]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
hw/mips/Kconfig: Malta machine requires the pcnet network card
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60
61 /***********************************************************/
62 /* ram save/restore */
63
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 {
82 return buffer_is_zero(p, size);
83 }
84
85 XBZRLECacheStats xbzrle_counters;
86
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
102
103 static void XBZRLE_cache_lock(void)
104 {
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107 }
108
109 static void XBZRLE_cache_unlock(void)
110 {
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113 }
114
115 /**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
123 * Returns 0 for success or -1 for error
124 *
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
127 */
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 {
130 PageCache *new_cache;
131 int64_t ret = 0;
132
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
143 }
144
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
160 }
161
162 static bool ramblock_is_ignored(RAMBlock *block)
163 {
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166 }
167
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
176
177 #undef RAMBLOCK_FOREACH
178
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180 {
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193 }
194
195 static void ramblock_recv_map_init(void)
196 {
197 RAMBlock *rb;
198
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203 }
204
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206 {
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209 }
210
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212 {
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214 }
215
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217 {
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219 }
220
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223 {
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227 }
228
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231 /*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238 {
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
284 g_free(le_bitmap);
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291 }
292
293 /*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297 struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303 };
304
305 /* State of RAM for migration */
306 struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
354 };
355 typedef struct RAMState RAMState;
356
357 static RAMState *ram_state;
358
359 static NotifierWithReturnList precopy_notifier_list;
360
361 void precopy_infrastructure_init(void)
362 {
363 notifier_with_return_list_init(&precopy_notifier_list);
364 }
365
366 void precopy_add_notifier(NotifierWithReturn *n)
367 {
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369 }
370
371 void precopy_remove_notifier(NotifierWithReturn *n)
372 {
373 notifier_with_return_remove(n);
374 }
375
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377 {
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383 }
384
385 void precopy_enable_free_page_optimization(void)
386 {
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392 }
393
394 uint64_t ram_bytes_remaining(void)
395 {
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
398 }
399
400 MigrationStats ram_counters;
401
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
410 };
411 typedef struct PageSearchStatus PageSearchStatus;
412
413 CompressionStats compression_counters;
414
415 struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
424
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
428 };
429 typedef struct CompressParam CompressParam;
430
431 struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
440 };
441 typedef struct DecompressParam DecompressParam;
442
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
453
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
459
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
462
463 static void *do_data_compress(void *opaque)
464 {
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
469
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
480
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
491 }
492 qemu_mutex_unlock(&param->mutex);
493
494 return NULL;
495 }
496
497 static void compress_threads_save_cleanup(void)
498 {
499 int i, thread_count;
500
501 if (!migrate_use_compression() || !comp_param) {
502 return;
503 }
504
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
527 }
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
534 }
535
536 static int compress_threads_save_setup(void)
537 {
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
541 return 0;
542 }
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
558 }
559
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
572 return 0;
573
574 exit:
575 compress_threads_save_cleanup();
576 return -1;
577 }
578
579 /* Multiple fd's */
580
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
583
584 #define MULTIFD_FLAG_SYNC (1 << 0)
585
586 typedef struct {
587 uint32_t magic;
588 uint32_t version;
589 unsigned char uuid[16]; /* QemuUUID */
590 uint8_t id;
591 } __attribute__((packed)) MultiFDInit_t;
592
593 typedef struct {
594 uint32_t magic;
595 uint32_t version;
596 uint32_t flags;
597 uint32_t size;
598 uint32_t used;
599 uint64_t packet_num;
600 char ramblock[256];
601 uint64_t offset[];
602 } __attribute__((packed)) MultiFDPacket_t;
603
604 typedef struct {
605 /* number of used pages */
606 uint32_t used;
607 /* number of allocated pages */
608 uint32_t allocated;
609 /* global number of generated multifd packets */
610 uint64_t packet_num;
611 /* offset of each page */
612 ram_addr_t *offset;
613 /* pointer to each page */
614 struct iovec *iov;
615 RAMBlock *block;
616 } MultiFDPages_t;
617
618 typedef struct {
619 /* this fields are not changed once the thread is created */
620 /* channel number */
621 uint8_t id;
622 /* channel thread name */
623 char *name;
624 /* channel thread id */
625 QemuThread thread;
626 /* communication channel */
627 QIOChannel *c;
628 /* sem where to wait for more work */
629 QemuSemaphore sem;
630 /* this mutex protects the following parameters */
631 QemuMutex mutex;
632 /* is this channel thread running */
633 bool running;
634 /* should this thread finish */
635 bool quit;
636 /* thread has work to do */
637 int pending_job;
638 /* array of pages to sent */
639 MultiFDPages_t *pages;
640 /* packet allocated len */
641 uint32_t packet_len;
642 /* pointer to the packet */
643 MultiFDPacket_t *packet;
644 /* multifd flags for each packet */
645 uint32_t flags;
646 /* global number of generated multifd packets */
647 uint64_t packet_num;
648 /* thread local variables */
649 /* packets sent through this channel */
650 uint64_t num_packets;
651 /* pages sent through this channel */
652 uint64_t num_pages;
653 /* syncs main thread and channels */
654 QemuSemaphore sem_sync;
655 } MultiFDSendParams;
656
657 typedef struct {
658 /* this fields are not changed once the thread is created */
659 /* channel number */
660 uint8_t id;
661 /* channel thread name */
662 char *name;
663 /* channel thread id */
664 QemuThread thread;
665 /* communication channel */
666 QIOChannel *c;
667 /* this mutex protects the following parameters */
668 QemuMutex mutex;
669 /* is this channel thread running */
670 bool running;
671 /* array of pages to receive */
672 MultiFDPages_t *pages;
673 /* packet allocated len */
674 uint32_t packet_len;
675 /* pointer to the packet */
676 MultiFDPacket_t *packet;
677 /* multifd flags for each packet */
678 uint32_t flags;
679 /* global number of generated multifd packets */
680 uint64_t packet_num;
681 /* thread local variables */
682 /* packets sent through this channel */
683 uint64_t num_packets;
684 /* pages sent through this channel */
685 uint64_t num_pages;
686 /* syncs main thread and channels */
687 QemuSemaphore sem_sync;
688 } MultiFDRecvParams;
689
690 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
691 {
692 MultiFDInit_t msg;
693 int ret;
694
695 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
696 msg.version = cpu_to_be32(MULTIFD_VERSION);
697 msg.id = p->id;
698 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
699
700 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
701 if (ret != 0) {
702 return -1;
703 }
704 return 0;
705 }
706
707 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
708 {
709 MultiFDInit_t msg;
710 int ret;
711
712 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
713 if (ret != 0) {
714 return -1;
715 }
716
717 msg.magic = be32_to_cpu(msg.magic);
718 msg.version = be32_to_cpu(msg.version);
719
720 if (msg.magic != MULTIFD_MAGIC) {
721 error_setg(errp, "multifd: received packet magic %x "
722 "expected %x", msg.magic, MULTIFD_MAGIC);
723 return -1;
724 }
725
726 if (msg.version != MULTIFD_VERSION) {
727 error_setg(errp, "multifd: received packet version %d "
728 "expected %d", msg.version, MULTIFD_VERSION);
729 return -1;
730 }
731
732 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
733 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
734 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
735
736 error_setg(errp, "multifd: received uuid '%s' and expected "
737 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
738 g_free(uuid);
739 g_free(msg_uuid);
740 return -1;
741 }
742
743 if (msg.id > migrate_multifd_channels()) {
744 error_setg(errp, "multifd: received channel version %d "
745 "expected %d", msg.version, MULTIFD_VERSION);
746 return -1;
747 }
748
749 return msg.id;
750 }
751
752 static MultiFDPages_t *multifd_pages_init(size_t size)
753 {
754 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
755
756 pages->allocated = size;
757 pages->iov = g_new0(struct iovec, size);
758 pages->offset = g_new0(ram_addr_t, size);
759
760 return pages;
761 }
762
763 static void multifd_pages_clear(MultiFDPages_t *pages)
764 {
765 pages->used = 0;
766 pages->allocated = 0;
767 pages->packet_num = 0;
768 pages->block = NULL;
769 g_free(pages->iov);
770 pages->iov = NULL;
771 g_free(pages->offset);
772 pages->offset = NULL;
773 g_free(pages);
774 }
775
776 static void multifd_send_fill_packet(MultiFDSendParams *p)
777 {
778 MultiFDPacket_t *packet = p->packet;
779 int i;
780
781 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
782 packet->version = cpu_to_be32(MULTIFD_VERSION);
783 packet->flags = cpu_to_be32(p->flags);
784 packet->size = cpu_to_be32(migrate_multifd_page_count());
785 packet->used = cpu_to_be32(p->pages->used);
786 packet->packet_num = cpu_to_be64(p->packet_num);
787
788 if (p->pages->block) {
789 strncpy(packet->ramblock, p->pages->block->idstr, 256);
790 }
791
792 for (i = 0; i < p->pages->used; i++) {
793 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
794 }
795 }
796
797 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
798 {
799 MultiFDPacket_t *packet = p->packet;
800 RAMBlock *block;
801 int i;
802
803 packet->magic = be32_to_cpu(packet->magic);
804 if (packet->magic != MULTIFD_MAGIC) {
805 error_setg(errp, "multifd: received packet "
806 "magic %x and expected magic %x",
807 packet->magic, MULTIFD_MAGIC);
808 return -1;
809 }
810
811 packet->version = be32_to_cpu(packet->version);
812 if (packet->version != MULTIFD_VERSION) {
813 error_setg(errp, "multifd: received packet "
814 "version %d and expected version %d",
815 packet->version, MULTIFD_VERSION);
816 return -1;
817 }
818
819 p->flags = be32_to_cpu(packet->flags);
820
821 packet->size = be32_to_cpu(packet->size);
822 if (packet->size > migrate_multifd_page_count()) {
823 error_setg(errp, "multifd: received packet "
824 "with size %d and expected maximum size %d",
825 packet->size, migrate_multifd_page_count()) ;
826 return -1;
827 }
828
829 p->pages->used = be32_to_cpu(packet->used);
830 if (p->pages->used > packet->size) {
831 error_setg(errp, "multifd: received packet "
832 "with size %d and expected maximum size %d",
833 p->pages->used, packet->size) ;
834 return -1;
835 }
836
837 p->packet_num = be64_to_cpu(packet->packet_num);
838
839 if (p->pages->used) {
840 /* make sure that ramblock is 0 terminated */
841 packet->ramblock[255] = 0;
842 block = qemu_ram_block_by_name(packet->ramblock);
843 if (!block) {
844 error_setg(errp, "multifd: unknown ram block %s",
845 packet->ramblock);
846 return -1;
847 }
848 }
849
850 for (i = 0; i < p->pages->used; i++) {
851 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
852
853 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
854 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
855 " (max " RAM_ADDR_FMT ")",
856 offset, block->max_length);
857 return -1;
858 }
859 p->pages->iov[i].iov_base = block->host + offset;
860 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
861 }
862
863 return 0;
864 }
865
866 struct {
867 MultiFDSendParams *params;
868 /* number of created threads */
869 int count;
870 /* array of pages to sent */
871 MultiFDPages_t *pages;
872 /* syncs main thread and channels */
873 QemuSemaphore sem_sync;
874 /* global number of generated multifd packets */
875 uint64_t packet_num;
876 /* send channels ready */
877 QemuSemaphore channels_ready;
878 } *multifd_send_state;
879
880 /*
881 * How we use multifd_send_state->pages and channel->pages?
882 *
883 * We create a pages for each channel, and a main one. Each time that
884 * we need to send a batch of pages we interchange the ones between
885 * multifd_send_state and the channel that is sending it. There are
886 * two reasons for that:
887 * - to not have to do so many mallocs during migration
888 * - to make easier to know what to free at the end of migration
889 *
890 * This way we always know who is the owner of each "pages" struct,
891 * and we don't need any loocking. It belongs to the migration thread
892 * or to the channel thread. Switching is safe because the migration
893 * thread is using the channel mutex when changing it, and the channel
894 * have to had finish with its own, otherwise pending_job can't be
895 * false.
