]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
7221f541398cf6d939ce50a731a3cf6023a3b256
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "socket.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
49 #include "trace.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
54 #include "block.h"
55 #include "sysemu/sysemu.h"
56 #include "qemu/uuid.h"
57 #include "savevm.h"
58 #include "qemu/iov.h"
59
60 /***********************************************************/
61 /* ram save/restore */
62
63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
64 * worked for pages that where filled with the same char. We switched
65 * it to only search for the zero value. And to avoid confusion with
66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
67 */
68
69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
70 #define RAM_SAVE_FLAG_ZERO 0x02
71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
72 #define RAM_SAVE_FLAG_PAGE 0x08
73 #define RAM_SAVE_FLAG_EOS 0x10
74 #define RAM_SAVE_FLAG_CONTINUE 0x20
75 #define RAM_SAVE_FLAG_XBZRLE 0x40
76 /* 0x80 is reserved in migration.h start with 0x100 next */
77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
78
79 static inline bool is_zero_range(uint8_t *p, uint64_t size)
80 {
81 return buffer_is_zero(p, size);
82 }
83
84 XBZRLECacheStats xbzrle_counters;
85
86 /* struct contains XBZRLE cache and a static page
87 used by the compression */
88 static struct {
89 /* buffer used for XBZRLE encoding */
90 uint8_t *encoded_buf;
91 /* buffer for storing page content */
92 uint8_t *current_buf;
93 /* Cache for XBZRLE, Protected by lock. */
94 PageCache *cache;
95 QemuMutex lock;
96 /* it will store a page full of zeros */
97 uint8_t *zero_target_page;
98 /* buffer used for XBZRLE decoding */
99 uint8_t *decoded_buf;
100 } XBZRLE;
101
102 static void XBZRLE_cache_lock(void)
103 {
104 if (migrate_use_xbzrle())
105 qemu_mutex_lock(&XBZRLE.lock);
106 }
107
108 static void XBZRLE_cache_unlock(void)
109 {
110 if (migrate_use_xbzrle())
111 qemu_mutex_unlock(&XBZRLE.lock);
112 }
113
114 /**
115 * xbzrle_cache_resize: resize the xbzrle cache
116 *
117 * This function is called from qmp_migrate_set_cache_size in main
118 * thread, possibly while a migration is in progress. A running
119 * migration may be using the cache and might finish during this call,
120 * hence changes to the cache are protected by XBZRLE.lock().
121 *
122 * Returns 0 for success or -1 for error
123 *
124 * @new_size: new cache size
125 * @errp: set *errp if the check failed, with reason
126 */
127 int xbzrle_cache_resize(int64_t new_size, Error **errp)
128 {
129 PageCache *new_cache;
130 int64_t ret = 0;
131
132 /* Check for truncation */
133 if (new_size != (size_t)new_size) {
134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
135 "exceeding address space");
136 return -1;
137 }
138
139 if (new_size == migrate_xbzrle_cache_size()) {
140 /* nothing to do */
141 return 0;
142 }
143
144 XBZRLE_cache_lock();
145
146 if (XBZRLE.cache != NULL) {
147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
148 if (!new_cache) {
149 ret = -1;
150 goto out;
151 }
152
153 cache_fini(XBZRLE.cache);
154 XBZRLE.cache = new_cache;
155 }
156 out:
157 XBZRLE_cache_unlock();
158 return ret;
159 }
160
161 static bool ramblock_is_ignored(RAMBlock *block)
162 {
163 return !qemu_ram_is_migratable(block) ||
164 (migrate_ignore_shared() && qemu_ram_is_shared(block));
165 }
166
167 /* Should be holding either ram_list.mutex, or the RCU lock. */
168 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
169 INTERNAL_RAMBLOCK_FOREACH(block) \
170 if (ramblock_is_ignored(block)) {} else
171
172 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
173 INTERNAL_RAMBLOCK_FOREACH(block) \
174 if (!qemu_ram_is_migratable(block)) {} else
175
176 #undef RAMBLOCK_FOREACH
177
178 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
179 {
180 RAMBlock *block;
181 int ret = 0;
182
183 RCU_READ_LOCK_GUARD();
184
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 return ret;
192 }
193
194 static void ramblock_recv_map_init(void)
195 {
196 RAMBlock *rb;
197
198 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
199 assert(!rb->receivedmap);
200 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
201 }
202 }
203
204 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
205 {
206 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
207 rb->receivedmap);
208 }
209
210 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
211 {
212 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
213 }
214
215 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
216 {
217 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
218 }
219
220 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
221 size_t nr)
222 {
223 bitmap_set_atomic(rb->receivedmap,
224 ramblock_recv_bitmap_offset(host_addr, rb),
225 nr);
226 }
227
228 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
229
230 /*
231 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
232 *
233 * Returns >0 if success with sent bytes, or <0 if error.
