]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
multifd: Make multifd_load_setup() get an Error parameter
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "socket.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
49 #include "trace.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
54 #include "block.h"
55 #include "sysemu/sysemu.h"
56 #include "qemu/uuid.h"
57 #include "savevm.h"
58 #include "qemu/iov.h"
59
60 /***********************************************************/
61 /* ram save/restore */
62
63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
64 * worked for pages that where filled with the same char. We switched
65 * it to only search for the zero value. And to avoid confusion with
66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
67 */
68
69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
70 #define RAM_SAVE_FLAG_ZERO 0x02
71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
72 #define RAM_SAVE_FLAG_PAGE 0x08
73 #define RAM_SAVE_FLAG_EOS 0x10
74 #define RAM_SAVE_FLAG_CONTINUE 0x20
75 #define RAM_SAVE_FLAG_XBZRLE 0x40
76 /* 0x80 is reserved in migration.h start with 0x100 next */
77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
78
79 static inline bool is_zero_range(uint8_t *p, uint64_t size)
80 {
81 return buffer_is_zero(p, size);
82 }
83
84 XBZRLECacheStats xbzrle_counters;
85
86 /* struct contains XBZRLE cache and a static page
87 used by the compression */
88 static struct {
89 /* buffer used for XBZRLE encoding */
90 uint8_t *encoded_buf;
91 /* buffer for storing page content */
92 uint8_t *current_buf;
93 /* Cache for XBZRLE, Protected by lock. */
94 PageCache *cache;
95 QemuMutex lock;
96 /* it will store a page full of zeros */
97 uint8_t *zero_target_page;
98 /* buffer used for XBZRLE decoding */
99 uint8_t *decoded_buf;
100 } XBZRLE;
101
102 static void XBZRLE_cache_lock(void)
103 {
104 if (migrate_use_xbzrle())
105 qemu_mutex_lock(&XBZRLE.lock);
106 }
107
108 static void XBZRLE_cache_unlock(void)
109 {
110 if (migrate_use_xbzrle())
111 qemu_mutex_unlock(&XBZRLE.lock);
112 }
113
114 /**
115 * xbzrle_cache_resize: resize the xbzrle cache
116 *
117 * This function is called from qmp_migrate_set_cache_size in main
118 * thread, possibly while a migration is in progress. A running
119 * migration may be using the cache and might finish during this call,
120 * hence changes to the cache are protected by XBZRLE.lock().
121 *
122 * Returns 0 for success or -1 for error
123 *
124 * @new_size: new cache size
125 * @errp: set *errp if the check failed, with reason
126 */
127 int xbzrle_cache_resize(int64_t new_size, Error **errp)
128 {
129 PageCache *new_cache;
130 int64_t ret = 0;
131
132 /* Check for truncation */
133 if (new_size != (size_t)new_size) {
134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
135 "exceeding address space");
136 return -1;
137 }
138
139 if (new_size == migrate_xbzrle_cache_size()) {
140 /* nothing to do */
141 return 0;
142 }
143
144 XBZRLE_cache_lock();
145
146 if (XBZRLE.cache != NULL) {
147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
148 if (!new_cache) {
149 ret = -1;
150 goto out;
151 }
152
153 cache_fini(XBZRLE.cache);
154 XBZRLE.cache = new_cache;
155 }
156 out:
157 XBZRLE_cache_unlock();
158 return ret;
159 }
160
161 static bool ramblock_is_ignored(RAMBlock *block)
162 {
163 return !qemu_ram_is_migratable(block) ||
164 (migrate_ignore_shared() && qemu_ram_is_shared(block));
165 }
166
167 /* Should be holding either ram_list.mutex, or the RCU lock. */
168 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
169 INTERNAL_RAMBLOCK_FOREACH(block) \
170 if (ramblock_is_ignored(block)) {} else
171
172 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
173 INTERNAL_RAMBLOCK_FOREACH(block) \
174 if (!qemu_ram_is_migratable(block)) {} else
175
176 #undef RAMBLOCK_FOREACH
177
178 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
179 {
180 RAMBlock *block;
181 int ret = 0;
182
183 RCU_READ_LOCK_GUARD();
184
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 return ret;
192 }
193
194 static void ramblock_recv_map_init(void)
195 {
196 RAMBlock *rb;
197
198 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
199 assert(!rb->receivedmap);
200 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
201 }
202 }
203
204 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
205 {
206 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
207 rb->receivedmap);
208 }
209
210 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
211 {
212 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
213 }
214
215 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
216 {
217 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
218 }
219
220 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
221 size_t nr)
222 {
223 bitmap_set_atomic(rb->receivedmap,
224 ramblock_recv_bitmap_offset(host_addr, rb),
225 nr);
226 }
227
228 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
229
230 /*
231 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
232 *
233 * Returns >0 if success with sent bytes, or <0 if error.
234 */
235 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
236 const char *block_name)
237 {
238 RAMBlock *block = qemu_ram_block_by_name(block_name);
239 unsigned long *le_bitmap, nbits;
240 uint64_t size;
241
242 if (!block) {
243 error_report("%s: invalid block name: %s", __func__, block_name);
244 return -1;
245 }
246
247 nbits = block->used_length >> TARGET_PAGE_BITS;
248
249 /*
250 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
251 * machines we may need 4 more bytes for padding (see below
252 * comment). So extend it a bit before hand.
253 */
254 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
255
256 /*
257 * Always use little endian when sending the bitmap. This is
258 * required that when source and destination VMs are not using the
259 * same endianess. (Note: big endian won't work.)
260 */
261 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
262
263 /* Size of the bitmap, in bytes */
264 size = DIV_ROUND_UP(nbits, 8);
265
266 /*
267 * size is always aligned to 8 bytes for 64bit machines, but it
268 * may not be true for 32bit machines. We need this padding to
269 * make sure the migration can survive even between 32bit and
270 * 64bit machines.
271 */
272 size = ROUND_UP(size, 8);
273
274 qemu_put_be64(file, size);
275 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
276 /*
277 * Mark as an end, in case the middle part is screwed up due to
278 * some "misterious" reason.
279 */
280 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
281 qemu_fflush(file);
282
283 g_free(le_bitmap);
284
285 if (qemu_file_get_error(file)) {
286 return qemu_file_get_error(file);
287 }
288
289 return size + sizeof(size);
290 }
291
292 /*
293 * An outstanding page request, on the source, having been received
294 * and queued
295 */
296 struct RAMSrcPageRequest {
297 RAMBlock *rb;
298 hwaddr offset;
299 hwaddr len;
300
301 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
302 };
303
304 /* State of RAM for migration */
305 struct RAMState {
306 /* QEMUFile used for this migration */
307 QEMUFile *f;
308 /* Last block that we have visited searching for dirty pages */
309 RAMBlock *last_seen_block;
310 /* Last block from where we have sent data */
311 RAMBlock *last_sent_block;
312 /* Last dirty target page we have sent */
313 ram_addr_t last_page;
314 /* last ram version we have seen */
315 uint32_t last_version;
316 /* We are in the first round */
317 bool ram_bulk_stage;
318 /* The free page optimization is enabled */
319 bool fpo_enabled;
320 /* How many times we have dirty too many pages */
321 int dirty_rate_high_cnt;
322 /* these variables are used for bitmap sync */
323 /* last time we did a full bitmap_sync */
324 int64_t time_last_bitmap_sync;
325 /* bytes transferred at start_time */
326 uint64_t bytes_xfer_prev;
327 /* number of dirty pages since start_time */
328 uint64_t num_dirty_pages_period;
329 /* xbzrle misses since the beginning of the period */
330 uint64_t xbzrle_cache_miss_prev;
331
332 /* compression statistics since the beginning of the period */
333 /* amount of count that no free thread to compress data */
334 uint64_t compress_thread_busy_prev;
335 /* amount bytes after compression */
336 uint64_t compressed_size_prev;
337 /* amount of compressed pages */
338 uint64_t compress_pages_prev;
339
340 /* total handled target pages at the beginning of period */
341 uint64_t target_page_count_prev;
342 /* total handled target pages since start */
343 uint64_t target_page_count;
344 /* number of dirty bits in the bitmap */
345 uint64_t migration_dirty_pages;
346 /* Protects modification of the bitmap and migration dirty pages */
347 QemuMutex bitmap_mutex;
348 /* The RAMBlock used in the last src_page_requests */
349 RAMBlock *last_req_rb;
350 /* Queue of outstanding page requests from the destination */
351 QemuMutex src_page_req_mutex;
352 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
353 };
354 typedef struct RAMState RAMState;
355
356 static RAMState *ram_state;
357
358 static NotifierWithReturnList precopy_notifier_list;
359
360 void precopy_infrastructure_init(void)
361 {
362 notifier_with_return_list_init(&precopy_notifier_list);
363 }
364
365 void precopy_add_notifier(NotifierWithReturn *n)
366 {
367 notifier_with_return_list_add(&precopy_notifier_list, n);
368 }
369
370 void precopy_remove_notifier(NotifierWithReturn *n)
371 {
372 notifier_with_return_remove(n);
373 }
374
375 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
376 {
377 PrecopyNotifyData pnd;
378 pnd.reason = reason;
379 pnd.errp = errp;
380
381 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
382 }
383
384 void precopy_enable_free_page_optimization(void)
385 {
386 if (!ram_state) {
387 return;
388 }
389
390 ram_state->fpo_enabled = true;
391 }
392
393 uint64_t ram_bytes_remaining(void)
394 {
395 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
396 0;
397 }
398
399 MigrationStats ram_counters;
400
401 /* used by the search for pages to send */
402 struct PageSearchStatus {
403 /* Current block being searched */
404 RAMBlock *block;
405 /* Current page to search from */
406 unsigned long page;
407 /* Set once we wrap around */
408 bool complete_round;
409 };
410 typedef struct PageSearchStatus PageSearchStatus;
411
412 CompressionStats compression_counters;
413
414 struct CompressParam {
415 bool done;
416 bool quit;
417 bool zero_page;
418 QEMUFile *file;
419 QemuMutex mutex;
420 QemuCond cond;
421 RAMBlock *block;
422 ram_addr_t offset;
423
424 /* internally used fields */
425 z_stream stream;
426 uint8_t *originbuf;
427 };
428 typedef struct CompressParam CompressParam;
429
430 struct DecompressParam {
431 bool done;
432 bool quit;
433 QemuMutex mutex;
434 QemuCond cond;
435 void *des;
436 uint8_t *compbuf;
437 int len;
438 z_stream stream;
439 };
440 typedef struct DecompressParam DecompressParam;
441
442 static CompressParam *comp_param;
443 static QemuThread *compress_threads;
444 /* comp_done_cond is used to wake up the migration thread when
445 * one of the compression threads has finished the compression.
446 * comp_done_lock is used to co-work with comp_done_cond.
447 */
448 static QemuMutex comp_done_lock;
449 static QemuCond comp_done_cond;
450 /* The empty QEMUFileOps will be used by file in CompressParam */
451 static const QEMUFileOps empty_ops = { };
452
453 static QEMUFile *decomp_file;
454 static DecompressParam *decomp_param;
455 static QemuThread *decompress_threads;
456 static QemuMutex decomp_done_lock;
457 static QemuCond decomp_done_cond;
458
459 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
460 ram_addr_t offset, uint8_t *source_buf);
461
462 static void *do_data_compress(void *opaque)
463 {
464 CompressParam *param = opaque;
465 RAMBlock *block;
466 ram_addr_t offset;
467 bool zero_page;
468
469 qemu_mutex_lock(&param->mutex);
470 while (!param->quit) {
471 if (param->block) {
472 block = param->block;
473 offset = param->offset;
474 param->block = NULL;
475 qemu_mutex_unlock(&param->mutex);
476
477 zero_page = do_compress_ram_page(param->file, &param->stream,
478 block, offset, param->originbuf);
479
480 qemu_mutex_lock(&comp_done_lock);
481 param->done = true;
482 param->zero_page = zero_page;
483 qemu_cond_signal(&comp_done_cond);
484 qemu_mutex_unlock(&comp_done_lock);
485
486 qemu_mutex_lock(&param->mutex);
487 } else {
488 qemu_cond_wait(&param->cond, &param->mutex);
489 }
490 }
491 qemu_mutex_unlock(&param->mutex);
492
493 return NULL;
494 }
495
496 static void compress_threads_save_cleanup(void)
497 {
498 int i, thread_count;
499
500 if (!migrate_use_compression() || !comp_param) {
501 return;
502 }
503
504 thread_count = migrate_compress_threads();
505 for (i = 0; i < thread_count; i++) {
506 /*
507 * we use it as a indicator which shows if the thread is
508 * properly init'd or not
509 */
510 if (!comp_param[i].file) {
511 break;
512 }
513
514 qemu_mutex_lock(&comp_param[i].mutex);
515 comp_param[i].quit = true;
516 qemu_cond_signal(&comp_param[i].cond);
517 qemu_mutex_unlock(&comp_param[i].mutex);
518
519 qemu_thread_join(compress_threads + i);
520 qemu_mutex_destroy(&comp_param[i].mutex);
521 qemu_cond_destroy(&comp_param[i].cond);
522 deflateEnd(&comp_param[i].stream);
523 g_free(comp_param[i].originbuf);
524 qemu_fclose(comp_param[i].file);
525 comp_param[i].file = NULL;
526 }
527 qemu_mutex_destroy(&comp_done_lock);
528 qemu_cond_destroy(&comp_done_cond);
529 g_free(compress_threads);
530 g_free(comp_param);
531 compress_threads = NULL;
532 comp_param = NULL;
533 }
534
535 static int compress_threads_save_setup(void)
536 {
537 int i, thread_count;
538
539 if (!migrate_use_compression()) {
540 return 0;
541 }
542 thread_count = migrate_compress_threads();
543 compress_threads = g_new0(QemuThread, thread_count);
544 comp_param = g_new0(CompressParam, thread_count);
545 qemu_cond_init(&comp_done_cond);
546 qemu_mutex_init(&comp_done_lock);
547 for (i = 0; i < thread_count; i++) {
548 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
549 if (!comp_param[i].originbuf) {
550 goto exit;
551 }
552
553 if (deflateInit(&comp_param[i].stream,
554 migrate_compress_level()) != Z_OK) {
555 g_free(comp_param[i].originbuf);
556 goto exit;
557 }
558
559 /* comp_param[i].file is just used as a dummy buffer to save data,
560 * set its ops to empty.