896 */
897
898 static void multifd_send_pages(void)
899 {
900 int i;
901 static int next_channel;
902 MultiFDSendParams *p = NULL; /* make happy gcc */
903 MultiFDPages_t *pages = multifd_send_state->pages;
904 uint64_t transferred;
905
906 qemu_sem_wait(&multifd_send_state->channels_ready);
907 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
908 p = &multifd_send_state->params[i];
909
910 qemu_mutex_lock(&p->mutex);
911 if (!p->pending_job) {
912 p->pending_job++;
913 next_channel = (i + 1) % migrate_multifd_channels();
914 break;
915 }
916 qemu_mutex_unlock(&p->mutex);
917 }
918 p->pages->used = 0;
919
920 p->packet_num = multifd_send_state->packet_num++;
921 p->pages->block = NULL;
922 multifd_send_state->pages = p->pages;
923 p->pages = pages;
924 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
925 ram_counters.multifd_bytes += transferred;
926 ram_counters.transferred += transferred;;
927 qemu_mutex_unlock(&p->mutex);
928 qemu_sem_post(&p->sem);
929 }
930
931 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
932 {
933 MultiFDPages_t *pages = multifd_send_state->pages;
934
935 if (!pages->block) {
936 pages->block = block;
937 }
938
939 if (pages->block == block) {
940 pages->offset[pages->used] = offset;
941 pages->iov[pages->used].iov_base = block->host + offset;
942 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
943 pages->used++;
944
945 if (pages->used < pages->allocated) {
946 return;
947 }
948 }
949
950 multifd_send_pages();
951
952 if (pages->block != block) {
953 multifd_queue_page(block, offset);
954 }
955 }
956
957 static void multifd_send_terminate_threads(Error *err)
958 {
959 int i;
960
961 if (err) {
962 MigrationState *s = migrate_get_current();
963 migrate_set_error(s, err);
964 if (s->state == MIGRATION_STATUS_SETUP ||
965 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
966 s->state == MIGRATION_STATUS_DEVICE ||
967 s->state == MIGRATION_STATUS_ACTIVE) {
968 migrate_set_state(&s->state, s->state,
969 MIGRATION_STATUS_FAILED);
970 }
971 }
972
973 for (i = 0; i < migrate_multifd_channels(); i++) {
974 MultiFDSendParams *p = &multifd_send_state->params[i];
975
976 qemu_mutex_lock(&p->mutex);
977 p->quit = true;
978 qemu_sem_post(&p->sem);
979 qemu_mutex_unlock(&p->mutex);
980 }
981 }
982
983 void multifd_save_cleanup(void)
984 {
985 int i;
986
987 if (!migrate_use_multifd()) {
988 return;
989 }
990 multifd_send_terminate_threads(NULL);
991 for (i = 0; i < migrate_multifd_channels(); i++) {
992 MultiFDSendParams *p = &multifd_send_state->params[i];
993
994 if (p->running) {
995 qemu_thread_join(&p->thread);
996 }
997 socket_send_channel_destroy(p->c);
998 p->c = NULL;
999 qemu_mutex_destroy(&p->mutex);
1000 qemu_sem_destroy(&p->sem);
1001 qemu_sem_destroy(&p->sem_sync);
1002 g_free(p->name);
1003 p->name = NULL;
1004 multifd_pages_clear(p->pages);
1005 p->pages = NULL;
1006 p->packet_len = 0;
1007 g_free(p->packet);
1008 p->packet = NULL;
1009 }
1010 qemu_sem_destroy(&multifd_send_state->channels_ready);
1011 qemu_sem_destroy(&multifd_send_state->sem_sync);
1012 g_free(multifd_send_state->params);
1013 multifd_send_state->params = NULL;
1014 multifd_pages_clear(multifd_send_state->pages);
1015 multifd_send_state->pages = NULL;
1016 g_free(multifd_send_state);
1017 multifd_send_state = NULL;
1018 }
1019
1020 static void multifd_send_sync_main(void)
1021 {
1022 int i;
1023
1024 if (!migrate_use_multifd()) {
1025 return;
1026 }
1027 if (multifd_send_state->pages->used) {
1028 multifd_send_pages();
1029 }
1030 for (i = 0; i < migrate_multifd_channels(); i++) {
1031 MultiFDSendParams *p = &multifd_send_state->params[i];
1032
1033 trace_multifd_send_sync_main_signal(p->id);
1034
1035 qemu_mutex_lock(&p->mutex);
1036
1037 p->packet_num = multifd_send_state->packet_num++;
1038 p->flags |= MULTIFD_FLAG_SYNC;
1039 p->pending_job++;
1040 qemu_mutex_unlock(&p->mutex);
1041 qemu_sem_post(&p->sem);
1042 }
1043 for (i = 0; i < migrate_multifd_channels(); i++) {
1044 MultiFDSendParams *p = &multifd_send_state->params[i];
1045
1046 trace_multifd_send_sync_main_wait(p->id);
1047 qemu_sem_wait(&multifd_send_state->sem_sync);
1048 }
1049 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1050 }
1051
1052 static void *multifd_send_thread(void *opaque)
1053 {
1054 MultiFDSendParams *p = opaque;
1055 Error *local_err = NULL;
1056 int ret;
1057
1058 trace_multifd_send_thread_start(p->id);
1059 rcu_register_thread();
1060
1061 if (multifd_send_initial_packet(p, &local_err) < 0) {
1062 goto out;
1063 }
1064 /* initial packet */
1065 p->num_packets = 1;
1066
1067 while (true) {
1068 qemu_sem_wait(&p->sem);
1069 qemu_mutex_lock(&p->mutex);
1070
1071 if (p->pending_job) {
1072 uint32_t used = p->pages->used;
1073 uint64_t packet_num = p->packet_num;
1074 uint32_t flags = p->flags;
1075
1076 multifd_send_fill_packet(p);
1077 p->flags = 0;
1078 p->num_packets++;
1079 p->num_pages += used;
1080 p->pages->used = 0;
1081 qemu_mutex_unlock(&p->mutex);
1082
1083 trace_multifd_send(p->id, packet_num, used, flags);
1084
1085 ret = qio_channel_write_all(p->c, (void *)p->packet,
1086 p->packet_len, &local_err);
1087 if (ret != 0) {
1088 break;
1089 }
1090
1091 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1092 if (ret != 0) {
1093 break;
1094 }
1095
1096 qemu_mutex_lock(&p->mutex);
1097 p->pending_job--;
1098 qemu_mutex_unlock(&p->mutex);
1099
1100 if (flags & MULTIFD_FLAG_SYNC) {
1101 qemu_sem_post(&multifd_send_state->sem_sync);
1102 }
1103 qemu_sem_post(&multifd_send_state->channels_ready);
1104 } else if (p->quit) {
1105 qemu_mutex_unlock(&p->mutex);
1106 break;
1107 } else {
1108 qemu_mutex_unlock(&p->mutex);
1109 /* sometimes there are spurious wakeups */
1110 }
1111 }
1112
1113 out:
1114 if (local_err) {
1115 multifd_send_terminate_threads(local_err);
1116 }
1117
1118 qemu_mutex_lock(&p->mutex);
1119 p->running = false;
1120 qemu_mutex_unlock(&p->mutex);
1121
1122 rcu_unregister_thread();
1123 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1124
1125 return NULL;
1126 }
1127
1128 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1129 {
1130 MultiFDSendParams *p = opaque;
1131 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1132 Error *local_err = NULL;
1133
1134 if (qio_task_propagate_error(task, &local_err)) {
1135 migrate_set_error(migrate_get_current(), local_err);
1136 multifd_save_cleanup();
1137 } else {
1138 p->c = QIO_CHANNEL(sioc);
1139 qio_channel_set_delay(p->c, false);
1140 p->running = true;
1141 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1142 QEMU_THREAD_JOINABLE);
1143
1144 atomic_inc(&multifd_send_state->count);
1145 }
1146 }
1147
1148 int multifd_save_setup(void)
1149 {
1150 int thread_count;
1151 uint32_t page_count = migrate_multifd_page_count();
1152 uint8_t i;
1153
1154 if (!migrate_use_multifd()) {
1155 return 0;
1156 }
1157 thread_count = migrate_multifd_channels();
1158 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1159 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1160 atomic_set(&multifd_send_state->count, 0);
1161 multifd_send_state->pages = multifd_pages_init(page_count);
1162 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1163 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1164
1165 for (i = 0; i < thread_count; i++) {
1166 MultiFDSendParams *p = &multifd_send_state->params[i];
1167
1168 qemu_mutex_init(&p->mutex);
1169 qemu_sem_init(&p->sem, 0);
1170 qemu_sem_init(&p->sem_sync, 0);
1171 p->quit = false;
1172 p->pending_job = 0;
1173 p->id = i;
1174 p->pages = multifd_pages_init(page_count);
1175 p->packet_len = sizeof(MultiFDPacket_t)
1176 + sizeof(ram_addr_t) * page_count;
1177 p->packet = g_malloc0(p->packet_len);
1178 p->name = g_strdup_printf("multifdsend_%d", i);
1179 socket_send_channel_create(multifd_new_send_channel_async, p);
1180 }
1181 return 0;
1182 }
1183
1184 struct {
1185 MultiFDRecvParams *params;
1186 /* number of created threads */
1187 int count;
1188 /* syncs main thread and channels */
1189 QemuSemaphore sem_sync;
1190 /* global number of generated multifd packets */
1191 uint64_t packet_num;
1192 } *multifd_recv_state;
1193
1194 static void multifd_recv_terminate_threads(Error *err)
1195 {
1196 int i;
1197
1198 if (err) {
1199 MigrationState *s = migrate_get_current();
1200 migrate_set_error(s, err);
1201 if (s->state == MIGRATION_STATUS_SETUP ||
1202 s->state == MIGRATION_STATUS_ACTIVE) {
1203 migrate_set_state(&s->state, s->state,
1204 MIGRATION_STATUS_FAILED);
1205 }
1206 }
1207
1208 for (i = 0; i < migrate_multifd_channels(); i++) {
1209 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1210
1211 qemu_mutex_lock(&p->mutex);
1212 /* We could arrive here for two reasons:
1213 - normal quit, i.e. everything went fine, just finished
1214 - error quit: We close the channels so the channel threads
1215 finish the qio_channel_read_all_eof() */
1216 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1217 qemu_mutex_unlock(&p->mutex);
1218 }
1219 }
1220
1221 int multifd_load_cleanup(Error **errp)
1222 {
1223 int i;
1224 int ret = 0;
1225
1226 if (!migrate_use_multifd()) {
1227 return 0;
1228 }
1229 multifd_recv_terminate_threads(NULL);
1230 for (i = 0; i < migrate_multifd_channels(); i++) {
1231 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1232
1233 if (p->running) {
1234 qemu_thread_join(&p->thread);
1235 }
1236 object_unref(OBJECT(p->c));
1237 p->c = NULL;
1238 qemu_mutex_destroy(&p->mutex);
1239 qemu_sem_destroy(&p->sem_sync);
1240 g_free(p->name);
1241 p->name = NULL;
1242 multifd_pages_clear(p->pages);
1243 p->pages = NULL;
1244 p->packet_len = 0;
1245 g_free(p->packet);
1246 p->packet = NULL;
1247 }
1248 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1249 g_free(multifd_recv_state->params);
1250 multifd_recv_state->params = NULL;
1251 g_free(multifd_recv_state);
1252 multifd_recv_state = NULL;
1253
1254 return ret;
1255 }
1256
1257 static void multifd_recv_sync_main(void)
1258 {
1259 int i;
1260
1261 if (!migrate_use_multifd()) {
1262 return;
1263 }
1264 for (i = 0; i < migrate_multifd_channels(); i++) {
1265 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1266
1267 trace_multifd_recv_sync_main_wait(p->id);
1268 qemu_sem_wait(&multifd_recv_state->sem_sync);
1269 qemu_mutex_lock(&p->mutex);
1270 if (multifd_recv_state->packet_num < p->packet_num) {
1271 multifd_recv_state->packet_num = p->packet_num;
1272 }
1273 qemu_mutex_unlock(&p->mutex);
1274 }
1275 for (i = 0; i < migrate_multifd_channels(); i++) {
1276 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1277
1278 trace_multifd_recv_sync_main_signal(p->id);
1279 qemu_sem_post(&p->sem_sync);
1280 }
1281 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1282 }
1283
1284 static void *multifd_recv_thread(void *opaque)
1285 {
1286 MultiFDRecvParams *p = opaque;
1287 Error *local_err = NULL;
1288 int ret;
1289
1290 trace_multifd_recv_thread_start(p->id);
1291 rcu_register_thread();
1292
1293 while (true) {
1294 uint32_t used;
1295 uint32_t flags;
1296
1297 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1298 p->packet_len, &local_err);
1299 if (ret == 0) { /* EOF */
1300 break;
1301 }
1302 if (ret == -1) { /* Error */
1303 break;
1304 }
1305
1306 qemu_mutex_lock(&p->mutex);
1307 ret = multifd_recv_unfill_packet(p, &local_err);
1308 if (ret) {
1309 qemu_mutex_unlock(&p->mutex);
1310 break;
1311 }
1312
1313 used = p->pages->used;
1314 flags = p->flags;
1315 trace_multifd_recv(p->id, p->packet_num, used, flags);
1316 p->num_packets++;
1317 p->num_pages += used;
1318 qemu_mutex_unlock(&p->mutex);
1319
1320 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1321 if (ret != 0) {
1322 break;
1323 }
1324
1325 if (flags & MULTIFD_FLAG_SYNC) {
1326 qemu_sem_post(&multifd_recv_state->sem_sync);
1327 qemu_sem_wait(&p->sem_sync);
1328 }
1329 }
1330
1331 if (local_err) {
1332 multifd_recv_terminate_threads(local_err);
1333 }
1334 qemu_mutex_lock(&p->mutex);
1335 p->running = false;
1336 qemu_mutex_unlock(&p->mutex);
1337
1338 rcu_unregister_thread();
1339 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1340
1341 return NULL;
1342 }
1343
1344 int multifd_load_setup(void)
1345 {
1346 int thread_count;
1347 uint32_t page_count = migrate_multifd_page_count();
1348 uint8_t i;
1349
1350 if (!migrate_use_multifd()) {
1351 return 0;
1352 }
1353 thread_count = migrate_multifd_channels();
1354 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1355 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1356 atomic_set(&multifd_recv_state->count, 0);
1357 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1358
1359 for (i = 0; i < thread_count; i++) {
1360 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1361
1362 qemu_mutex_init(&p->mutex);
1363 qemu_sem_init(&p->sem_sync, 0);
1364 p->id = i;
1365 p->pages = multifd_pages_init(page_count);
1366 p->packet_len = sizeof(MultiFDPacket_t)
1367 + sizeof(ram_addr_t) * page_count;
1368 p->packet = g_malloc0(p->packet_len);
1369 p->name = g_strdup_printf("multifdrecv_%d", i);
1370 }
1371 return 0;
1372 }
1373
1374 bool multifd_recv_all_channels_created(void)
1375 {
1376 int thread_count = migrate_multifd_channels();
1377
1378 if (!migrate_use_multifd()) {
1379 return true;
1380 }
1381
1382 return thread_count == atomic_read(&multifd_recv_state->count);
1383 }
1384
1385 /*
1386 * Try to receive all multifd channels to get ready for the migration.
1387 * - Return true and do not set @errp when correctly receving all channels;
1388 * - Return false and do not set @errp when correctly receiving the current one;
1389 * - Return false and set @errp when failing to receive the current channel.
1390 */
1391 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1392 {
1393 MultiFDRecvParams *p;
1394 Error *local_err = NULL;
1395 int id;
1396
1397 id = multifd_recv_initial_packet(ioc, &local_err);
1398 if (id < 0) {
1399 multifd_recv_terminate_threads(local_err);
1400 error_propagate_prepend(errp, local_err,
1401 "failed to receive packet"
1402 " via multifd channel %d: ",
1403 atomic_read(&multifd_recv_state->count));
1404 return false;
1405 }
1406
1407 p = &multifd_recv_state->params[id];
1408 if (p->c != NULL) {
1409 error_setg(&local_err, "multifd: received id '%d' already setup'",
1410 id);
1411 multifd_recv_terminate_threads(local_err);
1412 error_propagate(errp, local_err);
1413 return false;
1414 }
1415 p->c = ioc;
1416 object_ref(OBJECT(ioc));
1417 /* initial packet */
1418 p->num_packets = 1;
1419
1420 p->running = true;
1421 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1422 QEMU_THREAD_JOINABLE);
1423 atomic_inc(&multifd_recv_state->count);
1424 return atomic_read(&multifd_recv_state->count) ==
1425 migrate_multifd_channels();
1426 }
1427
1428 /**
1429 * save_page_header: write page header to wire
1430 *
1431 * If this is the 1st block, it also writes the block identification
1432 *
1433 * Returns the number of bytes written
1434 *
1435 * @f: QEMUFile where to send the data
1436 * @block: block that contains the page we want to send
1437 * @offset: offset inside the block for the page
1438 * in the lower bits, it contains flags
1439 */
1440 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1441 ram_addr_t offset)
1442 {
1443 size_t size, len;
1444
1445 if (block == rs->last_sent_block) {
1446 offset |= RAM_SAVE_FLAG_CONTINUE;
1447 }
1448 qemu_put_be64(f, offset);
1449 size = 8;
1450
1451 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1452 len = strlen(block->idstr);
1453 qemu_put_byte(f, len);
1454 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1455 size += 1 + len;
1456 rs->last_sent_block = block;
1457 }
1458 return size;
1459 }
1460
1461 /**
1462 * mig_throttle_guest_down: throotle down the guest
1463 *
1464 * Reduce amount of guest cpu execution to hopefully slow down memory
1465 * writes. If guest dirty memory rate is reduced below the rate at
1466 * which we can transfer pages to the destination then we should be
1467 * able to complete migration. Some workloads dirty memory way too
1468 * fast and will not effectively converge, even with auto-converge.
