuf) {
482 goto exit;
483 }
484
485 if (deflateInit(&comp_param[i].stream,
486 migrate_compress_level()) != Z_OK) {
487 g_free(comp_param[i].originbuf);
488 goto exit;
489 }
490
491 /* comp_param[i].file is just used as a dummy buffer to save data,
492 * set its ops to empty.
493 */
494 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
495 comp_param[i].done = true;
496 comp_param[i].quit = false;
497 qemu_mutex_init(&comp_param[i].mutex);
498 qemu_cond_init(&comp_param[i].cond);
499 qemu_thread_create(compress_threads + i, "compress",
500 do_data_compress, comp_param + i,
501 QEMU_THREAD_JOINABLE);
502 }
503 return 0;
504
505 exit:
506 compress_threads_save_cleanup();
507 return -1;
508 }
509
510 /* Multiple fd's */
511
512 #define MULTIFD_MAGIC 0x11223344U
513 #define MULTIFD_VERSION 1
514
515 #define MULTIFD_FLAG_SYNC (1 << 0)
516
517 typedef struct {
518 uint32_t magic;
519 uint32_t version;
520 unsigned char uuid[16]; /* QemuUUID */
521 uint8_t id;
522 } __attribute__((packed)) MultiFDInit_t;
523
524 typedef struct {
525 uint32_t magic;
526 uint32_t version;
527 uint32_t flags;
528 uint32_t size;
529 uint32_t used;
530 uint64_t packet_num;
531 char ramblock[256];
532 uint64_t offset[];
533 } __attribute__((packed)) MultiFDPacket_t;
534
535 typedef struct {
536 /* number of used pages */
537 uint32_t used;
538 /* number of allocated pages */
539 uint32_t allocated;
540 /* global number of generated multifd packets */
541 uint64_t packet_num;
542 /* offset of each page */
543 ram_addr_t *offset;
544 /* pointer to each page */
545 struct iovec *iov;
546 RAMBlock *block;
547 } MultiFDPages_t;
548
549 typedef struct {
550 /* this fields are not changed once the thread is created */
551 /* channel number */
552 uint8_t id;
553 /* channel thread name */
554 char *name;
555 /* channel thread id */
556 QemuThread thread;
557 /* communication channel */
558 QIOChannel *c;
559 /* sem where to wait for more work */
560 QemuSemaphore sem;
561 /* this mutex protects the following parameters */
562 QemuMutex mutex;
563 /* is this channel thread running */
564 bool running;
565 /* should this thread finish */
566 bool quit;
567 /* thread has work to do */
568 int pending_job;
569 /* array of pages to sent */
570 MultiFDPages_t *pages;
571 /* packet allocated len */
572 uint32_t packet_len;
573 /* pointer to the packet */
574 MultiFDPacket_t *packet;
575 /* multifd flags for each packet */
576 uint32_t flags;
577 /* global number of generated multifd packets */
578 uint64_t packet_num;
579 /* thread local variables */
580 /* packets sent through this channel */
581 uint64_t num_packets;
582 /* pages sent through this channel */
583 uint64_t num_pages;
584 /* syncs main thread and channels */
585 QemuSemaphore sem_sync;
586 } MultiFDSendParams;
587
588 typedef struct {
589 /* this fields are not changed once the thread is created */
590 /* channel number */
591 uint8_t id;
592 /* channel thread name */
593 char *name;
594 /* channel thread id */
595 QemuThread thread;
596 /* communication channel */
597 QIOChannel *c;
598 /* this mutex protects the following parameters */
599 QemuMutex mutex;
600 /* is this channel thread running */
601 bool running;
602 /* array of pages to receive */
603 MultiFDPages_t *pages;
604 /* packet allocated len */
605 uint32_t packet_len;
606 /* pointer to the packet */
607 MultiFDPacket_t *packet;
608 /* multifd flags for each packet */
609 uint32_t flags;
610 /* global number of generated multifd packets */
611 uint64_t packet_num;
612 /* thread local variables */
613 /* packets sent through this channel */
614 uint64_t num_packets;
615 /* pages sent through this channel */
616 uint64_t num_pages;
617 /* syncs main thread and channels */
618 QemuSemaphore sem_sync;
619 } MultiFDRecvParams;
620
621 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
622 {
623 MultiFDInit_t msg;
624 int ret;
625
626 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
627 msg.version = cpu_to_be32(MULTIFD_VERSION);
628 msg.id = p->id;
629 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
630
631 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
632 if (ret != 0) {
633 return -1;
634 }
635 return 0;
636 }
637
638 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
639 {
640 MultiFDInit_t msg;
641 int ret;
642
643 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
644 if (ret != 0) {
645 return -1;
646 }
647
648 be32_to_cpus(&msg.magic);
649 be32_to_cpus(&msg.version);
650
651 if (msg.magic != MULTIFD_MAGIC) {
652 error_setg(errp, "multifd: received packet magic %x "
653 "expected %x", msg.magic, MULTIFD_MAGIC);
654 return -1;
655 }
656
657 if (msg.version != MULTIFD_VERSION) {
658 error_setg(errp, "multifd: received packet version %d "
659 "expected %d", msg.version, MULTIFD_VERSION);
660 return -1;
661 }
662
663 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
664 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
665 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
666
667 error_setg(errp, "multifd: received uuid '%s' and expected "
668 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
669 g_free(uuid);
670 g_free(msg_uuid);
671 return -1;
672 }
673
674 if (msg.id > migrate_multifd_channels()) {
675 error_setg(errp, "multifd: received channel version %d "
676 "expected %d", msg.version, MULTIFD_VERSION);
677 return -1;
678 }
679
680 return msg.id;
681 }
682
683 static MultiFDPages_t *multifd_pages_init(size_t size)
684 {
685 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
686
687 pages->allocated = size;
688 pages->iov = g_new0(struct iovec, size);
689 pages->offset = g_new0(ram_addr_t, size);
690
691 return pages;
692 }
693
694 static void multifd_pages_clear(MultiFDPages_t *pages)
695 {
696 pages->used = 0;
697 pages->allocated = 0;
698 pages->packet_num = 0;
699 pages->block = NULL;
700 g_free(pages->iov);
701 pages->iov = NULL;
702 g_free(pages->offset);
703 pages->offset = NULL;
704 g_free(pages);
705 }
706
707 static void multifd_send_fill_packet(MultiFDSendParams *p)
708 {
709 MultiFDPacket_t *packet = p->packet;
710 int i;
711
712 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
713 packet->version = cpu_to_be32(MULTIFD_VERSION);
714 packet->flags = cpu_to_be32(p->flags);
715 packet->size = cpu_to_be32(migrate_multifd_page_count());
716 packet->used = cpu_to_be32(p->pages->used);
717 packet->packet_num = cpu_to_be64(p->packet_num);
718
719 if (p->pages->block) {
720 strncpy(packet->ramblock, p->pages->block->idstr, 256);
721 }
722
723 for (i = 0; i < p->pages->used; i++) {
724 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
725 }
726 }
727
728 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
729 {
730 MultiFDPacket_t *packet = p->packet;
731 RAMBlock *block;
732 int i;
733
734 be32_to_cpus(&packet->magic);
735 if (packet->magic != MULTIFD_MAGIC) {
736 error_setg(errp, "multifd: received packet "
737 "magic %x and expected magic %x",
738 packet->magic, MULTIFD_MAGIC);
739 return -1;
740 }
741
742 be32_to_cpus(&packet->version);
743 if (packet->version != MULTIFD_VERSION) {
744 error_setg(errp, "multifd: received packet "
745 "version %d and expected version %d",
746 packet->version, MULTIFD_VERSION);
747 return -1;
748 }
749
750 p->flags = be32_to_cpu(packet->flags);
751
752 be32_to_cpus(&packet->size);
753 if (packet->size > migrate_multifd_page_count()) {
754 error_setg(errp, "multifd: received packet "
755 "with size %d and expected maximum size %d",
756 packet->size, migrate_multifd_page_count()) ;
757 return -1;
758 }
759
760 p->pages->used = be32_to_cpu(packet->used);
761 if (p->pages->used > packet->size) {
762 error_setg(errp, "multifd: received packet "
763 "with size %d and expected maximum size %d",
764 p->pages->used, packet->size) ;
765 return -1;
766 }
767
768 p->packet_num = be64_to_cpu(packet->packet_num);
769
770 if (p->pages->used) {
771 /* make sure that ramblock is 0 terminated */
772 packet->ramblock[255] = 0;
773 block = qemu_ram_block_by_name(packet->ramblock);
774 if (!block) {
775 error_setg(errp, "multifd: unknown ram block %s",
776 packet->ramblock);
777 return -1;
778 }
779 }
780
781 for (i = 0; i < p->pages->used; i++) {
782 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
783
784 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
785 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
786 " (max " RAM_ADDR_FMT ")",
787 offset, block->max_length);
788 return -1;
789 }
790 p->pages->iov[i].iov_base = block->host + offset;
791 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
792 }
793
794 return 0;
795 }
796
797 struct {
798 MultiFDSendParams *params;
799 /* number of created threads */
800 int count;
801 /* array of pages to sent */
802 MultiFDPages_t *pages;
803 /* syncs main thread and channels */
804 QemuSemaphore sem_sync;
805 /* global number of generated multifd packets */
806 uint64_t packet_num;
807 /* send channels ready */
808 QemuSemaphore channels_ready;
809 } *multifd_send_state;
810
811 /*
812 * How we use multifd_send_state->pages and channel->pages?
813 *
814 * We create a pages for each channel, and a main one. Each time that
815 * we need to send a batch of pages we interchange the ones between
816 * multifd_send_state and the channel that is sending it. There are
817 * two reasons for that:
818 * - to not have to do so many mallocs during migration
819 * - to make easier to know what to free at the end of migration
820 *
821 * This way we always know who is the owner of each "pages" struct,
822 * and we don't need any loocking. It belongs to the migration thread
823 * or to the channel thread. Switching is safe because the migration
824 * thread is using the channel mutex when changing it, and the channel
825 * have to had finish with its own, otherwise pending_job can't be
826 * false.