561 */
562 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
563 comp_param[i].done = true;
564 comp_param[i].quit = false;
565 qemu_mutex_init(&comp_param[i].mutex);
566 qemu_cond_init(&comp_param[i].cond);
567 qemu_thread_create(compress_threads + i, "compress",
568 do_data_compress, comp_param + i,
569 QEMU_THREAD_JOINABLE);
570 }
571 return 0;
572
573 exit:
574 compress_threads_save_cleanup();
575 return -1;
576 }
577
578 /* Multiple fd's */
579
580 #define MULTIFD_MAGIC 0x11223344U
581 #define MULTIFD_VERSION 1
582
583 #define MULTIFD_FLAG_SYNC (1 << 0)
584
585 /* This value needs to be a multiple of qemu_target_page_size() */
586 #define MULTIFD_PACKET_SIZE (512 * 1024)
587
588 typedef struct {
589 uint32_t magic;
590 uint32_t version;
591 unsigned char uuid[16]; /* QemuUUID */
592 uint8_t id;
593 uint8_t unused1[7]; /* Reserved for future use */
594 uint64_t unused2[4]; /* Reserved for future use */
595 } __attribute__((packed)) MultiFDInit_t;
596
597 typedef struct {
598 uint32_t magic;
599 uint32_t version;
600 uint32_t flags;
601 /* maximum number of allocated pages */
602 uint32_t pages_alloc;
603 uint32_t pages_used;
604 /* size of the next packet that contains pages */
605 uint32_t next_packet_size;
606 uint64_t packet_num;
607 uint64_t unused[4]; /* Reserved for future use */
608 char ramblock[256];
609 uint64_t offset[];
610 } __attribute__((packed)) MultiFDPacket_t;
611
612 typedef struct {
613 /* number of used pages */
614 uint32_t used;
615 /* number of allocated pages */
616 uint32_t allocated;
617 /* global number of generated multifd packets */
618 uint64_t packet_num;
619 /* offset of each page */
620 ram_addr_t *offset;
621 /* pointer to each page */
622 struct iovec *iov;
623 RAMBlock *block;
624 } MultiFDPages_t;
625
626 typedef struct {
627 /* this fields are not changed once the thread is created */
628 /* channel number */
629 uint8_t id;
630 /* channel thread name */
631 char *name;
632 /* channel thread id */
633 QemuThread thread;
634 /* communication channel */
635 QIOChannel *c;
636 /* sem where to wait for more work */
637 QemuSemaphore sem;
638 /* this mutex protects the following parameters */
639 QemuMutex mutex;
640 /* is this channel thread running */
641 bool running;
642 /* should this thread finish */
643 bool quit;
644 /* thread has work to do */
645 int pending_job;
646 /* array of pages to sent */
647 MultiFDPages_t *pages;
648 /* packet allocated len */
649 uint32_t packet_len;
650 /* pointer to the packet */
651 MultiFDPacket_t *packet;
652 /* multifd flags for each packet */
653 uint32_t flags;
654 /* size of the next packet that contains pages */
655 uint32_t next_packet_size;
656 /* global number of generated multifd packets */
657 uint64_t packet_num;
658 /* thread local variables */
659 /* packets sent through this channel */
660 uint64_t num_packets;
661 /* pages sent through this channel */
662 uint64_t num_pages;
663 /* syncs main thread and channels */
664 QemuSemaphore sem_sync;
665 } MultiFDSendParams;
666
667 typedef struct {
668 /* this fields are not changed once the thread is created */
669 /* channel number */
670 uint8_t id;
671 /* channel thread name */
672 char *name;
673 /* channel thread id */
674 QemuThread thread;
675 /* communication channel */
676 QIOChannel *c;
677 /* this mutex protects the following parameters */
678 QemuMutex mutex;
679 /* is this channel thread running */
680 bool running;
681 /* should this thread finish */
682 bool quit;
683 /* array of pages to receive */
684 MultiFDPages_t *pages;
685 /* packet allocated len */
686 uint32_t packet_len;
687 /* pointer to the packet */
688 MultiFDPacket_t *packet;
689 /* multifd flags for each packet */
690 uint32_t flags;
691 /* global number of generated multifd packets */
692 uint64_t packet_num;
693 /* thread local variables */
694 /* size of the next packet that contains pages */
695 uint32_t next_packet_size;
696 /* packets sent through this channel */
697 uint64_t num_packets;
698 /* pages sent through this channel */
699 uint64_t num_pages;
700 /* syncs main thread and channels */
701 QemuSemaphore sem_sync;
702 } MultiFDRecvParams;
703
704 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
705 {
706 MultiFDInit_t msg = {};
707 int ret;
708
709 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
710 msg.version = cpu_to_be32(MULTIFD_VERSION);
711 msg.id = p->id;
712 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
713
714 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
715 if (ret != 0) {
716 return -1;
717 }
718 return 0;
719 }
720
721 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
722 {
723 MultiFDInit_t msg;
724 int ret;
725
726 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
727 if (ret != 0) {
728 return -1;
729 }
730
731 msg.magic = be32_to_cpu(msg.magic);
732 msg.version = be32_to_cpu(msg.version);
733
734 if (msg.magic != MULTIFD_MAGIC) {
735 error_setg(errp, "multifd: received packet magic %x "
736 "expected %x", msg.magic, MULTIFD_MAGIC);
737 return -1;
738 }
739
740 if (msg.version != MULTIFD_VERSION) {
741 error_setg(errp, "multifd: received packet version %d "
742 "expected %d", msg.version, MULTIFD_VERSION);
743 return -1;
744 }
745
746 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
747 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
748 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
749
750 error_setg(errp, "multifd: received uuid '%s' and expected "
751 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
752 g_free(uuid);
753 g_free(msg_uuid);
754 return -1;
755 }
756
757 if (msg.id > migrate_multifd_channels()) {
758 error_setg(errp, "multifd: received channel version %d "
759 "expected %d", msg.version, MULTIFD_VERSION);
760 return -1;
761 }
762
763 return msg.id;
764 }
765
766 static MultiFDPages_t *multifd_pages_init(size_t size)
767 {
768 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
769
770 pages->allocated = size;
771 pages->iov = g_new0(struct iovec, size);
772 pages->offset = g_new0(ram_addr_t, size);
773
774 return pages;
775 }
776
777 static void multifd_pages_clear(MultiFDPages_t *pages)
778 {
779 pages->used = 0;
780 pages->allocated = 0;
781 pages->packet_num = 0;
782 pages->block = NULL;
783 g_free(pages->iov);
784 pages->iov = NULL;
785 g_free(pages->offset);
786 pages->offset = NULL;
787 g_free(pages);
788 }
789
790 static void multifd_send_fill_packet(MultiFDSendParams *p)
791 {
792 MultiFDPacket_t *packet = p->packet;
793 int i;
794
795 packet->flags = cpu_to_be32(p->flags);
796 packet->pages_alloc = cpu_to_be32(p->pages->allocated);
797 packet->pages_used = cpu_to_be32(p->pages->used);
798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
799 packet->packet_num = cpu_to_be64(p->packet_num);
800
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
803 }
804
805 for (i = 0; i < p->pages->used; i++) {
806 /* there are architectures where ram_addr_t is 32 bit */
807 uint64_t temp = p->pages->offset[i];
808
809 packet->offset[i] = cpu_to_be64(temp);
810 }
811 }
812
813 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
814 {
815 MultiFDPacket_t *packet = p->packet;
816 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
817 RAMBlock *block;
818 int i;
819
820 packet->magic = be32_to_cpu(packet->magic);
821 if (packet->magic != MULTIFD_MAGIC) {
822 error_setg(errp, "multifd: received packet "
823 "magic %x and expected magic %x",
824 packet->magic, MULTIFD_MAGIC);
825 return -1;
826 }
827
828 packet->version = be32_to_cpu(packet->version);
829 if (packet->version != MULTIFD_VERSION) {
830 error_setg(errp, "multifd: received packet "
831 "version %d and expected version %d",
832 packet->version, MULTIFD_VERSION);
833 return -1;
834 }
835
836 p->flags = be32_to_cpu(packet->flags);
837
838 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
839 /*
840 * If we received a packet that is 100 times bigger than expected
841 * just stop migration. It is a magic number.
842 */
843 if (packet->pages_alloc > pages_max * 100) {
844 error_setg(errp, "multifd: received packet "
845 "with size %d and expected a maximum size of %d",
846 packet->pages_alloc, pages_max * 100) ;
847 return -1;
848 }
849 /*
850 * We received a packet that is bigger than expected but inside
851 * reasonable limits (see previous comment). Just reallocate.
852 */
853 if (packet->pages_alloc > p->pages->allocated) {
854 multifd_pages_clear(p->pages);
855 p->pages = multifd_pages_init(packet->pages_alloc);
856 }
857
858 p->pages->used = be32_to_cpu(packet->pages_used);
859 if (p->pages->used > packet->pages_alloc) {
860 error_setg(errp, "multifd: received packet "
861 "with %d pages and expected maximum pages are %d",
862 p->pages->used, packet->pages_alloc) ;
863 return -1;
864 }
865
866 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
867 p->packet_num = be64_to_cpu(packet->packet_num);
868
869 if (p->pages->used == 0) {
870 return 0;
871 }
872
873 /* make sure that ramblock is 0 terminated */
874 packet->ramblock[255] = 0;
875 block = qemu_ram_block_by_name(packet->ramblock);
876 if (!block) {
877 error_setg(errp, "multifd: unknown ram block %s",
878 packet->ramblock);
879 return -1;
880 }
881
882 for (i = 0; i < p->pages->used; i++) {
883 uint64_t offset = be64_to_cpu(packet->offset[i]);
884
885 if (offset > (block->used_length - qemu_target_page_size())) {
886 error_setg(errp, "multifd: offset too long %" PRIu64
887 " (max " RAM_ADDR_FMT ")",
888 offset, block->max_length);
889 return -1;
890 }
891 p->pages->iov[i].iov_base = block->host + offset;
892 p->pages->iov[i].iov_len = qemu_target_page_size();
893 }
894
895 return 0;
896 }
897
898 struct {
899 MultiFDSendParams *params;
900 /* array of pages to sent */
901 MultiFDPages_t *pages;
902 /* global number of generated multifd packets */
903 uint64_t packet_num;
904 /* send channels ready */
905 QemuSemaphore channels_ready;
906 /*
907 * Have we already run terminate threads. There is a race when it
908 * happens that we got one error while we are exiting.
909 * We will use atomic operations. Only valid values are 0 and 1.
910 */
911 int exiting;
912 } *multifd_send_state;
913
914 /*
915 * How we use multifd_send_state->pages and channel->pages?
916 *
917 * We create a pages for each channel, and a main one. Each time that
918 * we need to send a batch of pages we interchange the ones between
919 * multifd_send_state and the channel that is sending it. There are
920 * two reasons for that:
921 * - to not have to do so many mallocs during migration
922 * - to make easier to know what to free at the end of migration
923 *
924 * This way we always know who is the owner of each "pages" struct,
925 * and we don't need any locking. It belongs to the migration thread
926 * or to the channel thread. Switching is safe because the migration
927 * thread is using the channel mutex when changing it, and the channel
928 * have to had finish with its own, otherwise pending_job can't be
929 * false.
930 */
931
932 static int multifd_send_pages(QEMUFile *f)
933 {
934 int i;
935 static int next_channel;
936 MultiFDSendParams *p = NULL; /* make happy gcc */
937 MultiFDPages_t *pages = multifd_send_state->pages;
938 uint64_t transferred;
939
940 if (atomic_read(&multifd_send_state->exiting)) {
941 return -1;
942 }
943
944 qemu_sem_wait(&multifd_send_state->channels_ready);
945 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
946 p = &multifd_send_state->params[i];
947
948 qemu_mutex_lock(&p->mutex);
949 if (p->quit) {
950 error_report("%s: channel %d has already quit!", __func__, i);
951 qemu_mutex_unlock(&p->mutex);
952 return -1;
953 }
954 if (!p->pending_job) {
955 p->pending_job++;
956 next_channel = (i + 1) % migrate_multifd_channels();
957 break;
958 }
959 qemu_mutex_unlock(&p->mutex);
960 }
961 assert(!p->pages->used);
962 assert(!p->pages->block);
963
964 p->packet_num = multifd_send_state->packet_num++;
965 multifd_send_state->pages = p->pages;
966 p->pages = pages;
967 transferred = ((uint64_t) pages->used) * qemu_target_page_size()
968 + p->packet_len;
969 qemu_file_update_transfer(f, transferred);
970 ram_counters.multifd_bytes += transferred;
971 ram_counters.transferred += transferred;;
972 qemu_mutex_unlock(&p->mutex);
973 qemu_sem_post(&p->sem);
974
975 return 1;
976 }
977
978 static int multifd_queue_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
979 {
980 MultiFDPages_t *pages = multifd_send_state->pages;
981
982 if (!pages->block) {
983 pages->block = block;
984 }
985
986 if (pages->block == block) {
987 pages->offset[pages->used] = offset;
988 pages->iov[pages->used].iov_base = block->host + offset;
989 pages->iov[pages->used].iov_len = qemu_target_page_size();
990 pages->used++;
991
992 if (pages->used < pages->allocated) {
993 return 1;
994 }
995 }
996
997 if (multifd_send_pages(f) < 0) {
998 return -1;
999 }
1000
1001 if (pages->block != block) {
1002 return multifd_queue_page(f, block, offset);
1003 }
1004
1005 return 1;
1006 }
1007
1008 static void multifd_send_terminate_threads(Error *err)
1009 {
1010 int i;
1011
1012 trace_multifd_send_terminate_threads(err != NULL);
1013
1014 if (err) {
1015 MigrationState *s = migrate_get_current();
1016 migrate_set_error(s, err);
1017 if (s->state == MIGRATION_STATUS_SETUP ||
1018 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1019 s->state == MIGRATION_STATUS_DEVICE ||
1020 s->state == MIGRATION_STATUS_ACTIVE) {
1021 migrate_set_state(&s->state, s->state,
1022 MIGRATION_STATUS_FAILED);
1023 }
1024 }
1025
1026 /*
1027 * We don't want to exit each threads twice. Depending on where
1028 * we get the error, or if there are two independent errors in two
1029 * threads at the same time, we can end calling this function
1030 * twice.
1031 */
1032 if (atomic_xchg(&multifd_send_state->exiting, 1)) {
1033 return;
1034 }
1035
1036 for (i = 0; i < migrate_multifd_channels(); i++) {
1037 MultiFDSendParams *p = &multifd_send_state->params[i];
1038
1039 qemu_mutex_lock(&p->mutex);
1040 p->quit = true;
1041 qemu_sem_post(&p->sem);
1042 qemu_mutex_unlock(&p->mutex);
1043 }
1044 }
1045
1046 void multifd_save_cleanup(void)
1047 {
1048 int i;
1049
1050 if (!migrate_use_multifd()) {
1051 return;
1052 }
1053 multifd_send_terminate_threads(NULL);
1054 for (i = 0; i < migrate_multifd_channels(); i++) {
1055 MultiFDSendParams *p = &multifd_send_state->params[i];
1056
1057 if (p->running) {
1058 qemu_thread_join(&p->thread);
1059 }
1060 }
1061 for (i = 0; i < migrate_multifd_channels(); i++) {
1062 MultiFDSendParams *p = &multifd_send_state->params[i];
1063
1064 socket_send_channel_destroy(p->c);
1065 p->c = NULL;
1066 qemu_mutex_destroy(&p->mutex);
1067 qemu_sem_destroy(&p->sem);
1068 qemu_sem_destroy(&p->sem_sync);
1069 g_free(p->name);
1070 p->name = NULL;
1071 multifd_pages_clear(p->pages);
1072 p->pages = NULL;
1073 p->packet_len = 0;
1074 g_free(p->packet);
1075 p->packet = NULL;
1076 }
1077 qemu_sem_destroy(&multifd_send_state->channels_ready);
1078 g_free(multifd_send_state->params);
1079 multifd_send_state->params = NULL;
1080 multifd_pages_clear(multifd_send_state->pages);
1081 multifd_send_state->pages = NULL;
1082 g_free(multifd_send_state);
1083 multifd_send_state = NULL;
1084 }
1085
1086 static void multifd_send_sync_main(QEMUFile *f)
1087 {
1088 int i;
1089
1090 if (!migrate_use_multifd()) {
1091 return;
1092 }
1093 if (multifd_send_state->pages->used) {
1094 if (multifd_send_pages(f) < 0) {
1095 error_report("%s: multifd_send_pages fail", __func__);
1096 return;
1097 }
1098 }
1099 for (i = 0; i < migrate_multifd_channels(); i++) {
1100 MultiFDSendParams *p = &multifd_send_state->params[i];
1101
1102 trace_multifd_send_sync_main_signal(p->id);
1103
1104 qemu_mutex_lock(&p->mutex);
1105
1106 if (p->quit) {
1107 error_report("%s: channel %d has already quit", __func__, i);
1108 qemu_mutex_unlock(&p->mutex);
1109 return;
1110 }
1111
1112 p->packet_num = multifd_send_state->packet_num++;
1113 p->flags |= MULTIFD_FLAG_SYNC;
1114 p->pending_job++;
1115 qemu_file_update_transfer(f, p->packet_len);
1116 ram_counters.multifd_bytes += p->packet_len;
1117 ram_counters.transferred += p->packet_len;
1118 qemu_mutex_unlock(&p->mutex);
1119 qemu_sem_post(&p->sem);
1120 }
1121 for (i = 0; i < migrate_multifd_channels(); i++) {
1122 MultiFDSendParams *p = &multifd_send_state->params[i];
1123
1124 trace_multifd_send_sync_main_wait(p->id);
1125 qemu_sem_wait(&p->sem_sync);
1126 }
1127 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1128 }
1129
1130 static void *multifd_send_thread(void *opaque)
1131 {
1132 MultiFDSendParams *p = opaque;
1133 Error *local_err = NULL;
1134 int ret = 0;
1135 uint32_t flags = 0;
1136
1137 trace_multifd_send_thread_start(p->id);
1138 rcu_register_thread();
1139
1140 if (multifd_send_initial_packet(p, &local_err) < 0) {
1141 ret = -1;
1142 goto out;
1143 }
1144 /* initial packet */
1145 p->num_packets = 1;
1146
1147 while (true) {
1148 qemu_sem_wait(&p->sem);
1149
1150 if (atomic_read(&multifd_send_state->exiting)) {
1151 break;
1152 }
1153 qemu_mutex_lock(&p->mutex);
1154
1155 if (p->pending_job) {
1156 uint32_t used = p->pages->used;
1157 uint64_t packet_num = p->packet_num;
1158 flags = p->flags;
1159
1160 p->next_packet_size = used * qemu_target_page_size();
1161 multifd_send_fill_packet(p);
1162 p->flags = 0;
1163 p->num_packets++;
1164 p->num_pages += used;
1165 p->pages->used = 0;
1166 p->pages->block = NULL;
1167 qemu_mutex_unlock(&p->mutex);
1168
1169 trace_multifd_send(p->id, packet_num, used, flags,
1170 p->next_packet_size);
1171
1172 ret = qio_channel_write_all(p->c, (void *)p->packet,
1173 p->packet_len, &local_err);
1174 if (ret != 0) {
1175 break;
1176 }
1177
1178 if (used) {
1179 ret = qio_channel_writev_all(p->c, p->pages->iov,
1180 used, &local_err);
1181 if (ret != 0) {
1182 break;
1183 }
1184 }
1185
1186 qemu_mutex_lock(&p->mutex);
1187 p->pending_job--;
1188 qemu_mutex_unlock(&p->mutex);
1189
1190 if (flags & MULTIFD_FLAG_SYNC) {
1191 qemu_sem_post(&p->sem_sync);
1192 }
1193 qemu_sem_post(&multifd_send_state->channels_ready);
1194 } else if (p->quit) {
1195 qemu_mutex_unlock(&p->mutex);
1196 break;
1197 } else {
1198 qemu_mutex_unlock(&p->mutex);
1199 /* sometimes there are spurious wakeups */
1200 }
1201 }
1202
1203 out:
1204 if (local_err) {
1205 trace_multifd_send_error(p->id);
1206 multifd_send_terminate_threads(local_err);
1207 }
1208
1209 /*
1210 * Error happen, I will exit, but I can't just leave, tell
1211 * who pay attention to me.