1469 */
1470 static void mig_throttle_guest_down(void)
1471 {
1472 MigrationState *s = migrate_get_current();
1473 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1474 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1475 int pct_max = s->parameters.max_cpu_throttle;
1476
1477 /* We have not started throttling yet. Let's start it. */
1478 if (!cpu_throttle_active()) {
1479 cpu_throttle_set(pct_initial);
1480 } else {
1481 /* Throttling already on, just increase the rate */
1482 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1483 pct_max));
1484 }
1485 }
1486
1487 /**
1488 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1489 *
1490 * @rs: current RAM state
1491 * @current_addr: address for the zero page
1492 *
1493 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1494 * The important thing is that a stale (not-yet-0'd) page be replaced
1495 * by the new data.
1496 * As a bonus, if the page wasn't in the cache it gets added so that
1497 * when a small write is made into the 0'd page it gets XBZRLE sent.
1498 */
1499 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1500 {
1501 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1502 return;
1503 }
1504
1505 /* We don't care if this fails to allocate a new cache page
1506 * as long as it updated an old one */
1507 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1508 ram_counters.dirty_sync_count);
1509 }
1510
1511 #define ENCODING_FLAG_XBZRLE 0x1
1512
1513 /**
1514 * save_xbzrle_page: compress and send current page
1515 *
1516 * Returns: 1 means that we wrote the page
1517 * 0 means that page is identical to the one already sent
1518 * -1 means that xbzrle would be longer than normal
1519 *
1520 * @rs: current RAM state
1521 * @current_data: pointer to the address of the page contents
1522 * @current_addr: addr of the page
1523 * @block: block that contains the page we want to send
1524 * @offset: offset inside the block for the page
1525 * @last_stage: if we are at the completion stage
1526 */
1527 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1528 ram_addr_t current_addr, RAMBlock *block,
1529 ram_addr_t offset, bool last_stage)
1530 {
1531 int encoded_len = 0, bytes_xbzrle;
1532 uint8_t *prev_cached_page;
1533
1534 if (!cache_is_cached(XBZRLE.cache, current_addr,
1535 ram_counters.dirty_sync_count)) {
1536 xbzrle_counters.cache_miss++;
1537 if (!last_stage) {
1538 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1539 ram_counters.dirty_sync_count) == -1) {
1540 return -1;
1541 } else {
1542 /* update *current_data when the page has been
1543 inserted into cache */
1544 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1545 }
1546 }
1547 return -1;
1548 }
1549
1550 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1551
1552 /* save current buffer into memory */
1553 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1554
1555 /* XBZRLE encoding (if there is no overflow) */
1556 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1557 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1558 TARGET_PAGE_SIZE);
1559 if (encoded_len == 0) {
1560 trace_save_xbzrle_page_skipping();
1561 return 0;
1562 } else if (encoded_len == -1) {
1563 trace_save_xbzrle_page_overflow();
1564 xbzrle_counters.overflow++;
1565 /* update data in the cache */
1566 if (!last_stage) {
1567 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1568 *current_data = prev_cached_page;
1569 }
1570 return -1;
1571 }
1572
1573 /* we need to update the data in the cache, in order to get the same data */
1574 if (!last_stage) {
1575 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1576 }
1577
1578 /* Send XBZRLE based compressed page */
1579 bytes_xbzrle = save_page_header(rs, rs->f, block,
1580 offset | RAM_SAVE_FLAG_XBZRLE);
1581 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1582 qemu_put_be16(rs->f, encoded_len);
1583 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1584 bytes_xbzrle += encoded_len + 1 + 2;
1585 xbzrle_counters.pages++;
1586 xbzrle_counters.bytes += bytes_xbzrle;
1587 ram_counters.transferred += bytes_xbzrle;
1588
1589 return 1;
1590 }
1591
1592 /**
1593 * migration_bitmap_find_dirty: find the next dirty page from start
1594 *
1595 * Called with rcu_read_lock() to protect migration_bitmap
1596 *
1597 * Returns the byte offset within memory region of the start of a dirty page
1598 *
1599 * @rs: current RAM state
1600 * @rb: RAMBlock where to search for dirty pages
1601 * @start: page where we start the search
1602 */
1603 static inline
1604 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1605 unsigned long start)
1606 {
1607 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1608 unsigned long *bitmap = rb->bmap;
1609 unsigned long next;
1610
1611 if (ramblock_is_ignored(rb)) {
1612 return size;
1613 }
1614
1615 /*
1616 * When the free page optimization is enabled, we need to check the bitmap
1617 * to send the non-free pages rather than all the pages in the bulk stage.
1618 */
1619 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1620 next = start + 1;
1621 } else {
1622 next = find_next_bit(bitmap, size, start);
1623 }
1624
1625 return next;
1626 }
1627
1628 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1629 RAMBlock *rb,
1630 unsigned long page)
1631 {
1632 bool ret;
1633
1634 qemu_mutex_lock(&rs->bitmap_mutex);
1635 ret = test_and_clear_bit(page, rb->bmap);
1636
1637 if (ret) {
1638 rs->migration_dirty_pages--;
1639 }
1640 qemu_mutex_unlock(&rs->bitmap_mutex);
1641
1642 return ret;
1643 }
1644
1645 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1646 ram_addr_t start, ram_addr_t length)
1647 {
1648 rs->migration_dirty_pages +=
1649 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1650 &rs->num_dirty_pages_period);
1651 }
1652
1653 /**
1654 * ram_pagesize_summary: calculate all the pagesizes of a VM
1655 *
1656 * Returns a summary bitmap of the page sizes of all RAMBlocks
1657 *
1658 * For VMs with just normal pages this is equivalent to the host page
1659 * size. If it's got some huge pages then it's the OR of all the
1660 * different page sizes.
1661 */
1662 uint64_t ram_pagesize_summary(void)
1663 {
1664 RAMBlock *block;
1665 uint64_t summary = 0;
1666
1667 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1668 summary |= block->page_size;
1669 }
1670
1671 return summary;
1672 }
1673
1674 uint64_t ram_get_total_transferred_pages(void)
1675 {
1676 return ram_counters.normal + ram_counters.duplicate +
1677 compression_counters.pages + xbzrle_counters.pages;
1678 }
1679
1680 static void migration_update_rates(RAMState *rs, int64_t end_time)
1681 {
1682 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1683 double compressed_size;
1684
1685 /* calculate period counters */
1686 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1687 / (end_time - rs->time_last_bitmap_sync);
1688
1689 if (!page_count) {
1690 return;
1691 }
1692
1693 if (migrate_use_xbzrle()) {
1694 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1695 rs->xbzrle_cache_miss_prev) / page_count;
1696 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1697 }
1698
1699 if (migrate_use_compression()) {
1700 compression_counters.busy_rate = (double)(compression_counters.busy -
1701 rs->compress_thread_busy_prev) / page_count;
1702 rs->compress_thread_busy_prev = compression_counters.busy;
1703
1704 compressed_size = compression_counters.compressed_size -
1705 rs->compressed_size_prev;
1706 if (compressed_size) {
1707 double uncompressed_size = (compression_counters.pages -
1708 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1709
1710 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1711 compression_counters.compression_rate =
1712 uncompressed_size / compressed_size;
1713
1714 rs->compress_pages_prev = compression_counters.pages;
1715 rs->compressed_size_prev = compression_counters.compressed_size;
1716 }
1717 }
1718 }
1719
1720 static void migration_bitmap_sync(RAMState *rs)
1721 {
1722 RAMBlock *block;
1723 int64_t end_time;
1724 uint64_t bytes_xfer_now;
1725
1726 ram_counters.dirty_sync_count++;
1727
1728 if (!rs->time_last_bitmap_sync) {
1729 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1730 }
1731
1732 trace_migration_bitmap_sync_start();
1733 memory_global_dirty_log_sync();
1734
1735 qemu_mutex_lock(&rs->bitmap_mutex);
1736 rcu_read_lock();
1737 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1738 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1739 }
1740 ram_counters.remaining = ram_bytes_remaining();
1741 rcu_read_unlock();
1742 qemu_mutex_unlock(&rs->bitmap_mutex);
1743
1744 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1745
1746 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1747
1748 /* more than 1 second = 1000 millisecons */
1749 if (end_time > rs->time_last_bitmap_sync + 1000) {
1750 bytes_xfer_now = ram_counters.transferred;
1751
1752 /* During block migration the auto-converge logic incorrectly detects
1753 * that ram migration makes no progress. Avoid this by disabling the
1754 * throttling logic during the bulk phase of block migration. */
1755 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1756 /* The following detection logic can be refined later. For now:
1757 Check to see if the dirtied bytes is 50% more than the approx.
1758 amount of bytes that just got transferred since the last time we
1759 were in this routine. If that happens twice, start or increase
1760 throttling */
1761
1762 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1763 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1764 (++rs->dirty_rate_high_cnt >= 2)) {
1765 trace_migration_throttle();
1766 rs->dirty_rate_high_cnt = 0;
1767 mig_throttle_guest_down();
1768 }
1769 }
1770
1771 migration_update_rates(rs, end_time);
1772
1773 rs->target_page_count_prev = rs->target_page_count;
1774
1775 /* reset period counters */
1776 rs->time_last_bitmap_sync = end_time;
1777 rs->num_dirty_pages_period = 0;
1778 rs->bytes_xfer_prev = bytes_xfer_now;
1779 }
1780 if (migrate_use_events()) {
1781 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1782 }
1783 }
1784
1785 static void migration_bitmap_sync_precopy(RAMState *rs)
1786 {
1787 Error *local_err = NULL;
1788
1789 /*
1790 * The current notifier usage is just an optimization to migration, so we
1791 * don't stop the normal migration process in the error case.
1792 */
1793 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1794 error_report_err(local_err);
1795 }
1796
1797 migration_bitmap_sync(rs);
1798
1799 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1800 error_report_err(local_err);
1801 }
1802 }
1803
1804 /**
1805 * save_zero_page_to_file: send the zero page to the file
1806 *
1807 * Returns the size of data written to the file, 0 means the page is not
1808 * a zero page
1809 *
1810 * @rs: current RAM state
1811 * @file: the file where the data is saved
1812 * @block: block that contains the page we want to send
1813 * @offset: offset inside the block for the page
1814 */
1815 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1816 RAMBlock *block, ram_addr_t offset)
1817 {
1818 uint8_t *p = block->host + offset;
1819 int len = 0;
1820
1821 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1822 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1823 qemu_put_byte(file, 0);
1824 len += 1;
1825 }
1826 return len;
1827 }
1828
1829 /**
1830 * save_zero_page: send the zero page to the stream
1831 *
1832 * Returns the number of pages written.
1833 *
1834 * @rs: current RAM state
1835 * @block: block that contains the page we want to send
1836 * @offset: offset inside the block for the page
1837 */
1838 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1839 {
1840 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1841
1842 if (len) {
1843 ram_counters.duplicate++;
1844 ram_counters.transferred += len;
1845 return 1;
1846 }
1847 return -1;
1848 }
1849
1850 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1851 {
1852 if (!migrate_release_ram() || !migration_in_postcopy()) {
1853 return;
1854 }
1855
1856 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1857 }
1858
1859 /*
1860 * @pages: the number of pages written by the control path,
1861 * < 0 - error
1862 * > 0 - number of pages written
1863 *
1864 * Return true if the pages has been saved, otherwise false is returned.
1865 */
1866 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1867 int *pages)
1868 {
1869 uint64_t bytes_xmit = 0;
1870 int ret;
1871
1872 *pages = -1;
1873 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1874 &bytes_xmit);
1875 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1876 return false;
1877 }
1878
1879 if (bytes_xmit) {
1880 ram_counters.transferred += bytes_xmit;
1881 *pages = 1;
1882 }
1883
1884 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1885 return true;
1886 }
1887
1888 if (bytes_xmit > 0) {
1889 ram_counters.normal++;
1890 } else if (bytes_xmit == 0) {
1891 ram_counters.duplicate++;
1892 }
1893
1894 return true;
1895 }
1896
1897 /*
1898 * directly send the page to the stream
1899 *
1900 * Returns the number of pages written.
1901 *
1902 * @rs: current RAM state
1903 * @block: block that contains the page we want to send
1904 * @offset: offset inside the block for the page
1905 * @buf: the page to be sent
1906 * @async: send to page asyncly
1907 */
1908 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1909 uint8_t *buf, bool async)
1910 {
1911 ram_counters.transferred += save_page_header(rs, rs->f, block,
1912 offset | RAM_SAVE_FLAG_PAGE);
1913 if (async) {
1914 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1915 migrate_release_ram() &
1916 migration_in_postcopy());
1917 } else {
1918 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1919 }
1920 ram_counters.transferred += TARGET_PAGE_SIZE;
1921 ram_counters.normal++;
1922 return 1;
1923 }
1924
1925 /**
1926 * ram_save_page: send the given page to the stream
1927 *
1928 * Returns the number of pages written.
1929 * < 0 - error
1930 * >=0 - Number of pages written - this might legally be 0
1931 * if xbzrle noticed the page was the same.