827 */
828
829 static void multifd_send_pages(void)
830 {
831 int i;
832 static int next_channel;
833 MultiFDSendParams *p = NULL; /* make happy gcc */
834 MultiFDPages_t *pages = multifd_send_state->pages;
835 uint64_t transferred;
836
837 qemu_sem_wait(&multifd_send_state->channels_ready);
838 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
839 p = &multifd_send_state->params[i];
840
841 qemu_mutex_lock(&p->mutex);
842 if (!p->pending_job) {
843 p->pending_job++;
844 next_channel = (i + 1) % migrate_multifd_channels();
845 break;
846 }
847 qemu_mutex_unlock(&p->mutex);
848 }
849 p->pages->used = 0;
850
851 p->packet_num = multifd_send_state->packet_num++;
852 p->pages->block = NULL;
853 multifd_send_state->pages = p->pages;
854 p->pages = pages;
855 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
856 ram_counters.multifd_bytes += transferred;
857 ram_counters.transferred += transferred;;
858 qemu_mutex_unlock(&p->mutex);
859 qemu_sem_post(&p->sem);
860 }
861
862 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
863 {
864 MultiFDPages_t *pages = multifd_send_state->pages;
865
866 if (!pages->block) {
867 pages->block = block;
868 }
869
870 if (pages->block == block) {
871 pages->offset[pages->used] = offset;
872 pages->iov[pages->used].iov_base = block->host + offset;
873 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
874 pages->used++;
875
876 if (pages->used < pages->allocated) {
877 return;
878 }
879 }
880
881 multifd_send_pages();
882
883 if (pages->block != block) {
884 multifd_queue_page(block, offset);
885 }
886 }
887
888 static void multifd_send_terminate_threads(Error *err)
889 {
890 int i;
891
892 if (err) {
893 MigrationState *s = migrate_get_current();
894 migrate_set_error(s, err);
895 if (s->state == MIGRATION_STATUS_SETUP ||
896 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
897 s->state == MIGRATION_STATUS_DEVICE ||
898 s->state == MIGRATION_STATUS_ACTIVE) {
899 migrate_set_state(&s->state, s->state,
900 MIGRATION_STATUS_FAILED);
901 }
902 }
903
904 for (i = 0; i < migrate_multifd_channels(); i++) {
905 MultiFDSendParams *p = &multifd_send_state->params[i];
906
907 qemu_mutex_lock(&p->mutex);
908 p->quit = true;
909 qemu_sem_post(&p->sem);
910 qemu_mutex_unlock(&p->mutex);
911 }
912 }
913
914 int multifd_save_cleanup(Error **errp)
915 {
916 int i;
917 int ret = 0;
918
919 if (!migrate_use_multifd()) {
920 return 0;
921 }
922 multifd_send_terminate_threads(NULL);
923 for (i = 0; i < migrate_multifd_channels(); i++) {
924 MultiFDSendParams *p = &multifd_send_state->params[i];
925
926 if (p->running) {
927 qemu_thread_join(&p->thread);
928 }
929 socket_send_channel_destroy(p->c);
930 p->c = NULL;
931 qemu_mutex_destroy(&p->mutex);
932 qemu_sem_destroy(&p->sem);
933 qemu_sem_destroy(&p->sem_sync);
934 g_free(p->name);
935 p->name = NULL;
936 multifd_pages_clear(p->pages);
937 p->pages = NULL;
938 p->packet_len = 0;
939 g_free(p->packet);
940 p->packet = NULL;
941 }
942 qemu_sem_destroy(&multifd_send_state->channels_ready);
943 qemu_sem_destroy(&multifd_send_state->sem_sync);
944 g_free(multifd_send_state->params);
945 multifd_send_state->params = NULL;
946 multifd_pages_clear(multifd_send_state->pages);
947 multifd_send_state->pages = NULL;
948 g_free(multifd_send_state);
949 multifd_send_state = NULL;
950 return ret;
951 }
952
953 static void multifd_send_sync_main(void)
954 {
955 int i;
956
957 if (!migrate_use_multifd()) {
958 return;
959 }
960 if (multifd_send_state->pages->used) {
961 multifd_send_pages();
962 }
963 for (i = 0; i < migrate_multifd_channels(); i++) {
964 MultiFDSendParams *p = &multifd_send_state->params[i];
965
966 trace_multifd_send_sync_main_signal(p->id);
967
968 qemu_mutex_lock(&p->mutex);
969
970 p->packet_num = multifd_send_state->packet_num++;
971 p->flags |= MULTIFD_FLAG_SYNC;
972 p->pending_job++;
973 qemu_mutex_unlock(&p->mutex);
974 qemu_sem_post(&p->sem);
975 }
976 for (i = 0; i < migrate_multifd_channels(); i++) {
977 MultiFDSendParams *p = &multifd_send_state->params[i];
978
979 trace_multifd_send_sync_main_wait(p->id);
980 qemu_sem_wait(&multifd_send_state->sem_sync);
981 }
982 trace_multifd_send_sync_main(multifd_send_state->packet_num);
983 }
984
985 static void *multifd_send_thread(void *opaque)
986 {
987 MultiFDSendParams *p = opaque;
988 Error *local_err = NULL;
989 int ret;
990
991 trace_multifd_send_thread_start(p->id);
992
993 if (multifd_send_initial_packet(p, &local_err) < 0) {
994 goto out;
995 }
996 /* initial packet */
997 p->num_packets = 1;
998
999 while (true) {
1000 qemu_sem_wait(&p->sem);
1001 qemu_mutex_lock(&p->mutex);
1002
1003 if (p->pending_job) {
1004 uint32_t used = p->pages->used;
1005 uint64_t packet_num = p->packet_num;
1006 uint32_t flags = p->flags;
1007
1008 multifd_send_fill_packet(p);
1009 p->flags = 0;
1010 p->num_packets++;
1011 p->num_pages += used;
1012 p->pages->used = 0;
1013 qemu_mutex_unlock(&p->mutex);
1014
1015 trace_multifd_send(p->id, packet_num, used, flags);
1016
1017 ret = qio_channel_write_all(p->c, (void *)p->packet,
1018 p->packet_len, &local_err);
1019 if (ret != 0) {
1020 break;
1021 }
1022
1023 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1024 if (ret != 0) {
1025 break;
1026 }
1027
1028 qemu_mutex_lock(&p->mutex);
1029 p->pending_job--;
1030 qemu_mutex_unlock(&p->mutex);
1031
1032 if (flags & MULTIFD_FLAG_SYNC) {
1033 qemu_sem_post(&multifd_send_state->sem_sync);
1034 }
1035 qemu_sem_post(&multifd_send_state->channels_ready);
1036 } else if (p->quit) {
1037 qemu_mutex_unlock(&p->mutex);
1038 break;
1039 } else {
1040 qemu_mutex_unlock(&p->mutex);
1041 /* sometimes there are spurious wakeups */
1042 }
1043 }
1044
1045 out:
1046 if (local_err) {
1047 multifd_send_terminate_threads(local_err);
1048 }
1049
1050 qemu_mutex_lock(&p->mutex);
1051 p->running = false;
1052 qemu_mutex_unlock(&p->mutex);
1053
1054 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1055
1056 return NULL;
1057 }
1058
1059 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1060 {
1061 MultiFDSendParams *p = opaque;
1062 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1063 Error *local_err = NULL;
1064
1065 if (qio_task_propagate_error(task, &local_err)) {
1066 if (multifd_save_cleanup(&local_err) != 0) {
1067 migrate_set_error(migrate_get_current(), local_err);
1068 }
1069 } else {
1070 p->c = QIO_CHANNEL(sioc);
1071 qio_channel_set_delay(p->c, false);
1072 p->running = true;
1073 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1074 QEMU_THREAD_JOINABLE);
1075
1076 atomic_inc(&multifd_send_state->count);
1077 }
1078 }
1079
1080 int multifd_save_setup(void)
1081 {
1082 int thread_count;
1083 uint32_t page_count = migrate_multifd_page_count();
1084 uint8_t i;
1085
1086 if (!migrate_use_multifd()) {
1087 return 0;
1088 }
1089 thread_count = migrate_multifd_channels();
1090 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1091 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1092 atomic_set(&multifd_send_state->count, 0);
1093 multifd_send_state->pages = multifd_pages_init(page_count);
1094 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1095 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1096
1097 for (i = 0; i < thread_count; i++) {
1098 MultiFDSendParams *p = &multifd_send_state->params[i];
1099
1100 qemu_mutex_init(&p->mutex);
1101 qemu_sem_init(&p->sem, 0);
1102 qemu_sem_init(&p->sem_sync, 0);
1103 p->quit = false;
1104 p->pending_job = 0;
1105 p->id = i;
1106 p->pages = multifd_pages_init(page_count);
1107 p->packet_len = sizeof(MultiFDPacket_t)
1108 + sizeof(ram_addr_t) * page_count;
1109 p->packet = g_malloc0(p->packet_len);
1110 p->name = g_strdup_printf("multifdsend_%d", i);
1111 socket_send_channel_create(multifd_new_send_channel_async, p);
1112 }
1113 return 0;
1114 }
1115
1116 struct {
1117 MultiFDRecvParams *params;
1118 /* number of created threads */
1119 int count;
1120 /* syncs main thread and channels */
1121 QemuSemaphore sem_sync;
1122 /* global number of generated multifd packets */
1123 uint64_t packet_num;
1124 } *multifd_recv_state;
1125
1126 static void multifd_recv_terminate_threads(Error *err)
1127 {
1128 int i;
1129
1130 if (err) {
1131 MigrationState *s = migrate_get_current();
1132 migrate_set_error(s, err);
1133 if (s->state == MIGRATION_STATUS_SETUP ||
1134 s->state == MIGRATION_STATUS_ACTIVE) {
1135 migrate_set_state(&s->state, s->state,
1136 MIGRATION_STATUS_FAILED);
1137 }
1138 }
1139
1140 for (i = 0; i < migrate_multifd_channels(); i++) {
1141 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1142
1143 qemu_mutex_lock(&p->mutex);
1144 /* We could arrive here for two reasons:
1145 - normal quit, i.e. everything went fine, just finished
1146 - error quit: We close the channels so the channel threads
1147 finish the qio_channel_read_all_eof() */
1148 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1149 qemu_mutex_unlock(&p->mutex);
1150 }
1151 }
1152
1153 int multifd_load_cleanup(Error **errp)
1154 {
1155 int i;
1156 int ret = 0;
1157
1158 if (!migrate_use_multifd()) {
1159 return 0;
1160 }
1161 multifd_recv_terminate_threads(NULL);
1162 for (i = 0; i < migrate_multifd_channels(); i++) {
1163 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1164
1165 if (p->running) {
1166 qemu_thread_join(&p->thread);
1167 }
1168 object_unref(OBJECT(p->c));
1169 p->c = NULL;
1170 qemu_mutex_destroy(&p->mutex);
1171 qemu_sem_destroy(&p->sem_sync);
1172 g_free(p->name);
1173 p->name = NULL;
1174 multifd_pages_clear(p->pages);
1175 p->pages = NULL;
1176 p->packet_len = 0;
1177 g_free(p->packet);
1178 p->packet = NULL;
1179 }
1180 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1181 g_free(multifd_recv_state->params);
1182 multifd_recv_state->params = NULL;
1183 g_free(multifd_recv_state);
1184 multifd_recv_state = NULL;
1185
1186 return ret;
1187 }
1188
1189 static void multifd_recv_sync_main(void)
1190 {
1191 int i;
1192
1193 if (!migrate_use_multifd()) {
1194 return;
1195 }
1196 for (i = 0; i < migrate_multifd_channels(); i++) {
1197 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1198
1199 trace_multifd_recv_sync_main_wait(p->id);
1200 qemu_sem_wait(&multifd_recv_state->sem_sync);
1201 qemu_mutex_lock(&p->mutex);
1202 if (multifd_recv_state->packet_num < p->packet_num) {
1203 multifd_recv_state->packet_num = p->packet_num;
1204 }
1205 qemu_mutex_unlock(&p->mutex);
1206 }
1207 for (i = 0; i < migrate_multifd_channels(); i++) {
1208 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1209
1210 trace_multifd_recv_sync_main_signal(p->id);
1211 qemu_sem_post(&p->sem_sync);
1212 }
1213 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1214 }
1215
1216 static void *multifd_recv_thread(void *opaque)
1217 {
1218 MultiFDRecvParams *p = opaque;
1219 Error *local_err = NULL;
1220 int ret;
1221
1222 trace_multifd_recv_thread_start(p->id);
1223
1224 while (true) {
1225 uint32_t used;
1226 uint32_t flags;
1227
1228 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1229 p->packet_len, &local_err);
1230 if (ret == 0) { /* EOF */
1231 break;
1232 }
1233 if (ret == -1) { /* Error */
1234 break;
1235 }
1236
1237 qemu_mutex_lock(&p->mutex);
1238 ret = multifd_recv_unfill_packet(p, &local_err);
1239 if (ret) {
1240 qemu_mutex_unlock(&p->mutex);
1241 break;
1242 }
1243
1244 used = p->pages->used;
1245 flags = p->flags;
1246 trace_multifd_recv(p->id, p->packet_num, used, flags);
1247 p->num_packets++;
1248 p->num_pages += used;
1249 qemu_mutex_unlock(&p->mutex);
1250
1251 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1252 if (ret != 0) {
1253 break;
1254 }
1255
1256 if (flags & MULTIFD_FLAG_SYNC) {
1257 qemu_sem_post(&multifd_recv_state->sem_sync);
1258 qemu_sem_wait(&p->sem_sync);
1259 }
1260 }
1261
1262 if (local_err) {
1263 multifd_recv_terminate_threads(local_err);
1264 }
1265 qemu_mutex_lock(&p->mutex);
1266 p->running = false;
1267 qemu_mutex_unlock(&p->mutex);
1268
1269 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1270
1271 return NULL;
1272 }
1273
1274 int multifd_load_setup(void)
1275 {
1276 int thread_count;
1277 uint32_t page_count = migrate_multifd_page_count();
1278 uint8_t i;
1279
1280 if (!migrate_use_multifd()) {
1281 return 0;
1282 }
1283 thread_count = migrate_multifd_channels();
1284 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1285 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1286 atomic_set(&multifd_recv_state->count, 0);
1287 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1288
1289 for (i = 0; i < thread_count; i++) {
1290 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1291
1292 qemu_mutex_init(&p->mutex);
1293 qemu_sem_init(&p->sem_sync, 0);
1294 p->id = i;
1295 p->pages = multifd_pages_init(page_count);
1296 p->packet_len = sizeof(MultiFDPacket_t)
1297 + sizeof(ram_addr_t) * page_count;
1298 p->packet = g_malloc0(p->packet_len);
1299 p->name = g_strdup_printf("multifdrecv_%d", i);
1300 }
1301 return 0;
1302 }
1303
1304 bool multifd_recv_all_channels_created(void)
1305 {
1306 int thread_count = migrate_multifd_channels();
1307
1308 if (!migrate_use_multifd()) {
1309 return true;
1310 }
1311
1312 return thread_count == atomic_read(&multifd_recv_state->count);
1313 }
1314
1315 /* Return true if multifd is ready for the migration, otherwise false */
1316 bool multifd_recv_new_channel(QIOChannel *ioc)
1317 {
1318 MultiFDRecvParams *p;
1319 Error *local_err = NULL;
1320 int id;
1321
1322 id = multifd_recv_initial_packet(ioc, &local_err);
1323 if (id < 0) {
1324 multifd_recv_terminate_threads(local_err);
1325 return false;
1326 }
1327
1328 p = &multifd_recv_state->params[id];
1329 if (p->c != NULL) {
1330 error_setg(&local_err, "multifd: received id '%d' already setup'",
1331 id);
1332 multifd_recv_terminate_threads(local_err);
1333 return false;
1334 }
1335 p->c = ioc;
1336 object_ref(OBJECT(ioc));
1337 /* initial packet */
1338 p->num_packets = 1;
1339
1340 p->running = true;
1341 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1342 QEMU_THREAD_JOINABLE);
1343 atomic_inc(&multifd_recv_state->count);
1344 return multifd_recv_state->count == migrate_multifd_channels();
1345 }
1346
1347 /**
1348 * save_page_header: write page header to wire
1349 *
1350 * If this is the 1st block, it also writes the block identification
1351 *
1352 * Returns the number of bytes written
1353 *
1354 * @f: QEMUFile where to send the data
1355 * @block: block that contains the page we want to send
1356 * @offset: offset inside the block for the page
1357 * in the lower bits, it contains flags
1358 */
1359 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1360 ram_addr_t offset)
1361 {
1362 size_t size, len;
1363
1364 if (block == rs->last_sent_block) {
1365 offset |= RAM_SAVE_FLAG_CONTINUE;
1366 }
1367 qemu_put_be64(f, offset);
1368 size = 8;
1369
1370 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1371 len = strlen(block->idstr);
1372 qemu_put_byte(f, len);
1373 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1374 size += 1 + len;
1375 rs->last_sent_block = block;
1376 }
1377 return size;
1378 }
1379
1380 /**
1381 * mig_throttle_guest_down: throotle down the guest
1382 *
1383 * Reduce amount of guest cpu execution to hopefully slow down memory
1384 * writes. If guest dirty memory rate is reduced below the rate at
1385 * which we can transfer pages to the destination then we should be
1386 * able to complete migration. Some workloads dirty memory way too
1387 * fast and will not effectively converge, even with auto-converge.