1212 */
1213 if (ret != 0) {
1214 qemu_sem_post(&p->sem_sync);
1215 qemu_sem_post(&multifd_send_state->channels_ready);
1216 }
1217
1218 qemu_mutex_lock(&p->mutex);
1219 p->running = false;
1220 qemu_mutex_unlock(&p->mutex);
1221
1222 rcu_unregister_thread();
1223 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1224
1225 return NULL;
1226 }
1227
1228 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1229 {
1230 MultiFDSendParams *p = opaque;
1231 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1232 Error *local_err = NULL;
1233
1234 trace_multifd_new_send_channel_async(p->id);
1235 if (qio_task_propagate_error(task, &local_err)) {
1236 migrate_set_error(migrate_get_current(), local_err);
1237 /* Error happen, we need to tell who pay attention to me */
1238 qemu_sem_post(&multifd_send_state->channels_ready);
1239 qemu_sem_post(&p->sem_sync);
1240 /*
1241 * Although multifd_send_thread is not created, but main migration
1242 * thread neet to judge whether it is running, so we need to mark
1243 * its status.
1244 */
1245 p->quit = true;
1246 } else {
1247 p->c = QIO_CHANNEL(sioc);
1248 qio_channel_set_delay(p->c, false);
1249 p->running = true;
1250 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1251 QEMU_THREAD_JOINABLE);
1252 }
1253 }
1254
1255 int multifd_save_setup(Error **errp)
1256 {
1257 int thread_count;
1258 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1259 uint8_t i;
1260
1261 if (!migrate_use_multifd()) {
1262 return 0;
1263 }
1264 thread_count = migrate_multifd_channels();
1265 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1266 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1267 multifd_send_state->pages = multifd_pages_init(page_count);
1268 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1269 atomic_set(&multifd_send_state->exiting, 0);
1270
1271 for (i = 0; i < thread_count; i++) {
1272 MultiFDSendParams *p = &multifd_send_state->params[i];
1273
1274 qemu_mutex_init(&p->mutex);
1275 qemu_sem_init(&p->sem, 0);
1276 qemu_sem_init(&p->sem_sync, 0);
1277 p->quit = false;
1278 p->pending_job = 0;
1279 p->id = i;
1280 p->pages = multifd_pages_init(page_count);
1281 p->packet_len = sizeof(MultiFDPacket_t)
1282 + sizeof(uint64_t) * page_count;
1283 p->packet = g_malloc0(p->packet_len);
1284 p->packet->magic = cpu_to_be32(MULTIFD_MAGIC);
1285 p->packet->version = cpu_to_be32(MULTIFD_VERSION);
1286 p->name = g_strdup_printf("multifdsend_%d", i);
1287 socket_send_channel_create(multifd_new_send_channel_async, p);
1288 }
1289 return 0;
1290 }
1291
1292 struct {
1293 MultiFDRecvParams *params;
1294 /* number of created threads */
1295 int count;
1296 /* syncs main thread and channels */
1297 QemuSemaphore sem_sync;
1298 /* global number of generated multifd packets */
1299 uint64_t packet_num;
1300 } *multifd_recv_state;
1301
1302 static void multifd_recv_terminate_threads(Error *err)
1303 {
1304 int i;
1305
1306 trace_multifd_recv_terminate_threads(err != NULL);
1307
1308 if (err) {
1309 MigrationState *s = migrate_get_current();
1310 migrate_set_error(s, err);
1311 if (s->state == MIGRATION_STATUS_SETUP ||
1312 s->state == MIGRATION_STATUS_ACTIVE) {
1313 migrate_set_state(&s->state, s->state,
1314 MIGRATION_STATUS_FAILED);
1315 }
1316 }
1317
1318 for (i = 0; i < migrate_multifd_channels(); i++) {
1319 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1320
1321 qemu_mutex_lock(&p->mutex);
1322 p->quit = true;
1323 /*
1324 * We could arrive here for two reasons:
1325 * - normal quit, i.e. everything went fine, just finished
1326 * - error quit: We close the channels so the channel threads
1327 * finish the qio_channel_read_all_eof()
1328 */
1329 if (p->c) {
1330 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1331 }
1332 qemu_mutex_unlock(&p->mutex);
1333 }
1334 }
1335
1336 int multifd_load_cleanup(Error **errp)
1337 {
1338 int i;
1339 int ret = 0;
1340
1341 if (!migrate_use_multifd()) {
1342 return 0;
1343 }
1344 multifd_recv_terminate_threads(NULL);
1345 for (i = 0; i < migrate_multifd_channels(); i++) {
1346 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1347
1348 if (p->running) {
1349 p->quit = true;
1350 /*
1351 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1352 * however try to wakeup it without harm in cleanup phase.
1353 */
1354 qemu_sem_post(&p->sem_sync);
1355 qemu_thread_join(&p->thread);
1356 }
1357 }
1358 for (i = 0; i < migrate_multifd_channels(); i++) {
1359 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1360
1361 object_unref(OBJECT(p->c));
1362 p->c = NULL;
1363 qemu_mutex_destroy(&p->mutex);
1364 qemu_sem_destroy(&p->sem_sync);
1365 g_free(p->name);
1366 p->name = NULL;
1367 multifd_pages_clear(p->pages);
1368 p->pages = NULL;
1369 p->packet_len = 0;
1370 g_free(p->packet);
1371 p->packet = NULL;
1372 }
1373 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1374 g_free(multifd_recv_state->params);
1375 multifd_recv_state->params = NULL;
1376 g_free(multifd_recv_state);
1377 multifd_recv_state = NULL;
1378
1379 return ret;
1380 }
1381
1382 static void multifd_recv_sync_main(void)
1383 {
1384 int i;
1385
1386 if (!migrate_use_multifd()) {
1387 return;
1388 }
1389 for (i = 0; i < migrate_multifd_channels(); i++) {
1390 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1391
1392 trace_multifd_recv_sync_main_wait(p->id);
1393 qemu_sem_wait(&multifd_recv_state->sem_sync);
1394 }
1395 for (i = 0; i < migrate_multifd_channels(); i++) {
1396 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1397
1398 qemu_mutex_lock(&p->mutex);
1399 if (multifd_recv_state->packet_num < p->packet_num) {
1400 multifd_recv_state->packet_num = p->packet_num;
1401 }
1402 qemu_mutex_unlock(&p->mutex);
1403 trace_multifd_recv_sync_main_signal(p->id);
1404 qemu_sem_post(&p->sem_sync);
1405 }
1406 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1407 }
1408
1409 static void *multifd_recv_thread(void *opaque)
1410 {
1411 MultiFDRecvParams *p = opaque;
1412 Error *local_err = NULL;
1413 int ret;
1414
1415 trace_multifd_recv_thread_start(p->id);
1416 rcu_register_thread();
1417
1418 while (true) {
1419 uint32_t used;
1420 uint32_t flags;
1421
1422 if (p->quit) {
1423 break;
1424 }
1425
1426 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1427 p->packet_len, &local_err);
1428 if (ret == 0) { /* EOF */
1429 break;
1430 }
1431 if (ret == -1) { /* Error */
1432 break;
1433 }
1434
1435 qemu_mutex_lock(&p->mutex);
1436 ret = multifd_recv_unfill_packet(p, &local_err);
1437 if (ret) {
1438 qemu_mutex_unlock(&p->mutex);
1439 break;
1440 }
1441
1442 used = p->pages->used;
1443 flags = p->flags;
1444 trace_multifd_recv(p->id, p->packet_num, used, flags,
1445 p->next_packet_size);
1446 p->num_packets++;
1447 p->num_pages += used;
1448 qemu_mutex_unlock(&p->mutex);
1449
1450 if (used) {
1451 ret = qio_channel_readv_all(p->c, p->pages->iov,
1452 used, &local_err);
1453 if (ret != 0) {
1454 break;
1455 }
1456 }
1457
1458 if (flags & MULTIFD_FLAG_SYNC) {
1459 qemu_sem_post(&multifd_recv_state->sem_sync);
1460 qemu_sem_wait(&p->sem_sync);
1461 }
1462 }
1463
1464 if (local_err) {
1465 multifd_recv_terminate_threads(local_err);
1466 }
1467 qemu_mutex_lock(&p->mutex);
1468 p->running = false;
1469 qemu_mutex_unlock(&p->mutex);
1470
1471 rcu_unregister_thread();
1472 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1473
1474 return NULL;
1475 }
1476
1477 int multifd_load_setup(Error **errp)
1478 {
1479 int thread_count;
1480 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1481 uint8_t i;
1482
1483 if (!migrate_use_multifd()) {
1484 return 0;
1485 }
1486 thread_count = migrate_multifd_channels();
1487 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1488 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1489 atomic_set(&multifd_recv_state->count, 0);
1490 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1491
1492 for (i = 0; i < thread_count; i++) {
1493 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1494
1495 qemu_mutex_init(&p->mutex);
1496 qemu_sem_init(&p->sem_sync, 0);
1497 p->quit = false;
1498 p->id = i;
1499 p->pages = multifd_pages_init(page_count);
1500 p->packet_len = sizeof(MultiFDPacket_t)
1501 + sizeof(uint64_t) * page_count;
1502 p->packet = g_malloc0(p->packet_len);
1503 p->name = g_strdup_printf("multifdrecv_%d", i);
1504 }
1505 return 0;
1506 }
1507
1508 bool multifd_recv_all_channels_created(void)
1509 {
1510 int thread_count = migrate_multifd_channels();
1511
1512 if (!migrate_use_multifd()) {
1513 return true;
1514 }
1515
1516 return thread_count == atomic_read(&multifd_recv_state->count);
1517 }
1518
1519 /*
1520 * Try to receive all multifd channels to get ready for the migration.
1521 * - Return true and do not set @errp when correctly receving all channels;
1522 * - Return false and do not set @errp when correctly receiving the current one;
1523 * - Return false and set @errp when failing to receive the current channel.
1524 */
1525 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1526 {
1527 MultiFDRecvParams *p;
1528 Error *local_err = NULL;
1529 int id;
1530
1531 id = multifd_recv_initial_packet(ioc, &local_err);
1532 if (id < 0) {
1533 multifd_recv_terminate_threads(local_err);
1534 error_propagate_prepend(errp, local_err,
1535 "failed to receive packet"
1536 " via multifd channel %d: ",
1537 atomic_read(&multifd_recv_state->count));
1538 return false;
1539 }
1540 trace_multifd_recv_new_channel(id);
1541
1542 p = &multifd_recv_state->params[id];
1543 if (p->c != NULL) {
1544 error_setg(&local_err, "multifd: received id '%d' already setup'",
1545 id);
1546 multifd_recv_terminate_threads(local_err);
1547 error_propagate(errp, local_err);
1548 return false;
1549 }
1550 p->c = ioc;
1551 object_ref(OBJECT(ioc));
1552 /* initial packet */
1553 p->num_packets = 1;
1554
1555 p->running = true;
1556 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1557 QEMU_THREAD_JOINABLE);
1558 atomic_inc(&multifd_recv_state->count);
1559 return atomic_read(&multifd_recv_state->count) ==
1560 migrate_multifd_channels();
1561 }
1562
1563 /**
1564 * save_page_header: write page header to wire
1565 *
1566 * If this is the 1st block, it also writes the block identification
1567 *
1568 * Returns the number of bytes written
1569 *
1570 * @f: QEMUFile where to send the data
1571 * @block: block that contains the page we want to send
1572 * @offset: offset inside the block for the page
1573 * in the lower bits, it contains flags
1574 */
1575 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1576 ram_addr_t offset)
1577 {
1578 size_t size, len;
1579
1580 if (block == rs->last_sent_block) {
1581 offset |= RAM_SAVE_FLAG_CONTINUE;
1582 }
1583 qemu_put_be64(f, offset);
1584 size = 8;
1585
1586 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1587 len = strlen(block->idstr);
1588 qemu_put_byte(f, len);
1589 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1590 size += 1 + len;
1591 rs->last_sent_block = block;
1592 }
1593 return size;
1594 }
1595
1596 /**
1597 * mig_throttle_guest_down: throotle down the guest
1598 *
1599 * Reduce amount of guest cpu execution to hopefully slow down memory
1600 * writes. If guest dirty memory rate is reduced below the rate at
1601 * which we can transfer pages to the destination then we should be
1602 * able to complete migration. Some workloads dirty memory way too
1603 * fast and will not effectively converge, even with auto-converge.
1604 */
1605 static void mig_throttle_guest_down(void)
1606 {
1607 MigrationState *s = migrate_get_current();
1608 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1609 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1610 int pct_max = s->parameters.max_cpu_throttle;
1611
1612 /* We have not started throttling yet. Let's start it. */
1613 if (!cpu_throttle_active()) {
1614 cpu_throttle_set(pct_initial);
1615 } else {
1616 /* Throttling already on, just increase the rate */
1617 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1618 pct_max));
1619 }
1620 }
1621
1622 /**
1623 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1624 *
1625 * @rs: current RAM state
1626 * @current_addr: address for the zero page
1627 *
1628 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1629 * The important thing is that a stale (not-yet-0'd) page be replaced
1630 * by the new data.
1631 * As a bonus, if the page wasn't in the cache it gets added so that
1632 * when a small write is made into the 0'd page it gets XBZRLE sent.
1633 */
1634 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1635 {
1636 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1637 return;
1638 }
1639
1640 /* We don't care if this fails to allocate a new cache page
1641 * as long as it updated an old one */
1642 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1643 ram_counters.dirty_sync_count);
1644 }
1645
1646 #define ENCODING_FLAG_XBZRLE 0x1
1647
1648 /**
1649 * save_xbzrle_page: compress and send current page
1650 *
1651 * Returns: 1 means that we wrote the page
1652 * 0 means that page is identical to the one already sent
1653 * -1 means that xbzrle would be longer than normal
1654 *
1655 * @rs: current RAM state
1656 * @current_data: pointer to the address of the page contents
1657 * @current_addr: addr of the page
1658 * @block: block that contains the page we want to send
1659 * @offset: offset inside the block for the page
1660 * @last_stage: if we are at the completion stage
1661 */
1662 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1663 ram_addr_t current_addr, RAMBlock *block,
1664 ram_addr_t offset, bool last_stage)
1665 {
1666 int encoded_len = 0, bytes_xbzrle;
1667 uint8_t *prev_cached_page;
1668
1669 if (!cache_is_cached(XBZRLE.cache, current_addr,
1670 ram_counters.dirty_sync_count)) {
1671 xbzrle_counters.cache_miss++;
1672 if (!last_stage) {
1673 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1674 ram_counters.dirty_sync_count) == -1) {
1675 return -1;
1676 } else {
1677 /* update *current_data when the page has been
1678 inserted into cache */
1679 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1680 }
1681 }
1682 return -1;
1683 }
1684
1685 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1686
1687 /* save current buffer into memory */
1688 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1689
1690 /* XBZRLE encoding (if there is no overflow) */
1691 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1692 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1693 TARGET_PAGE_SIZE);
1694
1695 /*
1696 * Update the cache contents, so that it corresponds to the data
1697 * sent, in all cases except where we skip the page.
1698 */
1699 if (!last_stage && encoded_len != 0) {
1700 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1701 /*
1702 * In the case where we couldn't compress, ensure that the caller
1703 * sends the data from the cache, since the guest might have
1704 * changed the RAM since we copied it.
1705 */
1706 *current_data = prev_cached_page;
1707 }
1708
1709 if (encoded_len == 0) {
1710 trace_save_xbzrle_page_skipping();
1711 return 0;
1712 } else if (encoded_len == -1) {
1713 trace_save_xbzrle_page_overflow();
1714 xbzrle_counters.overflow++;
1715 return -1;
1716 }
1717
1718 /* Send XBZRLE based compressed page */
1719 bytes_xbzrle = save_page_header(rs, rs->f, block,
1720 offset | RAM_SAVE_FLAG_XBZRLE);
1721 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1722 qemu_put_be16(rs->f, encoded_len);
1723 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1724 bytes_xbzrle += encoded_len + 1 + 2;
1725 xbzrle_counters.pages++;
1726 xbzrle_counters.bytes += bytes_xbzrle;
1727 ram_counters.transferred += bytes_xbzrle;
1728
1729 return 1;
1730 }
1731
1732 /**
1733 * migration_bitmap_find_dirty: find the next dirty page from start
1734 *
1735 * Returns the page offset within memory region of the start of a dirty page
1736 *
1737 * @rs: current RAM state
1738 * @rb: RAMBlock where to search for dirty pages
1739 * @start: page where we start the search
1740 */
1741 static inline
1742 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1743 unsigned long start)
1744 {
1745 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1746 unsigned long *bitmap = rb->bmap;
1747 unsigned long next;
1748
1749 if (ramblock_is_ignored(rb)) {
1750 return size;
1751 }
1752
1753 /*
1754 * When the free page optimization is enabled, we need to check the bitmap
1755 * to send the non-free pages rather than all the pages in the bulk stage.