234 */
235 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
236 const char *block_name)
237 {
238 RAMBlock *block = qemu_ram_block_by_name(block_name);
239 unsigned long *le_bitmap, nbits;
240 uint64_t size;
241
242 if (!block) {
243 error_report("%s: invalid block name: %s", __func__, block_name);
244 return -1;
245 }
246
247 nbits = block->used_length >> TARGET_PAGE_BITS;
248
249 /*
250 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
251 * machines we may need 4 more bytes for padding (see below
252 * comment). So extend it a bit before hand.
253 */
254 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
255
256 /*
257 * Always use little endian when sending the bitmap. This is
258 * required that when source and destination VMs are not using the
259 * same endianess. (Note: big endian won't work.)
260 */
261 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
262
263 /* Size of the bitmap, in bytes */
264 size = DIV_ROUND_UP(nbits, 8);
265
266 /*
267 * size is always aligned to 8 bytes for 64bit machines, but it
268 * may not be true for 32bit machines. We need this padding to
269 * make sure the migration can survive even between 32bit and
270 * 64bit machines.
271 */
272 size = ROUND_UP(size, 8);
273
274 qemu_put_be64(file, size);
275 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
276 /*
277 * Mark as an end, in case the middle part is screwed up due to
278 * some "misterious" reason.
279 */
280 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
281 qemu_fflush(file);
282
283 g_free(le_bitmap);
284
285 if (qemu_file_get_error(file)) {
286 return qemu_file_get_error(file);
287 }
288
289 return size + sizeof(size);
290 }
291
292 /*
293 * An outstanding page request, on the source, having been received
294 * and queued
295 */
296 struct RAMSrcPageRequest {
297 RAMBlock *rb;
298 hwaddr offset;
299 hwaddr len;
300
301 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
302 };
303
304 /* State of RAM for migration */
305 struct RAMState {
306 /* QEMUFile used for this migration */
307 QEMUFile *f;
308 /* Last block that we have visited searching for dirty pages */
309 RAMBlock *last_seen_block;
310 /* Last block from where we have sent data */
311 RAMBlock *last_sent_block;
312 /* Last dirty target page we have sent */
313 ram_addr_t last_page;
314 /* last ram version we have seen */
315 uint32_t last_version;
316 /* We are in the first round */
317 bool ram_bulk_stage;
318 /* The free page optimization is enabled */
319 bool fpo_enabled;
320 /* How many times we have dirty too many pages */
321 int dirty_rate_high_cnt;
322 /* these variables are used for bitmap sync */
323 /* last time we did a full bitmap_sync */
324 int64_t time_last_bitmap_sync;
325 /* bytes transferred at start_time */
326 uint64_t bytes_xfer_prev;
327 /* number of dirty pages since start_time */
328 uint64_t num_dirty_pages_period;
329 /* xbzrle misses since the beginning of the period */
330 uint64_t xbzrle_cache_miss_prev;
331
332 /* compression statistics since the beginning of the period */