1388 */
1389 static void mig_throttle_guest_down(void)
1390 {
1391 MigrationState *s = migrate_get_current();
1392 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1393 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1394 int pct_max = s->parameters.max_cpu_throttle;
1395
1396 /* We have not started throttling yet. Let's start it. */
1397 if (!cpu_throttle_active()) {
1398 cpu_throttle_set(pct_initial);
1399 } else {
1400 /* Throttling already on, just increase the rate */
1401 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1402 pct_max));
1403 }
1404 }
1405
1406 /**
1407 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1408 *
1409 * @rs: current RAM state
1410 * @current_addr: address for the zero page
1411 *
1412 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1413 * The important thing is that a stale (not-yet-0'd) page be replaced
1414 * by the new data.
1415 * As a bonus, if the page wasn't in the cache it gets added so that
1416 * when a small write is made into the 0'd page it gets XBZRLE sent.
1417 */
1418 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1419 {
1420 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1421 return;
1422 }
1423
1424 /* We don't care if this fails to allocate a new cache page
1425 * as long as it updated an old one */
1426 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1427 ram_counters.dirty_sync_count);
1428 }
1429
1430 #define ENCODING_FLAG_XBZRLE 0x1
1431
1432 /**
1433 * save_xbzrle_page: compress and send current page
1434 *
1435 * Returns: 1 means that we wrote the page
1436 * 0 means that page is identical to the one already sent
1437 * -1 means that xbzrle would be longer than normal
1438 *
1439 * @rs: current RAM state
1440 * @current_data: pointer to the address of the page contents
1441 * @current_addr: addr of the page
1442 * @block: block that contains the page we want to send
1443 * @offset: offset inside the block for the page
1444 * @last_stage: if we are at the completion stage
1445 */
1446 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1447 ram_addr_t current_addr, RAMBlock *block,
1448 ram_addr_t offset, bool last_stage)
1449 {
1450 int encoded_len = 0, bytes_xbzrle;
1451 uint8_t *prev_cached_page;
1452
1453 if (!cache_is_cached(XBZRLE.cache, current_addr,
1454 ram_counters.dirty_sync_count)) {
1455 xbzrle_counters.cache_miss++;
1456 if (!last_stage) {
1457 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1458 ram_counters.dirty_sync_count) == -1) {
1459 return -1;
1460 } else {
1461 /* update *current_data when the page has been
1462 inserted into cache */
1463 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1464 }
1465 }
1466 return -1;
1467 }
1468
1469 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1470
1471 /* save current buffer into memory */
1472 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1473
1474 /* XBZRLE encoding (if there is no overflow) */
1475 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1476 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1477 TARGET_PAGE_SIZE);
1478 if (encoded_len == 0) {
1479 trace_save_xbzrle_page_skipping();
1480 return 0;
1481 } else if (encoded_len == -1) {
1482 trace_save_xbzrle_page_overflow();
1483 xbzrle_counters.overflow++;
1484 /* update data in the cache */
1485 if (!last_stage) {
1486 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1487 *current_data = prev_cached_page;
1488 }
1489 return -1;
1490 }
1491
1492 /* we need to update the data in the cache, in order to get the same data */
1493 if (!last_stage) {
1494 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1495 }
1496
1497 /* Send XBZRLE based compressed page */
1498 bytes_xbzrle = save_page_header(rs, rs->f, block,
1499 offset | RAM_SAVE_FLAG_XBZRLE);
1500 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1501 qemu_put_be16(rs->f, encoded_len);
1502 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1503 bytes_xbzrle += encoded_len + 1 + 2;
1504 xbzrle_counters.pages++;
1505 xbzrle_counters.bytes += bytes_xbzrle;
1506 ram_counters.transferred += bytes_xbzrle;
1507
1508 return 1;
1509 }
1510
1511 /**
1512 * migration_bitmap_find_dirty: find the next dirty page from start
1513 *
1514 * Called with rcu_read_lock() to protect migration_bitmap
1515 *
1516 * Returns the byte offset within memory region of the start of a dirty page
1517 *
1518 * @rs: current RAM state
1519 * @rb: RAMBlock where to search for dirty pages
1520 * @start: page where we start the search
1521 */
1522 static inline
1523 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1524 unsigned long start)
1525 {
1526 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1527 unsigned long *bitmap = rb->bmap;
1528 unsigned long next;
1529
1530 if (!qemu_ram_is_migratable(rb)) {
1531 return size;
1532 }
1533
1534 if (rs->ram_bulk_stage && start > 0) {
1535 next = start + 1;
1536 } else {
1537 next = find_next_bit(bitmap, size, start);
1538 }
1539
1540 return next;
1541 }
1542
1543 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1544 RAMBlock *rb,
1545 unsigned long page)
1546 {
1547 bool ret;
1548
1549 ret = test_and_clear_bit(page, rb->bmap);
1550
1551 if (ret) {
1552 rs->migration_dirty_pages--;
1553 }
1554 return ret;
1555 }
1556
1557 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1558 ram_addr_t start, ram_addr_t length)
1559 {
1560 rs->migration_dirty_pages +=
1561 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1562 &rs->num_dirty_pages_period);
1563 }
1564
1565 /**
1566 * ram_pagesize_summary: calculate all the pagesizes of a VM
1567 *
1568 * Returns a summary bitmap of the page sizes of all RAMBlocks
1569 *
1570 * For VMs with just normal pages this is equivalent to the host page
1571 * size. If it's got some huge pages then it's the OR of all the
1572 * different page sizes.
1573 */
1574 uint64_t ram_pagesize_summary(void)
1575 {
1576 RAMBlock *block;
1577 uint64_t summary = 0;
1578
1579 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1580 summary |= block->page_size;
1581 }
1582
1583 return summary;
1584 }
1585
1586 static void migration_update_rates(RAMState *rs, int64_t end_time)
1587 {
1588 uint64_t iter_count = rs->iterations - rs->iterations_prev;
1589
1590 /* calculate period counters */
1591 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1592 / (end_time - rs->time_last_bitmap_sync);
1593
1594 if (!iter_count) {
1595 return;
1596 }
1597
1598 if (migrate_use_xbzrle()) {
1599 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1600 rs->xbzrle_cache_miss_prev) / iter_count;
1601 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1602 }
1603 }
1604
1605 static void migration_bitmap_sync(RAMState *rs)
1606 {
1607 RAMBlock *block;
1608 int64_t end_time;
1609 uint64_t bytes_xfer_now;
1610
1611 ram_counters.dirty_sync_count++;
1612
1613 if (!rs->time_last_bitmap_sync) {
1614 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1615 }
1616
1617 trace_migration_bitmap_sync_start();
1618 memory_global_dirty_log_sync();
1619
1620 qemu_mutex_lock(&rs->bitmap_mutex);
1621 rcu_read_lock();
1622 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1623 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1624 }
1625 ram_counters.remaining = ram_bytes_remaining();
1626 rcu_read_unlock();
1627 qemu_mutex_unlock(&rs->bitmap_mutex);
1628
1629 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1630
1631 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1632
1633 /* more than 1 second = 1000 millisecons */
1634 if (end_time > rs->time_last_bitmap_sync + 1000) {
1635 bytes_xfer_now = ram_counters.transferred;
1636
1637 /* During block migration the auto-converge logic incorrectly detects
1638 * that ram migration makes no progress. Avoid this by disabling the
1639 * throttling logic during the bulk phase of block migration. */
1640 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1641 /* The following detection logic can be refined later. For now:
1642 Check to see if the dirtied bytes is 50% more than the approx.
1643 amount of bytes that just got transferred since the last time we
1644 were in this routine. If that happens twice, start or increase
1645 throttling */
1646
1647 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1648 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1649 (++rs->dirty_rate_high_cnt >= 2)) {
1650 trace_migration_throttle();
1651 rs->dirty_rate_high_cnt = 0;
1652 mig_throttle_guest_down();
1653 }
1654 }
1655
1656 migration_update_rates(rs, end_time);
1657
1658 rs->iterations_prev = rs->iterations;
1659
1660 /* reset period counters */
1661 rs->time_last_bitmap_sync = end_time;
1662 rs->num_dirty_pages_period = 0;
1663 rs->bytes_xfer_prev = bytes_xfer_now;
1664 }
1665 if (migrate_use_events()) {
1666 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
1667 }
1668 }
1669
1670 /**
1671 * save_zero_page: send the zero page to the stream
1672 *
1673 * Returns the number of pages written.
1674 *
1675 * @rs: current RAM state
1676 * @block: block that contains the page we want to send
1677 * @offset: offset inside the block for the page
1678 */
1679 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1680 {
1681 uint8_t *p = block->host + offset;
1682 int pages = -1;
1683
1684 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1685 ram_counters.duplicate++;
1686 ram_counters.transferred +=
1687 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
1688 qemu_put_byte(rs->f, 0);
1689 ram_counters.transferred += 1;
1690 pages = 1;
1691 }
1692
1693 return pages;
1694 }
1695
1696 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1697 {
1698 if (!migrate_release_ram() || !migration_in_postcopy()) {
1699 return;
1700 }
1701
1702 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1703 }
1704
1705 /*
1706 * @pages: the number of pages written by the control path,
1707 * < 0 - error
1708 * > 0 - number of pages written
1709 *
1710 * Return true if the pages has been saved, otherwise false is returned.
1711 */
1712 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1713 int *pages)
1714 {
1715 uint64_t bytes_xmit = 0;
1716 int ret;
1717
1718 *pages = -1;
1719 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1720 &bytes_xmit);
1721 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1722 return false;
1723 }
1724
1725 if (bytes_xmit) {
1726 ram_counters.transferred += bytes_xmit;
1727 *pages = 1;
1728 }
1729
1730 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1731 return true;
1732 }
1733
1734 if (bytes_xmit > 0) {
1735 ram_counters.normal++;
1736 } else if (bytes_xmit == 0) {
1737 ram_counters.duplicate++;
1738 }
1739
1740 return true;
1741 }
1742
1743 /*
1744 * directly send the page to the stream
1745 *
1746 * Returns the number of pages written.
1747 *
1748 * @rs: current RAM state
1749 * @block: block that contains the page we want to send
1750 * @offset: offset inside the block for the page
1751 * @buf: the page to be sent
1752 * @async: send to page asyncly
1753 */
1754 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1755 uint8_t *buf, bool async)
1756 {
1757 ram_counters.transferred += save_page_header(rs, rs->f, block,
1758 offset | RAM_SAVE_FLAG_PAGE);
1759 if (async) {
1760 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1761 migrate_release_ram() &
1762 migration_in_postcopy());
1763 } else {
1764 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1765 }
1766 ram_counters.transferred += TARGET_PAGE_SIZE;
1767 ram_counters.normal++;
1768 return 1;
1769 }
1770
1771 /**
1772 * ram_save_page: send the given page to the stream
1773 *
1774 * Returns the number of pages written.
1775 * < 0 - error
1776 * >=0 - Number of pages written - this might legally be 0
1777 * if xbzrle noticed the page was the same.