1756 */
1757 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1758 next = start + 1;
1759 } else {
1760 next = find_next_bit(bitmap, size, start);
1761 }
1762
1763 return next;
1764 }
1765
1766 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1767 RAMBlock *rb,
1768 unsigned long page)
1769 {
1770 bool ret;
1771
1772 qemu_mutex_lock(&rs->bitmap_mutex);
1773
1774 /*
1775 * Clear dirty bitmap if needed. This _must_ be called before we
1776 * send any of the page in the chunk because we need to make sure
1777 * we can capture further page content changes when we sync dirty
1778 * log the next time. So as long as we are going to send any of
1779 * the page in the chunk we clear the remote dirty bitmap for all.
1780 * Clearing it earlier won't be a problem, but too late will.
1781 */
1782 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1783 uint8_t shift = rb->clear_bmap_shift;
1784 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1785 hwaddr start = (((ram_addr_t)page) << TARGET_PAGE_BITS) & (-size);
1786
1787 /*
1788 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1789 * can make things easier sometimes since then start address
1790 * of the small chunk will always be 64 pages aligned so the
1791 * bitmap will always be aligned to unsigned long. We should
1792 * even be able to remove this restriction but I'm simply
1793 * keeping it.
1794 */
1795 assert(shift >= 6);
1796 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1797 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1798 }
1799
1800 ret = test_and_clear_bit(page, rb->bmap);
1801
1802 if (ret) {
1803 rs->migration_dirty_pages--;
1804 }
1805 qemu_mutex_unlock(&rs->bitmap_mutex);
1806
1807 return ret;
1808 }
1809
1810 /* Called with RCU critical section */
1811 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1812 {
1813 rs->migration_dirty_pages +=
1814 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1815 &rs->num_dirty_pages_period);
1816 }
1817
1818 /**
1819 * ram_pagesize_summary: calculate all the pagesizes of a VM
1820 *
1821 * Returns a summary bitmap of the page sizes of all RAMBlocks
1822 *
1823 * For VMs with just normal pages this is equivalent to the host page
1824 * size. If it's got some huge pages then it's the OR of all the
1825 * different page sizes.
1826 */
1827 uint64_t ram_pagesize_summary(void)
1828 {
1829 RAMBlock *block;
1830 uint64_t summary = 0;
1831
1832 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1833 summary |= block->page_size;
1834 }
1835
1836 return summary;
1837 }
1838
1839 uint64_t ram_get_total_transferred_pages(void)
1840 {
1841 return ram_counters.normal + ram_counters.duplicate +
1842 compression_counters.pages + xbzrle_counters.pages;
1843 }
1844
1845 static void migration_update_rates(RAMState *rs, int64_t end_time)
1846 {
1847 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1848 double compressed_size;
1849
1850 /* calculate period counters */
1851 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1852 / (end_time - rs->time_last_bitmap_sync);
1853
1854 if (!page_count) {
1855 return;
1856 }
1857
1858 if (migrate_use_xbzrle()) {
1859 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1860 rs->xbzrle_cache_miss_prev) / page_count;
1861 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1862 }
1863
1864 if (migrate_use_compression()) {
1865 compression_counters.busy_rate = (double)(compression_counters.busy -
1866 rs->compress_thread_busy_prev) / page_count;
1867 rs->compress_thread_busy_prev = compression_counters.busy;
1868
1869 compressed_size = compression_counters.compressed_size -
1870 rs->compressed_size_prev;
1871 if (compressed_size) {
1872 double uncompressed_size = (compression_counters.pages -
1873 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1874
1875 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1876 compression_counters.compression_rate =
1877 uncompressed_size / compressed_size;
1878
1879 rs->compress_pages_prev = compression_counters.pages;
1880 rs->compressed_size_prev = compression_counters.compressed_size;
1881 }
1882 }
1883 }
1884
1885 static void migration_bitmap_sync(RAMState *rs)
1886 {
1887 RAMBlock *block;
1888 int64_t end_time;
1889 uint64_t bytes_xfer_now;
1890
1891 ram_counters.dirty_sync_count++;
1892
1893 if (!rs->time_last_bitmap_sync) {
1894 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1895 }
1896
1897 trace_migration_bitmap_sync_start();
1898 memory_global_dirty_log_sync();
1899
1900 qemu_mutex_lock(&rs->bitmap_mutex);
1901 WITH_RCU_READ_LOCK_GUARD() {
1902 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1903 ramblock_sync_dirty_bitmap(rs, block);
1904 }
1905 ram_counters.remaining = ram_bytes_remaining();
1906 }
1907 qemu_mutex_unlock(&rs->bitmap_mutex);
1908
1909 memory_global_after_dirty_log_sync();
1910 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1911
1912 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1913
1914 /* more than 1 second = 1000 millisecons */
1915 if (end_time > rs->time_last_bitmap_sync + 1000) {
1916 bytes_xfer_now = ram_counters.transferred;
1917
1918 /* During block migration the auto-converge logic incorrectly detects
1919 * that ram migration makes no progress. Avoid this by disabling the
1920 * throttling logic during the bulk phase of block migration. */
1921 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1922 /* The following detection logic can be refined later. For now:
1923 Check to see if the dirtied bytes is 50% more than the approx.
1924 amount of bytes that just got transferred since the last time we
1925 were in this routine. If that happens twice, start or increase
1926 throttling */
1927
1928 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1929 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1930 (++rs->dirty_rate_high_cnt >= 2)) {
1931 trace_migration_throttle();
1932 rs->dirty_rate_high_cnt = 0;
1933 mig_throttle_guest_down();
1934 }
1935 }
1936
1937 migration_update_rates(rs, end_time);
1938
1939 rs->target_page_count_prev = rs->target_page_count;
1940
1941 /* reset period counters */
1942 rs->time_last_bitmap_sync = end_time;
1943 rs->num_dirty_pages_period = 0;
1944 rs->bytes_xfer_prev = bytes_xfer_now;
1945 }
1946 if (migrate_use_events()) {
1947 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1948 }
1949 }
1950
1951 static void migration_bitmap_sync_precopy(RAMState *rs)
1952 {
1953 Error *local_err = NULL;
1954
1955 /*
1956 * The current notifier usage is just an optimization to migration, so we
1957 * don't stop the normal migration process in the error case.
1958 */
1959 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1960 error_report_err(local_err);
1961 }
1962
1963 migration_bitmap_sync(rs);
1964
1965 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1966 error_report_err(local_err);
1967 }
1968 }
1969
1970 /**
1971 * save_zero_page_to_file: send the zero page to the file
1972 *
1973 * Returns the size of data written to the file, 0 means the page is not
1974 * a zero page
1975 *
1976 * @rs: current RAM state
1977 * @file: the file where the data is saved
1978 * @block: block that contains the page we want to send
1979 * @offset: offset inside the block for the page
1980 */
1981 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1982 RAMBlock *block, ram_addr_t offset)
1983 {
1984 uint8_t *p = block->host + offset;
1985 int len = 0;
1986
1987 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1988 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1989 qemu_put_byte(file, 0);
1990 len += 1;
1991 }
1992 return len;
1993 }
1994
1995 /**
1996 * save_zero_page: send the zero page to the stream
1997 *
1998 * Returns the number of pages written.
1999 *
2000 * @rs: current RAM state
2001 * @block: block that contains the page we want to send
2002 * @offset: offset inside the block for the page
2003 */
2004 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2005 {
2006 int len = save_zero_page_to_file(rs, rs->f, block, offset);
2007
2008 if (len) {
2009 ram_counters.duplicate++;
2010 ram_counters.transferred += len;
2011 return 1;
2012 }
2013 return -1;
2014 }
2015
2016 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
2017 {
2018 if (!migrate_release_ram() || !migration_in_postcopy()) {
2019 return;
2020 }
2021
2022 ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS);
2023 }
2024
2025 /*
2026 * @pages: the number of pages written by the control path,
2027 * < 0 - error
2028 * > 0 - number of pages written
2029 *
2030 * Return true if the pages has been saved, otherwise false is returned.
2031 */
2032 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2033 int *pages)
2034 {
2035 uint64_t bytes_xmit = 0;
2036 int ret;
2037
2038 *pages = -1;
2039 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
2040 &bytes_xmit);
2041 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
2042 return false;
2043 }
2044
2045 if (bytes_xmit) {
2046 ram_counters.transferred += bytes_xmit;
2047 *pages = 1;
2048 }
2049
2050 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2051 return true;
2052 }
2053
2054 if (bytes_xmit > 0) {
2055 ram_counters.normal++;
2056 } else if (bytes_xmit == 0) {
2057 ram_counters.duplicate++;
2058 }
2059
2060 return true;
2061 }
2062
2063 /*
2064 * directly send the page to the stream
2065 *
2066 * Returns the number of pages written.
2067 *
2068 * @rs: current RAM state
2069 * @block: block that contains the page we want to send
2070 * @offset: offset inside the block for the page
2071 * @buf: the page to be sent
2072 * @async: send to page asyncly
2073 */
2074 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2075 uint8_t *buf, bool async)
2076 {
2077 ram_counters.transferred += save_page_header(rs, rs->f, block,
2078 offset | RAM_SAVE_FLAG_PAGE);
2079 if (async) {
2080 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2081 migrate_release_ram() &
2082 migration_in_postcopy());
2083 } else {
2084 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2085 }
2086 ram_counters.transferred += TARGET_PAGE_SIZE;
2087 ram_counters.normal++;
2088 return 1;
2089 }
2090
2091 /**
2092 * ram_save_page: send the given page to the stream
2093 *
2094 * Returns the number of pages written.
2095 * < 0 - error
2096 * >=0 - Number of pages written - this might legally be 0
2097 * if xbzrle noticed the page was the same.
2098 *
2099 * @rs: current RAM state
2100 * @block: block that contains the page we want to send
2101 * @offset: offset inside the block for the page
2102 * @last_stage: if we are at the completion stage
2103 */
2104 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2105 {
2106 int pages = -1;
2107 uint8_t *p;
2108 bool send_async = true;
2109 RAMBlock *block = pss->block;
2110 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2111 ram_addr_t current_addr = block->offset + offset;
2112
2113 p = block->host + offset;
2114 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2115
2116 XBZRLE_cache_lock();
2117 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2118 migrate_use_xbzrle()) {
2119 pages = save_xbzrle_page(rs, &p, current_addr, block,
2120 offset, last_stage);
2121 if (!last_stage) {
2122 /* Can't send this cached data async, since the cache page
2123 * might get updated before it gets to the wire
2124 */
2125 send_async = false;
2126 }
2127 }
2128
2129 /* XBZRLE overflow or normal page */
2130 if (pages == -1) {
2131 pages = save_normal_page(rs, block, offset, p, send_async);
2132 }
2133
2134 XBZRLE_cache_unlock();
2135
2136 return pages;
2137 }
2138
2139 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2140 ram_addr_t offset)
2141 {
2142 if (multifd_queue_page(rs->f, block, offset) < 0) {
2143 return -1;
2144 }
2145 ram_counters.normal++;
2146
2147 return 1;
2148 }
2149
2150 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2151 ram_addr_t offset, uint8_t *source_buf)
2152 {
2153 RAMState *rs = ram_state;
2154 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2155 bool zero_page = false;
2156 int ret;
2157
2158 if (save_zero_page_to_file(rs, f, block, offset)) {
2159 zero_page = true;
2160 goto exit;
2161 }
2162
2163 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2164
2165 /*
2166 * copy it to a internal buffer to avoid it being modified by VM
2167 * so that we can catch up the error during compression and
2168 * decompression
2169 */
2170 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2171 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2172 if (ret < 0) {
2173 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2174 error_report("compressed data failed!");
2175 return false;
2176 }
2177
2178 exit:
2179 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2180 return zero_page;
2181 }
2182
2183 static void
2184 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2185 {
2186 ram_counters.transferred += bytes_xmit;
2187
2188 if (param->zero_page) {
2189 ram_counters.duplicate++;
2190 return;
2191 }
2192
2193 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2194 compression_counters.compressed_size += bytes_xmit - 8;
2195 compression_counters.pages++;
2196 }
2197
2198 static bool save_page_use_compression(RAMState *rs);
2199
2200 static void flush_compressed_data(RAMState *rs)
2201 {
2202 int idx, len, thread_count;
2203
2204 if (!save_page_use_compression(rs)) {
2205 return;
2206 }
2207 thread_count = migrate_compress_threads();
2208
2209 qemu_mutex_lock(&comp_done_lock);
2210 for (idx = 0; idx < thread_count; idx++) {
2211 while (!comp_param[idx].done) {
2212 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2213 }
2214 }
2215 qemu_mutex_unlock(&comp_done_lock);
2216
2217 for (idx = 0; idx < thread_count; idx++) {
2218 qemu_mutex_lock(&comp_param[idx].mutex);
2219 if (!comp_param[idx].quit) {
2220 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2221 /*
2222 * it's safe to fetch zero_page without holding comp_done_lock
2223 * as there is no further request submitted to the thread,
2224 * i.e, the thread should be waiting for a request at this point.
2225 */
2226 update_compress_thread_counts(&comp_param[idx], len);
2227 }
2228 qemu_mutex_unlock(&comp_param[idx].mutex);
2229 }
2230 }
2231
2232 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2233 ram_addr_t offset)
2234 {
2235 param->block = block;
2236 param->offset = offset;
2237 }
2238
2239 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2240 ram_addr_t offset)
2241 {
2242 int idx, thread_count, bytes_xmit = -1, pages = -1;
2243 bool wait = migrate_compress_wait_thread();
2244
2245 thread_count = migrate_compress_threads();
2246 qemu_mutex_lock(&comp_done_lock);
2247 retry:
2248 for (idx = 0; idx < thread_count; idx++) {
2249 if (comp_param[idx].done) {
2250 comp_param[idx].done = false;
2251 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2252 qemu_mutex_lock(&comp_param[idx].mutex);
2253 set_compress_params(&comp_param[idx], block, offset);
2254 qemu_cond_signal(&comp_param[idx].cond);
2255 qemu_mutex_unlock(&comp_param[idx].mutex);
2256 pages = 1;
2257 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2258 break;
2259 }
2260 }
2261
2262 /*
2263 * wait for the free thread if the user specifies 'compress-wait-thread',
2264 * otherwise we will post the page out in the main thread as normal page.
2265 */
2266 if (pages < 0 && wait) {
2267 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2268 goto retry;
2269 }
2270 qemu_mutex_unlock(&comp_done_lock);
2271
2272 return pages;
2273 }
2274
2275 /**
2276 * find_dirty_block: find the next dirty page and update any state
2277 * associated with the search process.
2278 *
2279 * Returns true if a page is found
2280 *
2281 * @rs: current RAM state
2282 * @pss: data about the state of the current dirty page scan
2283 * @again: set to false if the search has scanned the whole of RAM
2284 */
2285 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2286 {
2287 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2288 if (pss->complete_round && pss->block == rs->last_seen_block &&
2289 pss->page >= rs->last_page) {
2290 /*
2291 * We've been once around the RAM and haven't found anything.
2292 * Give up.
2293 */
2294 *again = false;
2295 return false;
2296 }
2297 if ((((ram_addr_t)pss->page) << TARGET_PAGE_BITS)
2298 >= pss->block->used_length) {
2299 /* Didn't find anything in this RAM Block */
2300 pss->page = 0;
2301 pss->block = QLIST_NEXT_RCU(pss->block, next);
2302 if (!pss->block) {
2303 /*
2304 * If memory migration starts over, we will meet a dirtied page
2305 * which may still exists in compression threads's ring, so we
2306 * should flush the compressed data to make sure the new page
2307 * is not overwritten by the old one in the destination.
2308 *
2309 * Also If xbzrle is on, stop using the data compression at this
2310 * point. In theory, xbzrle can do better than compression.