333 /* amount of count that no free thread to compress data */
334 uint64_t compress_thread_busy_prev;
335 /* amount bytes after compression */
336 uint64_t compressed_size_prev;
337 /* amount of compressed pages */
338 uint64_t compress_pages_prev;
339
340 /* total handled target pages at the beginning of period */
341 uint64_t target_page_count_prev;
342 /* total handled target pages since start */
343 uint64_t target_page_count;
344 /* number of dirty bits in the bitmap */
345 uint64_t migration_dirty_pages;
346 /* Protects modification of the bitmap and migration dirty pages */
347 QemuMutex bitmap_mutex;
348 /* The RAMBlock used in the last src_page_requests */
349 RAMBlock *last_req_rb;
350 /* Queue of outstanding page requests from the destination */
351 QemuMutex src_page_req_mutex;
352 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
353 };
354 typedef struct RAMState RAMState;
355
356 static RAMState *ram_state;
357
358 static NotifierWithReturnList precopy_notifier_list;
359
360 void precopy_infrastructure_init(void)
361 {
362 notifier_with_return_list_init(&precopy_notifier_list);
363 }
364
365 void precopy_add_notifier(NotifierWithReturn *n)
366 {
367 notifier_with_return_list_add(&precopy_notifier_list, n);
368 }
369
370 void precopy_remove_notifier(NotifierWithReturn *n)
371 {
372 notifier_with_return_remove(n);
373 }
374
375 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
376 {
377 PrecopyNotifyData pnd;
378 pnd.reason = reason;
379 pnd.errp = errp;
380
381 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
382 }
383
384 void precopy_enable_free_page_optimization(void)
385 {
386 if (!ram_state) {
387 return;
388 }
389
390 ram_state->fpo_enabled = true;
391 }
392
393 uint64_t ram_bytes_remaining(void)
394 {
395 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
396 0;
397 }
398
399 MigrationStats ram_counters;
400
401 /* used by the search for pages to send */
402 struct PageSearchStatus {
403 /* Current block being searched */
404 RAMBlock *block;
405 /* Current page to search from */
406 unsigned long page;
407 /* Set once we wrap around */
408 bool complete_round;
409 };
410 typedef struct PageSearchStatus PageSearchStatus;
411
412 CompressionStats compression_counters;
413
414 struct CompressParam {
415 bool done;
416 bool quit;
417 bool zero_page;
418 QEMUFile *file;
419 QemuMutex mutex;
420 QemuCond cond;
421 RAMBlock *block;
422 ram_addr_t offset;
423
424 /* internally used fields */
425 z_stream stream;
426 uint8_t *originbuf;
427 };
428 typedef struct CompressParam CompressParam;
429
430 struct DecompressParam {
431 bool done;
432 bool quit;
433 QemuMutex mutex;
434 QemuCond cond;
435 void *des;
436 uint8_t *compbuf;
437 int len;
438 z_stream stream;
439 };
440 typedef struct DecompressParam DecompressParam;
441
442 static CompressParam *comp_param;
443 static QemuThread *compress_threads;
444 /* comp_done_cond is used to wake up the migration thread when
445 * one of the compression threads has finished the compression.
446 * comp_done_lock is used to co-work with comp_done_cond.