1778 *
1779 * @rs: current RAM state
1780 * @block: block that contains the page we want to send
1781 * @offset: offset inside the block for the page
1782 * @last_stage: if we are at the completion stage
1783 */
1784 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1785 {
1786 int pages = -1;
1787 uint8_t *p;
1788 bool send_async = true;
1789 RAMBlock *block = pss->block;
1790 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1791 ram_addr_t current_addr = block->offset + offset;
1792
1793 p = block->host + offset;
1794 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1795
1796 XBZRLE_cache_lock();
1797 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1798 migrate_use_xbzrle()) {
1799 pages = save_xbzrle_page(rs, &p, current_addr, block,
1800 offset, last_stage);
1801 if (!last_stage) {
1802 /* Can't send this cached data async, since the cache page
1803 * might get updated before it gets to the wire
1804 */
1805 send_async = false;
1806 }
1807 }
1808
1809 /* XBZRLE overflow or normal page */
1810 if (pages == -1) {
1811 pages = save_normal_page(rs, block, offset, p, send_async);
1812 }
1813
1814 XBZRLE_cache_unlock();
1815
1816 return pages;
1817 }
1818
1819 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1820 ram_addr_t offset)
1821 {
1822 multifd_queue_page(block, offset);
1823 ram_counters.normal++;
1824
1825 return 1;
1826 }
1827
1828 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1829 ram_addr_t offset, uint8_t *source_buf)
1830 {
1831 RAMState *rs = ram_state;
1832 int bytes_sent, blen;
1833 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1834
1835 bytes_sent = save_page_header(rs, f, block, offset |
1836 RAM_SAVE_FLAG_COMPRESS_PAGE);
1837
1838 /*
1839 * copy it to a internal buffer to avoid it being modified by VM
1840 * so that we can catch up the error during compression and
1841 * decompression
1842 */
1843 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1844 blen = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1845 if (blen < 0) {
1846 bytes_sent = 0;
1847 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1848 error_report("compressed data failed!");
1849 } else {
1850 bytes_sent += blen;
1851 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1852 }
1853
1854 return bytes_sent;
1855 }
1856
1857 static void flush_compressed_data(RAMState *rs)
1858 {
1859 int idx, len, thread_count;
1860
1861 if (!migrate_use_compression()) {
1862 return;
1863 }
1864 thread_count = migrate_compress_threads();
1865
1866 qemu_mutex_lock(&comp_done_lock);
1867 for (idx = 0; idx < thread_count; idx++) {
1868 while (!comp_param[idx].done) {
1869 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1870 }
1871 }
1872 qemu_mutex_unlock(&comp_done_lock);
1873
1874 for (idx = 0; idx < thread_count; idx++) {
1875 qemu_mutex_lock(&comp_param[idx].mutex);
1876 if (!comp_param[idx].quit) {
1877 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1878 ram_counters.transferred += len;
1879 }
1880 qemu_mutex_unlock(&comp_param[idx].mutex);
1881 }
1882 }
1883
1884 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1885 ram_addr_t offset)
1886 {
1887 param->block = block;
1888 param->offset = offset;
1889 }
1890
1891 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1892 ram_addr_t offset)
1893 {
1894 int idx, thread_count, bytes_xmit = -1, pages = -1;
1895
1896 thread_count = migrate_compress_threads();
1897 qemu_mutex_lock(&comp_done_lock);
1898 while (true) {
1899 for (idx = 0; idx < thread_count; idx++) {
1900 if (comp_param[idx].done) {
1901 comp_param[idx].done = false;
1902 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1903 qemu_mutex_lock(&comp_param[idx].mutex);
1904 set_compress_params(&comp_param[idx], block, offset);
1905 qemu_cond_signal(&comp_param[idx].cond);
1906 qemu_mutex_unlock(&comp_param[idx].mutex);
1907 pages = 1;
1908 ram_counters.normal++;
1909 ram_counters.transferred += bytes_xmit;
1910 break;
1911 }
1912 }
1913 if (pages > 0) {
1914 break;
1915 } else {
1916 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1917 }
1918 }
1919 qemu_mutex_unlock(&comp_done_lock);
1920
1921 return pages;
1922 }
1923
1924 /**
1925 * find_dirty_block: find the next dirty page and update any state
1926 * associated with the search process.
1927 *
1928 * Returns if a page is found
1929 *
1930 * @rs: current RAM state
1931 * @pss: data about the state of the current dirty page scan
1932 * @again: set to false if the search has scanned the whole of RAM
1933 */
1934 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1935 {
1936 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1937 if (pss->complete_round && pss->block == rs->last_seen_block &&
1938 pss->page >= rs->last_page) {
1939 /*
1940 * We've been once around the RAM and haven't found anything.
1941 * Give up.
1942 */
1943 *again = false;
1944 return false;
1945 }
1946 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1947 /* Didn't find anything in this RAM Block */
1948 pss->page = 0;
1949 pss->block = QLIST_NEXT_RCU(pss->block, next);
1950 if (!pss->block) {
1951 /* Hit the end of the list */
1952 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1953 /* Flag that we've looped */
1954 pss->complete_round = true;
1955 rs->ram_bulk_stage = false;
1956 if (migrate_use_xbzrle()) {
1957 /* If xbzrle is on, stop using the data compression at this
1958 * point. In theory, xbzrle can do better than compression.
1959 */
1960 flush_compressed_data(rs);
1961 }
1962 }
1963 /* Didn't find anything this time, but try again on the new block */
1964 *again = true;
1965 return false;
1966 } else {
1967 /* Can go around again, but... */
1968 *again = true;
1969 /* We've found something so probably don't need to */
1970 return true;
1971 }
1972 }
1973
1974 /**
1975 * unqueue_page: gets a page of the queue
1976 *
1977 * Helper for 'get_queued_page' - gets a page off the queue
1978 *
1979 * Returns the block of the page (or NULL if none available)
1980 *
1981 * @rs: current RAM state
1982 * @offset: used to return the offset within the RAMBlock
1983 */
1984 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1985 {
1986 RAMBlock *block = NULL;
1987
1988 qemu_mutex_lock(&rs->src_page_req_mutex);
1989 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1990 struct RAMSrcPageRequest *entry =
1991 QSIMPLEQ_FIRST(&rs->src_page_requests);
1992 block = entry->rb;
1993 *offset = entry->offset;
1994
1995 if (entry->len > TARGET_PAGE_SIZE) {
1996 entry->len -= TARGET_PAGE_SIZE;
1997 entry->offset += TARGET_PAGE_SIZE;
1998 } else {
1999 memory_region_unref(block->mr);
2000 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2001 g_free(entry);
2002 migration_consume_urgent_request();
2003 }
2004 }
2005 qemu_mutex_unlock(&rs->src_page_req_mutex);
2006
2007 return block;
2008 }
2009
2010 /**
2011 * get_queued_page: unqueue a page from the postocpy requests
2012 *
2013 * Skips pages that are already sent (!dirty)
2014 *
2015 * Returns if a queued page is found
2016 *
2017 * @rs: current RAM state
2018 * @pss: data about the state of the current dirty page scan
2019 */
2020 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2021 {
2022 RAMBlock *block;
2023 ram_addr_t offset;
2024 bool dirty;
2025
2026 do {
2027 block = unqueue_page(rs, &offset);
2028 /*
2029 * We're sending this page, and since it's postcopy nothing else
2030 * will dirty it, and we must make sure it doesn't get sent again
2031 * even if this queue request was received after the background
2032 * search already sent it.
2033 */
2034 if (block) {
2035 unsigned long page;
2036
2037 page = offset >> TARGET_PAGE_BITS;
2038 dirty = test_bit(page, block->bmap);
2039 if (!dirty) {
2040 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2041 page, test_bit(page, block->unsentmap));
2042 } else {
2043 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2044 }
2045 }
2046
2047 } while (block && !dirty);
2048
2049 if (block) {
2050 /*
2051 * As soon as we start servicing pages out of order, then we have
2052 * to kill the bulk stage, since the bulk stage assumes
2053 * in (migration_bitmap_find_and_reset_dirty) that every page is
2054 * dirty, that's no longer true.
2055 */
2056 rs->ram_bulk_stage = false;
2057
2058 /*
2059 * We want the background search to continue from the queued page
2060 * since the guest is likely to want other pages near to the page
2061 * it just requested.
2062 */
2063 pss->block = block;
2064 pss->page = offset >> TARGET_PAGE_BITS;
2065 }
2066
2067 return !!block;
2068 }
2069
2070 /**
2071 * migration_page_queue_free: drop any remaining pages in the ram
2072 * request queue
2073 *
2074 * It should be empty at the end anyway, but in error cases there may
2075 * be some left. in case that there is any page left, we drop it.
2076 *
2077 */
2078 static void migration_page_queue_free(RAMState *rs)
2079 {
2080 struct RAMSrcPageRequest *mspr, *next_mspr;
2081 /* This queue generally should be empty - but in the case of a failed
2082 * migration might have some droppings in.
2083 */
2084 rcu_read_lock();
2085 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2086 memory_region_unref(mspr->rb->mr);
2087 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2088 g_free(mspr);
2089 }
2090 rcu_read_unlock();
2091 }
2092
2093 /**
2094 * ram_save_queue_pages: queue the page for transmission
2095 *
2096 * A request from postcopy destination for example.
2097 *
2098 * Returns zero on success or negative on error
2099 *
2100 * @rbname: Name of the RAMBLock of the request. NULL means the
2101 * same that last one.
2102 * @start: starting address from the start of the RAMBlock
2103 * @len: length (in bytes) to send
2104 */
2105 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2106 {
2107 RAMBlock *ramblock;
2108 RAMState *rs = ram_state;
2109
2110 ram_counters.postcopy_requests++;
2111 rcu_read_lock();
2112 if (!rbname) {
2113 /* Reuse last RAMBlock */
2114 ramblock = rs->last_req_rb;
2115
2116 if (!ramblock) {
2117 /*
2118 * Shouldn't happen, we can't reuse the last RAMBlock if
2119 * it's the 1st request.
2120 */
2121 error_report("ram_save_queue_pages no previous block");
2122 goto err;
2123 }
2124 } else {
2125 ramblock = qemu_ram_block_by_name(rbname);
2126
2127 if (!ramblock) {
2128 /* We shouldn't be asked for a non-existent RAMBlock */
2129 error_report("ram_save_queue_pages no block '%s'", rbname);
2130 goto err;
2131 }
2132 rs->last_req_rb = ramblock;
2133 }
2134 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2135 if (start+len > ramblock->used_length) {
2136 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2137 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2138 __func__, start, len, ramblock->used_length);
2139 goto err;
2140 }
2141
2142 struct RAMSrcPageRequest *new_entry =
2143 g_malloc0(sizeof(struct RAMSrcPageRequest));
2144 new_entry->rb = ramblock;
2145 new_entry->offset = start;
2146 new_entry->len = len;
2147
2148 memory_region_ref(ramblock->mr);
2149 qemu_mutex_lock(&rs->src_page_req_mutex);
2150 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2151 migration_make_urgent_request();
2152 qemu_mutex_unlock(&rs->src_page_req_mutex);
2153 rcu_read_unlock();
2154
2155 return 0;
2156
2157 err:
2158 rcu_read_unlock();
2159 return -1;
2160 }
2161
2162 static bool save_page_use_compression(RAMState *rs)
2163 {
2164 if (!migrate_use_compression()) {
2165 return false;
2166 }
2167
2168 /*
2169 * If xbzrle is on, stop using the data compression after first
2170 * round of migration even if compression is enabled. In theory,
2171 * xbzrle can do better than compression.
2172 */
2173 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2174 return true;
2175 }
2176
2177 return false;
2178 }
2179
2180 /**
2181 * ram_save_target_page: save one target page
2182 *
2183 * Returns the number of pages written
2184 *
2185 * @rs: current RAM state
2186 * @pss: data about the page we want to send
2187 * @last_stage: if we are at the completion stage
2188 */
2189 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2190 bool last_stage)
2191 {
2192 RAMBlock *block = pss->block;
2193 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2194 int res;
2195
2196 if (control_save_page(rs, block, offset, &res)) {
2197 return res;
2198 }
2199
2200 /*
2201 * When starting the process of a new block, the first page of
2202 * the block should be sent out before other pages in the same
2203 * block, and all the pages in last block should have been sent
2204 * out, keeping this order is important, because the 'cont' flag
2205 * is used to avoid resending the block name.
2206 */
2207 if (block != rs->last_sent_block && save_page_use_compression(rs)) {
2208 flush_compressed_data(rs);
2209 }
2210
2211 res = save_zero_page(rs, block, offset);
2212 if (res > 0) {
2213 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2214 * page would be stale
2215 */
2216 if (!save_page_use_compression(rs)) {
2217 XBZRLE_cache_lock();
2218 xbzrle_cache_zero_page(rs, block->offset + offset);
2219 XBZRLE_cache_unlock();
2220 }
2221 ram_release_pages(block->idstr, offset, res);
2222 return res;
2223 }
2224
2225 /*
2226 * Make sure the first page is sent out before other pages.
2227 *
2228 * we post it as normal page as compression will take much
2229 * CPU resource.
2230 */
2231 if (block == rs->last_sent_block && save_page_use_compression(rs)) {
2232 return compress_page_with_multi_thread(rs, block, offset);
2233 } else if (migrate_use_multifd()) {
2234 return ram_save_multifd_page(rs, block, offset);
2235 }
2236
2237 return ram_save_page(rs, pss, last_stage);
2238 }
2239
2240 /**
2241 * ram_save_host_page: save a whole host page
2242 *
2243 * Starting at *offset send pages up to the end of the current host
2244 * page. It's valid for the initial offset to point into the middle of
2245 * a host page in which case the remainder of the hostpage is sent.
2246 * Only dirty target pages are sent. Note that the host page size may
2247 * be a huge page for this block.
2248 * The saving stops at the boundary of the used_length of the block
2249 * if the RAMBlock isn't a multiple of the host page size.