2311 */
2312 flush_compressed_data(rs);
2313
2314 /* Hit the end of the list */
2315 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2316 /* Flag that we've looped */
2317 pss->complete_round = true;
2318 rs->ram_bulk_stage = false;
2319 }
2320 /* Didn't find anything this time, but try again on the new block */
2321 *again = true;
2322 return false;
2323 } else {
2324 /* Can go around again, but... */
2325 *again = true;
2326 /* We've found something so probably don't need to */
2327 return true;
2328 }
2329 }
2330
2331 /**
2332 * unqueue_page: gets a page of the queue
2333 *
2334 * Helper for 'get_queued_page' - gets a page off the queue
2335 *
2336 * Returns the block of the page (or NULL if none available)
2337 *
2338 * @rs: current RAM state
2339 * @offset: used to return the offset within the RAMBlock
2340 */
2341 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2342 {
2343 RAMBlock *block = NULL;
2344
2345 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2346 return NULL;
2347 }
2348
2349 qemu_mutex_lock(&rs->src_page_req_mutex);
2350 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2351 struct RAMSrcPageRequest *entry =
2352 QSIMPLEQ_FIRST(&rs->src_page_requests);
2353 block = entry->rb;
2354 *offset = entry->offset;
2355
2356 if (entry->len > TARGET_PAGE_SIZE) {
2357 entry->len -= TARGET_PAGE_SIZE;
2358 entry->offset += TARGET_PAGE_SIZE;
2359 } else {
2360 memory_region_unref(block->mr);
2361 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2362 g_free(entry);
2363 migration_consume_urgent_request();
2364 }
2365 }
2366 qemu_mutex_unlock(&rs->src_page_req_mutex);
2367
2368 return block;
2369 }
2370
2371 /**
2372 * get_queued_page: unqueue a page from the postcopy requests
2373 *
2374 * Skips pages that are already sent (!dirty)
2375 *
2376 * Returns true if a queued page is found
2377 *
2378 * @rs: current RAM state
2379 * @pss: data about the state of the current dirty page scan
2380 */
2381 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2382 {
2383 RAMBlock *block;
2384 ram_addr_t offset;
2385 bool dirty;
2386
2387 do {
2388 block = unqueue_page(rs, &offset);
2389 /*
2390 * We're sending this page, and since it's postcopy nothing else
2391 * will dirty it, and we must make sure it doesn't get sent again
2392 * even if this queue request was received after the background
2393 * search already sent it.
2394 */
2395 if (block) {
2396 unsigned long page;
2397
2398 page = offset >> TARGET_PAGE_BITS;
2399 dirty = test_bit(page, block->bmap);
2400 if (!dirty) {
2401 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2402 page);
2403 } else {
2404 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2405 }
2406 }
2407
2408 } while (block && !dirty);
2409
2410 if (block) {
2411 /*
2412 * As soon as we start servicing pages out of order, then we have
2413 * to kill the bulk stage, since the bulk stage assumes
2414 * in (migration_bitmap_find_and_reset_dirty) that every page is
2415 * dirty, that's no longer true.
2416 */
2417 rs->ram_bulk_stage = false;
2418
2419 /*
2420 * We want the background search to continue from the queued page
2421 * since the guest is likely to want other pages near to the page
2422 * it just requested.
2423 */
2424 pss->block = block;
2425 pss->page = offset >> TARGET_PAGE_BITS;
2426
2427 /*
2428 * This unqueued page would break the "one round" check, even is
2429 * really rare.
2430 */
2431 pss->complete_round = false;
2432 }
2433
2434 return !!block;
2435 }
2436
2437 /**
2438 * migration_page_queue_free: drop any remaining pages in the ram
2439 * request queue
2440 *
2441 * It should be empty at the end anyway, but in error cases there may
2442 * be some left. in case that there is any page left, we drop it.
2443 *
2444 */
2445 static void migration_page_queue_free(RAMState *rs)
2446 {
2447 struct RAMSrcPageRequest *mspr, *next_mspr;
2448 /* This queue generally should be empty - but in the case of a failed
2449 * migration might have some droppings in.
2450 */
2451 RCU_READ_LOCK_GUARD();
2452 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2453 memory_region_unref(mspr->rb->mr);
2454 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2455 g_free(mspr);
2456 }
2457 }
2458
2459 /**
2460 * ram_save_queue_pages: queue the page for transmission
2461 *
2462 * A request from postcopy destination for example.
2463 *
2464 * Returns zero on success or negative on error
2465 *
2466 * @rbname: Name of the RAMBLock of the request. NULL means the
2467 * same that last one.
2468 * @start: starting address from the start of the RAMBlock
2469 * @len: length (in bytes) to send
2470 */
2471 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2472 {
2473 RAMBlock *ramblock;
2474 RAMState *rs = ram_state;
2475
2476 ram_counters.postcopy_requests++;
2477 RCU_READ_LOCK_GUARD();
2478
2479 if (!rbname) {
2480 /* Reuse last RAMBlock */
2481 ramblock = rs->last_req_rb;
2482
2483 if (!ramblock) {
2484 /*
2485 * Shouldn't happen, we can't reuse the last RAMBlock if
2486 * it's the 1st request.
2487 */
2488 error_report("ram_save_queue_pages no previous block");
2489 return -1;
2490 }
2491 } else {
2492 ramblock = qemu_ram_block_by_name(rbname);
2493
2494 if (!ramblock) {
2495 /* We shouldn't be asked for a non-existent RAMBlock */
2496 error_report("ram_save_queue_pages no block '%s'", rbname);
2497 return -1;
2498 }
2499 rs->last_req_rb = ramblock;
2500 }
2501 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2502 if (start+len > ramblock->used_length) {
2503 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2504 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2505 __func__, start, len, ramblock->used_length);
2506 return -1;
2507 }
2508
2509 struct RAMSrcPageRequest *new_entry =
2510 g_malloc0(sizeof(struct RAMSrcPageRequest));
2511 new_entry->rb = ramblock;
2512 new_entry->offset = start;
2513 new_entry->len = len;
2514
2515 memory_region_ref(ramblock->mr);
2516 qemu_mutex_lock(&rs->src_page_req_mutex);
2517 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2518 migration_make_urgent_request();
2519 qemu_mutex_unlock(&rs->src_page_req_mutex);
2520
2521 return 0;
2522 }
2523
2524 static bool save_page_use_compression(RAMState *rs)
2525 {
2526 if (!migrate_use_compression()) {
2527 return false;
2528 }
2529
2530 /*
2531 * If xbzrle is on, stop using the data compression after first
2532 * round of migration even if compression is enabled. In theory,
2533 * xbzrle can do better than compression.
2534 */
2535 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2536 return true;
2537 }
2538
2539 return false;
2540 }
2541
2542 /*
2543 * try to compress the page before posting it out, return true if the page
2544 * has been properly handled by compression, otherwise needs other
2545 * paths to handle it
2546 */
2547 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2548 {
2549 if (!save_page_use_compression(rs)) {
2550 return false;
2551 }
2552
2553 /*
2554 * When starting the process of a new block, the first page of
2555 * the block should be sent out before other pages in the same
2556 * block, and all the pages in last block should have been sent
2557 * out, keeping this order is important, because the 'cont' flag
2558 * is used to avoid resending the block name.
2559 *
2560 * We post the fist page as normal page as compression will take
2561 * much CPU resource.
2562 */
2563 if (block != rs->last_sent_block) {
2564 flush_compressed_data(rs);
2565 return false;
2566 }
2567
2568 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2569 return true;
2570 }
2571
2572 compression_counters.busy++;
2573 return false;
2574 }
2575
2576 /**
2577 * ram_save_target_page: save one target page
2578 *
2579 * Returns the number of pages written
2580 *
2581 * @rs: current RAM state
2582 * @pss: data about the page we want to send
2583 * @last_stage: if we are at the completion stage
2584 */
2585 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2586 bool last_stage)
2587 {
2588 RAMBlock *block = pss->block;
2589 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2590 int res;
2591
2592 if (control_save_page(rs, block, offset, &res)) {
2593 return res;
2594 }
2595
2596 if (save_compress_page(rs, block, offset)) {
2597 return 1;
2598 }
2599
2600 res = save_zero_page(rs, block, offset);
2601 if (res > 0) {
2602 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2603 * page would be stale
2604 */
2605 if (!save_page_use_compression(rs)) {
2606 XBZRLE_cache_lock();
2607 xbzrle_cache_zero_page(rs, block->offset + offset);
2608 XBZRLE_cache_unlock();
2609 }
2610 ram_release_pages(block->idstr, offset, res);
2611 return res;
2612 }
2613
2614 /*
2615 * Do not use multifd for:
2616 * 1. Compression as the first page in the new block should be posted out
2617 * before sending the compressed page
2618 * 2. In postcopy as one whole host page should be placed
2619 */
2620 if (!save_page_use_compression(rs) && migrate_use_multifd()
2621 && !migration_in_postcopy()) {
2622 return ram_save_multifd_page(rs, block, offset);
2623 }
2624
2625 return ram_save_page(rs, pss, last_stage);
2626 }
2627
2628 /**
2629 * ram_save_host_page: save a whole host page
2630 *
2631 * Starting at *offset send pages up to the end of the current host
2632 * page. It's valid for the initial offset to point into the middle of
2633 * a host page in which case the remainder of the hostpage is sent.
2634 * Only dirty target pages are sent. Note that the host page size may
2635 * be a huge page for this block.
2636 * The saving stops at the boundary of the used_length of the block
2637 * if the RAMBlock isn't a multiple of the host page size.
2638 *
2639 * Returns the number of pages written or negative on error
2640 *
2641 * @rs: current RAM state
2642 * @ms: current migration state
2643 * @pss: data about the page we want to send
2644 * @last_stage: if we are at the completion stage
2645 */
2646 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2647 bool last_stage)
2648 {
2649 int tmppages, pages = 0;
2650 size_t pagesize_bits =
2651 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2652
2653 if (ramblock_is_ignored(pss->block)) {
2654 error_report("block %s should not be migrated !", pss->block->idstr);
2655 return 0;
2656 }
2657
2658 do {
2659 /* Check the pages is dirty and if it is send it */
2660 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2661 pss->page++;
2662 continue;
2663 }
2664
2665 tmppages = ram_save_target_page(rs, pss, last_stage);
2666 if (tmppages < 0) {
2667 return tmppages;
2668 }
2669
2670 pages += tmppages;
2671 pss->page++;
2672 /* Allow rate limiting to happen in the middle of huge pages */
2673 migration_rate_limit();
2674 } while ((pss->page & (pagesize_bits - 1)) &&
2675 offset_in_ramblock(pss->block,
2676 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
2677
2678 /* The offset we leave with is the last one we looked at */
2679 pss->page--;
2680 return pages;
2681 }
2682
2683 /**
2684 * ram_find_and_save_block: finds a dirty page and sends it to f
2685 *
2686 * Called within an RCU critical section.
2687 *
2688 * Returns the number of pages written where zero means no dirty pages,
2689 * or negative on error
2690 *
2691 * @rs: current RAM state
2692 * @last_stage: if we are at the completion stage
2693 *
2694 * On systems where host-page-size > target-page-size it will send all the
2695 * pages in a host page that are dirty.
2696 */
2697
2698 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2699 {
2700 PageSearchStatus pss;
2701 int pages = 0;
2702 bool again, found;
2703
2704 /* No dirty page as there is zero RAM */
2705 if (!ram_bytes_total()) {
2706 return pages;
2707 }
2708
2709 pss.block = rs->last_seen_block;
2710 pss.page = rs->last_page;
2711 pss.complete_round = false;
2712
2713 if (!pss.block) {
2714 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2715 }
2716
2717 do {
2718 again = true;
2719 found = get_queued_page(rs, &pss);
2720
2721 if (!found) {
2722 /* priority queue empty, so just search for something dirty */
2723 found = find_dirty_block(rs, &pss, &again);
2724 }
2725
2726 if (found) {
2727 pages = ram_save_host_page(rs, &pss, last_stage);
2728 }
2729 } while (!pages && again);
2730
2731 rs->last_seen_block = pss.block;
2732 rs->last_page = pss.page;
2733
2734 return pages;
2735 }
2736
2737 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2738 {
2739 uint64_t pages = size / TARGET_PAGE_SIZE;
2740
2741 if (zero) {
2742 ram_counters.duplicate += pages;
2743 } else {
2744 ram_counters.normal += pages;
2745 ram_counters.transferred += size;
2746 qemu_update_position(f, size);
2747 }
2748 }
2749
2750 static uint64_t ram_bytes_total_common(bool count_ignored)
2751 {
2752 RAMBlock *block;
2753 uint64_t total = 0;
2754
2755 RCU_READ_LOCK_GUARD();
2756
2757 if (count_ignored) {
2758 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2759 total += block->used_length;
2760 }
2761 } else {
2762 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2763 total += block->used_length;
2764 }
2765 }
2766 return total;
2767 }
2768
2769 uint64_t ram_bytes_total(void)
2770 {
2771 return ram_bytes_total_common(false);
2772 }
2773
2774 static void xbzrle_load_setup(void)
2775 {
2776 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2777 }
2778
2779 static void xbzrle_load_cleanup(void)
2780 {
2781 g_free(XBZRLE.decoded_buf);
2782 XBZRLE.decoded_buf = NULL;
2783 }
2784
2785 static void ram_state_cleanup(RAMState **rsp)
2786 {
2787 if (*rsp) {
2788 migration_page_queue_free(*rsp);
2789 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2790 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2791 g_free(*rsp);
2792 *rsp = NULL;
2793 }
2794 }
2795
2796 static void xbzrle_cleanup(void)
2797 {
2798 XBZRLE_cache_lock();
2799 if (XBZRLE.cache) {
2800 cache_fini(XBZRLE.cache);
2801 g_free(XBZRLE.encoded_buf);
2802 g_free(XBZRLE.current_buf);
2803 g_free(XBZRLE.zero_target_page);
2804 XBZRLE.cache = NULL;
2805 XBZRLE.encoded_buf = NULL;
2806 XBZRLE.current_buf = NULL;
2807 XBZRLE.zero_target_page = NULL;
2808 }
2809 XBZRLE_cache_unlock();
2810 }
2811
2812 static void ram_save_cleanup(void *opaque)
2813 {
2814 RAMState **rsp = opaque;
2815 RAMBlock *block;
2816
2817 /* caller have hold iothread lock or is in a bh, so there is
2818 * no writing race against the migration bitmap
2819 */
2820 memory_global_dirty_log_stop();
2821
2822 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2823 g_free(block->clear_bmap);
2824 block->clear_bmap = NULL;
2825 g_free(block->bmap);
2826 block->bmap = NULL;
2827 }
2828
2829 xbzrle_cleanup();
2830 compress_threads_save_cleanup();
2831 ram_state_cleanup(rsp);
2832 }
2833
2834 static void ram_state_reset(RAMState *rs)
2835 {
2836 rs->last_seen_block = NULL;
2837 rs->last_sent_block = NULL;
2838 rs->last_page = 0;
2839 rs->last_version = ram_list.version;
2840 rs->ram_bulk_stage = true;
2841 rs->fpo_enabled = false;
2842 }
2843
2844 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2845
2846 /*
2847 * 'expected' is the value you expect the bitmap mostly to be full
2848 * of; it won't bother printing lines that are all this value.
2849 * If 'todump' is null the migration bitmap is dumped.
2850 */
2851 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2852 unsigned long pages)
2853 {
2854 int64_t cur;
2855 int64_t linelen = 128;
2856 char linebuf[129];
2857
2858 for (cur = 0; cur < pages; cur += linelen) {
2859 int64_t curb;
2860 bool found = false;
2861 /*
2862 * Last line; catch the case where the line length
2863 * is longer than remaining ram
2864 */
2865 if (cur + linelen > pages) {
2866 linelen = pages - cur;
2867 }
2868 for (curb = 0; curb < linelen; curb++) {
2869 bool thisbit = test_bit(cur + curb, todump);
2870 linebuf[curb] = thisbit ? '1' : '.';
2871 found = found || (thisbit != expected);
2872 }
2873 if (found) {
2874 linebuf[curb] = '\0';
2875 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2876 }
2877 }
2878 }
2879
2880 /* **** functions for postcopy ***** */
2881
2882 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2883 {
2884 struct RAMBlock *block;
2885
2886 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2887 unsigned long *bitmap = block->bmap;
2888 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2889 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2890
2891 while (run_start < range) {
2892 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2893 ram_discard_range(block->idstr,
2894 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2895 ((ram_addr_t)(run_end - run_start))
2896 << TARGET_PAGE_BITS);
2897 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2898 }
2899 }
2900 }
2901
2902 /**
2903 * postcopy_send_discard_bm_ram: discard a RAMBlock
2904 *
2905 * Returns zero on success
2906 *
2907 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2908 *
2909 * @ms: current migration state
2910 * @block: RAMBlock to discard
2911 */
2912 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2913 {
2914 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2915 unsigned long current;
2916 unsigned long *bitmap = block->bmap;
2917
2918 for (current = 0; current < end; ) {
2919 unsigned long one = find_next_bit(bitmap, end, current);
2920 unsigned long zero, discard_length;
2921
2922 if (one >= end) {
2923 break;
2924 }
2925
2926 zero = find_next_zero_bit(bitmap, end, one + 1);
2927
2928 if (zero >= end) {
2929 discard_length = end - one;
2930 } else {
2931 discard_length = zero - one;
2932 }
2933 postcopy_discard_send_range(ms, one, discard_length);
2934 current = one + discard_length;
2935 }
2936
2937 return 0;
2938 }
2939
2940 /**
2941 * postcopy_each_ram_send_discard: discard all RAMBlocks
2942 *
2943 * Returns 0 for success or negative for error
2944 *
2945 * Utility for the outgoing postcopy code.