1932 *
1933 * @rs: current RAM state
1934 * @block: block that contains the page we want to send
1935 * @offset: offset inside the block for the page
1936 * @last_stage: if we are at the completion stage
1937 */
1938 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1939 {
1940 int pages = -1;
1941 uint8_t *p;
1942 bool send_async = true;
1943 RAMBlock *block = pss->block;
1944 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1945 ram_addr_t current_addr = block->offset + offset;
1946
1947 p = block->host + offset;
1948 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1949
1950 XBZRLE_cache_lock();
1951 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1952 migrate_use_xbzrle()) {
1953 pages = save_xbzrle_page(rs, &p, current_addr, block,
1954 offset, last_stage);
1955 if (!last_stage) {
1956 /* Can't send this cached data async, since the cache page
1957 * might get updated before it gets to the wire
1958 */
1959 send_async = false;
1960 }
1961 }
1962
1963 /* XBZRLE overflow or normal page */
1964 if (pages == -1) {
1965 pages = save_normal_page(rs, block, offset, p, send_async);
1966 }
1967
1968 XBZRLE_cache_unlock();
1969
1970 return pages;
1971 }
1972
1973 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1974 ram_addr_t offset)
1975 {
1976 multifd_queue_page(block, offset);
1977 ram_counters.normal++;
1978
1979 return 1;
1980 }
1981
1982 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1983 ram_addr_t offset, uint8_t *source_buf)
1984 {
1985 RAMState *rs = ram_state;
1986 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1987 bool zero_page = false;
1988 int ret;
1989
1990 if (save_zero_page_to_file(rs, f, block, offset)) {
1991 zero_page = true;
1992 goto exit;
1993 }
1994
1995 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1996
1997 /*
1998 * copy it to a internal buffer to avoid it being modified by VM
1999 * so that we can catch up the error during compression and
2000 * decompression
2001 */
2002 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2003 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2004 if (ret < 0) {
2005 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2006 error_report("compressed data failed!");
2007 return false;
2008 }
2009
2010 exit:
2011 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2012 return zero_page;
2013 }
2014
2015 static void
2016 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2017 {
2018 ram_counters.transferred += bytes_xmit;
2019
2020 if (param->zero_page) {
2021 ram_counters.duplicate++;
2022 return;
2023 }
2024
2025 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2026 compression_counters.compressed_size += bytes_xmit - 8;
2027 compression_counters.pages++;
2028 }
2029
2030 static bool save_page_use_compression(RAMState *rs);
2031
2032 static void flush_compressed_data(RAMState *rs)
2033 {
2034 int idx, len, thread_count;
2035
2036 if (!save_page_use_compression(rs)) {
2037 return;
2038 }
2039 thread_count = migrate_compress_threads();
2040
2041 qemu_mutex_lock(&comp_done_lock);
2042 for (idx = 0; idx < thread_count; idx++) {
2043 while (!comp_param[idx].done) {
2044 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2045 }
2046 }
2047 qemu_mutex_unlock(&comp_done_lock);
2048
2049 for (idx = 0; idx < thread_count; idx++) {
2050 qemu_mutex_lock(&comp_param[idx].mutex);
2051 if (!comp_param[idx].quit) {
2052 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2053 /*
2054 * it's safe to fetch zero_page without holding comp_done_lock
2055 * as there is no further request submitted to the thread,
2056 * i.e, the thread should be waiting for a request at this point.
2057 */
2058 update_compress_thread_counts(&comp_param[idx], len);
2059 }
2060 qemu_mutex_unlock(&comp_param[idx].mutex);
2061 }
2062 }
2063
2064 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2065 ram_addr_t offset)
2066 {
2067 param->block = block;
2068 param->offset = offset;
2069 }
2070
2071 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2072 ram_addr_t offset)
2073 {
2074 int idx, thread_count, bytes_xmit = -1, pages = -1;
2075 bool wait = migrate_compress_wait_thread();
2076
2077 thread_count = migrate_compress_threads();
2078 qemu_mutex_lock(&comp_done_lock);
2079 retry:
2080 for (idx = 0; idx < thread_count; idx++) {
2081 if (comp_param[idx].done) {
2082 comp_param[idx].done = false;
2083 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2084 qemu_mutex_lock(&comp_param[idx].mutex);
2085 set_compress_params(&comp_param[idx], block, offset);
2086 qemu_cond_signal(&comp_param[idx].cond);
2087 qemu_mutex_unlock(&comp_param[idx].mutex);
2088 pages = 1;
2089 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2090 break;
2091 }
2092 }
2093
2094 /*
2095 * wait for the free thread if the user specifies 'compress-wait-thread',
2096 * otherwise we will post the page out in the main thread as normal page.
2097 */
2098 if (pages < 0 && wait) {
2099 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2100 goto retry;
2101 }
2102 qemu_mutex_unlock(&comp_done_lock);
2103
2104 return pages;
2105 }
2106
2107 /**
2108 * find_dirty_block: find the next dirty page and update any state
2109 * associated with the search process.
2110 *
2111 * Returns if a page is found
2112 *
2113 * @rs: current RAM state
2114 * @pss: data about the state of the current dirty page scan
2115 * @again: set to false if the search has scanned the whole of RAM
2116 */
2117 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2118 {
2119 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2120 if (pss->complete_round && pss->block == rs->last_seen_block &&
2121 pss->page >= rs->last_page) {
2122 /*
2123 * We've been once around the RAM and haven't found anything.
2124 * Give up.
2125 */
2126 *again = false;
2127 return false;
2128 }
2129 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2130 /* Didn't find anything in this RAM Block */
2131 pss->page = 0;
2132 pss->block = QLIST_NEXT_RCU(pss->block, next);
2133 if (!pss->block) {
2134 /*
2135 * If memory migration starts over, we will meet a dirtied page
2136 * which may still exists in compression threads's ring, so we
2137 * should flush the compressed data to make sure the new page
2138 * is not overwritten by the old one in the destination.
2139 *
2140 * Also If xbzrle is on, stop using the data compression at this
2141 * point. In theory, xbzrle can do better than compression.
2142 */
2143 flush_compressed_data(rs);
2144
2145 /* Hit the end of the list */
2146 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2147 /* Flag that we've looped */
2148 pss->complete_round = true;
2149 rs->ram_bulk_stage = false;
2150 }
2151 /* Didn't find anything this time, but try again on the new block */
2152 *again = true;
2153 return false;
2154 } else {
2155 /* Can go around again, but... */
2156 *again = true;
2157 /* We've found something so probably don't need to */
2158 return true;
2159 }
2160 }
2161
2162 /**
2163 * unqueue_page: gets a page of the queue
2164 *
2165 * Helper for 'get_queued_page' - gets a page off the queue
2166 *
2167 * Returns the block of the page (or NULL if none available)
2168 *
2169 * @rs: current RAM state
2170 * @offset: used to return the offset within the RAMBlock
2171 */
2172 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2173 {
2174 RAMBlock *block = NULL;
2175
2176 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2177 return NULL;
2178 }
2179
2180 qemu_mutex_lock(&rs->src_page_req_mutex);
2181 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2182 struct RAMSrcPageRequest *entry =
2183 QSIMPLEQ_FIRST(&rs->src_page_requests);
2184 block = entry->rb;
2185 *offset = entry->offset;
2186
2187 if (entry->len > TARGET_PAGE_SIZE) {
2188 entry->len -= TARGET_PAGE_SIZE;
2189 entry->offset += TARGET_PAGE_SIZE;
2190 } else {
2191 memory_region_unref(block->mr);
2192 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2193 g_free(entry);
2194 migration_consume_urgent_request();
2195 }
2196 }
2197 qemu_mutex_unlock(&rs->src_page_req_mutex);
2198
2199 return block;
2200 }
2201
2202 /**
2203 * get_queued_page: unqueue a page from the postocpy requests
2204 *
2205 * Skips pages that are already sent (!dirty)
2206 *
2207 * Returns if a queued page is found
2208 *
2209 * @rs: current RAM state
2210 * @pss: data about the state of the current dirty page scan
2211 */
2212 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2213 {
2214 RAMBlock *block;
2215 ram_addr_t offset;
2216 bool dirty;
2217
2218 do {
2219 block = unqueue_page(rs, &offset);
2220 /*
2221 * We're sending this page, and since it's postcopy nothing else
2222 * will dirty it, and we must make sure it doesn't get sent again
2223 * even if this queue request was received after the background
2224 * search already sent it.
2225 */
2226 if (block) {
2227 unsigned long page;
2228
2229 page = offset >> TARGET_PAGE_BITS;
2230 dirty = test_bit(page, block->bmap);
2231 if (!dirty) {
2232 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2233 page, test_bit(page, block->unsentmap));
2234 } else {
2235 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2236 }
2237 }
2238
2239 } while (block && !dirty);
2240
2241 if (block) {
2242 /*
2243 * As soon as we start servicing pages out of order, then we have
2244 * to kill the bulk stage, since the bulk stage assumes
2245 * in (migration_bitmap_find_and_reset_dirty) that every page is
2246 * dirty, that's no longer true.
2247 */
2248 rs->ram_bulk_stage = false;
2249
2250 /*
2251 * We want the background search to continue from the queued page
2252 * since the guest is likely to want other pages near to the page
2253 * it just requested.
2254 */
2255 pss->block = block;
2256 pss->page = offset >> TARGET_PAGE_BITS;
2257 }
2258
2259 return !!block;
2260 }
2261
2262 /**
2263 * migration_page_queue_free: drop any remaining pages in the ram
2264 * request queue
2265 *
2266 * It should be empty at the end anyway, but in error cases there may
2267 * be some left. in case that there is any page left, we drop it.
2268 *
2269 */
2270 static void migration_page_queue_free(RAMState *rs)
2271 {
2272 struct RAMSrcPageRequest *mspr, *next_mspr;
2273 /* This queue generally should be empty - but in the case of a failed
2274 * migration might have some droppings in.
2275 */
2276 rcu_read_lock();
2277 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2278 memory_region_unref(mspr->rb->mr);
2279 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2280 g_free(mspr);
2281 }
2282 rcu_read_unlock();
2283 }
2284
2285 /**
2286 * ram_save_queue_pages: queue the page for transmission
2287 *
2288 * A request from postcopy destination for example.
2289 *
2290 * Returns zero on success or negative on error
2291 *
2292 * @rbname: Name of the RAMBLock of the request. NULL means the
2293 * same that last one.
2294 * @start: starting address from the start of the RAMBlock
2295 * @len: length (in bytes) to send
2296 */
2297 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2298 {
2299 RAMBlock *ramblock;
2300 RAMState *rs = ram_state;
2301
2302 ram_counters.postcopy_requests++;
2303 rcu_read_lock();
2304 if (!rbname) {
2305 /* Reuse last RAMBlock */
2306 ramblock = rs->last_req_rb;
2307
2308 if (!ramblock) {
2309 /*
2310 * Shouldn't happen, we can't reuse the last RAMBlock if
2311 * it's the 1st request.
2312 */
2313 error_report("ram_save_queue_pages no previous block");
2314 goto err;
2315 }
2316 } else {
2317 ramblock = qemu_ram_block_by_name(rbname);
2318
2319 if (!ramblock) {
2320 /* We shouldn't be asked for a non-existent RAMBlock */
2321 error_report("ram_save_queue_pages no block '%s'", rbname);
2322 goto err;
2323 }
2324 rs->last_req_rb = ramblock;
2325 }
2326 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2327 if (start+len > ramblock->used_length) {
2328 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2329 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2330 __func__, start, len, ramblock->used_length);
2331 goto err;
2332 }
2333
2334 struct RAMSrcPageRequest *new_entry =
2335 g_malloc0(sizeof(struct RAMSrcPageRequest));
2336 new_entry->rb = ramblock;
2337 new_entry->offset = start;
2338 new_entry->len = len;
2339
2340 memory_region_ref(ramblock->mr);
2341 qemu_mutex_lock(&rs->src_page_req_mutex);
2342 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2343 migration_make_urgent_request();
2344 qemu_mutex_unlock(&rs->src_page_req_mutex);
2345 rcu_read_unlock();
2346
2347 return 0;
2348
2349 err:
2350 rcu_read_unlock();
2351 return -1;
2352 }
2353
2354 static bool save_page_use_compression(RAMState *rs)
2355 {
2356 if (!migrate_use_compression()) {
2357 return false;
2358 }
2359
2360 /*
2361 * If xbzrle is on, stop using the data compression after first
2362 * round of migration even if compression is enabled. In theory,
2363 * xbzrle can do better than compression.
2364 */
2365 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2366 return true;
2367 }
2368
2369 return false;
2370 }
2371
2372 /*
2373 * try to compress the page before posting it out, return true if the page
2374 * has been properly handled by compression, otherwise needs other
2375 * paths to handle it
2376 */
2377 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2378 {
2379 if (!save_page_use_compression(rs)) {
2380 return false;
2381 }
2382
2383 /*
2384 * When starting the process of a new block, the first page of
2385 * the block should be sent out before other pages in the same
2386 * block, and all the pages in last block should have been sent
2387 * out, keeping this order is important, because the 'cont' flag
2388 * is used to avoid resending the block name.
2389 *
2390 * We post the fist page as normal page as compression will take
2391 * much CPU resource.
2392 */
2393 if (block != rs->last_sent_block) {
2394 flush_compressed_data(rs);
2395 return false;
2396 }
2397
2398 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2399 return true;
2400 }
2401
2402 compression_counters.busy++;
2403 return false;
2404 }
2405
2406 /**
2407 * ram_save_target_page: save one target page
2408 *
2409 * Returns the number of pages written
2410 *
2411 * @rs: current RAM state
2412 * @pss: data about the page we want to send
2413 * @last_stage: if we are at the completion stage
2414 */
2415 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2416 bool last_stage)
2417 {
2418 RAMBlock *block = pss->block;
2419 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2420 int res;
2421
2422 if (control_save_page(rs, block, offset, &res)) {
2423 return res;
2424 }
2425
2426 if (save_compress_page(rs, block, offset)) {
2427 return 1;
2428 }
2429
2430 res = save_zero_page(rs, block, offset);
2431 if (res > 0) {
2432 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2433 * page would be stale
2434 */
2435 if (!save_page_use_compression(rs)) {
2436 XBZRLE_cache_lock();
2437 xbzrle_cache_zero_page(rs, block->offset + offset);
2438 XBZRLE_cache_unlock();
2439 }
2440 ram_release_pages(block->idstr, offset, res);
2441 return res;
2442 }
2443
2444 /*
2445 * do not use multifd for compression as the first page in the new
2446 * block should be posted out before sending the compressed page
2447 */
2448 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2449 return ram_save_multifd_page(rs, block, offset);
2450 }
2451
2452 return ram_save_page(rs, pss, last_stage);
2453 }
2454
2455 /**
2456 * ram_save_host_page: save a whole host page
2457 *
2458 * Starting at *offset send pages up to the end of the current host
2459 * page. It's valid for the initial offset to point into the middle of
2460 * a host page in which case the remainder of the hostpage is sent.
2461 * Only dirty target pages are sent. Note that the host page size may
2462 * be a huge page for this block.
2463 * The saving stops at the boundary of the used_length of the block
2464 * if the RAMBlock isn't a multiple of the host page size.