447 */
448 static QemuMutex comp_done_lock;
449 static QemuCond comp_done_cond;
450 /* The empty QEMUFileOps will be used by file in CompressParam */
451 static const QEMUFileOps empty_ops = { };
452
453 static QEMUFile *decomp_file;
454 static DecompressParam *decomp_param;
455 static QemuThread *decompress_threads;
456 static QemuMutex decomp_done_lock;
457 static QemuCond decomp_done_cond;
458
459 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
460 ram_addr_t offset, uint8_t *source_buf);
461
462 static void *do_data_compress(void *opaque)
463 {
464 CompressParam *param = opaque;
465 RAMBlock *block;
466 ram_addr_t offset;
467 bool zero_page;
468
469 qemu_mutex_lock(&param->mutex);
470 while (!param->quit) {
471 if (param->block) {
472 block = param->block;
473 offset = param->offset;
474 param->block = NULL;
475 qemu_mutex_unlock(&param->mutex);
476
477 zero_page = do_compress_ram_page(param->file, &param->stream,
478 block, offset, param->originbuf);
479
480 qemu_mutex_lock(&comp_done_lock);
481 param->done = true;
482 param->zero_page = zero_page;
483 qemu_cond_signal(&comp_done_cond);
484 qemu_mutex_unlock(&comp_done_lock);
485
486 qemu_mutex_lock(&param->mutex);
487 } else {
488 qemu_cond_wait(&param->cond, &param->mutex);
489 }
490 }
491 qemu_mutex_unlock(&param->mutex);
492
493 return NULL;
494 }
495
496 static void compress_threads_save_cleanup(void)
497 {
498 int i, thread_count;
499
500 if (!migrate_use_compression() || !comp_param) {
501 return;
502 }
503
504 thread_count = migrate_compress_threads();
505 for (i = 0; i < thread_count; i++) {
506 /*
507 * we use it as a indicator which shows if the thread is
508 * properly init'd or not
509 */
510 if (!comp_param[i].file) {
511 break;
512 }
513
514 qemu_mutex_lock(&comp_param[i].mutex);
515 comp_param[i].quit = true;
516 qemu_cond_signal(&comp_param[i].cond);
517 qemu_mutex_unlock(&comp_param[i].mutex);
518
519 qemu_thread_join(compress_threads + i);
520 qemu_mutex_destroy(&comp_param[i].mutex);
521 qemu_cond_destroy(&comp_param[i].cond);
522 deflateEnd(&comp_param[i].stream);
523 g_free(comp_param[i].originbuf);
524 qemu_fclose(comp_param[i].file);
525 comp_param[i].file = NULL;
526 }
527 qemu_mutex_destroy(&comp_done_lock);
528 qemu_cond_destroy(&comp_done_cond);
529 g_free(compress_threads);
530 g_free(comp_param);
531 compress_threads = NULL;
532 comp_param = NULL;
533 }
534
535 static int compress_threads_save_setup(void)
536 {
537 int i, thread_count;
538
539 if (!migrate_use_compression()) {
540 return 0;
541 }
542 thread_count = migrate_compress_threads();
543 compress_threads = g_new0(QemuThread, thread_count);
544 comp_param = g_new0(CompressParam, thread_count);
545 qemu_cond_init(&comp_done_cond);
546 qemu_mutex_init(&comp_done_lock);
547 for (i = 0; i < thread_count; i++) {
548 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
549 if (!comp_param[i].originbuf) {
550 goto exit;
551 }
552
553 if (deflateInit(&comp_param[i].stream,
554 migrate_compress_level()) != Z_OK) {
555 g_free(comp_param[i].originbuf);
556 goto exit;
557 }
558
559 /* comp_param[i].file is just used as a dummy buffer to save data,
560 * set its ops to empty.
561 */
562 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
563 comp_param[i].done = true;
564 comp_param[i].quit = false;
565 qemu_mutex_init(&comp_param[i].mutex);
566 qemu_cond_init(&comp_param[i].cond);
567 qemu_thread_create(compress_threads + i, "compress",
568 do_data_compress, comp_param + i,
569 QEMU_THREAD_JOINABLE);
570 }
571 return 0;
572
573 exit:
574 compress_threads_save_cleanup();
575 return -1;
576 }
577
578 /* Multiple fd's */
579
580 #define MULTIFD_MAGIC 0x11223344U
581 #define MULTIFD_VERSION 1
582
583 #define MULTIFD_FLAG_SYNC (1 << 0)
584
585 /* This value needs to be a multiple of qemu_target_page_size() */
586 #define MULTIFD_PACKET_SIZE (512 * 1024)
587
588 typedef struct {
589 uint32_t magic;
590 uint32_t version;
591 unsigned char uuid[16]; /* QemuUUID */
592 uint8_t id;
593 uint8_t unused1[7]; /* Reserved for future use */
594 uint64_t unused2[4]; /* Reserved for future use */
595 } __attribute__((packed)) MultiFDInit_t;
596
597 typedef struct {
598 uint32_t magic;
599 uint32_t version;
600 uint32_t flags;
601 /* maximum number of allocated pages */