2946 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2947 * passing it bitmap indexes and name.
2948 * (qemu_ram_foreach_block ends up passing unscaled lengths
2949 * which would mean postcopy code would have to deal with target page)
2950 *
2951 * @ms: current migration state
2952 */
2953 static int postcopy_each_ram_send_discard(MigrationState *ms)
2954 {
2955 struct RAMBlock *block;
2956 int ret;
2957
2958 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2959 postcopy_discard_send_init(ms, block->idstr);
2960
2961 /*
2962 * Postcopy sends chunks of bitmap over the wire, but it
2963 * just needs indexes at this point, avoids it having
2964 * target page specific code.
2965 */
2966 ret = postcopy_send_discard_bm_ram(ms, block);
2967 postcopy_discard_send_finish(ms);
2968 if (ret) {
2969 return ret;
2970 }
2971 }
2972
2973 return 0;
2974 }
2975
2976 /**
2977 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2978 *
2979 * Helper for postcopy_chunk_hostpages; it's called twice to
2980 * canonicalize the two bitmaps, that are similar, but one is
2981 * inverted.
2982 *
2983 * Postcopy requires that all target pages in a hostpage are dirty or
2984 * clean, not a mix. This function canonicalizes the bitmaps.
2985 *
2986 * @ms: current migration state
2987 * @block: block that contains the page we want to canonicalize
2988 */
2989 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2990 {
2991 RAMState *rs = ram_state;
2992 unsigned long *bitmap = block->bmap;
2993 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2994 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2995 unsigned long run_start;
2996
2997 if (block->page_size == TARGET_PAGE_SIZE) {
2998 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2999 return;
3000 }
3001
3002 /* Find a dirty page */
3003 run_start = find_next_bit(bitmap, pages, 0);
3004
3005 while (run_start < pages) {
3006
3007 /*
3008 * If the start of this run of pages is in the middle of a host
3009 * page, then we need to fixup this host page.
3010 */
3011 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
3012 /* Find the end of this run */
3013 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
3014 /*
3015 * If the end isn't at the start of a host page, then the
3016 * run doesn't finish at the end of a host page
3017 * and we need to discard.
3018 */
3019 }
3020
3021 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
3022 unsigned long page;
3023 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
3024 host_ratio);
3025 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
3026
3027 /* Clean up the bitmap */
3028 for (page = fixup_start_addr;
3029 page < fixup_start_addr + host_ratio; page++) {
3030 /*
3031 * Remark them as dirty, updating the count for any pages
3032 * that weren't previously dirty.
3033 */
3034 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3035 }
3036 }
3037
3038 /* Find the next dirty page for the next iteration */
3039 run_start = find_next_bit(bitmap, pages, run_start);
3040 }
3041 }
3042
3043 /**
3044 * postcopy_chunk_hostpages: discard any partially sent host page
3045 *
3046 * Utility for the outgoing postcopy code.
3047 *
3048 * Discard any partially sent host-page size chunks, mark any partially
3049 * dirty host-page size chunks as all dirty. In this case the host-page
3050 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3051 *
3052 * Returns zero on success
3053 *
3054 * @ms: current migration state
3055 * @block: block we want to work with
3056 */
3057 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3058 {
3059 postcopy_discard_send_init(ms, block->idstr);
3060
3061 /*
3062 * Ensure that all partially dirty host pages are made fully dirty.
3063 */
3064 postcopy_chunk_hostpages_pass(ms, block);
3065
3066 postcopy_discard_send_finish(ms);
3067 return 0;
3068 }
3069
3070 /**
3071 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3072 *
3073 * Returns zero on success
3074 *
3075 * Transmit the set of pages to be discarded after precopy to the target
3076 * these are pages that:
3077 * a) Have been previously transmitted but are now dirty again
3078 * b) Pages that have never been transmitted, this ensures that
3079 * any pages on the destination that have been mapped by background
3080 * tasks get discarded (transparent huge pages is the specific concern)
3081 * Hopefully this is pretty sparse
3082 *
3083 * @ms: current migration state
3084 */
3085 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3086 {
3087 RAMState *rs = ram_state;
3088 RAMBlock *block;
3089 int ret;
3090
3091 RCU_READ_LOCK_GUARD();
3092
3093 /* This should be our last sync, the src is now paused */
3094 migration_bitmap_sync(rs);
3095
3096 /* Easiest way to make sure we don't resume in the middle of a host-page */
3097 rs->last_seen_block = NULL;
3098 rs->last_sent_block = NULL;
3099 rs->last_page = 0;
3100
3101 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3102 /* Deal with TPS != HPS and huge pages */
3103 ret = postcopy_chunk_hostpages(ms, block);
3104 if (ret) {
3105 return ret;
3106 }
3107
3108 #ifdef DEBUG_POSTCOPY
3109 ram_debug_dump_bitmap(block->bmap, true,
3110 block->used_length >> TARGET_PAGE_BITS);
3111 #endif
3112 }
3113 trace_ram_postcopy_send_discard_bitmap();
3114
3115 ret = postcopy_each_ram_send_discard(ms);
3116
3117 return ret;
3118 }
3119
3120 /**
3121 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3122 *
3123 * Returns zero on success
3124 *
3125 * @rbname: name of the RAMBlock of the request. NULL means the
3126 * same that last one.
3127 * @start: RAMBlock starting page
3128 * @length: RAMBlock size
3129 */
3130 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3131 {
3132 trace_ram_discard_range(rbname, start, length);
3133
3134 RCU_READ_LOCK_GUARD();
3135 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3136
3137 if (!rb) {
3138 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3139 return -1;
3140 }
3141
3142 /*
3143 * On source VM, we don't need to update the received bitmap since
3144 * we don't even have one.
3145 */
3146 if (rb->receivedmap) {
3147 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3148 length >> qemu_target_page_bits());
3149 }
3150
3151 return ram_block_discard_range(rb, start, length);
3152 }
3153
3154 /*
3155 * For every allocation, we will try not to crash the VM if the
3156 * allocation failed.
3157 */
3158 static int xbzrle_init(void)
3159 {
3160 Error *local_err = NULL;
3161
3162 if (!migrate_use_xbzrle()) {
3163 return 0;
3164 }
3165
3166 XBZRLE_cache_lock();
3167
3168 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3169 if (!XBZRLE.zero_target_page) {
3170 error_report("%s: Error allocating zero page", __func__);
3171 goto err_out;
3172 }
3173
3174 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3175 TARGET_PAGE_SIZE, &local_err);
3176 if (!XBZRLE.cache) {
3177 error_report_err(local_err);
3178 goto free_zero_page;
3179 }
3180
3181 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3182 if (!XBZRLE.encoded_buf) {
3183 error_report("%s: Error allocating encoded_buf", __func__);
3184 goto free_cache;
3185 }
3186
3187 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3188 if (!XBZRLE.current_buf) {
3189 error_report("%s: Error allocating current_buf", __func__);
3190 goto free_encoded_buf;
3191 }
3192
3193 /* We are all good */
3194 XBZRLE_cache_unlock();
3195 return 0;
3196
3197 free_encoded_buf:
3198 g_free(XBZRLE.encoded_buf);
3199 XBZRLE.encoded_buf = NULL;
3200 free_cache:
3201 cache_fini(XBZRLE.cache);
3202 XBZRLE.cache = NULL;
3203 free_zero_page:
3204 g_free(XBZRLE.zero_target_page);
3205 XBZRLE.zero_target_page = NULL;
3206 err_out:
3207 XBZRLE_cache_unlock();
3208 return -ENOMEM;
3209 }
3210
3211 static int ram_state_init(RAMState **rsp)
3212 {
3213 *rsp = g_try_new0(RAMState, 1);
3214
3215 if (!*rsp) {
3216 error_report("%s: Init ramstate fail", __func__);
3217 return -1;
3218 }
3219
3220 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3221 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3222 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3223
3224 /*
3225 * Count the total number of pages used by ram blocks not including any
3226 * gaps due to alignment or unplugs.
3227 * This must match with the initial values of dirty bitmap.
3228 */
3229 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3230 ram_state_reset(*rsp);
3231
3232 return 0;
3233 }
3234
3235 static void ram_list_init_bitmaps(void)
3236 {
3237 MigrationState *ms = migrate_get_current();
3238 RAMBlock *block;
3239 unsigned long pages;
3240 uint8_t shift;
3241
3242 /* Skip setting bitmap if there is no RAM */
3243 if (ram_bytes_total()) {
3244 shift = ms->clear_bitmap_shift;
3245 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3246 error_report("clear_bitmap_shift (%u) too big, using "
3247 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3248 shift = CLEAR_BITMAP_SHIFT_MAX;
3249 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3250 error_report("clear_bitmap_shift (%u) too small, using "
3251 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3252 shift = CLEAR_BITMAP_SHIFT_MIN;
3253 }
3254
3255 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3256 pages = block->max_length >> TARGET_PAGE_BITS;
3257 /*
3258 * The initial dirty bitmap for migration must be set with all
3259 * ones to make sure we'll migrate every guest RAM page to
3260 * destination.
3261 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3262 * new migration after a failed migration, ram_list.
3263 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3264 * guest memory.
3265 */
3266 block->bmap = bitmap_new(pages);
3267 bitmap_set(block->bmap, 0, pages);
3268 block->clear_bmap_shift = shift;
3269 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3270 }
3271 }
3272 }
3273
3274 static void ram_init_bitmaps(RAMState *rs)
3275 {
3276 /* For memory_global_dirty_log_start below. */
3277 qemu_mutex_lock_iothread();
3278 qemu_mutex_lock_ramlist();
3279
3280 WITH_RCU_READ_LOCK_GUARD() {
3281 ram_list_init_bitmaps();
3282 memory_global_dirty_log_start();
3283 migration_bitmap_sync_precopy(rs);
3284 }
3285 qemu_mutex_unlock_ramlist();
3286 qemu_mutex_unlock_iothread();
3287 }
3288
3289 static int ram_init_all(RAMState **rsp)
3290 {
3291 if (ram_state_init(rsp)) {
3292 return -1;
3293 }
3294
3295 if (xbzrle_init()) {
3296 ram_state_cleanup(rsp);
3297 return -1;
3298 }
3299
3300 ram_init_bitmaps(*rsp);
3301
3302 return 0;
3303 }
3304
3305 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3306 {
3307 RAMBlock *block;
3308 uint64_t pages = 0;
3309
3310 /*
3311 * Postcopy is not using xbzrle/compression, so no need for that.
3312 * Also, since source are already halted, we don't need to care
3313 * about dirty page logging as well.
3314 */
3315
3316 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3317 pages += bitmap_count_one(block->bmap,
3318 block->used_length >> TARGET_PAGE_BITS);
3319 }
3320
3321 /* This may not be aligned with current bitmaps. Recalculate. */
3322 rs->migration_dirty_pages = pages;
3323
3324 rs->last_seen_block = NULL;
3325 rs->last_sent_block = NULL;
3326 rs->last_page = 0;
3327 rs->last_version = ram_list.version;
3328 /*
3329 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3330 * matter what we have sent.
3331 */
3332 rs->ram_bulk_stage = false;
3333
3334 /* Update RAMState cache of output QEMUFile */
3335 rs->f = out;
3336
3337 trace_ram_state_resume_prepare(pages);
3338 }
3339
3340 /*
3341 * This function clears bits of the free pages reported by the caller from the
3342 * migration dirty bitmap. @addr is the host address corresponding to the
3343 * start of the continuous guest free pages, and @len is the total bytes of
3344 * those pages.
3345 */
3346 void qemu_guest_free_page_hint(void *addr, size_t len)
3347 {
3348 RAMBlock *block;
3349 ram_addr_t offset;
3350 size_t used_len, start, npages;
3351 MigrationState *s = migrate_get_current();
3352
3353 /* This function is currently expected to be used during live migration */
3354 if (!migration_is_setup_or_active(s->state)) {
3355 return;
3356 }
3357
3358 for (; len > 0; len -= used_len, addr += used_len) {
3359 block = qemu_ram_block_from_host(addr, false, &offset);
3360 if (unlikely(!block || offset >= block->used_length)) {
3361 /*
3362 * The implementation might not support RAMBlock resize during
3363 * live migration, but it could happen in theory with future
3364 * updates. So we add a check here to capture that case.
3365 */
3366 error_report_once("%s unexpected error", __func__);
3367 return;
3368 }
3369
3370 if (len <= block->used_length - offset) {
3371 used_len = len;
3372 } else {
3373 used_len = block->used_length - offset;
3374 }
3375
3376 start = offset >> TARGET_PAGE_BITS;
3377 npages = used_len >> TARGET_PAGE_BITS;
3378
3379 qemu_mutex_lock(&ram_state->bitmap_mutex);
3380 ram_state->migration_dirty_pages -=
3381 bitmap_count_one_with_offset(block->bmap, start, npages);
3382 bitmap_clear(block->bmap, start, npages);
3383 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3384 }
3385 }
3386
3387 /*
3388 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3389 * long-running RCU critical section. When rcu-reclaims in the code
3390 * start to become numerous it will be necessary to reduce the
3391 * granularity of these critical sections.
3392 */
3393
3394 /**
3395 * ram_save_setup: Setup RAM for migration
3396 *
3397 * Returns zero to indicate success and negative for error
3398 *
3399 * @f: QEMUFile where to send the data
3400 * @opaque: RAMState pointer
3401 */
3402 static int ram_save_setup(QEMUFile *f, void *opaque)
3403 {
3404 RAMState **rsp = opaque;
3405 RAMBlock *block;
3406
3407 if (compress_threads_save_setup()) {
3408 return -1;
3409 }
3410
3411 /* migration has already setup the bitmap, reuse it. */
3412 if (!migration_in_colo_state()) {
3413 if (ram_init_all(rsp) != 0) {
3414 compress_threads_save_cleanup();
3415 return -1;
3416 }
3417 }
3418 (*rsp)->f = f;
3419
3420 WITH_RCU_READ_LOCK_GUARD() {
3421 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3422
3423 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3424 qemu_put_byte(f, strlen(block->idstr));
3425 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3426 qemu_put_be64(f, block->used_length);
3427 if (migrate_postcopy_ram() && block->page_size !=
3428 qemu_host_page_size) {
3429 qemu_put_be64(f, block->page_size);
3430 }
3431 if (migrate_ignore_shared()) {
3432 qemu_put_be64(f, block->mr->addr);
3433 }
3434 }
3435 }
3436
3437 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3438 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3439
3440 multifd_send_sync_main(f);
3441 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3442 qemu_fflush(f);
3443
3444 return 0;
3445 }
3446
3447 /**
3448 * ram_save_iterate: iterative stage for migration
3449 *
3450 * Returns zero to indicate success and negative for error
3451 *
3452 * @f: QEMUFile where to send the data
3453 * @opaque: RAMState pointer
3454 */
3455 static int ram_save_iterate(QEMUFile *f, void *opaque)
3456 {
3457 RAMState **temp = opaque;
3458 RAMState *rs = *temp;
3459 int ret = 0;
3460 int i;
3461 int64_t t0;
3462 int done = 0;
3463
3464 if (blk_mig_bulk_active()) {
3465 /* Avoid transferring ram during bulk phase of block migration as
3466 * the bulk phase will usually take a long time and transferring
3467 * ram updates during that time is pointless. */
3468 goto out;
3469 }
3470
3471 WITH_RCU_READ_LOCK_GUARD() {
3472 if (ram_list.version != rs->last_version) {
3473 ram_state_reset(rs);
3474 }
3475
3476 /* Read version before ram_list.blocks */
3477 smp_rmb();
3478
3479 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3480
3481 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3482 i = 0;
3483 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3484 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3485 int pages;
3486
3487 if (qemu_file_get_error(f)) {
3488 break;
3489 }
3490
3491 pages = ram_find_and_save_block(rs, false);
3492 /* no more pages to sent */
3493 if (pages == 0) {
3494 done = 1;
3495 break;
3496 }
3497
3498 if (pages < 0) {
3499 qemu_file_set_error(f, pages);
3500 break;
3501 }
3502
3503 rs->target_page_count += pages;
3504
3505 /*
3506 * During postcopy, it is necessary to make sure one whole host
3507 * page is sent in one chunk.
3508 */
3509 if (migrate_postcopy_ram()) {
3510 flush_compressed_data(rs);
3511 }
3512
3513 /*
3514 * we want to check in the 1st loop, just in case it was the 1st
3515 * time and we had to sync the dirty bitmap.
3516 * qemu_clock_get_ns() is a bit expensive, so we only check each
3517 * some iterations
3518 */
3519 if ((i & 63) == 0) {
3520 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3521 1000000;
3522 if (t1 > MAX_WAIT) {
3523 trace_ram_save_iterate_big_wait(t1, i);
3524 break;
3525 }
3526 }
3527 i++;
3528 }
3529 }
3530
3531 /*
3532 * Must occur before EOS (or any QEMUFile operation)
3533 * because of RDMA protocol.