2465 *
2466 * Returns the number of pages written or negative on error
2467 *
2468 * @rs: current RAM state
2469 * @ms: current migration state
2470 * @pss: data about the page we want to send
2471 * @last_stage: if we are at the completion stage
2472 */
2473 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2474 bool last_stage)
2475 {
2476 int tmppages, pages = 0;
2477 size_t pagesize_bits =
2478 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2479
2480 if (ramblock_is_ignored(pss->block)) {
2481 error_report("block %s should not be migrated !", pss->block->idstr);
2482 return 0;
2483 }
2484
2485 do {
2486 /* Check the pages is dirty and if it is send it */
2487 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2488 pss->page++;
2489 continue;
2490 }
2491
2492 tmppages = ram_save_target_page(rs, pss, last_stage);
2493 if (tmppages < 0) {
2494 return tmppages;
2495 }
2496
2497 pages += tmppages;
2498 if (pss->block->unsentmap) {
2499 clear_bit(pss->page, pss->block->unsentmap);
2500 }
2501
2502 pss->page++;
2503 } while ((pss->page & (pagesize_bits - 1)) &&
2504 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2505
2506 /* The offset we leave with is the last one we looked at */
2507 pss->page--;
2508 return pages;
2509 }
2510
2511 /**
2512 * ram_find_and_save_block: finds a dirty page and sends it to f
2513 *
2514 * Called within an RCU critical section.
2515 *
2516 * Returns the number of pages written where zero means no dirty pages,
2517 * or negative on error
2518 *
2519 * @rs: current RAM state
2520 * @last_stage: if we are at the completion stage
2521 *
2522 * On systems where host-page-size > target-page-size it will send all the
2523 * pages in a host page that are dirty.
2524 */
2525
2526 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2527 {
2528 PageSearchStatus pss;
2529 int pages = 0;
2530 bool again, found;
2531
2532 /* No dirty page as there is zero RAM */
2533 if (!ram_bytes_total()) {
2534 return pages;
2535 }
2536
2537 pss.block = rs->last_seen_block;
2538 pss.page = rs->last_page;
2539 pss.complete_round = false;
2540
2541 if (!pss.block) {
2542 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2543 }
2544
2545 do {
2546 again = true;
2547 found = get_queued_page(rs, &pss);
2548
2549 if (!found) {
2550 /* priority queue empty, so just search for something dirty */
2551 found = find_dirty_block(rs, &pss, &again);
2552 }
2553
2554 if (found) {
2555 pages = ram_save_host_page(rs, &pss, last_stage);
2556 }
2557 } while (!pages && again);
2558
2559 rs->last_seen_block = pss.block;
2560 rs->last_page = pss.page;
2561
2562 return pages;
2563 }
2564
2565 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2566 {
2567 uint64_t pages = size / TARGET_PAGE_SIZE;
2568
2569 if (zero) {
2570 ram_counters.duplicate += pages;
2571 } else {
2572 ram_counters.normal += pages;
2573 ram_counters.transferred += size;
2574 qemu_update_position(f, size);
2575 }
2576 }
2577
2578 static uint64_t ram_bytes_total_common(bool count_ignored)
2579 {
2580 RAMBlock *block;
2581 uint64_t total = 0;
2582
2583 rcu_read_lock();
2584 if (count_ignored) {
2585 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2586 total += block->used_length;
2587 }
2588 } else {
2589 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2590 total += block->used_length;
2591 }
2592 }
2593 rcu_read_unlock();
2594 return total;
2595 }
2596
2597 uint64_t ram_bytes_total(void)
2598 {
2599 return ram_bytes_total_common(false);
2600 }
2601
2602 static void xbzrle_load_setup(void)
2603 {
2604 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2605 }
2606
2607 static void xbzrle_load_cleanup(void)
2608 {
2609 g_free(XBZRLE.decoded_buf);
2610 XBZRLE.decoded_buf = NULL;
2611 }
2612
2613 static void ram_state_cleanup(RAMState **rsp)
2614 {
2615 if (*rsp) {
2616 migration_page_queue_free(*rsp);
2617 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2618 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2619 g_free(*rsp);
2620 *rsp = NULL;
2621 }
2622 }
2623
2624 static void xbzrle_cleanup(void)
2625 {
2626 XBZRLE_cache_lock();
2627 if (XBZRLE.cache) {
2628 cache_fini(XBZRLE.cache);
2629 g_free(XBZRLE.encoded_buf);
2630 g_free(XBZRLE.current_buf);
2631 g_free(XBZRLE.zero_target_page);
2632 XBZRLE.cache = NULL;
2633 XBZRLE.encoded_buf = NULL;
2634 XBZRLE.current_buf = NULL;
2635 XBZRLE.zero_target_page = NULL;
2636 }
2637 XBZRLE_cache_unlock();
2638 }
2639
2640 static void ram_save_cleanup(void *opaque)
2641 {
2642 RAMState **rsp = opaque;
2643 RAMBlock *block;
2644
2645 /* caller have hold iothread lock or is in a bh, so there is
2646 * no writing race against this migration_bitmap
2647 */
2648 memory_global_dirty_log_stop();
2649
2650 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2651 g_free(block->bmap);
2652 block->bmap = NULL;
2653 g_free(block->unsentmap);
2654 block->unsentmap = NULL;
2655 }
2656
2657 xbzrle_cleanup();
2658 compress_threads_save_cleanup();
2659 ram_state_cleanup(rsp);
2660 }
2661
2662 static void ram_state_reset(RAMState *rs)
2663 {
2664 rs->last_seen_block = NULL;
2665 rs->last_sent_block = NULL;
2666 rs->last_page = 0;
2667 rs->last_version = ram_list.version;
2668 rs->ram_bulk_stage = true;
2669 rs->fpo_enabled = false;
2670 }
2671
2672 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2673
2674 /*
2675 * 'expected' is the value you expect the bitmap mostly to be full
2676 * of; it won't bother printing lines that are all this value.
2677 * If 'todump' is null the migration bitmap is dumped.
2678 */
2679 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2680 unsigned long pages)
2681 {
2682 int64_t cur;
2683 int64_t linelen = 128;
2684 char linebuf[129];
2685
2686 for (cur = 0; cur < pages; cur += linelen) {
2687 int64_t curb;
2688 bool found = false;
2689 /*
2690 * Last line; catch the case where the line length
2691 * is longer than remaining ram
2692 */
2693 if (cur + linelen > pages) {
2694 linelen = pages - cur;
2695 }
2696 for (curb = 0; curb < linelen; curb++) {
2697 bool thisbit = test_bit(cur + curb, todump);
2698 linebuf[curb] = thisbit ? '1' : '.';
2699 found = found || (thisbit != expected);
2700 }
2701 if (found) {
2702 linebuf[curb] = '\0';
2703 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2704 }
2705 }
2706 }
2707
2708 /* **** functions for postcopy ***** */
2709
2710 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2711 {
2712 struct RAMBlock *block;
2713
2714 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2715 unsigned long *bitmap = block->bmap;
2716 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2717 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2718
2719 while (run_start < range) {
2720 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2721 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2722 (run_end - run_start) << TARGET_PAGE_BITS);
2723 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2724 }
2725 }
2726 }
2727
2728 /**
2729 * postcopy_send_discard_bm_ram: discard a RAMBlock
2730 *
2731 * Returns zero on success
2732 *
2733 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2734 * Note: At this point the 'unsentmap' is the processed bitmap combined
2735 * with the dirtymap; so a '1' means it's either dirty or unsent.
2736 *
2737 * @ms: current migration state
2738 * @pds: state for postcopy
2739 * @start: RAMBlock starting page
2740 * @length: RAMBlock size
2741 */
2742 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2743 PostcopyDiscardState *pds,
2744 RAMBlock *block)
2745 {
2746 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2747 unsigned long current;
2748 unsigned long *unsentmap = block->unsentmap;
2749
2750 for (current = 0; current < end; ) {
2751 unsigned long one = find_next_bit(unsentmap, end, current);
2752
2753 if (one <= end) {
2754 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2755 unsigned long discard_length;
2756
2757 if (zero >= end) {
2758 discard_length = end - one;
2759 } else {
2760 discard_length = zero - one;
2761 }
2762 if (discard_length) {
2763 postcopy_discard_send_range(ms, pds, one, discard_length);
2764 }
2765 current = one + discard_length;
2766 } else {
2767 current = one;
2768 }
2769 }
2770
2771 return 0;
2772 }
2773
2774 /**
2775 * postcopy_each_ram_send_discard: discard all RAMBlocks
2776 *
2777 * Returns 0 for success or negative for error
2778 *
2779 * Utility for the outgoing postcopy code.
2780 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2781 * passing it bitmap indexes and name.
2782 * (qemu_ram_foreach_block ends up passing unscaled lengths
2783 * which would mean postcopy code would have to deal with target page)
2784 *
2785 * @ms: current migration state
2786 */
2787 static int postcopy_each_ram_send_discard(MigrationState *ms)
2788 {
2789 struct RAMBlock *block;
2790 int ret;
2791
2792 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2793 PostcopyDiscardState *pds =
2794 postcopy_discard_send_init(ms, block->idstr);
2795
2796 /*
2797 * Postcopy sends chunks of bitmap over the wire, but it
2798 * just needs indexes at this point, avoids it having
2799 * target page specific code.
2800 */
2801 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2802 postcopy_discard_send_finish(ms, pds);
2803 if (ret) {
2804 return ret;
2805 }
2806 }
2807
2808 return 0;
2809 }
2810
2811 /**
2812 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2813 *
2814 * Helper for postcopy_chunk_hostpages; it's called twice to
2815 * canonicalize the two bitmaps, that are similar, but one is
2816 * inverted.
2817 *
2818 * Postcopy requires that all target pages in a hostpage are dirty or
2819 * clean, not a mix. This function canonicalizes the bitmaps.
2820 *
2821 * @ms: current migration state
2822 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2823 * otherwise we need to canonicalize partially dirty host pages
2824 * @block: block that contains the page we want to canonicalize
2825 * @pds: state for postcopy
2826 */
2827 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2828 RAMBlock *block,
2829 PostcopyDiscardState *pds)
2830 {
2831 RAMState *rs = ram_state;
2832 unsigned long *bitmap = block->bmap;
2833 unsigned long *unsentmap = block->unsentmap;
2834 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2835 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2836 unsigned long run_start;
2837
2838 if (block->page_size == TARGET_PAGE_SIZE) {
2839 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2840 return;
2841 }
2842
2843 if (unsent_pass) {
2844 /* Find a sent page */
2845 run_start = find_next_zero_bit(unsentmap, pages, 0);
2846 } else {
2847 /* Find a dirty page */
2848 run_start = find_next_bit(bitmap, pages, 0);
2849 }
2850
2851 while (run_start < pages) {
2852 bool do_fixup = false;
2853 unsigned long fixup_start_addr;
2854 unsigned long host_offset;
2855
2856 /*
2857 * If the start of this run of pages is in the middle of a host
2858 * page, then we need to fixup this host page.
2859 */
2860 host_offset = run_start % host_ratio;
2861 if (host_offset) {
2862 do_fixup = true;
2863 run_start -= host_offset;
2864 fixup_start_addr = run_start;
2865 /* For the next pass */
2866 run_start = run_start + host_ratio;
2867 } else {
2868 /* Find the end of this run */
2869 unsigned long run_end;
2870 if (unsent_pass) {
2871 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2872 } else {
2873 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2874 }
2875 /*
2876 * If the end isn't at the start of a host page, then the
2877 * run doesn't finish at the end of a host page
2878 * and we need to discard.
2879 */
2880 host_offset = run_end % host_ratio;
2881 if (host_offset) {
2882 do_fixup = true;
2883 fixup_start_addr = run_end - host_offset;
2884 /*
2885 * This host page has gone, the next loop iteration starts
2886 * from after the fixup
2887 */
2888 run_start = fixup_start_addr + host_ratio;
2889 } else {
2890 /*
2891 * No discards on this iteration, next loop starts from
2892 * next sent/dirty page
2893 */
2894 run_start = run_end + 1;
2895 }
2896 }
2897
2898 if (do_fixup) {
2899 unsigned long page;
2900
2901 /* Tell the destination to discard this page */
2902 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2903 /* For the unsent_pass we:
2904 * discard partially sent pages
2905 * For the !unsent_pass (dirty) we:
2906 * discard partially dirty pages that were sent
2907 * (any partially sent pages were already discarded
2908 * by the previous unsent_pass)
2909 */
2910 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2911 host_ratio);
2912 }
2913
2914 /* Clean up the bitmap */
2915 for (page = fixup_start_addr;
2916 page < fixup_start_addr + host_ratio; page++) {
2917 /* All pages in this host page are now not sent */
2918 set_bit(page, unsentmap);
2919
2920 /*
2921 * Remark them as dirty, updating the count for any pages
2922 * that weren't previously dirty.
2923 */
2924 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2925 }
2926 }
2927
2928 if (unsent_pass) {
2929 /* Find the next sent page for the next iteration */
2930 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2931 } else {
2932 /* Find the next dirty page for the next iteration */
2933 run_start = find_next_bit(bitmap, pages, run_start);
2934 }
2935 }
2936 }
2937
2938 /**
2939 * postcopy_chuck_hostpages: discrad any partially sent host page
2940 *
2941 * Utility for the outgoing postcopy code.
2942 *
2943 * Discard any partially sent host-page size chunks, mark any partially
2944 * dirty host-page size chunks as all dirty. In this case the host-page
2945 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2946 *
2947 * Returns zero on success
2948 *
2949 * @ms: current migration state
2950 * @block: block we want to work with
2951 */
2952 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2953 {
2954 PostcopyDiscardState *pds =
2955 postcopy_discard_send_init(ms, block->idstr);
2956
2957 /* First pass: Discard all partially sent host pages */
2958 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2959 /*
2960 * Second pass: Ensure that all partially dirty host pages are made
2961 * fully dirty.
2962 */
2963 postcopy_chunk_hostpages_pass(ms, false, block, pds);
2964
2965 postcopy_discard_send_finish(ms, pds);
2966 return 0;
2967 }
2968
2969 /**
2970 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2971 *
2972 * Returns zero on success
2973 *
2974 * Transmit the set of pages to be discarded after precopy to the target
2975 * these are pages that:
2976 * a) Have been previously transmitted but are now dirty again
2977 * b) Pages that have never been transmitted, this ensures that
2978 * any pages on the destination that have been mapped by background
2979 * tasks get discarded (transparent huge pages is the specific concern)
2980 * Hopefully this is pretty sparse
2981 *
2982 * @ms: current migration state
2983 */
2984 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2985 {
2986 RAMState *rs = ram_state;
2987 RAMBlock *block;
2988 int ret;
2989
2990 rcu_read_lock();
2991
2992 /* This should be our last sync, the src is now paused */
2993 migration_bitmap_sync(rs);
2994
2995 /* Easiest way to make sure we don't resume in the middle of a host-page */
2996 rs->last_seen_block = NULL;
2997 rs->last_sent_block = NULL;
2998 rs->last_page = 0;
2999
3000 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3001 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3002 unsigned long *bitmap = block->bmap;
3003 unsigned long *unsentmap = block->unsentmap;
3004
3005 if (!unsentmap) {
3006 /* We don't have a safe way to resize the sentmap, so
3007 * if the bitmap was resized it will be NULL at this
3008 * point.