602 uint32_t pages_alloc;
603 uint32_t pages_used;
604 /* size of the next packet that contains pages */
605 uint32_t next_packet_size;
606 uint64_t packet_num;
607 uint64_t unused[4]; /* Reserved for future use */
608 char ramblock[256];
609 uint64_t offset[];
610 } __attribute__((packed)) MultiFDPacket_t;
611
612 typedef struct {
613 /* number of used pages */
614 uint32_t used;
615 /* number of allocated pages */
616 uint32_t allocated;
617 /* global number of generated multifd packets */
618 uint64_t packet_num;
619 /* offset of each page */
620 ram_addr_t *offset;
621 /* pointer to each page */
622 struct iovec *iov;
623 RAMBlock *block;
624 } MultiFDPages_t;
625
626 typedef struct {
627 /* this fields are not changed once the thread is created */
628 /* channel number */
629 uint8_t id;
630 /* channel thread name */
631 char *name;
632 /* channel thread id */
633 QemuThread thread;
634 /* communication channel */
635 QIOChannel *c;
636 /* sem where to wait for more work */
637 QemuSemaphore sem;
638 /* this mutex protects the following parameters */
639 QemuMutex mutex;
640 /* is this channel thread running */
641 bool running;
642 /* should this thread finish */
643 bool quit;
644 /* thread has work to do */
645 int pending_job;
646 /* array of pages to sent */
647 MultiFDPages_t *pages;
648 /* packet allocated len */
649 uint32_t packet_len;
650 /* pointer to the packet */
651 MultiFDPacket_t *packet;
652 /* multifd flags for each packet */
653 uint32_t flags;
654 /* size of the next packet that contains pages */
655 uint32_t next_packet_size;
656 /* global number of generated multifd packets */
657 uint64_t packet_num;
658 /* thread local variables */
659 /* packets sent through this channel */
660 uint64_t num_packets;
661 /* pages sent through this channel */
662 uint64_t num_pages;
663 /* syncs main thread and channels */
664 QemuSemaphore sem_sync;
665 } MultiFDSendParams;
666
667 typedef struct {
668 /* this fields are not changed once the thread is created */
669 /* channel number */
670 uint8_t id;
671 /* channel thread name */
672 char *name;
673 /* channel thread id */
674 QemuThread thread;
675 /* communication channel */
676 QIOChannel *c;
677 /* this mutex protects the following parameters */
678 QemuMutex mutex;
679 /* is this channel thread running */
680 bool running;
681 /* should this thread finish */
682 bool quit;
683 /* array of pages to receive */
684 MultiFDPages_t *pages;
685 /* packet allocated len */
686 uint32_t packet_len;
687 /* pointer to the packet */
688 MultiFDPacket_t *packet;
689 /* multifd flags for each packet */
690 uint32_t flags;
691 /* global number of generated multifd packets */
692 uint64_t packet_num;
693 /* thread local variables */
694 /* size of the next packet that contains pages */
695 uint32_t next_packet_size;
696 /* packets sent through this channel */
697 uint64_t num_packets;
698 /* pages sent through this channel */
699 uint64_t num_pages;
700 /* syncs main thread and channels */
701 QemuSemaphore sem_sync;
702 } MultiFDRecvParams;
703
704 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
705 {
706 MultiFDInit_t msg = {};
707 int ret;
708
709 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
710 msg.version = cpu_to_be32(MULTIFD_VERSION);
711 msg.id = p->id;
712 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
713
714 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
715 if (ret != 0) {
716 return -1;
717 }
718 return 0;
719 }
720
721 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
722 {
723 MultiFDInit_t msg;
724 int ret;
725
726 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
727 if (ret != 0) {
728 return -1;
729 }
730
731 msg.magic = be32_to_cpu(msg.magic);
732 msg.version = be32_to_cpu(msg.version);
733
734 if (msg.magic != MULTIFD_MAGIC) {
735 error_setg(errp, "multifd: received packet magic %x "
736 "expected %x", msg.magic, MULTIFD_MAGIC);
737 return -1;
738 }
739
740 if (msg.version != MULTIFD_VERSION) {
741 error_setg(errp, "multifd: received packet version %d "
742 "expected %d", msg.version, MULTIFD_VERSION);
743 return -1;
744 }
745
746 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
747 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
748 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