2250 *
2251 * Returns the number of pages written or negative on error
2252 *
2253 * @rs: current RAM state
2254 * @ms: current migration state
2255 * @pss: data about the page we want to send
2256 * @last_stage: if we are at the completion stage
2257 */
2258 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2259 bool last_stage)
2260 {
2261 int tmppages, pages = 0;
2262 size_t pagesize_bits =
2263 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2264
2265 if (!qemu_ram_is_migratable(pss->block)) {
2266 error_report("block %s should not be migrated !", pss->block->idstr);
2267 return 0;
2268 }
2269
2270 do {
2271 /* Check the pages is dirty and if it is send it */
2272 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2273 pss->page++;
2274 continue;
2275 }
2276
2277 tmppages = ram_save_target_page(rs, pss, last_stage);
2278 if (tmppages < 0) {
2279 return tmppages;
2280 }
2281
2282 pages += tmppages;
2283 if (pss->block->unsentmap) {
2284 clear_bit(pss->page, pss->block->unsentmap);
2285 }
2286
2287 pss->page++;
2288 } while ((pss->page & (pagesize_bits - 1)) &&
2289 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2290
2291 /* The offset we leave with is the last one we looked at */
2292 pss->page--;
2293 return pages;
2294 }
2295
2296 /**
2297 * ram_find_and_save_block: finds a dirty page and sends it to f
2298 *
2299 * Called within an RCU critical section.
2300 *
2301 * Returns the number of pages written where zero means no dirty pages
2302 *
2303 * @rs: current RAM state
2304 * @last_stage: if we are at the completion stage
2305 *
2306 * On systems where host-page-size > target-page-size it will send all the
2307 * pages in a host page that are dirty.
2308 */
2309
2310 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2311 {
2312 PageSearchStatus pss;
2313 int pages = 0;
2314 bool again, found;
2315
2316 /* No dirty page as there is zero RAM */
2317 if (!ram_bytes_total()) {
2318 return pages;
2319 }
2320
2321 pss.block = rs->last_seen_block;
2322 pss.page = rs->last_page;
2323 pss.complete_round = false;
2324
2325 if (!pss.block) {
2326 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2327 }
2328
2329 do {
2330 again = true;
2331 found = get_queued_page(rs, &pss);
2332
2333 if (!found) {
2334 /* priority queue empty, so just search for something dirty */
2335 found = find_dirty_block(rs, &pss, &again);
2336 }
2337
2338 if (found) {
2339 pages = ram_save_host_page(rs, &pss, last_stage);
2340 }
2341 } while (!pages && again);
2342
2343 rs->last_seen_block = pss.block;
2344 rs->last_page = pss.page;
2345
2346 return pages;
2347 }
2348
2349 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2350 {
2351 uint64_t pages = size / TARGET_PAGE_SIZE;
2352
2353 if (zero) {
2354 ram_counters.duplicate += pages;
2355 } else {
2356 ram_counters.normal += pages;
2357 ram_counters.transferred += size;
2358 qemu_update_position(f, size);
2359 }
2360 }
2361
2362 uint64_t ram_bytes_total(void)
2363 {
2364 RAMBlock *block;
2365 uint64_t total = 0;
2366
2367 rcu_read_lock();
2368 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2369 total += block->used_length;
2370 }
2371 rcu_read_unlock();
2372 return total;
2373 }
2374
2375 static void xbzrle_load_setup(void)
2376 {
2377 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2378 }
2379
2380 static void xbzrle_load_cleanup(void)
2381 {
2382 g_free(XBZRLE.decoded_buf);
2383 XBZRLE.decoded_buf = NULL;
2384 }
2385
2386 static void ram_state_cleanup(RAMState **rsp)
2387 {
2388 if (*rsp) {
2389 migration_page_queue_free(*rsp);
2390 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2391 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2392 g_free(*rsp);
2393 *rsp = NULL;
2394 }
2395 }
2396
2397 static void xbzrle_cleanup(void)
2398 {
2399 XBZRLE_cache_lock();
2400 if (XBZRLE.cache) {
2401 cache_fini(XBZRLE.cache);
2402 g_free(XBZRLE.encoded_buf);
2403 g_free(XBZRLE.current_buf);
2404 g_free(XBZRLE.zero_target_page);
2405 XBZRLE.cache = NULL;
2406 XBZRLE.encoded_buf = NULL;
2407 XBZRLE.current_buf = NULL;
2408 XBZRLE.zero_target_page = NULL;
2409 }
2410 XBZRLE_cache_unlock();
2411 }
2412
2413 static void ram_save_cleanup(void *opaque)
2414 {
2415 RAMState **rsp = opaque;
2416 RAMBlock *block;
2417
2418 /* caller have hold iothread lock or is in a bh, so there is
2419 * no writing race against this migration_bitmap
2420 */
2421 memory_global_dirty_log_stop();
2422
2423 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2424 g_free(block->bmap);
2425 block->bmap = NULL;
2426 g_free(block->unsentmap);
2427 block->unsentmap = NULL;
2428 }
2429
2430 xbzrle_cleanup();
2431 compress_threads_save_cleanup();
2432 ram_state_cleanup(rsp);
2433 }
2434
2435 static void ram_state_reset(RAMState *rs)
2436 {
2437 rs->last_seen_block = NULL;
2438 rs->last_sent_block = NULL;
2439 rs->last_page = 0;
2440 rs->last_version = ram_list.version;
2441 rs->ram_bulk_stage = true;
2442 }
2443
2444 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2445
2446 /*
2447 * 'expected' is the value you expect the bitmap mostly to be full
2448 * of; it won't bother printing lines that are all this value.
2449 * If 'todump' is null the migration bitmap is dumped.
2450 */
2451 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2452 unsigned long pages)
2453 {
2454 int64_t cur;
2455 int64_t linelen = 128;
2456 char linebuf[129];
2457
2458 for (cur = 0; cur < pages; cur += linelen) {
2459 int64_t curb;
2460 bool found = false;
2461 /*
2462 * Last line; catch the case where the line length
2463 * is longer than remaining ram
2464 */
2465 if (cur + linelen > pages) {
2466 linelen = pages - cur;
2467 }
2468 for (curb = 0; curb < linelen; curb++) {
2469 bool thisbit = test_bit(cur + curb, todump);
2470 linebuf[curb] = thisbit ? '1' : '.';
2471 found = found || (thisbit != expected);
2472 }
2473 if (found) {
2474 linebuf[curb] = '\0';
2475 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2476 }
2477 }
2478 }
2479
2480 /* **** functions for postcopy ***** */
2481
2482 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2483 {
2484 struct RAMBlock *block;
2485
2486 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2487 unsigned long *bitmap = block->bmap;
2488 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2489 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2490
2491 while (run_start < range) {
2492 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2493 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2494 (run_end - run_start) << TARGET_PAGE_BITS);
2495 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2496 }
2497 }
2498 }
2499
2500 /**
2501 * postcopy_send_discard_bm_ram: discard a RAMBlock
2502 *
2503 * Returns zero on success
2504 *
2505 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2506 * Note: At this point the 'unsentmap' is the processed bitmap combined
2507 * with the dirtymap; so a '1' means it's either dirty or unsent.
2508 *
2509 * @ms: current migration state
2510 * @pds: state for postcopy
2511 * @start: RAMBlock starting page
2512 * @length: RAMBlock size
2513 */
2514 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2515 PostcopyDiscardState *pds,
2516 RAMBlock *block)
2517 {
2518 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2519 unsigned long current;
2520 unsigned long *unsentmap = block->unsentmap;
2521
2522 for (current = 0; current < end; ) {
2523 unsigned long one = find_next_bit(unsentmap, end, current);
2524
2525 if (one <= end) {
2526 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2527 unsigned long discard_length;
2528
2529 if (zero >= end) {
2530 discard_length = end - one;
2531 } else {
2532 discard_length = zero - one;
2533 }
2534 if (discard_length) {
2535 postcopy_discard_send_range(ms, pds, one, discard_length);
2536 }
2537 current = one + discard_length;
2538 } else {
2539 current = one;
2540 }
2541 }
2542
2543 return 0;
2544 }
2545
2546 /**
2547 * postcopy_each_ram_send_discard: discard all RAMBlocks
2548 *
2549 * Returns 0 for success or negative for error
2550 *
2551 * Utility for the outgoing postcopy code.
2552 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2553 * passing it bitmap indexes and name.
2554 * (qemu_ram_foreach_block ends up passing unscaled lengths
2555 * which would mean postcopy code would have to deal with target page)
2556 *
2557 * @ms: current migration state
2558 */
2559 static int postcopy_each_ram_send_discard(MigrationState *ms)
2560 {
2561 struct RAMBlock *block;
2562 int ret;
2563
2564 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2565 PostcopyDiscardState *pds =
2566 postcopy_discard_send_init(ms, block->idstr);
2567
2568 /*
2569 * Postcopy sends chunks of bitmap over the wire, but it
2570 * just needs indexes at this point, avoids it having
2571 * target page specific code.
2572 */
2573 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2574 postcopy_discard_send_finish(ms, pds);
2575 if (ret) {
2576 return ret;
2577 }
2578 }
2579
2580 return 0;
2581 }
2582
2583 /**
2584 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2585 *
2586 * Helper for postcopy_chunk_hostpages; it's called twice to
2587 * canonicalize the two bitmaps, that are similar, but one is
2588 * inverted.
2589 *
2590 * Postcopy requires that all target pages in a hostpage are dirty or
2591 * clean, not a mix. This function canonicalizes the bitmaps.
2592 *
2593 * @ms: current migration state
2594 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2595 * otherwise we need to canonicalize partially dirty host pages
2596 * @block: block that contains the page we want to canonicalize
2597 * @pds: state for postcopy
2598 */
2599 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2600 RAMBlock *block,
2601 PostcopyDiscardState *pds)
2602 {
2603 RAMState *rs = ram_state;
2604 unsigned long *bitmap = block->bmap;
2605 unsigned long *unsentmap = block->unsentmap;
2606 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2607 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2608 unsigned long run_start;
2609
2610 if (block->page_size == TARGET_PAGE_SIZE) {
2611 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2612 return;
2613 }
2614
2615 if (unsent_pass) {
2616 /* Find a sent page */
2617 run_start = find_next_zero_bit(unsentmap, pages, 0);
2618 } else {
2619 /* Find a dirty page */
2620 run_start = find_next_bit(bitmap, pages, 0);
2621 }
2622
2623 while (run_start < pages) {
2624 bool do_fixup = false;
2625 unsigned long fixup_start_addr;
2626 unsigned long host_offset;
2627
2628 /*
2629 * If the start of this run of pages is in the middle of a host
2630 * page, then we need to fixup this host page.
2631 */
2632 host_offset = run_start % host_ratio;
2633 if (host_offset) {
2634 do_fixup = true;
2635 run_start -= host_offset;
2636 fixup_start_addr = run_start;
2637 /* For the next pass */
2638 run_start = run_start + host_ratio;
2639 } else {
2640 /* Find the end of this run */
2641 unsigned long run_end;
2642 if (unsent_pass) {
2643 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2644 } else {
2645 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2646 }
2647 /*
2648 * If the end isn't at the start of a host page, then the
2649 * run doesn't finish at the end of a host page
2650 * and we need to discard.
2651 */
2652 host_offset = run_end % host_ratio;
2653 if (host_offset) {
2654 do_fixup = true;
2655 fixup_start_addr = run_end - host_offset;
2656 /*
2657 * This host page has gone, the next loop iteration starts
2658 * from after the fixup
2659 */
2660 run_start = fixup_start_addr + host_ratio;
2661 } else {
2662 /*
2663 * No discards on this iteration, next loop starts from
2664 * next sent/dirty page
2665 */
2666 run_start = run_end + 1;
2667 }
2668 }
2669
2670 if (do_fixup) {
2671 unsigned long page;
2672
2673 /* Tell the destination to discard this page */
2674 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2675 /* For the unsent_pass we:
2676 * discard partially sent pages
2677 * For the !unsent_pass (dirty) we:
2678 * discard partially dirty pages that were sent
2679 * (any partially sent pages were already discarded
2680 * by the previous unsent_pass)
2681 */
2682 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2683 host_ratio);
2684 }
2685
2686 /* Clean up the bitmap */
2687 for (page = fixup_start_addr;
2688 page < fixup_start_addr + host_ratio; page++) {
2689 /* All pages in this host page are now not sent */
2690 set_bit(page, unsentmap);
2691
2692 /*
2693 * Remark them as dirty, updating the count for any pages
2694 * that weren't previously dirty.
2695 */
2696 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2697 }
2698 }
2699
2700 if (unsent_pass) {
2701 /* Find the next sent page for the next iteration */
2702 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2703 } else {
2704 /* Find the next dirty page for the next iteration */
2705 run_start = find_next_bit(bitmap, pages, run_start);
2706 }
2707 }
2708 }
2709
2710 /**
2711 * postcopy_chuck_hostpages: discrad any partially sent host page
2712 *
2713 * Utility for the outgoing postcopy code.