3009 */
3010 error_report("migration ram resized during precopy phase");
3011 rcu_read_unlock();
3012 return -EINVAL;
3013 }
3014 /* Deal with TPS != HPS and huge pages */
3015 ret = postcopy_chunk_hostpages(ms, block);
3016 if (ret) {
3017 rcu_read_unlock();
3018 return ret;
3019 }
3020
3021 /*
3022 * Update the unsentmap to be unsentmap = unsentmap | dirty
3023 */
3024 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3025 #ifdef DEBUG_POSTCOPY
3026 ram_debug_dump_bitmap(unsentmap, true, pages);
3027 #endif
3028 }
3029 trace_ram_postcopy_send_discard_bitmap();
3030
3031 ret = postcopy_each_ram_send_discard(ms);
3032 rcu_read_unlock();
3033
3034 return ret;
3035 }
3036
3037 /**
3038 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3039 *
3040 * Returns zero on success
3041 *
3042 * @rbname: name of the RAMBlock of the request. NULL means the
3043 * same that last one.
3044 * @start: RAMBlock starting page
3045 * @length: RAMBlock size
3046 */
3047 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3048 {
3049 int ret = -1;
3050
3051 trace_ram_discard_range(rbname, start, length);
3052
3053 rcu_read_lock();
3054 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3055
3056 if (!rb) {
3057 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3058 goto err;
3059 }
3060
3061 /*
3062 * On source VM, we don't need to update the received bitmap since
3063 * we don't even have one.
3064 */
3065 if (rb->receivedmap) {
3066 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3067 length >> qemu_target_page_bits());
3068 }
3069
3070 ret = ram_block_discard_range(rb, start, length);
3071
3072 err:
3073 rcu_read_unlock();
3074
3075 return ret;
3076 }
3077
3078 /*
3079 * For every allocation, we will try not to crash the VM if the
3080 * allocation failed.
3081 */
3082 static int xbzrle_init(void)
3083 {
3084 Error *local_err = NULL;
3085
3086 if (!migrate_use_xbzrle()) {
3087 return 0;
3088 }
3089
3090 XBZRLE_cache_lock();
3091
3092 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3093 if (!XBZRLE.zero_target_page) {
3094 error_report("%s: Error allocating zero page", __func__);
3095 goto err_out;
3096 }
3097
3098 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3099 TARGET_PAGE_SIZE, &local_err);
3100 if (!XBZRLE.cache) {
3101 error_report_err(local_err);
3102 goto free_zero_page;
3103 }
3104
3105 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3106 if (!XBZRLE.encoded_buf) {
3107 error_report("%s: Error allocating encoded_buf", __func__);
3108 goto free_cache;
3109 }
3110
3111 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3112 if (!XBZRLE.current_buf) {
3113 error_report("%s: Error allocating current_buf", __func__);
3114 goto free_encoded_buf;
3115 }
3116
3117 /* We are all good */
3118 XBZRLE_cache_unlock();
3119 return 0;
3120
3121 free_encoded_buf:
3122 g_free(XBZRLE.encoded_buf);
3123 XBZRLE.encoded_buf = NULL;
3124 free_cache:
3125 cache_fini(XBZRLE.cache);
3126 XBZRLE.cache = NULL;
3127 free_zero_page:
3128 g_free(XBZRLE.zero_target_page);
3129 XBZRLE.zero_target_page = NULL;
3130 err_out:
3131 XBZRLE_cache_unlock();
3132 return -ENOMEM;
3133 }
3134
3135 static int ram_state_init(RAMState **rsp)
3136 {
3137 *rsp = g_try_new0(RAMState, 1);
3138
3139 if (!*rsp) {
3140 error_report("%s: Init ramstate fail", __func__);
3141 return -1;
3142 }
3143
3144 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3145 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3146 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3147
3148 /*
3149 * Count the total number of pages used by ram blocks not including any
3150 * gaps due to alignment or unplugs.
3151 */
3152 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3153
3154 ram_state_reset(*rsp);
3155
3156 return 0;
3157 }
3158
3159 static void ram_list_init_bitmaps(void)
3160 {
3161 RAMBlock *block;
3162 unsigned long pages;
3163
3164 /* Skip setting bitmap if there is no RAM */
3165 if (ram_bytes_total()) {
3166 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3167 pages = block->max_length >> TARGET_PAGE_BITS;
3168 block->bmap = bitmap_new(pages);
3169 bitmap_set(block->bmap, 0, pages);
3170 if (migrate_postcopy_ram()) {
3171 block->unsentmap = bitmap_new(pages);
3172 bitmap_set(block->unsentmap, 0, pages);
3173 }
3174 }
3175 }
3176 }
3177
3178 static void ram_init_bitmaps(RAMState *rs)
3179 {
3180 /* For memory_global_dirty_log_start below. */
3181 qemu_mutex_lock_iothread();
3182 qemu_mutex_lock_ramlist();
3183 rcu_read_lock();
3184
3185 ram_list_init_bitmaps();
3186 memory_global_dirty_log_start();
3187 migration_bitmap_sync_precopy(rs);
3188
3189 rcu_read_unlock();
3190 qemu_mutex_unlock_ramlist();
3191 qemu_mutex_unlock_iothread();
3192 }
3193
3194 static int ram_init_all(RAMState **rsp)
3195 {
3196 if (ram_state_init(rsp)) {
3197 return -1;
3198 }
3199
3200 if (xbzrle_init()) {
3201 ram_state_cleanup(rsp);
3202 return -1;
3203 }
3204
3205 ram_init_bitmaps(*rsp);
3206
3207 return 0;
3208 }
3209
3210 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3211 {
3212 RAMBlock *block;
3213 uint64_t pages = 0;
3214
3215 /*
3216 * Postcopy is not using xbzrle/compression, so no need for that.
3217 * Also, since source are already halted, we don't need to care
3218 * about dirty page logging as well.
3219 */
3220
3221 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3222 pages += bitmap_count_one(block->bmap,
3223 block->used_length >> TARGET_PAGE_BITS);
3224 }
3225
3226 /* This may not be aligned with current bitmaps. Recalculate. */
3227 rs->migration_dirty_pages = pages;
3228
3229 rs->last_seen_block = NULL;
3230 rs->last_sent_block = NULL;
3231 rs->last_page = 0;
3232 rs->last_version = ram_list.version;
3233 /*
3234 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3235 * matter what we have sent.
3236 */
3237 rs->ram_bulk_stage = false;
3238
3239 /* Update RAMState cache of output QEMUFile */
3240 rs->f = out;
3241
3242 trace_ram_state_resume_prepare(pages);
3243 }
3244
3245 /*
3246 * This function clears bits of the free pages reported by the caller from the
3247 * migration dirty bitmap. @addr is the host address corresponding to the
3248 * start of the continuous guest free pages, and @len is the total bytes of
3249 * those pages.
3250 */
3251 void qemu_guest_free_page_hint(void *addr, size_t len)
3252 {
3253 RAMBlock *block;
3254 ram_addr_t offset;
3255 size_t used_len, start, npages;
3256 MigrationState *s = migrate_get_current();
3257
3258 /* This function is currently expected to be used during live migration */
3259 if (!migration_is_setup_or_active(s->state)) {
3260 return;
3261 }
3262
3263 for (; len > 0; len -= used_len, addr += used_len) {
3264 block = qemu_ram_block_from_host(addr, false, &offset);
3265 if (unlikely(!block || offset >= block->used_length)) {
3266 /*
3267 * The implementation might not support RAMBlock resize during
3268 * live migration, but it could happen in theory with future
3269 * updates. So we add a check here to capture that case.
3270 */
3271 error_report_once("%s unexpected error", __func__);
3272 return;
3273 }
3274
3275 if (len <= block->used_length - offset) {
3276 used_len = len;
3277 } else {
3278 used_len = block->used_length - offset;
3279 }
3280
3281 start = offset >> TARGET_PAGE_BITS;
3282 npages = used_len >> TARGET_PAGE_BITS;
3283
3284 qemu_mutex_lock(&ram_state->bitmap_mutex);
3285 ram_state->migration_dirty_pages -=
3286 bitmap_count_one_with_offset(block->bmap, start, npages);
3287 bitmap_clear(block->bmap, start, npages);
3288 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3289 }
3290 }
3291
3292 /*
3293 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3294 * long-running RCU critical section. When rcu-reclaims in the code
3295 * start to become numerous it will be necessary to reduce the
3296 * granularity of these critical sections.
3297 */
3298
3299 /**
3300 * ram_save_setup: Setup RAM for migration
3301 *
3302 * Returns zero to indicate success and negative for error
3303 *
3304 * @f: QEMUFile where to send the data
3305 * @opaque: RAMState pointer
3306 */
3307 static int ram_save_setup(QEMUFile *f, void *opaque)
3308 {
3309 RAMState **rsp = opaque;
3310 RAMBlock *block;
3311
3312 if (compress_threads_save_setup()) {
3313 return -1;
3314 }
3315
3316 /* migration has already setup the bitmap, reuse it. */
3317 if (!migration_in_colo_state()) {
3318 if (ram_init_all(rsp) != 0) {
3319 compress_threads_save_cleanup();
3320 return -1;
3321 }
3322 }
3323 (*rsp)->f = f;
3324
3325 rcu_read_lock();
3326
3327 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3328
3329 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3330 qemu_put_byte(f, strlen(block->idstr));
3331 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3332 qemu_put_be64(f, block->used_length);
3333 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3334 qemu_put_be64(f, block->page_size);
3335 }
3336 if (migrate_ignore_shared()) {
3337 qemu_put_be64(f, block->mr->addr);
3338 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3339 }
3340 }
3341
3342 rcu_read_unlock();
3343
3344 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3345 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3346
3347 multifd_send_sync_main();
3348 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3349 qemu_fflush(f);
3350
3351 return 0;
3352 }
3353
3354 /**
3355 * ram_save_iterate: iterative stage for migration
3356 *
3357 * Returns zero to indicate success and negative for error
3358 *
3359 * @f: QEMUFile where to send the data
3360 * @opaque: RAMState pointer
3361 */
3362 static int ram_save_iterate(QEMUFile *f, void *opaque)
3363 {
3364 RAMState **temp = opaque;
3365 RAMState *rs = *temp;
3366 int ret;
3367 int i;
3368 int64_t t0;
3369 int done = 0;
3370
3371 if (blk_mig_bulk_active()) {
3372 /* Avoid transferring ram during bulk phase of block migration as
3373 * the bulk phase will usually take a long time and transferring
3374 * ram updates during that time is pointless. */
3375 goto out;
3376 }
3377
3378 rcu_read_lock();
3379 if (ram_list.version != rs->last_version) {
3380 ram_state_reset(rs);
3381 }
3382
3383 /* Read version before ram_list.blocks */
3384 smp_rmb();
3385
3386 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3387
3388 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3389 i = 0;
3390 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3391 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3392 int pages;
3393
3394 if (qemu_file_get_error(f)) {
3395 break;
3396 }
3397
3398 pages = ram_find_and_save_block(rs, false);
3399 /* no more pages to sent */
3400 if (pages == 0) {
3401 done = 1;
3402 break;
3403 }
3404
3405 if (pages < 0) {
3406 qemu_file_set_error(f, pages);
3407 break;
3408 }
3409
3410 rs->target_page_count += pages;
3411
3412 /* we want to check in the 1st loop, just in case it was the 1st time
3413 and we had to sync the dirty bitmap.
3414 qemu_get_clock_ns() is a bit expensive, so we only check each some
3415 iterations
3416 */
3417 if ((i & 63) == 0) {
3418 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3419 if (t1 > MAX_WAIT) {
3420 trace_ram_save_iterate_big_wait(t1, i);
3421 break;
3422 }
3423 }
3424 i++;
3425 }
3426 rcu_read_unlock();
3427
3428 /*
3429 * Must occur before EOS (or any QEMUFile operation)
3430 * because of RDMA protocol.
3431 */
3432 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3433
3434 multifd_send_sync_main();
3435 out:
3436 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3437 qemu_fflush(f);
3438 ram_counters.transferred += 8;
3439
3440 ret = qemu_file_get_error(f);
3441 if (ret < 0) {
3442 return ret;
3443 }
3444
3445 return done;
3446 }
3447
3448 /**
3449 * ram_save_complete: function called to send the remaining amount of ram
3450 *
3451 * Returns zero to indicate success or negative on error
3452 *
3453 * Called with iothread lock
3454 *
3455 * @f: QEMUFile where to send the data
3456 * @opaque: RAMState pointer
3457 */
3458 static int ram_save_complete(QEMUFile *f, void *opaque)
3459 {
3460 RAMState **temp = opaque;
3461 RAMState *rs = *temp;
3462 int ret = 0;
3463
3464 rcu_read_lock();
3465
3466 if (!migration_in_postcopy()) {
3467 migration_bitmap_sync_precopy(rs);
3468 }
3469
3470 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3471
3472 /* try transferring iterative blocks of memory */
3473
3474 /* flush all remaining blocks regardless of rate limiting */
3475 while (true) {
3476 int pages;
3477
3478 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3479 /* no more blocks to sent */
3480 if (pages == 0) {
3481 break;
3482 }
3483 if (pages < 0) {
3484 ret = pages;
3485 break;
3486 }
3487 }
3488
3489 flush_compressed_data(rs);
3490 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3491
3492 rcu_read_unlock();
3493
3494 multifd_send_sync_main();
3495 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3496 qemu_fflush(f);
3497
3498 return ret;
3499 }
3500
3501 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3502 uint64_t *res_precopy_only,
3503 uint64_t *res_compatible,
3504 uint64_t *res_postcopy_only)
3505 {
3506 RAMState **temp = opaque;
3507 RAMState *rs = *temp;
3508 uint64_t remaining_size;
3509
3510 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3511
3512 if (!migration_in_postcopy() &&
3513 remaining_size < max_size) {
3514 qemu_mutex_lock_iothread();
3515 rcu_read_lock();
3516 migration_bitmap_sync_precopy(rs);
3517 rcu_read_unlock();
3518 qemu_mutex_unlock_iothread();
3519 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3520 }
3521
3522 if (migrate_postcopy_ram()) {
3523 /* We can do postcopy, and all the data is postcopiable */
3524 *res_compatible += remaining_size;
3525 } else {
3526 *res_precopy_only += remaining_size;
3527 }
3528 }
3529
3530 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3531 {
3532 unsigned int xh_len;
3533 int xh_flags;
3534 uint8_t *loaded_data;
3535
3536 /* extract RLE header */
3537 xh_flags = qemu_get_byte(f);
3538 xh_len = qemu_get_be16(f);
3539
3540 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3541 error_report("Failed to load XBZRLE page - wrong compression!");
3542 return -1;
3543 }
3544
3545 if (xh_len > TARGET_PAGE_SIZE) {
3546 error_report("Failed to load XBZRLE page - len overflow!");
3547 return -1;
3548 }
3549 loaded_data = XBZRLE.decoded_buf;
3550 /* load data and decode */
3551 /* it can change loaded_data to point to an internal buffer */
3552 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3553
3554 /* decode RLE */
3555 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3556 TARGET_PAGE_SIZE) == -1) {
3557 error_report("Failed to load XBZRLE page - decode error!");
3558 return -1;
3559 }
3560
3561 return 0;
3562 }
3563
3564 /**
3565 * ram_block_from_stream: read a RAMBlock id from the migration stream
3566 *
3567 * Must be called from within a rcu critical section.