3534 */
3535 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3536
3537 out:
3538 if (ret >= 0
3539 && migration_is_setup_or_active(migrate_get_current()->state)) {
3540 multifd_send_sync_main(rs->f);
3541 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3542 qemu_fflush(f);
3543 ram_counters.transferred += 8;
3544
3545 ret = qemu_file_get_error(f);
3546 }
3547 if (ret < 0) {
3548 return ret;
3549 }
3550
3551 return done;
3552 }
3553
3554 /**
3555 * ram_save_complete: function called to send the remaining amount of ram
3556 *
3557 * Returns zero to indicate success or negative on error
3558 *
3559 * Called with iothread lock
3560 *
3561 * @f: QEMUFile where to send the data
3562 * @opaque: RAMState pointer
3563 */
3564 static int ram_save_complete(QEMUFile *f, void *opaque)
3565 {
3566 RAMState **temp = opaque;
3567 RAMState *rs = *temp;
3568 int ret = 0;
3569
3570 WITH_RCU_READ_LOCK_GUARD() {
3571 if (!migration_in_postcopy()) {
3572 migration_bitmap_sync_precopy(rs);
3573 }
3574
3575 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3576
3577 /* try transferring iterative blocks of memory */
3578
3579 /* flush all remaining blocks regardless of rate limiting */
3580 while (true) {
3581 int pages;
3582
3583 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3584 /* no more blocks to sent */
3585 if (pages == 0) {
3586 break;
3587 }
3588 if (pages < 0) {
3589 ret = pages;
3590 break;
3591 }
3592 }
3593
3594 flush_compressed_data(rs);
3595 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3596 }
3597
3598 if (ret >= 0) {
3599 multifd_send_sync_main(rs->f);
3600 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3601 qemu_fflush(f);
3602 }
3603
3604 return ret;
3605 }
3606
3607 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3608 uint64_t *res_precopy_only,
3609 uint64_t *res_compatible,
3610 uint64_t *res_postcopy_only)
3611 {
3612 RAMState **temp = opaque;
3613 RAMState *rs = *temp;
3614 uint64_t remaining_size;
3615
3616 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3617
3618 if (!migration_in_postcopy() &&
3619 remaining_size < max_size) {
3620 qemu_mutex_lock_iothread();
3621 WITH_RCU_READ_LOCK_GUARD() {
3622 migration_bitmap_sync_precopy(rs);
3623 }
3624 qemu_mutex_unlock_iothread();
3625 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3626 }
3627
3628 if (migrate_postcopy_ram()) {
3629 /* We can do postcopy, and all the data is postcopiable */
3630 *res_compatible += remaining_size;
3631 } else {
3632 *res_precopy_only += remaining_size;
3633 }
3634 }
3635
3636 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3637 {
3638 unsigned int xh_len;
3639 int xh_flags;
3640 uint8_t *loaded_data;
3641
3642 /* extract RLE header */
3643 xh_flags = qemu_get_byte(f);
3644 xh_len = qemu_get_be16(f);
3645
3646 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3647 error_report("Failed to load XBZRLE page - wrong compression!");
3648 return -1;
3649 }
3650
3651 if (xh_len > TARGET_PAGE_SIZE) {
3652 error_report("Failed to load XBZRLE page - len overflow!");
3653 return -1;
3654 }
3655 loaded_data = XBZRLE.decoded_buf;
3656 /* load data and decode */
3657 /* it can change loaded_data to point to an internal buffer */
3658 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3659
3660 /* decode RLE */
3661 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3662 TARGET_PAGE_SIZE) == -1) {
3663 error_report("Failed to load XBZRLE page - decode error!");
3664 return -1;
3665 }
3666
3667 return 0;
3668 }
3669
3670 /**
3671 * ram_block_from_stream: read a RAMBlock id from the migration stream
3672 *
3673 * Must be called from within a rcu critical section.
3674 *
3675 * Returns a pointer from within the RCU-protected ram_list.
3676 *
3677 * @f: QEMUFile where to read the data from
3678 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3679 */
3680 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3681 {
3682 static RAMBlock *block = NULL;
3683 char id[256];
3684 uint8_t len;
3685
3686 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3687 if (!block) {
3688 error_report("Ack, bad migration stream!");
3689 return NULL;
3690 }
3691 return block;
3692 }
3693
3694 len = qemu_get_byte(f);
3695 qemu_get_buffer(f, (uint8_t *)id, len);
3696 id[len] = 0;
3697
3698 block = qemu_ram_block_by_name(id);
3699 if (!block) {
3700 error_report("Can't find block %s", id);
3701 return NULL;
3702 }
3703
3704 if (ramblock_is_ignored(block)) {
3705 error_report("block %s should not be migrated !", id);
3706 return NULL;
3707 }
3708
3709 return block;
3710 }
3711
3712 static inline void *host_from_ram_block_offset(RAMBlock *block,
3713 ram_addr_t offset)
3714 {
3715 if (!offset_in_ramblock(block, offset)) {
3716 return NULL;
3717 }
3718
3719 return block->host + offset;
3720 }
3721
3722 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3723 ram_addr_t offset)
3724 {
3725 if (!offset_in_ramblock(block, offset)) {
3726 return NULL;
3727 }
3728 if (!block->colo_cache) {
3729 error_report("%s: colo_cache is NULL in block :%s",
3730 __func__, block->idstr);
3731 return NULL;
3732 }
3733
3734 /*
3735 * During colo checkpoint, we need bitmap of these migrated pages.
3736 * It help us to decide which pages in ram cache should be flushed
3737 * into VM's RAM later.
3738 */
3739 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3740 ram_state->migration_dirty_pages++;
3741 }
3742 return block->colo_cache + offset;
3743 }
3744
3745 /**
3746 * ram_handle_compressed: handle the zero page case
3747 *
3748 * If a page (or a whole RDMA chunk) has been
3749 * determined to be zero, then zap it.
3750 *
3751 * @host: host address for the zero page
3752 * @ch: what the page is filled from. We only support zero
3753 * @size: size of the zero page
3754 */
3755 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3756 {
3757 if (ch != 0 || !is_zero_range(host, size)) {
3758 memset(host, ch, size);
3759 }
3760 }
3761
3762 /* return the size after decompression, or negative value on error */
3763 static int
3764 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3765 const uint8_t *source, size_t source_len)
3766 {
3767 int err;
3768
3769 err = inflateReset(stream);
3770 if (err != Z_OK) {
3771 return -1;
3772 }
3773
3774 stream->avail_in = source_len;
3775 stream->next_in = (uint8_t *)source;
3776 stream->avail_out = dest_len;
3777 stream->next_out = dest;
3778
3779 err = inflate(stream, Z_NO_FLUSH);
3780 if (err != Z_STREAM_END) {
3781 return -1;
3782 }
3783
3784 return stream->total_out;
3785 }
3786
3787 static void *do_data_decompress(void *opaque)
3788 {
3789 DecompressParam *param = opaque;
3790 unsigned long pagesize;
3791 uint8_t *des;
3792 int len, ret;
3793
3794 qemu_mutex_lock(&param->mutex);
3795 while (!param->quit) {
3796 if (param->des) {
3797 des = param->des;
3798 len = param->len;
3799 param->des = 0;
3800 qemu_mutex_unlock(&param->mutex);
3801
3802 pagesize = TARGET_PAGE_SIZE;
3803
3804 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3805 param->compbuf, len);
3806 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3807 error_report("decompress data failed");
3808 qemu_file_set_error(decomp_file, ret);
3809 }
3810
3811 qemu_mutex_lock(&decomp_done_lock);
3812 param->done = true;
3813 qemu_cond_signal(&decomp_done_cond);
3814 qemu_mutex_unlock(&decomp_done_lock);
3815
3816 qemu_mutex_lock(&param->mutex);
3817 } else {
3818 qemu_cond_wait(&param->cond, &param->mutex);
3819 }
3820 }
3821 qemu_mutex_unlock(&param->mutex);
3822
3823 return NULL;
3824 }
3825
3826 static int wait_for_decompress_done(void)
3827 {
3828 int idx, thread_count;
3829
3830 if (!migrate_use_compression()) {
3831 return 0;
3832 }
3833
3834 thread_count = migrate_decompress_threads();
3835 qemu_mutex_lock(&decomp_done_lock);
3836 for (idx = 0; idx < thread_count; idx++) {
3837 while (!decomp_param[idx].done) {
3838 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3839 }
3840 }
3841 qemu_mutex_unlock(&decomp_done_lock);
3842 return qemu_file_get_error(decomp_file);
3843 }
3844
3845 static void compress_threads_load_cleanup(void)
3846 {
3847 int i, thread_count;
3848
3849 if (!migrate_use_compression()) {
3850 return;
3851 }
3852 thread_count = migrate_decompress_threads();
3853 for (i = 0; i < thread_count; i++) {
3854 /*
3855 * we use it as a indicator which shows if the thread is
3856 * properly init'd or not
3857 */
3858 if (!decomp_param[i].compbuf) {
3859 break;
3860 }
3861
3862 qemu_mutex_lock(&decomp_param[i].mutex);
3863 decomp_param[i].quit = true;
3864 qemu_cond_signal(&decomp_param[i].cond);
3865 qemu_mutex_unlock(&decomp_param[i].mutex);
3866 }
3867 for (i = 0; i < thread_count; i++) {
3868 if (!decomp_param[i].compbuf) {
3869 break;
3870 }
3871
3872 qemu_thread_join(decompress_threads + i);
3873 qemu_mutex_destroy(&decomp_param[i].mutex);
3874 qemu_cond_destroy(&decomp_param[i].cond);
3875 inflateEnd(&decomp_param[i].stream);
3876 g_free(decomp_param[i].compbuf);
3877 decomp_param[i].compbuf = NULL;
3878 }
3879 g_free(decompress_threads);
3880 g_free(decomp_param);
3881 decompress_threads = NULL;
3882 decomp_param = NULL;
3883 decomp_file = NULL;
3884 }
3885
3886 static int compress_threads_load_setup(QEMUFile *f)
3887 {
3888 int i, thread_count;
3889
3890 if (!migrate_use_compression()) {
3891 return 0;
3892 }
3893
3894 thread_count = migrate_decompress_threads();
3895 decompress_threads = g_new0(QemuThread, thread_count);
3896 decomp_param = g_new0(DecompressParam, thread_count);
3897 qemu_mutex_init(&decomp_done_lock);
3898 qemu_cond_init(&decomp_done_cond);
3899 decomp_file = f;
3900 for (i = 0; i < thread_count; i++) {
3901 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3902 goto exit;
3903 }
3904
3905 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3906 qemu_mutex_init(&decomp_param[i].mutex);
3907 qemu_cond_init(&decomp_param[i].cond);
3908 decomp_param[i].done = true;
3909 decomp_param[i].quit = false;
3910 qemu_thread_create(decompress_threads + i, "decompress",
3911 do_data_decompress, decomp_param + i,
3912 QEMU_THREAD_JOINABLE);
3913 }
3914 return 0;
3915 exit:
3916 compress_threads_load_cleanup();
3917 return -1;
3918 }
3919
3920 static void decompress_data_with_multi_threads(QEMUFile *f,
3921 void *host, int len)
3922 {
3923 int idx, thread_count;
3924
3925 thread_count = migrate_decompress_threads();
3926 qemu_mutex_lock(&decomp_done_lock);
3927 while (true) {
3928 for (idx = 0; idx < thread_count; idx++) {
3929 if (decomp_param[idx].done) {
3930 decomp_param[idx].done = false;
3931 qemu_mutex_lock(&decomp_param[idx].mutex);
3932 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3933 decomp_param[idx].des = host;
3934 decomp_param[idx].len = len;
3935 qemu_cond_signal(&decomp_param[idx].cond);
3936 qemu_mutex_unlock(&decomp_param[idx].mutex);
3937 break;
3938 }
3939 }
3940 if (idx < thread_count) {
3941 break;
3942 } else {
3943 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3944 }
3945 }
3946 qemu_mutex_unlock(&decomp_done_lock);
3947 }
3948
3949 /*
3950 * colo cache: this is for secondary VM, we cache the whole
3951 * memory of the secondary VM, it is need to hold the global lock
3952 * to call this helper.
3953 */
3954 int colo_init_ram_cache(void)
3955 {
3956 RAMBlock *block;
3957
3958 WITH_RCU_READ_LOCK_GUARD() {
3959 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3960 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3961 NULL,
3962 false);
3963 if (!block->colo_cache) {
3964 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3965 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3966 block->used_length);
3967 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3968 if (block->colo_cache) {
3969 qemu_anon_ram_free(block->colo_cache, block->used_length);
3970 block->colo_cache = NULL;
3971 }
3972 }
3973 return -errno;
3974 }
3975 memcpy(block->colo_cache, block->host, block->used_length);
3976 }
3977 }
3978
3979 /*
3980 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3981 * with to decide which page in cache should be flushed into SVM's RAM. Here
3982 * we use the same name 'ram_bitmap' as for migration.
3983 */
3984 if (ram_bytes_total()) {
3985 RAMBlock *block;
3986
3987 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3988 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3989
3990 block->bmap = bitmap_new(pages);
3991 bitmap_set(block->bmap, 0, pages);
3992 }
3993 }
3994 ram_state = g_new0(RAMState, 1);
3995 ram_state->migration_dirty_pages = 0;
3996 qemu_mutex_init(&ram_state->bitmap_mutex);
3997 memory_global_dirty_log_start();
3998
3999 return 0;
4000 }
4001
4002 /* It is need to hold the global lock to call this helper */
4003 void colo_release_ram_cache(void)
4004 {
4005 RAMBlock *block;
4006
4007 memory_global_dirty_log_stop();
4008 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4009 g_free(block->bmap);
4010 block->bmap = NULL;
4011 }
4012
4013 WITH_RCU_READ_LOCK_GUARD() {
4014 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4015 if (block->colo_cache) {
4016 qemu_anon_ram_free(block->colo_cache, block->used_length);
4017 block->colo_cache = NULL;
4018 }
4019 }
4020 }
4021 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4022 g_free(ram_state);
4023 ram_state = NULL;
4024 }
4025
4026 /**
4027 * ram_load_setup: Setup RAM for migration incoming side
4028 *
4029 * Returns zero to indicate success and negative for error
4030 *
4031 * @f: QEMUFile where to receive the data
4032 * @opaque: RAMState pointer
4033 */
4034 static int ram_load_setup(QEMUFile *f, void *opaque)
4035 {
4036 if (compress_threads_load_setup(f)) {
4037 return -1;
4038 }
4039
4040 xbzrle_load_setup();
4041 ramblock_recv_map_init();
4042
4043 return 0;
4044 }
4045
4046 static int ram_load_cleanup(void *opaque)
4047 {
4048 RAMBlock *rb;
4049
4050 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4051 qemu_ram_block_writeback(rb);
4052 }
4053
4054 xbzrle_load_cleanup();
4055 compress_threads_load_cleanup();
4056
4057 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4058 g_free(rb->receivedmap);
4059 rb->receivedmap = NULL;
4060 }
4061
4062 return 0;
4063 }
4064
4065 /**
4066 * ram_postcopy_incoming_init: allocate postcopy data structures
4067 *
4068 * Returns 0 for success and negative if there was one error
4069 *
4070 * @mis: current migration incoming state
4071 *
4072 * Allocate data structures etc needed by incoming migration with
4073 * postcopy-ram. postcopy-ram's similarly names
4074 * postcopy_ram_incoming_init does the work.
4075 */
4076 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4077 {
4078 return postcopy_ram_incoming_init(mis);
4079 }
4080
4081 /**
4082 * ram_load_postcopy: load a page in postcopy case
4083 *
4084 * Returns 0 for success or -errno in case of error
4085 *
4086 * Called in postcopy mode by ram_load().
4087 * rcu_read_lock is taken prior to this being called.
4088 *
4089 * @f: QEMUFile where to send the data
4090 */
4091 static int ram_load_postcopy(QEMUFile *f)
4092 {
4093 int flags = 0, ret = 0;
4094 bool place_needed = false;
4095 bool matches_target_page_size = false;
4096 MigrationIncomingState *mis = migration_incoming_get_current();
4097 /* Temporary page that is later 'placed' */
4098 void *postcopy_host_page = mis->postcopy_tmp_page;
4099 void *this_host = NULL;
4100 bool all_zero = false;
4101 int target_pages = 0;
4102
4103 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4104 ram_addr_t addr;
4105 void *host = NULL;
4106 void *page_buffer = NULL;
4107 void *place_source = NULL;
4108 RAMBlock *block = NULL;
4109 uint8_t ch;
4110 int len;
4111
4112 addr = qemu_get_be64(f);
4113
4114 /*
4115 * If qemu file error, we should stop here, and then "addr"
4116 * may be invalid
4117 */
4118 ret = qemu_file_get_error(f);
4119 if (ret) {
4120 break;
4121 }
4122
4123 flags = addr & ~TARGET_PAGE_MASK;
4124 addr &= TARGET_PAGE_MASK;
4125
4126 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4127 place_needed = false;
4128 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4129 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
4130 block = ram_block_from_stream(f, flags);
4131
4132 host = host_from_ram_block_offset(block, addr);
4133 if (!host) {
4134 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4135 ret = -EINVAL;
4136 break;
4137 }
4138 target_pages++;
4139 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4140 /*
4141 * Postcopy requires that we place whole host pages atomically;
4142 * these may be huge pages for RAMBlocks that are backed by
4143 * hugetlbfs.