749
750 error_setg(errp, "multifd: received uuid '%s' and expected "
751 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
752 g_free(uuid);
753 g_free(msg_uuid);
754 return -1;
755 }
756
757 if (msg.id > migrate_multifd_channels()) {
758 error_setg(errp, "multifd: received channel version %d "
759 "expected %d", msg.version, MULTIFD_VERSION);
760 return -1;
761 }
762
763 return msg.id;
764 }
765
766 static MultiFDPages_t *multifd_pages_init(size_t size)
767 {
768 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
769
770 pages->allocated = size;
771 pages->iov = g_new0(struct iovec, size);
772 pages->offset = g_new0(ram_addr_t, size);
773
774 return pages;
775 }
776
777 static void multifd_pages_clear(MultiFDPages_t *pages)
778 {
779 pages->used = 0;
780 pages->allocated = 0;
781 pages->packet_num = 0;
782 pages->block = NULL;
783 g_free(pages->iov);
784 pages->iov = NULL;
785 g_free(pages->offset);
786 pages->offset = NULL;
787 g_free(pages);
788 }
789
790 static void multifd_send_fill_packet(MultiFDSendParams *p)
791 {
792 MultiFDPacket_t *packet = p->packet;
793 int i;
794
795 packet->flags = cpu_to_be32(p->flags);
796 packet->pages_alloc = cpu_to_be32(p->pages->allocated);
797 packet->pages_used = cpu_to_be32(p->pages->used);
798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
799 packet->packet_num = cpu_to_be64(p->packet_num);
800
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
803 }
804
805 for (i = 0; i < p->pages->used; i++) {
806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
807 }
808 }
809
810 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
811 {
812 MultiFDPacket_t *packet = p->packet;
813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
814 RAMBlock *block;
815 int i;
816
817 packet->magic = be32_to_cpu(packet->magic);
818 if (packet->magic != MULTIFD_MAGIC) {
819 error_setg(errp, "multifd: received packet "
820 "magic %x and expected magic %x",
821 packet->magic, MULTIFD_MAGIC);
822 return -1;
823 }
824
825 packet->version = be32_to_cpu(packet->version);
826 if (packet->version != MULTIFD_VERSION) {
827 error_setg(errp, "multifd: received packet "
828 "version %d and expected version %d",
829 packet->version, MULTIFD_VERSION);
830 return -1;
831 }
832
833 p->flags = be32_to_cpu(packet->flags);
834
835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
836 /*
837 * If we received a packet that is 100 times bigger than expected
838 * just stop migration. It is a magic number.
839 */
840 if (packet->pages_alloc > pages_max * 100) {
841 error_setg(errp, "multifd: received packet "
842 "with size %d and expected a maximum size of %d",
843 packet->pages_alloc, pages_max * 100) ;
844 return -1;
845 }
846 /*
847 * We received a packet that is bigger than expected but inside
848 * reasonable limits (see previous comment). Just reallocate.
849 */
850 if (packet->pages_alloc > p->pages->allocated) {
851 multifd_pages_clear(p->pages);
852 p->pages = multifd_pages_init(packet->pages_alloc);
853 }
854
855 p->pages->used = be32_to_cpu(packet->pages_used);
856 if (p->pages->used > packet->pages_alloc) {
857 error_setg(errp, "multifd: received packet "
858 "with %d pages and expected maximum pages are %d",
859 p->pages->used, packet->pages_alloc) ;
860 return -1;
861 }
862
863 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
864 p->packet_num = be64_to_cpu(packet->packet_num);
865
866 if (p->pages->used == 0) {
867 return 0;
868 }
869
870 /* make sure that ramblock is 0 terminated */
871 packet->ramblock[255] = 0;
872 block = qemu_ram_block_by_name(packet->ramblock);
873 if (!block) {
874 error_setg(errp, "multifd: unknown ram block %s",
875 packet->ramblock);
876 return -1;
877 }
878
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
881
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
887 }
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
890 }
891
892 return 0;
893 }
894
895 struct {
896 MultiFDSendParams *params;
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
899 /* global number of generated multifd packets */
900 uint64_t packet_num;
901 /* send channels ready */
902 QemuSemaphore channels_ready;
903 /*
904 * Have we already run terminate threads. There is a race when it
905 * happens that we got one error while we are exiting.