2714 *
2715 * Discard any partially sent host-page size chunks, mark any partially
2716 * dirty host-page size chunks as all dirty. In this case the host-page
2717 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2718 *
2719 * Returns zero on success
2720 *
2721 * @ms: current migration state
2722 * @block: block we want to work with
2723 */
2724 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2725 {
2726 PostcopyDiscardState *pds =
2727 postcopy_discard_send_init(ms, block->idstr);
2728
2729 /* First pass: Discard all partially sent host pages */
2730 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2731 /*
2732 * Second pass: Ensure that all partially dirty host pages are made
2733 * fully dirty.
2734 */
2735 postcopy_chunk_hostpages_pass(ms, false, block, pds);
2736
2737 postcopy_discard_send_finish(ms, pds);
2738 return 0;
2739 }
2740
2741 /**
2742 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2743 *
2744 * Returns zero on success
2745 *
2746 * Transmit the set of pages to be discarded after precopy to the target
2747 * these are pages that:
2748 * a) Have been previously transmitted but are now dirty again
2749 * b) Pages that have never been transmitted, this ensures that
2750 * any pages on the destination that have been mapped by background
2751 * tasks get discarded (transparent huge pages is the specific concern)
2752 * Hopefully this is pretty sparse
2753 *
2754 * @ms: current migration state
2755 */
2756 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2757 {
2758 RAMState *rs = ram_state;
2759 RAMBlock *block;
2760 int ret;
2761
2762 rcu_read_lock();
2763
2764 /* This should be our last sync, the src is now paused */
2765 migration_bitmap_sync(rs);
2766
2767 /* Easiest way to make sure we don't resume in the middle of a host-page */
2768 rs->last_seen_block = NULL;
2769 rs->last_sent_block = NULL;
2770 rs->last_page = 0;
2771
2772 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2773 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2774 unsigned long *bitmap = block->bmap;
2775 unsigned long *unsentmap = block->unsentmap;
2776
2777 if (!unsentmap) {
2778 /* We don't have a safe way to resize the sentmap, so
2779 * if the bitmap was resized it will be NULL at this
2780 * point.
2781 */
2782 error_report("migration ram resized during precopy phase");
2783 rcu_read_unlock();
2784 return -EINVAL;
2785 }
2786 /* Deal with TPS != HPS and huge pages */
2787 ret = postcopy_chunk_hostpages(ms, block);
2788 if (ret) {
2789 rcu_read_unlock();
2790 return ret;
2791 }
2792
2793 /*
2794 * Update the unsentmap to be unsentmap = unsentmap | dirty
2795 */
2796 bitmap_or(unsentmap, unsentmap, bitmap, pages);
2797 #ifdef DEBUG_POSTCOPY
2798 ram_debug_dump_bitmap(unsentmap, true, pages);
2799 #endif
2800 }
2801 trace_ram_postcopy_send_discard_bitmap();
2802
2803 ret = postcopy_each_ram_send_discard(ms);
2804 rcu_read_unlock();
2805
2806 return ret;
2807 }
2808
2809 /**
2810 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2811 *
2812 * Returns zero on success
2813 *
2814 * @rbname: name of the RAMBlock of the request. NULL means the
2815 * same that last one.
2816 * @start: RAMBlock starting page
2817 * @length: RAMBlock size
2818 */
2819 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2820 {
2821 int ret = -1;
2822
2823 trace_ram_discard_range(rbname, start, length);
2824
2825 rcu_read_lock();
2826 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2827
2828 if (!rb) {
2829 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2830 goto err;
2831 }
2832
2833 /*
2834 * On source VM, we don't need to update the received bitmap since
2835 * we don't even have one.
2836 */
2837 if (rb->receivedmap) {
2838 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2839 length >> qemu_target_page_bits());
2840 }
2841
2842 ret = ram_block_discard_range(rb, start, length);
2843
2844 err:
2845 rcu_read_unlock();
2846
2847 return ret;
2848 }
2849
2850 /*
2851 * For every allocation, we will try not to crash the VM if the
2852 * allocation failed.
2853 */
2854 static int xbzrle_init(void)
2855 {
2856 Error *local_err = NULL;
2857
2858 if (!migrate_use_xbzrle()) {
2859 return 0;
2860 }
2861
2862 XBZRLE_cache_lock();
2863
2864 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2865 if (!XBZRLE.zero_target_page) {
2866 error_report("%s: Error allocating zero page", __func__);
2867 goto err_out;
2868 }
2869
2870 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2871 TARGET_PAGE_SIZE, &local_err);
2872 if (!XBZRLE.cache) {
2873 error_report_err(local_err);
2874 goto free_zero_page;
2875 }
2876
2877 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2878 if (!XBZRLE.encoded_buf) {
2879 error_report("%s: Error allocating encoded_buf", __func__);
2880 goto free_cache;
2881 }
2882
2883 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2884 if (!XBZRLE.current_buf) {
2885 error_report("%s: Error allocating current_buf", __func__);
2886 goto free_encoded_buf;
2887 }
2888
2889 /* We are all good */
2890 XBZRLE_cache_unlock();
2891 return 0;
2892
2893 free_encoded_buf:
2894 g_free(XBZRLE.encoded_buf);
2895 XBZRLE.encoded_buf = NULL;
2896 free_cache:
2897 cache_fini(XBZRLE.cache);
2898 XBZRLE.cache = NULL;
2899 free_zero_page:
2900 g_free(XBZRLE.zero_target_page);
2901 XBZRLE.zero_target_page = NULL;
2902 err_out:
2903 XBZRLE_cache_unlock();
2904 return -ENOMEM;
2905 }
2906
2907 static int ram_state_init(RAMState **rsp)
2908 {
2909 *rsp = g_try_new0(RAMState, 1);
2910
2911 if (!*rsp) {
2912 error_report("%s: Init ramstate fail", __func__);
2913 return -1;
2914 }
2915
2916 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2917 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2918 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2919
2920 /*
2921 * Count the total number of pages used by ram blocks not including any
2922 * gaps due to alignment or unplugs.
2923 */
2924 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2925
2926 ram_state_reset(*rsp);
2927
2928 return 0;
2929 }
2930
2931 static void ram_list_init_bitmaps(void)
2932 {
2933 RAMBlock *block;
2934 unsigned long pages;
2935
2936 /* Skip setting bitmap if there is no RAM */
2937 if (ram_bytes_total()) {
2938 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2939 pages = block->max_length >> TARGET_PAGE_BITS;
2940 block->bmap = bitmap_new(pages);
2941 bitmap_set(block->bmap, 0, pages);
2942 if (migrate_postcopy_ram()) {
2943 block->unsentmap = bitmap_new(pages);
2944 bitmap_set(block->unsentmap, 0, pages);
2945 }
2946 }
2947 }
2948 }
2949
2950 static void ram_init_bitmaps(RAMState *rs)
2951 {
2952 /* For memory_global_dirty_log_start below. */
2953 qemu_mutex_lock_iothread();
2954 qemu_mutex_lock_ramlist();
2955 rcu_read_lock();
2956
2957 ram_list_init_bitmaps();
2958 memory_global_dirty_log_start();
2959 migration_bitmap_sync(rs);
2960
2961 rcu_read_unlock();
2962 qemu_mutex_unlock_ramlist();
2963 qemu_mutex_unlock_iothread();
2964 }
2965
2966 static int ram_init_all(RAMState **rsp)
2967 {
2968 if (ram_state_init(rsp)) {
2969 return -1;
2970 }
2971
2972 if (xbzrle_init()) {
2973 ram_state_cleanup(rsp);
2974 return -1;
2975 }
2976
2977 ram_init_bitmaps(*rsp);
2978
2979 return 0;
2980 }
2981
2982 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2983 {
2984 RAMBlock *block;
2985 uint64_t pages = 0;
2986
2987 /*
2988 * Postcopy is not using xbzrle/compression, so no need for that.
2989 * Also, since source are already halted, we don't need to care
2990 * about dirty page logging as well.
2991 */
2992
2993 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2994 pages += bitmap_count_one(block->bmap,
2995 block->used_length >> TARGET_PAGE_BITS);
2996 }
2997
2998 /* This may not be aligned with current bitmaps. Recalculate. */
2999 rs->migration_dirty_pages = pages;
3000
3001 rs->last_seen_block = NULL;
3002 rs->last_sent_block = NULL;
3003 rs->last_page = 0;
3004 rs->last_version = ram_list.version;
3005 /*
3006 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3007 * matter what we have sent.
3008 */
3009 rs->ram_bulk_stage = false;
3010
3011 /* Update RAMState cache of output QEMUFile */
3012 rs->f = out;
3013
3014 trace_ram_state_resume_prepare(pages);
3015 }
3016
3017 /*
3018 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3019 * long-running RCU critical section. When rcu-reclaims in the code
3020 * start to become numerous it will be necessary to reduce the
3021 * granularity of these critical sections.
3022 */
3023
3024 /**
3025 * ram_save_setup: Setup RAM for migration
3026 *
3027 * Returns zero to indicate success and negative for error
3028 *
3029 * @f: QEMUFile where to send the data
3030 * @opaque: RAMState pointer
3031 */
3032 static int ram_save_setup(QEMUFile *f, void *opaque)
3033 {
3034 RAMState **rsp = opaque;
3035 RAMBlock *block;
3036
3037 if (compress_threads_save_setup()) {
3038 return -1;
3039 }
3040
3041 /* migration has already setup the bitmap, reuse it. */
3042 if (!migration_in_colo_state()) {
3043 if (ram_init_all(rsp) != 0) {
3044 compress_threads_save_cleanup();
3045 return -1;
3046 }
3047 }
3048 (*rsp)->f = f;
3049
3050 rcu_read_lock();
3051
3052 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
3053
3054 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3055 qemu_put_byte(f, strlen(block->idstr));
3056 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3057 qemu_put_be64(f, block->used_length);
3058 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3059 qemu_put_be64(f, block->page_size);
3060 }
3061 }
3062
3063 rcu_read_unlock();
3064
3065 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3066 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3067
3068 multifd_send_sync_main();
3069 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3070 qemu_fflush(f);
3071
3072 return 0;
3073 }
3074
3075 /**
3076 * ram_save_iterate: iterative stage for migration
3077 *
3078 * Returns zero to indicate success and negative for error
3079 *
3080 * @f: QEMUFile where to send the data
3081 * @opaque: RAMState pointer
3082 */
3083 static int ram_save_iterate(QEMUFile *f, void *opaque)
3084 {
3085 RAMState **temp = opaque;
3086 RAMState *rs = *temp;
3087 int ret;
3088 int i;
3089 int64_t t0;
3090 int done = 0;
3091
3092 if (blk_mig_bulk_active()) {
3093 /* Avoid transferring ram during bulk phase of block migration as
3094 * the bulk phase will usually take a long time and transferring
3095 * ram updates during that time is pointless. */
3096 goto out;
3097 }
3098
3099 rcu_read_lock();
3100 if (ram_list.version != rs->last_version) {
3101 ram_state_reset(rs);
3102 }
3103
3104 /* Read version before ram_list.blocks */
3105 smp_rmb();
3106
3107 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3108
3109 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3110 i = 0;
3111 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3112 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3113 int pages;
3114
3115 if (qemu_file_get_error(f)) {
3116 break;
3117 }
3118
3119 pages = ram_find_and_save_block(rs, false);
3120 /* no more pages to sent */
3121 if (pages == 0) {
3122 done = 1;
3123 break;
3124 }
3125 rs->iterations++;
3126
3127 /* we want to check in the 1st loop, just in case it was the 1st time
3128 and we had to sync the dirty bitmap.
3129 qemu_get_clock_ns() is a bit expensive, so we only check each some
3130 iterations
3131 */
3132 if ((i & 63) == 0) {
3133 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3134 if (t1 > MAX_WAIT) {
3135 trace_ram_save_iterate_big_wait(t1, i);
3136 break;
3137 }
3138 }
3139 i++;
3140 }
3141 flush_compressed_data(rs);
3142 rcu_read_unlock();
3143
3144 /*
3145 * Must occur before EOS (or any QEMUFile operation)
3146 * because of RDMA protocol.