3568 *
3569 * Returns a pointer from within the RCU-protected ram_list.
3570 *
3571 * @f: QEMUFile where to read the data from
3572 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3573 */
3574 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3575 {
3576 static RAMBlock *block = NULL;
3577 char id[256];
3578 uint8_t len;
3579
3580 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3581 if (!block) {
3582 error_report("Ack, bad migration stream!");
3583 return NULL;
3584 }
3585 return block;
3586 }
3587
3588 len = qemu_get_byte(f);
3589 qemu_get_buffer(f, (uint8_t *)id, len);
3590 id[len] = 0;
3591
3592 block = qemu_ram_block_by_name(id);
3593 if (!block) {
3594 error_report("Can't find block %s", id);
3595 return NULL;
3596 }
3597
3598 if (ramblock_is_ignored(block)) {
3599 error_report("block %s should not be migrated !", id);
3600 return NULL;
3601 }
3602
3603 return block;
3604 }
3605
3606 static inline void *host_from_ram_block_offset(RAMBlock *block,
3607 ram_addr_t offset)
3608 {
3609 if (!offset_in_ramblock(block, offset)) {
3610 return NULL;
3611 }
3612
3613 return block->host + offset;
3614 }
3615
3616 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3617 ram_addr_t offset)
3618 {
3619 if (!offset_in_ramblock(block, offset)) {
3620 return NULL;
3621 }
3622 if (!block->colo_cache) {
3623 error_report("%s: colo_cache is NULL in block :%s",
3624 __func__, block->idstr);
3625 return NULL;
3626 }
3627
3628 /*
3629 * During colo checkpoint, we need bitmap of these migrated pages.
3630 * It help us to decide which pages in ram cache should be flushed
3631 * into VM's RAM later.
3632 */
3633 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3634 ram_state->migration_dirty_pages++;
3635 }
3636 return block->colo_cache + offset;
3637 }
3638
3639 /**
3640 * ram_handle_compressed: handle the zero page case
3641 *
3642 * If a page (or a whole RDMA chunk) has been
3643 * determined to be zero, then zap it.
3644 *
3645 * @host: host address for the zero page
3646 * @ch: what the page is filled from. We only support zero
3647 * @size: size of the zero page
3648 */
3649 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3650 {
3651 if (ch != 0 || !is_zero_range(host, size)) {
3652 memset(host, ch, size);
3653 }
3654 }
3655
3656 /* return the size after decompression, or negative value on error */
3657 static int
3658 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3659 const uint8_t *source, size_t source_len)
3660 {
3661 int err;
3662
3663 err = inflateReset(stream);
3664 if (err != Z_OK) {
3665 return -1;
3666 }
3667
3668 stream->avail_in = source_len;
3669 stream->next_in = (uint8_t *)source;
3670 stream->avail_out = dest_len;
3671 stream->next_out = dest;
3672
3673 err = inflate(stream, Z_NO_FLUSH);
3674 if (err != Z_STREAM_END) {
3675 return -1;
3676 }
3677
3678 return stream->total_out;
3679 }
3680
3681 static void *do_data_decompress(void *opaque)
3682 {
3683 DecompressParam *param = opaque;
3684 unsigned long pagesize;
3685 uint8_t *des;
3686 int len, ret;
3687
3688 qemu_mutex_lock(&param->mutex);
3689 while (!param->quit) {
3690 if (param->des) {
3691 des = param->des;
3692 len = param->len;
3693 param->des = 0;
3694 qemu_mutex_unlock(&param->mutex);
3695
3696 pagesize = TARGET_PAGE_SIZE;
3697
3698 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3699 param->compbuf, len);
3700 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3701 error_report("decompress data failed");
3702 qemu_file_set_error(decomp_file, ret);
3703 }
3704
3705 qemu_mutex_lock(&decomp_done_lock);
3706 param->done = true;
3707 qemu_cond_signal(&decomp_done_cond);
3708 qemu_mutex_unlock(&decomp_done_lock);
3709
3710 qemu_mutex_lock(&param->mutex);
3711 } else {
3712 qemu_cond_wait(&param->cond, &param->mutex);
3713 }
3714 }
3715 qemu_mutex_unlock(&param->mutex);
3716
3717 return NULL;
3718 }
3719
3720 static int wait_for_decompress_done(void)
3721 {
3722 int idx, thread_count;
3723
3724 if (!migrate_use_compression()) {
3725 return 0;
3726 }
3727
3728 thread_count = migrate_decompress_threads();
3729 qemu_mutex_lock(&decomp_done_lock);
3730 for (idx = 0; idx < thread_count; idx++) {
3731 while (!decomp_param[idx].done) {
3732 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3733 }
3734 }
3735 qemu_mutex_unlock(&decomp_done_lock);
3736 return qemu_file_get_error(decomp_file);
3737 }
3738
3739 static void compress_threads_load_cleanup(void)
3740 {
3741 int i, thread_count;
3742
3743 if (!migrate_use_compression()) {
3744 return;
3745 }
3746 thread_count = migrate_decompress_threads();
3747 for (i = 0; i < thread_count; i++) {
3748 /*
3749 * we use it as a indicator which shows if the thread is
3750 * properly init'd or not
3751 */
3752 if (!decomp_param[i].compbuf) {
3753 break;
3754 }
3755
3756 qemu_mutex_lock(&decomp_param[i].mutex);
3757 decomp_param[i].quit = true;
3758 qemu_cond_signal(&decomp_param[i].cond);
3759 qemu_mutex_unlock(&decomp_param[i].mutex);
3760 }
3761 for (i = 0; i < thread_count; i++) {
3762 if (!decomp_param[i].compbuf) {
3763 break;
3764 }
3765
3766 qemu_thread_join(decompress_threads + i);
3767 qemu_mutex_destroy(&decomp_param[i].mutex);
3768 qemu_cond_destroy(&decomp_param[i].cond);
3769 inflateEnd(&decomp_param[i].stream);
3770 g_free(decomp_param[i].compbuf);
3771 decomp_param[i].compbuf = NULL;
3772 }
3773 g_free(decompress_threads);
3774 g_free(decomp_param);
3775 decompress_threads = NULL;
3776 decomp_param = NULL;
3777 decomp_file = NULL;
3778 }
3779
3780 static int compress_threads_load_setup(QEMUFile *f)
3781 {
3782 int i, thread_count;
3783
3784 if (!migrate_use_compression()) {
3785 return 0;
3786 }
3787
3788 thread_count = migrate_decompress_threads();
3789 decompress_threads = g_new0(QemuThread, thread_count);
3790 decomp_param = g_new0(DecompressParam, thread_count);
3791 qemu_mutex_init(&decomp_done_lock);
3792 qemu_cond_init(&decomp_done_cond);
3793 decomp_file = f;
3794 for (i = 0; i < thread_count; i++) {
3795 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3796 goto exit;
3797 }
3798
3799 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3800 qemu_mutex_init(&decomp_param[i].mutex);
3801 qemu_cond_init(&decomp_param[i].cond);
3802 decomp_param[i].done = true;
3803 decomp_param[i].quit = false;
3804 qemu_thread_create(decompress_threads + i, "decompress",
3805 do_data_decompress, decomp_param + i,
3806 QEMU_THREAD_JOINABLE);
3807 }
3808 return 0;
3809 exit:
3810 compress_threads_load_cleanup();
3811 return -1;
3812 }
3813
3814 static void decompress_data_with_multi_threads(QEMUFile *f,
3815 void *host, int len)
3816 {
3817 int idx, thread_count;
3818
3819 thread_count = migrate_decompress_threads();
3820 qemu_mutex_lock(&decomp_done_lock);
3821 while (true) {
3822 for (idx = 0; idx < thread_count; idx++) {
3823 if (decomp_param[idx].done) {
3824 decomp_param[idx].done = false;
3825 qemu_mutex_lock(&decomp_param[idx].mutex);
3826 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3827 decomp_param[idx].des = host;
3828 decomp_param[idx].len = len;
3829 qemu_cond_signal(&decomp_param[idx].cond);
3830 qemu_mutex_unlock(&decomp_param[idx].mutex);
3831 break;
3832 }
3833 }
3834 if (idx < thread_count) {
3835 break;
3836 } else {
3837 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3838 }
3839 }
3840 qemu_mutex_unlock(&decomp_done_lock);
3841 }
3842
3843 /*
3844 * colo cache: this is for secondary VM, we cache the whole
3845 * memory of the secondary VM, it is need to hold the global lock
3846 * to call this helper.
3847 */
3848 int colo_init_ram_cache(void)
3849 {
3850 RAMBlock *block;
3851
3852 rcu_read_lock();
3853 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3854 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3855 NULL,
3856 false);
3857 if (!block->colo_cache) {
3858 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3859 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3860 block->used_length);
3861 goto out_locked;
3862 }
3863 memcpy(block->colo_cache, block->host, block->used_length);
3864 }
3865 rcu_read_unlock();
3866 /*
3867 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3868 * with to decide which page in cache should be flushed into SVM's RAM. Here
3869 * we use the same name 'ram_bitmap' as for migration.
3870 */
3871 if (ram_bytes_total()) {
3872 RAMBlock *block;
3873
3874 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3875 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3876
3877 block->bmap = bitmap_new(pages);
3878 bitmap_set(block->bmap, 0, pages);
3879 }
3880 }
3881 ram_state = g_new0(RAMState, 1);
3882 ram_state->migration_dirty_pages = 0;
3883 memory_global_dirty_log_start();
3884
3885 return 0;
3886
3887 out_locked:
3888
3889 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3890 if (block->colo_cache) {
3891 qemu_anon_ram_free(block->colo_cache, block->used_length);
3892 block->colo_cache = NULL;
3893 }
3894 }
3895
3896 rcu_read_unlock();
3897 return -errno;
3898 }
3899
3900 /* It is need to hold the global lock to call this helper */
3901 void colo_release_ram_cache(void)
3902 {
3903 RAMBlock *block;
3904
3905 memory_global_dirty_log_stop();
3906 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3907 g_free(block->bmap);
3908 block->bmap = NULL;
3909 }
3910
3911 rcu_read_lock();
3912
3913 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3914 if (block->colo_cache) {
3915 qemu_anon_ram_free(block->colo_cache, block->used_length);
3916 block->colo_cache = NULL;
3917 }
3918 }
3919
3920 rcu_read_unlock();
3921 g_free(ram_state);
3922 ram_state = NULL;
3923 }
3924
3925 /**
3926 * ram_load_setup: Setup RAM for migration incoming side
3927 *
3928 * Returns zero to indicate success and negative for error
3929 *
3930 * @f: QEMUFile where to receive the data
3931 * @opaque: RAMState pointer
3932 */
3933 static int ram_load_setup(QEMUFile *f, void *opaque)
3934 {
3935 if (compress_threads_load_setup(f)) {
3936 return -1;
3937 }
3938
3939 xbzrle_load_setup();
3940 ramblock_recv_map_init();
3941
3942 return 0;
3943 }
3944
3945 static int ram_load_cleanup(void *opaque)
3946 {
3947 RAMBlock *rb;
3948
3949 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3950 if (ramblock_is_pmem(rb)) {
3951 pmem_persist(rb->host, rb->used_length);
3952 }
3953 }
3954
3955 xbzrle_load_cleanup();
3956 compress_threads_load_cleanup();
3957
3958 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3959 g_free(rb->receivedmap);
3960 rb->receivedmap = NULL;
3961 }
3962
3963 return 0;
3964 }
3965
3966 /**
3967 * ram_postcopy_incoming_init: allocate postcopy data structures
3968 *
3969 * Returns 0 for success and negative if there was one error
3970 *
3971 * @mis: current migration incoming state
3972 *
3973 * Allocate data structures etc needed by incoming migration with
3974 * postcopy-ram. postcopy-ram's similarly names
3975 * postcopy_ram_incoming_init does the work.
3976 */
3977 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3978 {
3979 return postcopy_ram_incoming_init(mis);
3980 }
3981
3982 /**
3983 * ram_load_postcopy: load a page in postcopy case
3984 *
3985 * Returns 0 for success or -errno in case of error
3986 *
3987 * Called in postcopy mode by ram_load().
3988 * rcu_read_lock is taken prior to this being called.
3989 *
3990 * @f: QEMUFile where to send the data
3991 */
3992 static int ram_load_postcopy(QEMUFile *f)
3993 {
3994 int flags = 0, ret = 0;
3995 bool place_needed = false;
3996 bool matches_target_page_size = false;
3997 MigrationIncomingState *mis = migration_incoming_get_current();
3998 /* Temporary page that is later 'placed' */
3999 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4000 void *last_host = NULL;
4001 bool all_zero = false;
4002
4003 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4004 ram_addr_t addr;
4005 void *host = NULL;
4006 void *page_buffer = NULL;
4007 void *place_source = NULL;
4008 RAMBlock *block = NULL;
4009 uint8_t ch;
4010
4011 addr = qemu_get_be64(f);
4012
4013 /*
4014 * If qemu file error, we should stop here, and then "addr"
4015 * may be invalid
4016 */
4017 ret = qemu_file_get_error(f);
4018 if (ret) {
4019 break;
4020 }
4021
4022 flags = addr & ~TARGET_PAGE_MASK;
4023 addr &= TARGET_PAGE_MASK;
4024
4025 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4026 place_needed = false;
4027 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4028 block = ram_block_from_stream(f, flags);
4029
4030 host = host_from_ram_block_offset(block, addr);
4031 if (!host) {
4032 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4033 ret = -EINVAL;
4034 break;
4035 }
4036 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4037 /*
4038 * Postcopy requires that we place whole host pages atomically;
4039 * these may be huge pages for RAMBlocks that are backed by
4040 * hugetlbfs.
4041 * To make it atomic, the data is read into a temporary page
4042 * that's moved into place later.
4043 * The migration protocol uses, possibly smaller, target-pages
4044 * however the source ensures it always sends all the components
4045 * of a host page in order.