906 * We will use atomic operations. Only valid values are 0 and 1.
907 */
908 int exiting;
909 } *multifd_send_state;
910
911 /*
912 * How we use multifd_send_state->pages and channel->pages?
913 *
914 * We create a pages for each channel, and a main one. Each time that
915 * we need to send a batch of pages we interchange the ones between
916 * multifd_send_state and the channel that is sending it. There are
917 * two reasons for that:
918 * - to not have to do so many mallocs during migration
919 * - to make easier to know what to free at the end of migration
920 *
921 * This way we always know who is the owner of each "pages" struct,
922 * and we don't need any locking. It belongs to the migration thread
923 * or to the channel thread. Switching is safe because the migration
924 * thread is using the channel mutex when changing it, and the channel
925 * have to had finish with its own, otherwise pending_job can't be
926 * false.
927 */
928
929 static int multifd_send_pages(RAMState *rs)
930 {
931 int i;
932 static int next_channel;
933 MultiFDSendParams *p = NULL; /* make happy gcc */
934 MultiFDPages_t *pages = multifd_send_state->pages;
935 uint64_t transferred;
936
937 if (atomic_read(&multifd_send_state->exiting)) {
938 return -1;
939 }
940
941 qemu_sem_wait(&multifd_send_state->channels_ready);
942 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
943 p = &multifd_send_state->params[i];
944
945 qemu_mutex_lock(&p->mutex);
946 if (p->quit) {
947 error_report("%s: channel %d has already quit!", __func__, i);
948 qemu_mutex_unlock(&p->mutex);
949 return -1;
950 }
951 if (!p->pending_job) {
952 p->pending_job++;
953 next_channel = (i + 1) % migrate_multifd_channels();
954 break;
955 }
956 qemu_mutex_unlock(&p->mutex);
957 }
958 assert(!p->pages->used);
959 assert(!p->pages->block);
960
961 p->packet_num = multifd_send_state->packet_num++;
962 multifd_send_state->pages = p->pages;
963 p->pages = pages;
964 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
965 qemu_file_update_transfer(rs->f, transferred);
966 ram_counters.multifd_bytes += transferred;
967 ram_counters.transferred += transferred;;
968 qemu_mutex_unlock(&p->mutex);
969 qemu_sem_post(&p->sem);
970
971 return 1;
972 }
973
974 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
975 {
976 MultiFDPages_t *pages = multifd_send_state->pages;
977
978 if (!pages->block) {
979 pages->block = block;
980 }
981
982 if (pages->block == block) {
983 pages->offset[pages->used] = offset;
984 pages->iov[pages->used].iov_base = block->host + offset;
985 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
986 pages->used++;
987
988 if (pages->used < pages->allocated) {
989 return 1;
990 }
991 }
992
993 if (multifd_send_pages(rs) < 0) {
994 return -1;
995 }
996
997 if (pages->block != block) {
998 return multifd_queue_page(rs, block, offset);
999 }
1000
1001 return 1;
1002 }
1003
1004 static void multifd_send_terminate_threads(Error *err)
1005 {
1006 int i;
1007
1008 trace_multifd_send_terminate_threads(err != NULL);
1009
1010 if (err) {
1011 MigrationState *s = migrate_get_current();
1012 migrate_set_error(s, err);
1013 if (s->state == MIGRATION_STATUS_SETUP ||
1014 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1015 s->state == MIGRATION_STATUS_DEVICE ||
1016 s->state == MIGRATION_STATUS_ACTIVE) {
1017 migrate_set_state(&s->state, s->state,
1018 MIGRATION_STATUS_FAILED);
1019 }
1020 }
1021
1022 /*
1023 * We don't want to exit each threads twice. Depending on where
1024 * we get the error, or if there are two independent errors in two
1025 * threads at the same time, we can end calling this function
1026 * twice.