3147 */
3148 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3149
3150 multifd_send_sync_main();
3151 out:
3152 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3153 qemu_fflush(f);
3154 ram_counters.transferred += 8;
3155
3156 ret = qemu_file_get_error(f);
3157 if (ret < 0) {
3158 return ret;
3159 }
3160
3161 return done;
3162 }
3163
3164 /**
3165 * ram_save_complete: function called to send the remaining amount of ram
3166 *
3167 * Returns zero to indicate success
3168 *
3169 * Called with iothread lock
3170 *
3171 * @f: QEMUFile where to send the data
3172 * @opaque: RAMState pointer
3173 */
3174 static int ram_save_complete(QEMUFile *f, void *opaque)
3175 {
3176 RAMState **temp = opaque;
3177 RAMState *rs = *temp;
3178
3179 rcu_read_lock();
3180
3181 if (!migration_in_postcopy()) {
3182 migration_bitmap_sync(rs);
3183 }
3184
3185 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3186
3187 /* try transferring iterative blocks of memory */
3188
3189 /* flush all remaining blocks regardless of rate limiting */
3190 while (true) {
3191 int pages;
3192
3193 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3194 /* no more blocks to sent */
3195 if (pages == 0) {
3196 break;
3197 }
3198 }
3199
3200 flush_compressed_data(rs);
3201 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3202
3203 rcu_read_unlock();
3204
3205 multifd_send_sync_main();
3206 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3207 qemu_fflush(f);
3208
3209 return 0;
3210 }
3211
3212 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3213 uint64_t *res_precopy_only,
3214 uint64_t *res_compatible,
3215 uint64_t *res_postcopy_only)
3216 {
3217 RAMState **temp = opaque;
3218 RAMState *rs = *temp;
3219 uint64_t remaining_size;
3220
3221 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3222
3223 if (!migration_in_postcopy() &&
3224 remaining_size < max_size) {
3225 qemu_mutex_lock_iothread();
3226 rcu_read_lock();
3227 migration_bitmap_sync(rs);
3228 rcu_read_unlock();
3229 qemu_mutex_unlock_iothread();
3230 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3231 }
3232
3233 if (migrate_postcopy_ram()) {
3234 /* We can do postcopy, and all the data is postcopiable */
3235 *res_compatible += remaining_size;
3236 } else {
3237 *res_precopy_only += remaining_size;
3238 }
3239 }
3240
3241 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3242 {
3243 unsigned int xh_len;
3244 int xh_flags;
3245 uint8_t *loaded_data;
3246
3247 /* extract RLE header */
3248 xh_flags = qemu_get_byte(f);
3249 xh_len = qemu_get_be16(f);
3250
3251 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3252 error_report("Failed to load XBZRLE page - wrong compression!");
3253 return -1;
3254 }
3255
3256 if (xh_len > TARGET_PAGE_SIZE) {
3257 error_report("Failed to load XBZRLE page - len overflow!");
3258 return -1;
3259 }
3260 loaded_data = XBZRLE.decoded_buf;
3261 /* load data and decode */
3262 /* it can change loaded_data to point to an internal buffer */
3263 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3264
3265 /* decode RLE */
3266 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3267 TARGET_PAGE_SIZE) == -1) {
3268 error_report("Failed to load XBZRLE page - decode error!");
3269 return -1;
3270 }
3271
3272 return 0;
3273 }
3274
3275 /**
3276 * ram_block_from_stream: read a RAMBlock id from the migration stream
3277 *
3278 * Must be called from within a rcu critical section.
3279 *
3280 * Returns a pointer from within the RCU-protected ram_list.
3281 *
3282 * @f: QEMUFile where to read the data from
3283 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3284 */
3285 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3286 {
3287 static RAMBlock *block = NULL;
3288 char id[256];
3289 uint8_t len;
3290
3291 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3292 if (!block) {
3293 error_report("Ack, bad migration stream!");
3294 return NULL;
3295 }
3296 return block;
3297 }
3298
3299 len = qemu_get_byte(f);
3300 qemu_get_buffer(f, (uint8_t *)id, len);
3301 id[len] = 0;
3302
3303 block = qemu_ram_block_by_name(id);
3304 if (!block) {
3305 error_report("Can't find block %s", id);
3306 return NULL;
3307 }
3308
3309 if (!qemu_ram_is_migratable(block)) {
3310 error_report("block %s should not be migrated !", id);
3311 return NULL;
3312 }
3313
3314 return block;
3315 }
3316
3317 static inline void *host_from_ram_block_offset(RAMBlock *block,
3318 ram_addr_t offset)
3319 {
3320 if (!offset_in_ramblock(block, offset)) {
3321 return NULL;
3322 }
3323
3324 return block->host + offset;
3325 }
3326
3327 /**
3328 * ram_handle_compressed: handle the zero page case
3329 *
3330 * If a page (or a whole RDMA chunk) has been
3331 * determined to be zero, then zap it.
3332 *
3333 * @host: host address for the zero page
3334 * @ch: what the page is filled from. We only support zero
3335 * @size: size of the zero page
3336 */
3337 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3338 {
3339 if (ch != 0 || !is_zero_range(host, size)) {
3340 memset(host, ch, size);
3341 }
3342 }
3343
3344 /* return the size after decompression, or negative value on error */
3345 static int
3346 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3347 const uint8_t *source, size_t source_len)
3348 {
3349 int err;
3350
3351 err = inflateReset(stream);
3352 if (err != Z_OK) {
3353 return -1;
3354 }
3355
3356 stream->avail_in = source_len;
3357 stream->next_in = (uint8_t *)source;
3358 stream->avail_out = dest_len;
3359 stream->next_out = dest;
3360
3361 err = inflate(stream, Z_NO_FLUSH);
3362 if (err != Z_STREAM_END) {
3363 return -1;
3364 }
3365
3366 return stream->total_out;
3367 }
3368
3369 static void *do_data_decompress(void *opaque)
3370 {
3371 DecompressParam *param = opaque;
3372 unsigned long pagesize;
3373 uint8_t *des;
3374 int len, ret;
3375
3376 qemu_mutex_lock(&param->mutex);
3377 while (!param->quit) {
3378 if (param->des) {
3379 des = param->des;
3380 len = param->len;
3381 param->des = 0;
3382 qemu_mutex_unlock(&param->mutex);
3383
3384 pagesize = TARGET_PAGE_SIZE;
3385
3386 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3387 param->compbuf, len);
3388 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3389 error_report("decompress data failed");
3390 qemu_file_set_error(decomp_file, ret);
3391 }
3392
3393 qemu_mutex_lock(&decomp_done_lock);
3394 param->done = true;
3395 qemu_cond_signal(&decomp_done_cond);
3396 qemu_mutex_unlock(&decomp_done_lock);
3397
3398 qemu_mutex_lock(&param->mutex);
3399 } else {
3400 qemu_cond_wait(&param->cond, &param->mutex);
3401 }
3402 }
3403 qemu_mutex_unlock(&param->mutex);
3404
3405 return NULL;
3406 }
3407
3408 static int wait_for_decompress_done(void)
3409 {
3410 int idx, thread_count;
3411
3412 if (!migrate_use_compression()) {
3413 return 0;
3414 }
3415
3416 thread_count = migrate_decompress_threads();
3417 qemu_mutex_lock(&decomp_done_lock);
3418 for (idx = 0; idx < thread_count; idx++) {
3419 while (!decomp_param[idx].done) {
3420 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3421 }
3422 }
3423 qemu_mutex_unlock(&decomp_done_lock);
3424 return qemu_file_get_error(decomp_file);
3425 }
3426
3427 static void compress_threads_load_cleanup(void)
3428 {
3429 int i, thread_count;
3430
3431 if (!migrate_use_compression()) {
3432 return;
3433 }
3434 thread_count = migrate_decompress_threads();
3435 for (i = 0; i < thread_count; i++) {
3436 /*
3437 * we use it as a indicator which shows if the thread is
3438 * properly init'd or not
3439 */
3440 if (!decomp_param[i].compbuf) {
3441 break;
3442 }
3443
3444 qemu_mutex_lock(&decomp_param[i].mutex);
3445 decomp_param[i].quit = true;
3446 qemu_cond_signal(&decomp_param[i].cond);
3447 qemu_mutex_unlock(&decomp_param[i].mutex);
3448 }
3449 for (i = 0; i < thread_count; i++) {
3450 if (!decomp_param[i].compbuf) {
3451 break;
3452 }
3453
3454 qemu_thread_join(decompress_threads + i);
3455 qemu_mutex_destroy(&decomp_param[i].mutex);
3456 qemu_cond_destroy(&decomp_param[i].cond);
3457 inflateEnd(&decomp_param[i].stream);
3458 g_free(decomp_param[i].compbuf);
3459 decomp_param[i].compbuf = NULL;
3460 }
3461 g_free(decompress_threads);
3462 g_free(decomp_param);
3463 decompress_threads = NULL;
3464 decomp_param = NULL;
3465 decomp_file = NULL;
3466 }
3467
3468 static int compress_threads_load_setup(QEMUFile *f)
3469 {
3470 int i, thread_count;
3471
3472 if (!migrate_use_compression()) {
3473 return 0;
3474 }
3475
3476 thread_count = migrate_decompress_threads();
3477 decompress_threads = g_new0(QemuThread, thread_count);
3478 decomp_param = g_new0(DecompressParam, thread_count);
3479 qemu_mutex_init(&decomp_done_lock);
3480 qemu_cond_init(&decomp_done_cond);
3481 decomp_file = f;
3482 for (i = 0; i < thread_count; i++) {
3483 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3484 goto exit;
3485 }
3486
3487 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3488 qemu_mutex_init(&decomp_param[i].mutex);
3489 qemu_cond_init(&decomp_param[i].cond);
3490 decomp_param[i].done = true;
3491 decomp_param[i].quit = false;
3492 qemu_thread_create(decompress_threads + i, "decompress",
3493 do_data_decompress, decomp_param + i,
3494 QEMU_THREAD_JOINABLE);
3495 }
3496 return 0;
3497 exit:
3498 compress_threads_load_cleanup();
3499 return -1;
3500 }
3501
3502 static void decompress_data_with_multi_threads(QEMUFile *f,
3503 void *host, int len)
3504 {
3505 int idx, thread_count;
3506
3507 thread_count = migrate_decompress_threads();
3508 qemu_mutex_lock(&decomp_done_lock);
3509 while (true) {
3510 for (idx = 0; idx < thread_count; idx++) {
3511 if (decomp_param[idx].done) {
3512 decomp_param[idx].done = false;
3513 qemu_mutex_lock(&decomp_param[idx].mutex);
3514 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3515 decomp_param[idx].des = host;
3516 decomp_param[idx].len = len;
3517 qemu_cond_signal(&decomp_param[idx].cond);
3518 qemu_mutex_unlock(&decomp_param[idx].mutex);
3519 break;
3520 }
3521 }
3522 if (idx < thread_count) {
3523 break;
3524 } else {
3525 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3526 }
3527 }
3528 qemu_mutex_unlock(&decomp_done_lock);
3529 }
3530
3531 /**
3532 * ram_load_setup: Setup RAM for migration incoming side
3533 *
3534 * Returns zero to indicate success and negative for error
3535 *
3536 * @f: QEMUFile where to receive the data
3537 * @opaque: RAMState pointer
3538 */
3539 static int ram_load_setup(QEMUFile *f, void *opaque)
3540 {
3541 if (compress_threads_load_setup(f)) {
3542 return -1;
3543 }
3544
3545 xbzrle_load_setup();
3546 ramblock_recv_map_init();
3547 return 0;
3548 }
3549
3550 static int ram_load_cleanup(void *opaque)
3551 {
3552 RAMBlock *rb;
3553
3554 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3555 if (ramblock_is_pmem(rb)) {
3556 pmem_persist(rb->host, rb->used_length);
3557 }
3558 }
3559
3560 xbzrle_load_cleanup();
3561 compress_threads_load_cleanup();
3562
3563 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3564 g_free(rb->receivedmap);
3565 rb->receivedmap = NULL;
3566 }
3567 return 0;
3568 }
3569
3570 /**
3571 * ram_postcopy_incoming_init: allocate postcopy data structures
3572 *
3573 * Returns 0 for success and negative if there was one error
3574 *
3575 * @mis: current migration incoming state
3576 *
3577 * Allocate data structures etc needed by incoming migration with
3578 * postcopy-ram. postcopy-ram's similarly names
3579 * postcopy_ram_incoming_init does the work.
3580 */
3581 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3582 {
3583 return postcopy_ram_incoming_init(mis);
3584 }
3585
3586 /**
3587 * ram_load_postcopy: load a page in postcopy case
3588 *
3589 * Returns 0 for success or -errno in case of error
3590 *
3591 * Called in postcopy mode by ram_load().
3592 * rcu_read_lock is taken prior to this being called.
3593 *
3594 * @f: QEMUFile where to send the data
3595 */
3596 static int ram_load_postcopy(QEMUFile *f)
3597 {
3598 int flags = 0, ret = 0;
3599 bool place_needed = false;
3600 bool matches_target_page_size = false;
3601 MigrationIncomingState *mis = migration_incoming_get_current();
3602 /* Temporary page that is later 'placed' */
3603 void *postcopy_host_page = postcopy_get_tmp_page(mis);
3604 void *last_host = NULL;
3605 bool all_zero = false;
3606
3607 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3608 ram_addr_t addr;
3609 void *host = NULL;
3610 void *page_buffer = NULL;
3611 void *place_source = NULL;
3612 RAMBlock *block = NULL;
3613 uint8_t ch;
3614
3615 addr = qemu_get_be64(f);
3616
3617 /*
3618 * If qemu file error, we should stop here, and then "addr"
3619 * may be invalid
3620 */
3621 ret = qemu_file_get_error(f);
3622 if (ret) {
3623 break;
3624 }
3625
3626 flags = addr & ~TARGET_PAGE_MASK;
3627 addr &= TARGET_PAGE_MASK;
3628
3629 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3630 place_needed = false;
3631 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3632 block = ram_block_from_stream(f, flags);
3633
3634 host = host_from_ram_block_offset(block, addr);
3635 if (!host) {
3636 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3637 ret = -EINVAL;
3638 break;
3639 }
3640 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3641 /*
3642 * Postcopy requires that we place whole host pages atomically;
3643 * these may be huge pages for RAMBlocks that are backed by
3644 * hugetlbfs.