4046 */
4047 page_buffer = postcopy_host_page +
4048 ((uintptr_t)host & (block->page_size - 1));
4049 /* If all TP are zero then we can optimise the place */
4050 if (!((uintptr_t)host & (block->page_size - 1))) {
4051 all_zero = true;
4052 } else {
4053 /* not the 1st TP within the HP */
4054 if (host != (last_host + TARGET_PAGE_SIZE)) {
4055 error_report("Non-sequential target page %p/%p",
4056 host, last_host);
4057 ret = -EINVAL;
4058 break;
4059 }
4060 }
4061
4062
4063 /*
4064 * If it's the last part of a host page then we place the host
4065 * page
4066 */
4067 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4068 (block->page_size - 1)) == 0;
4069 place_source = postcopy_host_page;
4070 }
4071 last_host = host;
4072
4073 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4074 case RAM_SAVE_FLAG_ZERO:
4075 ch = qemu_get_byte(f);
4076 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4077 if (ch) {
4078 all_zero = false;
4079 }
4080 break;
4081
4082 case RAM_SAVE_FLAG_PAGE:
4083 all_zero = false;
4084 if (!matches_target_page_size) {
4085 /* For huge pages, we always use temporary buffer */
4086 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4087 } else {
4088 /*
4089 * For small pages that matches target page size, we
4090 * avoid the qemu_file copy. Instead we directly use
4091 * the buffer of QEMUFile to place the page. Note: we
4092 * cannot do any QEMUFile operation before using that
4093 * buffer to make sure the buffer is valid when
4094 * placing the page.
4095 */
4096 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4097 TARGET_PAGE_SIZE);
4098 }
4099 break;
4100 case RAM_SAVE_FLAG_EOS:
4101 /* normal exit */
4102 multifd_recv_sync_main();
4103 break;
4104 default:
4105 error_report("Unknown combination of migration flags: %#x"
4106 " (postcopy mode)", flags);
4107 ret = -EINVAL;
4108 break;
4109 }
4110
4111 /* Detect for any possible file errors */
4112 if (!ret && qemu_file_get_error(f)) {
4113 ret = qemu_file_get_error(f);
4114 }
4115
4116 if (!ret && place_needed) {
4117 /* This gets called at the last target page in the host page */
4118 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4119
4120 if (all_zero) {
4121 ret = postcopy_place_page_zero(mis, place_dest,
4122 block);
4123 } else {
4124 ret = postcopy_place_page(mis, place_dest,
4125 place_source, block);
4126 }
4127 }
4128 }
4129
4130 return ret;
4131 }
4132
4133 static bool postcopy_is_advised(void)
4134 {
4135 PostcopyState ps = postcopy_state_get();
4136 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4137 }
4138
4139 static bool postcopy_is_running(void)
4140 {
4141 PostcopyState ps = postcopy_state_get();
4142 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4143 }
4144
4145 /*
4146 * Flush content of RAM cache into SVM's memory.
4147 * Only flush the pages that be dirtied by PVM or SVM or both.
4148 */
4149 static void colo_flush_ram_cache(void)
4150 {
4151 RAMBlock *block = NULL;
4152 void *dst_host;
4153 void *src_host;
4154 unsigned long offset = 0;
4155
4156 memory_global_dirty_log_sync();
4157 rcu_read_lock();
4158 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4159 migration_bitmap_sync_range(ram_state, block, 0, block->used_length);
4160 }
4161 rcu_read_unlock();
4162
4163 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4164 rcu_read_lock();
4165 block = QLIST_FIRST_RCU(&ram_list.blocks);
4166
4167 while (block) {
4168 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4169
4170 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4171 offset = 0;
4172 block = QLIST_NEXT_RCU(block, next);
4173 } else {
4174 migration_bitmap_clear_dirty(ram_state, block, offset);
4175 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4176 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4177 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4178 }
4179 }
4180
4181 rcu_read_unlock();
4182 trace_colo_flush_ram_cache_end();
4183 }
4184
4185 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4186 {
4187 int flags = 0, ret = 0, invalid_flags = 0;
4188 static uint64_t seq_iter;
4189 int len = 0;
4190 /*
4191 * If system is running in postcopy mode, page inserts to host memory must
4192 * be atomic
4193 */
4194 bool postcopy_running = postcopy_is_running();
4195 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4196 bool postcopy_advised = postcopy_is_advised();
4197
4198 seq_iter++;
4199
4200 if (version_id != 4) {
4201 ret = -EINVAL;
4202 }
4203
4204 if (!migrate_use_compression()) {
4205 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4206 }
4207 /* This RCU critical section can be very long running.
4208 * When RCU reclaims in the code start to become numerous,
4209 * it will be necessary to reduce the granularity of this
4210 * critical section.
4211 */
4212 rcu_read_lock();
4213
4214 if (postcopy_running) {
4215 ret = ram_load_postcopy(f);
4216 }
4217
4218 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4219 ram_addr_t addr, total_ram_bytes;
4220 void *host = NULL;
4221 uint8_t ch;
4222
4223 addr = qemu_get_be64(f);
4224 flags = addr & ~TARGET_PAGE_MASK;
4225 addr &= TARGET_PAGE_MASK;
4226
4227 if (flags & invalid_flags) {
4228 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4229 error_report("Received an unexpected compressed page");
4230 }
4231
4232 ret = -EINVAL;
4233 break;
4234 }
4235
4236 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4237 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4238 RAMBlock *block = ram_block_from_stream(f, flags);
4239
4240 /*
4241 * After going into COLO, we should load the Page into colo_cache.
4242 */
4243 if (migration_incoming_in_colo_state()) {
4244 host = colo_cache_from_block_offset(block, addr);
4245 } else {
4246 host = host_from_ram_block_offset(block, addr);
4247 }
4248 if (!host) {
4249 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4250 ret = -EINVAL;
4251 break;
4252 }
4253
4254 if (!migration_incoming_in_colo_state()) {
4255 ramblock_recv_bitmap_set(block, host);
4256 }
4257
4258 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4259 }
4260
4261 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4262 case RAM_SAVE_FLAG_MEM_SIZE:
4263 /* Synchronize RAM block list */
4264 total_ram_bytes = addr;
4265 while (!ret && total_ram_bytes) {
4266 RAMBlock *block;
4267 char id[256];
4268 ram_addr_t length;
4269
4270 len = qemu_get_byte(f);
4271 qemu_get_buffer(f, (uint8_t *)id, len);
4272 id[len] = 0;
4273 length = qemu_get_be64(f);
4274
4275 block = qemu_ram_block_by_name(id);
4276 if (block && !qemu_ram_is_migratable(block)) {
4277 error_report("block %s should not be migrated !", id);
4278 ret = -EINVAL;
4279 } else if (block) {
4280 if (length != block->used_length) {
4281 Error *local_err = NULL;
4282
4283 ret = qemu_ram_resize(block, length,
4284 &local_err);
4285 if (local_err) {
4286 error_report_err(local_err);
4287 }
4288 }
4289 /* For postcopy we need to check hugepage sizes match */
4290 if (postcopy_advised &&
4291 block->page_size != qemu_host_page_size) {
4292 uint64_t remote_page_size = qemu_get_be64(f);
4293 if (remote_page_size != block->page_size) {
4294 error_report("Mismatched RAM page size %s "
4295 "(local) %zd != %" PRId64,
4296 id, block->page_size,
4297 remote_page_size);
4298 ret = -EINVAL;
4299 }
4300 }
4301 if (migrate_ignore_shared()) {
4302 hwaddr addr = qemu_get_be64(f);
4303 bool ignored = qemu_get_byte(f);
4304 if (ignored != ramblock_is_ignored(block)) {
4305 error_report("RAM block %s should %s be migrated",
4306 id, ignored ? "" : "not");
4307 ret = -EINVAL;
4308 }
4309 if (ramblock_is_ignored(block) &&
4310 block->mr->addr != addr) {
4311 error_report("Mismatched GPAs for block %s "
4312 "%" PRId64 "!= %" PRId64,
4313 id, (uint64_t)addr,
4314 (uint64_t)block->mr->addr);
4315 ret = -EINVAL;
4316 }
4317 }
4318 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4319 block->idstr);
4320 } else {
4321 error_report("Unknown ramblock \"%s\", cannot "
4322 "accept migration", id);
4323 ret = -EINVAL;
4324 }
4325
4326 total_ram_bytes -= length;
4327 }
4328 break;
4329
4330 case RAM_SAVE_FLAG_ZERO:
4331 ch = qemu_get_byte(f);
4332 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4333 break;
4334
4335 case RAM_SAVE_FLAG_PAGE:
4336 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4337 break;
4338
4339 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4340 len = qemu_get_be32(f);
4341 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4342 error_report("Invalid compressed data length: %d", len);
4343 ret = -EINVAL;
4344 break;
4345 }
4346 decompress_data_with_multi_threads(f, host, len);
4347 break;
4348
4349 case RAM_SAVE_FLAG_XBZRLE:
4350 if (load_xbzrle(f, addr, host) < 0) {
4351 error_report("Failed to decompress XBZRLE page at "
4352 RAM_ADDR_FMT, addr);
4353 ret = -EINVAL;
4354 break;
4355 }
4356 break;
4357 case RAM_SAVE_FLAG_EOS:
4358 /* normal exit */
4359 multifd_recv_sync_main();
4360 break;
4361 default:
4362 if (flags & RAM_SAVE_FLAG_HOOK) {
4363 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4364 } else {
4365 error_report("Unknown combination of migration flags: %#x",
4366 flags);
4367 ret = -EINVAL;
4368 }
4369 }
4370 if (!ret) {
4371 ret = qemu_file_get_error(f);
4372 }
4373 }
4374
4375 ret |= wait_for_decompress_done();
4376 rcu_read_unlock();
4377 trace_ram_load_complete(ret, seq_iter);
4378
4379 if (!ret && migration_incoming_in_colo_state()) {
4380 colo_flush_ram_cache();
4381 }
4382 return ret;
4383 }
4384
4385 static bool ram_has_postcopy(void *opaque)
4386 {
4387 RAMBlock *rb;
4388 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4389 if (ramblock_is_pmem(rb)) {
4390 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4391 "is not supported now!", rb->idstr, rb->host);
4392 return false;
4393 }
4394 }
4395
4396 return migrate_postcopy_ram();
4397 }
4398
4399 /* Sync all the dirty bitmap with destination VM. */
4400 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4401 {
4402 RAMBlock *block;
4403 QEMUFile *file = s->to_dst_file;
4404 int ramblock_count = 0;
4405
4406 trace_ram_dirty_bitmap_sync_start();
4407
4408 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4409 qemu_savevm_send_recv_bitmap(file, block->idstr);
4410 trace_ram_dirty_bitmap_request(block->idstr);
4411 ramblock_count++;
4412 }
4413
4414 trace_ram_dirty_bitmap_sync_wait();
4415
4416 /* Wait until all the ramblocks' dirty bitmap synced */
4417 while (ramblock_count--) {
4418 qemu_sem_wait(&s->rp_state.rp_sem);
4419 }
4420
4421 trace_ram_dirty_bitmap_sync_complete();
4422
4423 return 0;
4424 }
4425
4426 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4427 {
4428 qemu_sem_post(&s->rp_state.rp_sem);
4429 }
4430
4431 /*
4432 * Read the received bitmap, revert it as the initial dirty bitmap.
4433 * This is only used when the postcopy migration is paused but wants
4434 * to resume from a middle point.
4435 */
4436 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4437 {
4438 int ret = -EINVAL;
4439 QEMUFile *file = s->rp_state.from_dst_file;
4440 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4441 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4442 uint64_t size, end_mark;
4443
4444 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4445
4446 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4447 error_report("%s: incorrect state %s", __func__,
4448 MigrationStatus_str(s->state));
4449 return -EINVAL;
4450 }
4451
4452 /*
4453 * Note: see comments in ramblock_recv_bitmap_send() on why we
4454 * need the endianess convertion, and the paddings.
4455 */
4456 local_size = ROUND_UP(local_size, 8);
4457
4458 /* Add paddings */
4459 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4460
4461 size = qemu_get_be64(file);
4462
4463 /* The size of the bitmap should match with our ramblock */
4464 if (size != local_size) {
4465 error_report("%s: ramblock '%s' bitmap size mismatch "
4466 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4467 block->idstr, size, local_size);
4468 ret = -EINVAL;
4469 goto out;
4470 }
4471
4472 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4473 end_mark = qemu_get_be64(file);
4474
4475 ret = qemu_file_get_error(file);
4476 if (ret || size != local_size) {
4477 error_report("%s: read bitmap failed for ramblock '%s': %d"
4478 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4479 __func__, block->idstr, ret, local_size, size);
4480 ret = -EIO;
4481 goto out;
4482 }
4483
4484 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4485 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4486 __func__, block->idstr, end_mark);
4487 ret = -EINVAL;
4488 goto out;
4489 }
4490
4491 /*
4492 * Endianess convertion. We are during postcopy (though paused).
4493 * The dirty bitmap won't change. We can directly modify it.
4494 */
4495 bitmap_from_le(block->bmap, le_bitmap, nbits);
4496
4497 /*
4498 * What we received is "received bitmap". Revert it as the initial
4499 * dirty bitmap for this ramblock.
4500 */
4501 bitmap_complement(block->bmap, block->bmap, nbits);
4502
4503 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4504
4505 /*
4506 * We succeeded to sync bitmap for current ramblock. If this is
4507 * the last one to sync, we need to notify the main send thread.
4508 */
4509 ram_dirty_bitmap_reload_notify(s);
4510
4511 ret = 0;
4512 out:
4513 g_free(le_bitmap);
4514 return ret;
4515 }
4516
4517 static int ram_resume_prepare(MigrationState *s, void *opaque)
4518 {
4519 RAMState *rs = *(RAMState **)opaque;
4520 int ret;
4521
4522 ret = ram_dirty_bitmap_sync_all(s, rs);
4523 if (ret) {
4524 return ret;
4525 }
4526
4527 ram_state_resume_prepare(rs, s->to_dst_file);
4528
4529 return 0;
4530 }
4531
4532 static SaveVMHandlers savevm_ram_handlers = {
4533 .save_setup = ram_save_setup,
4534 .save_live_iterate = ram_save_iterate,
4535 .save_live_complete_postcopy = ram_save_complete,
4536 .save_live_complete_precopy = ram_save_complete,
4537 .has_postcopy = ram_has_postcopy,
4538 .save_live_pending = ram_save_pending,
4539 .load_state = ram_load,
4540 .save_cleanup = ram_save_cleanup,
4541 .load_setup = ram_load_setup,
4542 .load_cleanup = ram_load_cleanup,
4543 .resume_prepare = ram_resume_prepare,
4544 };
4545
4546 void ram_mig_init(void)
4547 {
4548 qemu_mutex_init(&XBZRLE.lock);
4549 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
4550 }