4144 * To make it atomic, the data is read into a temporary page
4145 * that's moved into place later.
4146 * The migration protocol uses, possibly smaller, target-pages
4147 * however the source ensures it always sends all the components
4148 * of a host page in one chunk.
4149 */
4150 page_buffer = postcopy_host_page +
4151 ((uintptr_t)host & (block->page_size - 1));
4152 /* If all TP are zero then we can optimise the place */
4153 if (target_pages == 1) {
4154 all_zero = true;
4155 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
4156 block->page_size);
4157 } else {
4158 /* not the 1st TP within the HP */
4159 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) !=
4160 (uintptr_t)this_host) {
4161 error_report("Non-same host page %p/%p",
4162 host, this_host);
4163 ret = -EINVAL;
4164 break;
4165 }
4166 }
4167
4168 /*
4169 * If it's the last part of a host page then we place the host
4170 * page
4171 */
4172 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
4173 place_needed = true;
4174 target_pages = 0;
4175 }
4176 place_source = postcopy_host_page;
4177 }
4178
4179 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4180 case RAM_SAVE_FLAG_ZERO:
4181 ch = qemu_get_byte(f);
4182 /*
4183 * Can skip to set page_buffer when
4184 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
4185 */
4186 if (ch || !matches_target_page_size) {
4187 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4188 }
4189 if (ch) {
4190 all_zero = false;
4191 }
4192 break;
4193
4194 case RAM_SAVE_FLAG_PAGE:
4195 all_zero = false;
4196 if (!matches_target_page_size) {
4197 /* For huge pages, we always use temporary buffer */
4198 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4199 } else {
4200 /*
4201 * For small pages that matches target page size, we
4202 * avoid the qemu_file copy. Instead we directly use
4203 * the buffer of QEMUFile to place the page. Note: we
4204 * cannot do any QEMUFile operation before using that
4205 * buffer to make sure the buffer is valid when
4206 * placing the page.
4207 */
4208 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4209 TARGET_PAGE_SIZE);
4210 }
4211 break;
4212 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4213 all_zero = false;
4214 len = qemu_get_be32(f);
4215 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4216 error_report("Invalid compressed data length: %d", len);
4217 ret = -EINVAL;
4218 break;
4219 }
4220 decompress_data_with_multi_threads(f, page_buffer, len);
4221 break;
4222
4223 case RAM_SAVE_FLAG_EOS:
4224 /* normal exit */
4225 multifd_recv_sync_main();
4226 break;
4227 default:
4228 error_report("Unknown combination of migration flags: %#x"
4229 " (postcopy mode)", flags);
4230 ret = -EINVAL;
4231 break;
4232 }
4233
4234 /* Got the whole host page, wait for decompress before placing. */
4235 if (place_needed) {
4236 ret |= wait_for_decompress_done();
4237 }
4238
4239 /* Detect for any possible file errors */
4240 if (!ret && qemu_file_get_error(f)) {
4241 ret = qemu_file_get_error(f);
4242 }
4243
4244 if (!ret && place_needed) {
4245 /* This gets called at the last target page in the host page */
4246 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
4247 block->page_size);
4248
4249 if (all_zero) {
4250 ret = postcopy_place_page_zero(mis, place_dest,
4251 block);
4252 } else {
4253 ret = postcopy_place_page(mis, place_dest,
4254 place_source, block);
4255 }
4256 }
4257 }
4258
4259 return ret;
4260 }
4261
4262 static bool postcopy_is_advised(void)
4263 {
4264 PostcopyState ps = postcopy_state_get();
4265 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4266 }
4267
4268 static bool postcopy_is_running(void)
4269 {
4270 PostcopyState ps = postcopy_state_get();
4271 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4272 }
4273
4274 /*
4275 * Flush content of RAM cache into SVM's memory.
4276 * Only flush the pages that be dirtied by PVM or SVM or both.
4277 */
4278 static void colo_flush_ram_cache(void)
4279 {
4280 RAMBlock *block = NULL;
4281 void *dst_host;
4282 void *src_host;
4283 unsigned long offset = 0;
4284
4285 memory_global_dirty_log_sync();
4286 WITH_RCU_READ_LOCK_GUARD() {
4287 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4288 ramblock_sync_dirty_bitmap(ram_state, block);
4289 }
4290 }
4291
4292 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4293 WITH_RCU_READ_LOCK_GUARD() {
4294 block = QLIST_FIRST_RCU(&ram_list.blocks);
4295
4296 while (block) {
4297 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4298
4299 if (((ram_addr_t)offset) << TARGET_PAGE_BITS
4300 >= block->used_length) {
4301 offset = 0;
4302 block = QLIST_NEXT_RCU(block, next);
4303 } else {
4304 migration_bitmap_clear_dirty(ram_state, block, offset);
4305 dst_host = block->host
4306 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4307 src_host = block->colo_cache
4308 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4309 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4310 }
4311 }
4312 }
4313 trace_colo_flush_ram_cache_end();
4314 }
4315
4316 /**
4317 * ram_load_precopy: load pages in precopy case
4318 *
4319 * Returns 0 for success or -errno in case of error
4320 *
4321 * Called in precopy mode by ram_load().
4322 * rcu_read_lock is taken prior to this being called.
4323 *
4324 * @f: QEMUFile where to send the data
4325 */
4326 static int ram_load_precopy(QEMUFile *f)
4327 {
4328 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4329 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4330 bool postcopy_advised = postcopy_is_advised();
4331 if (!migrate_use_compression()) {
4332 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4333 }
4334
4335 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4336 ram_addr_t addr, total_ram_bytes;
4337 void *host = NULL;
4338 uint8_t ch;
4339
4340 /*
4341 * Yield periodically to let main loop run, but an iteration of
4342 * the main loop is expensive, so do it each some iterations
4343 */
4344 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4345 aio_co_schedule(qemu_get_current_aio_context(),
4346 qemu_coroutine_self());
4347 qemu_coroutine_yield();
4348 }
4349 i++;
4350
4351 addr = qemu_get_be64(f);
4352 flags = addr & ~TARGET_PAGE_MASK;
4353 addr &= TARGET_PAGE_MASK;
4354
4355 if (flags & invalid_flags) {
4356 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4357 error_report("Received an unexpected compressed page");
4358 }
4359
4360 ret = -EINVAL;
4361 break;
4362 }
4363
4364 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4365 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4366 RAMBlock *block = ram_block_from_stream(f, flags);
4367
4368 /*
4369 * After going into COLO, we should load the Page into colo_cache.
4370 */
4371 if (migration_incoming_in_colo_state()) {
4372 host = colo_cache_from_block_offset(block, addr);
4373 } else {
4374 host = host_from_ram_block_offset(block, addr);
4375 }
4376 if (!host) {
4377 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4378 ret = -EINVAL;
4379 break;
4380 }
4381
4382 if (!migration_incoming_in_colo_state()) {
4383 ramblock_recv_bitmap_set(block, host);
4384 }
4385
4386 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4387 }
4388
4389 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4390 case RAM_SAVE_FLAG_MEM_SIZE:
4391 /* Synchronize RAM block list */
4392 total_ram_bytes = addr;
4393 while (!ret && total_ram_bytes) {
4394 RAMBlock *block;
4395 char id[256];
4396 ram_addr_t length;
4397
4398 len = qemu_get_byte(f);
4399 qemu_get_buffer(f, (uint8_t *)id, len);
4400 id[len] = 0;
4401 length = qemu_get_be64(f);
4402
4403 block = qemu_ram_block_by_name(id);
4404 if (block && !qemu_ram_is_migratable(block)) {
4405 error_report("block %s should not be migrated !", id);
4406 ret = -EINVAL;
4407 } else if (block) {
4408 if (length != block->used_length) {
4409 Error *local_err = NULL;
4410
4411 ret = qemu_ram_resize(block, length,
4412 &local_err);
4413 if (local_err) {
4414 error_report_err(local_err);
4415 }
4416 }
4417 /* For postcopy we need to check hugepage sizes match */
4418 if (postcopy_advised &&
4419 block->page_size != qemu_host_page_size) {
4420 uint64_t remote_page_size = qemu_get_be64(f);
4421 if (remote_page_size != block->page_size) {
4422 error_report("Mismatched RAM page size %s "
4423 "(local) %zd != %" PRId64,
4424 id, block->page_size,
4425 remote_page_size);
4426 ret = -EINVAL;
4427 }
4428 }
4429 if (migrate_ignore_shared()) {
4430 hwaddr addr = qemu_get_be64(f);
4431 if (ramblock_is_ignored(block) &&
4432 block->mr->addr != addr) {
4433 error_report("Mismatched GPAs for block %s "
4434 "%" PRId64 "!= %" PRId64,
4435 id, (uint64_t)addr,
4436 (uint64_t)block->mr->addr);
4437 ret = -EINVAL;
4438 }
4439 }
4440 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4441 block->idstr);
4442 } else {
4443 error_report("Unknown ramblock \"%s\", cannot "
4444 "accept migration", id);
4445 ret = -EINVAL;
4446 }
4447
4448 total_ram_bytes -= length;
4449 }
4450 break;
4451
4452 case RAM_SAVE_FLAG_ZERO:
4453 ch = qemu_get_byte(f);
4454 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4455 break;
4456
4457 case RAM_SAVE_FLAG_PAGE:
4458 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4459 break;
4460
4461 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4462 len = qemu_get_be32(f);
4463 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4464 error_report("Invalid compressed data length: %d", len);
4465 ret = -EINVAL;
4466 break;
4467 }
4468 decompress_data_with_multi_threads(f, host, len);
4469 break;
4470
4471 case RAM_SAVE_FLAG_XBZRLE:
4472 if (load_xbzrle(f, addr, host) < 0) {
4473 error_report("Failed to decompress XBZRLE page at "
4474 RAM_ADDR_FMT, addr);
4475 ret = -EINVAL;
4476 break;
4477 }
4478 break;
4479 case RAM_SAVE_FLAG_EOS:
4480 /* normal exit */
4481 multifd_recv_sync_main();
4482 break;
4483 default:
4484 if (flags & RAM_SAVE_FLAG_HOOK) {
4485 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4486 } else {
4487 error_report("Unknown combination of migration flags: %#x",
4488 flags);
4489 ret = -EINVAL;
4490 }
4491 }
4492 if (!ret) {
4493 ret = qemu_file_get_error(f);
4494 }
4495 }
4496
4497 ret |= wait_for_decompress_done();
4498 return ret;
4499 }
4500
4501 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4502 {
4503 int ret = 0;
4504 static uint64_t seq_iter;
4505 /*
4506 * If system is running in postcopy mode, page inserts to host memory must
4507 * be atomic
4508 */
4509 bool postcopy_running = postcopy_is_running();
4510
4511 seq_iter++;
4512
4513 if (version_id != 4) {
4514 return -EINVAL;
4515 }
4516
4517 /*
4518 * This RCU critical section can be very long running.
4519 * When RCU reclaims in the code start to become numerous,
4520 * it will be necessary to reduce the granularity of this
4521 * critical section.
4522 */
4523 WITH_RCU_READ_LOCK_GUARD() {
4524 if (postcopy_running) {
4525 ret = ram_load_postcopy(f);
4526 } else {
4527 ret = ram_load_precopy(f);
4528 }
4529 }
4530 trace_ram_load_complete(ret, seq_iter);
4531
4532 if (!ret && migration_incoming_in_colo_state()) {
4533 colo_flush_ram_cache();
4534 }
4535 return ret;
4536 }
4537
4538 static bool ram_has_postcopy(void *opaque)
4539 {
4540 RAMBlock *rb;
4541 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4542 if (ramblock_is_pmem(rb)) {
4543 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4544 "is not supported now!", rb->idstr, rb->host);
4545 return false;
4546 }
4547 }
4548
4549 return migrate_postcopy_ram();
4550 }
4551
4552 /* Sync all the dirty bitmap with destination VM. */
4553 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4554 {
4555 RAMBlock *block;
4556 QEMUFile *file = s->to_dst_file;
4557 int ramblock_count = 0;
4558
4559 trace_ram_dirty_bitmap_sync_start();
4560
4561 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4562 qemu_savevm_send_recv_bitmap(file, block->idstr);
4563 trace_ram_dirty_bitmap_request(block->idstr);
4564 ramblock_count++;
4565 }
4566
4567 trace_ram_dirty_bitmap_sync_wait();
4568
4569 /* Wait until all the ramblocks' dirty bitmap synced */
4570 while (ramblock_count--) {
4571 qemu_sem_wait(&s->rp_state.rp_sem);
4572 }
4573
4574 trace_ram_dirty_bitmap_sync_complete();
4575
4576 return 0;
4577 }
4578
4579 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4580 {
4581 qemu_sem_post(&s->rp_state.rp_sem);
4582 }
4583
4584 /*
4585 * Read the received bitmap, revert it as the initial dirty bitmap.
4586 * This is only used when the postcopy migration is paused but wants
4587 * to resume from a middle point.
4588 */
4589 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4590 {
4591 int ret = -EINVAL;
4592 QEMUFile *file = s->rp_state.from_dst_file;
4593 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4594 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4595 uint64_t size, end_mark;
4596
4597 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4598
4599 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4600 error_report("%s: incorrect state %s", __func__,
4601 MigrationStatus_str(s->state));
4602 return -EINVAL;
4603 }
4604
4605 /*
4606 * Note: see comments in ramblock_recv_bitmap_send() on why we
4607 * need the endianess convertion, and the paddings.
4608 */
4609 local_size = ROUND_UP(local_size, 8);
4610
4611 /* Add paddings */
4612 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4613
4614 size = qemu_get_be64(file);
4615
4616 /* The size of the bitmap should match with our ramblock */
4617 if (size != local_size) {
4618 error_report("%s: ramblock '%s' bitmap size mismatch "
4619 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4620 block->idstr, size, local_size);
4621 ret = -EINVAL;
4622 goto out;
4623 }
4624
4625 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4626 end_mark = qemu_get_be64(file);
4627
4628 ret = qemu_file_get_error(file);
4629 if (ret || size != local_size) {
4630 error_report("%s: read bitmap failed for ramblock '%s': %d"
4631 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4632 __func__, block->idstr, ret, local_size, size);
4633 ret = -EIO;
4634 goto out;
4635 }
4636
4637 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4638 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4639 __func__, block->idstr, end_mark);
4640 ret = -EINVAL;
4641 goto out;
4642 }
4643
4644 /*
4645 * Endianess convertion. We are during postcopy (though paused).
4646 * The dirty bitmap won't change. We can directly modify it.
4647 */
4648 bitmap_from_le(block->bmap, le_bitmap, nbits);
4649
4650 /*
4651 * What we received is "received bitmap". Revert it as the initial
4652 * dirty bitmap for this ramblock.
4653 */
4654 bitmap_complement(block->bmap, block->bmap, nbits);
4655
4656 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4657
4658 /*
4659 * We succeeded to sync bitmap for current ramblock. If this is
4660 * the last one to sync, we need to notify the main send thread.
4661 */
4662 ram_dirty_bitmap_reload_notify(s);
4663
4664 ret = 0;
4665 out:
4666 g_free(le_bitmap);
4667 return ret;
4668 }
4669
4670 static int ram_resume_prepare(MigrationState *s, void *opaque)
4671 {
4672 RAMState *rs = *(RAMState **)opaque;
4673 int ret;
4674
4675 ret = ram_dirty_bitmap_sync_all(s, rs);
4676 if (ret) {
4677 return ret;
4678 }
4679
4680 ram_state_resume_prepare(rs, s->to_dst_file);
4681
4682 return 0;
4683 }
4684
4685 static SaveVMHandlers savevm_ram_handlers = {
4686 .save_setup = ram_save_setup,
4687 .save_live_iterate = ram_save_iterate,
4688 .save_live_complete_postcopy = ram_save_complete,
4689 .save_live_complete_precopy = ram_save_complete,
4690 .has_postcopy = ram_has_postcopy,
4691 .save_live_pending = ram_save_pending,
4692 .load_state = ram_load,
4693 .save_cleanup = ram_save_cleanup,
4694 .load_setup = ram_load_setup,
4695 .load_cleanup = ram_load_cleanup,
4696 .resume_prepare = ram_resume_prepare,
4697 };
4698
4699 void ram_mig_init(void)
4700 {
4701 qemu_mutex_init(&XBZRLE.lock);
4702 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4703 }