3645 * To make it atomic, the data is read into a temporary page
3646 * that's moved into place later.
3647 * The migration protocol uses, possibly smaller, target-pages
3648 * however the source ensures it always sends all the components
3649 * of a host page in order.
3650 */
3651 page_buffer = postcopy_host_page +
3652 ((uintptr_t)host & (block->page_size - 1));
3653 /* If all TP are zero then we can optimise the place */
3654 if (!((uintptr_t)host & (block->page_size - 1))) {
3655 all_zero = true;
3656 } else {
3657 /* not the 1st TP within the HP */
3658 if (host != (last_host + TARGET_PAGE_SIZE)) {
3659 error_report("Non-sequential target page %p/%p",
3660 host, last_host);
3661 ret = -EINVAL;
3662 break;
3663 }
3664 }
3665
3666
3667 /*
3668 * If it's the last part of a host page then we place the host
3669 * page
3670 */
3671 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
3672 (block->page_size - 1)) == 0;
3673 place_source = postcopy_host_page;
3674 }
3675 last_host = host;
3676
3677 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3678 case RAM_SAVE_FLAG_ZERO:
3679 ch = qemu_get_byte(f);
3680 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3681 if (ch) {
3682 all_zero = false;
3683 }
3684 break;
3685
3686 case RAM_SAVE_FLAG_PAGE:
3687 all_zero = false;
3688 if (!matches_target_page_size) {
3689 /* For huge pages, we always use temporary buffer */
3690 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3691 } else {
3692 /*
3693 * For small pages that matches target page size, we
3694 * avoid the qemu_file copy. Instead we directly use
3695 * the buffer of QEMUFile to place the page. Note: we
3696 * cannot do any QEMUFile operation before using that
3697 * buffer to make sure the buffer is valid when
3698 * placing the page.
3699 */
3700 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3701 TARGET_PAGE_SIZE);
3702 }
3703 break;
3704 case RAM_SAVE_FLAG_EOS:
3705 /* normal exit */
3706 multifd_recv_sync_main();
3707 break;
3708 default:
3709 error_report("Unknown combination of migration flags: %#x"
3710 " (postcopy mode)", flags);
3711 ret = -EINVAL;
3712 break;
3713 }
3714
3715 /* Detect for any possible file errors */
3716 if (!ret && qemu_file_get_error(f)) {
3717 ret = qemu_file_get_error(f);
3718 }
3719
3720 if (!ret && place_needed) {
3721 /* This gets called at the last target page in the host page */
3722 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
3723
3724 if (all_zero) {
3725 ret = postcopy_place_page_zero(mis, place_dest,
3726 block);
3727 } else {
3728 ret = postcopy_place_page(mis, place_dest,
3729 place_source, block);
3730 }
3731 }
3732 }
3733
3734 return ret;
3735 }
3736
3737 static bool postcopy_is_advised(void)
3738 {
3739 PostcopyState ps = postcopy_state_get();
3740 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3741 }
3742
3743 static bool postcopy_is_running(void)
3744 {
3745 PostcopyState ps = postcopy_state_get();
3746 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3747 }
3748
3749 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3750 {
3751 int flags = 0, ret = 0, invalid_flags = 0;
3752 static uint64_t seq_iter;
3753 int len = 0;
3754 /*
3755 * If system is running in postcopy mode, page inserts to host memory must
3756 * be atomic
3757 */
3758 bool postcopy_running = postcopy_is_running();
3759 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3760 bool postcopy_advised = postcopy_is_advised();
3761
3762 seq_iter++;
3763
3764 if (version_id != 4) {
3765 ret = -EINVAL;
3766 }
3767
3768 if (!migrate_use_compression()) {
3769 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3770 }
3771 /* This RCU critical section can be very long running.
3772 * When RCU reclaims in the code start to become numerous,
3773 * it will be necessary to reduce the granularity of this
3774 * critical section.
3775 */
3776 rcu_read_lock();
3777
3778 if (postcopy_running) {
3779 ret = ram_load_postcopy(f);
3780 }
3781
3782 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3783 ram_addr_t addr, total_ram_bytes;
3784 void *host = NULL;
3785 uint8_t ch;
3786
3787 addr = qemu_get_be64(f);
3788 flags = addr & ~TARGET_PAGE_MASK;
3789 addr &= TARGET_PAGE_MASK;
3790
3791 if (flags & invalid_flags) {
3792 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3793 error_report("Received an unexpected compressed page");
3794 }
3795
3796 ret = -EINVAL;
3797 break;
3798 }
3799
3800 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3801 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3802 RAMBlock *block = ram_block_from_stream(f, flags);
3803
3804 host = host_from_ram_block_offset(block, addr);
3805 if (!host) {
3806 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3807 ret = -EINVAL;
3808 break;
3809 }
3810 ramblock_recv_bitmap_set(block, host);
3811 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3812 }
3813
3814 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3815 case RAM_SAVE_FLAG_MEM_SIZE:
3816 /* Synchronize RAM block list */
3817 total_ram_bytes = addr;
3818 while (!ret && total_ram_bytes) {
3819 RAMBlock *block;
3820 char id[256];
3821 ram_addr_t length;
3822
3823 len = qemu_get_byte(f);
3824 qemu_get_buffer(f, (uint8_t *)id, len);
3825 id[len] = 0;
3826 length = qemu_get_be64(f);
3827
3828 block = qemu_ram_block_by_name(id);
3829 if (block && !qemu_ram_is_migratable(block)) {
3830 error_report("block %s should not be migrated !", id);
3831 ret = -EINVAL;
3832 } else if (block) {
3833 if (length != block->used_length) {
3834 Error *local_err = NULL;
3835
3836 ret = qemu_ram_resize(block, length,
3837 &local_err);
3838 if (local_err) {
3839 error_report_err(local_err);
3840 }
3841 }
3842 /* For postcopy we need to check hugepage sizes match */
3843 if (postcopy_advised &&
3844 block->page_size != qemu_host_page_size) {
3845 uint64_t remote_page_size = qemu_get_be64(f);
3846 if (remote_page_size != block->page_size) {
3847 error_report("Mismatched RAM page size %s "
3848 "(local) %zd != %" PRId64,
3849 id, block->page_size,
3850 remote_page_size);
3851 ret = -EINVAL;
3852 }
3853 }
3854 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3855 block->idstr);
3856 } else {
3857 error_report("Unknown ramblock \"%s\", cannot "
3858 "accept migration", id);
3859 ret = -EINVAL;
3860 }
3861
3862 total_ram_bytes -= length;
3863 }
3864 break;
3865
3866 case RAM_SAVE_FLAG_ZERO:
3867 ch = qemu_get_byte(f);
3868 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3869 break;
3870
3871 case RAM_SAVE_FLAG_PAGE:
3872 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3873 break;
3874
3875 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3876 len = qemu_get_be32(f);
3877 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3878 error_report("Invalid compressed data length: %d", len);
3879 ret = -EINVAL;
3880 break;
3881 }
3882 decompress_data_with_multi_threads(f, host, len);
3883 break;
3884
3885 case RAM_SAVE_FLAG_XBZRLE:
3886 if (load_xbzrle(f, addr, host) < 0) {
3887 error_report("Failed to decompress XBZRLE page at "
3888 RAM_ADDR_FMT, addr);
3889 ret = -EINVAL;
3890 break;
3891 }
3892 break;
3893 case RAM_SAVE_FLAG_EOS:
3894 /* normal exit */
3895 multifd_recv_sync_main();
3896 break;
3897 default:
3898 if (flags & RAM_SAVE_FLAG_HOOK) {
3899 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
3900 } else {
3901 error_report("Unknown combination of migration flags: %#x",
3902 flags);
3903 ret = -EINVAL;
3904 }
3905 }
3906 if (!ret) {
3907 ret = qemu_file_get_error(f);
3908 }
3909 }
3910
3911 ret |= wait_for_decompress_done();
3912 rcu_read_unlock();
3913 trace_ram_load_complete(ret, seq_iter);
3914 return ret;
3915 }
3916
3917 static bool ram_has_postcopy(void *opaque)
3918 {
3919 RAMBlock *rb;
3920 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3921 if (ramblock_is_pmem(rb)) {
3922 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
3923 "is not supported now!", rb->idstr, rb->host);
3924 return false;
3925 }
3926 }
3927
3928 return migrate_postcopy_ram();
3929 }
3930
3931 /* Sync all the dirty bitmap with destination VM. */
3932 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
3933 {
3934 RAMBlock *block;
3935 QEMUFile *file = s->to_dst_file;
3936 int ramblock_count = 0;
3937
3938 trace_ram_dirty_bitmap_sync_start();
3939
3940 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3941 qemu_savevm_send_recv_bitmap(file, block->idstr);
3942 trace_ram_dirty_bitmap_request(block->idstr);
3943 ramblock_count++;
3944 }
3945
3946 trace_ram_dirty_bitmap_sync_wait();
3947
3948 /* Wait until all the ramblocks' dirty bitmap synced */
3949 while (ramblock_count--) {
3950 qemu_sem_wait(&s->rp_state.rp_sem);
3951 }
3952
3953 trace_ram_dirty_bitmap_sync_complete();
3954
3955 return 0;
3956 }
3957
3958 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
3959 {
3960 qemu_sem_post(&s->rp_state.rp_sem);
3961 }
3962
3963 /*
3964 * Read the received bitmap, revert it as the initial dirty bitmap.
3965 * This is only used when the postcopy migration is paused but wants
3966 * to resume from a middle point.
3967 */
3968 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
3969 {
3970 int ret = -EINVAL;
3971 QEMUFile *file = s->rp_state.from_dst_file;
3972 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
3973 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
3974 uint64_t size, end_mark;
3975
3976 trace_ram_dirty_bitmap_reload_begin(block->idstr);
3977
3978 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
3979 error_report("%s: incorrect state %s", __func__,
3980 MigrationStatus_str(s->state));
3981 return -EINVAL;
3982 }
3983
3984 /*
3985 * Note: see comments in ramblock_recv_bitmap_send() on why we
3986 * need the endianess convertion, and the paddings.
3987 */
3988 local_size = ROUND_UP(local_size, 8);
3989
3990 /* Add paddings */
3991 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
3992
3993 size = qemu_get_be64(file);
3994
3995 /* The size of the bitmap should match with our ramblock */
3996 if (size != local_size) {
3997 error_report("%s: ramblock '%s' bitmap size mismatch "
3998 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
3999 block->idstr, size, local_size);
4000 ret = -EINVAL;
4001 goto out;
4002 }
4003
4004 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4005 end_mark = qemu_get_be64(file);
4006
4007 ret = qemu_file_get_error(file);
4008 if (ret || size != local_size) {
4009 error_report("%s: read bitmap failed for ramblock '%s': %d"
4010 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4011 __func__, block->idstr, ret, local_size, size);
4012 ret = -EIO;
4013 goto out;
4014 }
4015
4016 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4017 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4018 __func__, block->idstr, end_mark);
4019 ret = -EINVAL;
4020 goto out;
4021 }
4022
4023 /*
4024 * Endianess convertion. We are during postcopy (though paused).
4025 * The dirty bitmap won't change. We can directly modify it.
4026 */
4027 bitmap_from_le(block->bmap, le_bitmap, nbits);
4028
4029 /*
4030 * What we received is "received bitmap". Revert it as the initial
4031 * dirty bitmap for this ramblock.
4032 */
4033 bitmap_complement(block->bmap, block->bmap, nbits);
4034
4035 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4036
4037 /*
4038 * We succeeded to sync bitmap for current ramblock. If this is
4039 * the last one to sync, we need to notify the main send thread.
4040 */
4041 ram_dirty_bitmap_reload_notify(s);
4042
4043 ret = 0;
4044 out:
4045 g_free(le_bitmap);
4046 return ret;
4047 }
4048
4049 static int ram_resume_prepare(MigrationState *s, void *opaque)
4050 {
4051 RAMState *rs = *(RAMState **)opaque;
4052 int ret;
4053
4054 ret = ram_dirty_bitmap_sync_all(s, rs);
4055 if (ret) {
4056 return ret;
4057 }
4058
4059 ram_state_resume_prepare(rs, s->to_dst_file);
4060
4061 return 0;
4062 }
4063
4064 static SaveVMHandlers savevm_ram_handlers = {
4065 .save_setup = ram_save_setup,
4066 .save_live_iterate = ram_save_iterate,
4067 .save_live_complete_postcopy = ram_save_complete,
4068 .save_live_complete_precopy = ram_save_complete,
4069 .has_postcopy = ram_has_postcopy,
4070 .save_live_pending = ram_save_pending,
4071 .load_state = ram_load,
4072 .save_cleanup = ram_save_cleanup,
4073 .load_setup = ram_load_setup,
4074 .load_cleanup = ram_load_cleanup,
4075 .resume_prepare = ram_resume_prepare,
4076 };
4077
4078 void ram_mig_init(void)
4079 {
4080 qemu_mutex_init(&XBZRLE.lock);
4081 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
4082 }