1027 */
1028 if (atomic_xchg(&multifd_send_state->exiting, 1)) {
1029 return;
1030 }
1031
1032 for (i = 0; i < migrate_multifd_channels(); i++) {
1033 MultiFDSendParams *p = &multifd_send_state->params[i];
1034
1035 qemu_mutex_lock(&p->mutex);
1036 p->quit = true;
1037 qemu_sem_post(&p->sem);
1038 qemu_mutex_unlock(&p->mutex);
1039 }
1040 }
1041
1042 void multifd_save_cleanup(void)
1043 {
1044 int i;
1045
1046 if (!migrate_use_multifd()) {
1047 return;
1048 }
1049 multifd_send_terminate_threads(NULL);
1050 for (i = 0; i < migrate_multifd_channels(); i++) {
1051 MultiFDSendParams *p = &multifd_send_state->params[i];
1052
1053 if (p->running) {
1054 qemu_thread_join(&p->thread);
1055 }
1056 }
1057 for (i = 0; i < migrate_multifd_channels(); i++) {
1058 MultiFDSendParams *p = &multifd_send_state->params[i];
1059
1060 socket_send_channel_destroy(p->c);
1061 p->c = NULL;
1062 qemu_mutex_destroy(&p->mutex);
1063 qemu_sem_destroy(&p->sem);
1064 qemu_sem_destroy(&p->sem_sync);
1065 g_free(p->name);
1066 p->name = NULL;
1067 multifd_pages_clear(p->pages);
1068 p->pages = NULL;
1069 p->packet_len = 0;
1070 g_free(p->packet);
1071 p->packet = NULL;
1072 }
1073 qemu_sem_destroy(&multifd_send_state->channels_ready);
1074 g_free(multifd_send_state->params);
1075 multifd_send_state->params = NULL;
1076 multifd_pages_clear(multifd_send_state->pages);
1077 multifd_send_state->pages = NULL;
1078 g_free(multifd_send_state);
1079 multifd_send_state = NULL;
1080 }
1081
1082 static void multifd_send_sync_main(RAMState *rs)
1083 {
1084 int i;
1085
1086 if (!migrate_use_multifd()) {
1087 return;
1088 }
1089 if (multifd_send_state->pages->used) {
1090 if (multifd_send_pages(rs) < 0) {
1091 error_report("%s: multifd_send_pages fail", __func__);
1092 return;
1093 }
1094 }
1095 for (i = 0; i < migrate_multifd_channels(); i++) {
1096 MultiFDSendParams *p = &multifd_send_state->params[i];
1097
1098 trace_multifd_send_sync_main_signal(p->id);
1099
1100 qemu_mutex_lock(&p->mutex);
1101
1102 if (p->quit) {
1103 error_report("%s: channel %d has already quit", __func__, i);
1104 qemu_mutex_unlock(&p->mutex);
1105 return;
1106 }
1107
1108 p->packet_num = multifd_send_state->packet_num++;
1109 p->flags |= MULTIFD_FLAG_SYNC;
1110 p->pending_job++;
1111 qemu_file_update_transfer(rs->f, p->packet_len);
1112 ram_counters.multifd_bytes += p->packet_len;
1113 ram_counters.transferred += p->packet_len;
1114 qemu_mutex_unlock(&p->mutex);
1115 qemu_sem_post(&p->sem);
1116 }
1117 for (i = 0; i < migrate_multifd_channels(); i++) {
1118 MultiFDSendParams *p = &multifd_send_state->params[i];
1119
1120 trace_multifd_send_sync_main_wait(p->id);
1121 qemu_sem_wait(&p->sem_sync);
1122 }
1123 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1124 }
1125
1126 static void *multifd_send_thread(void *opaque)
1127 {
1128 MultiFDSendParams *p = opaque;
1129 Error *local_err = NULL;
1130 int ret = 0;
1131 uint32_t flags = 0;
1132
1133 trace_multifd_send_thread_start(p->id);
1134 rcu_register_thread();
1135
1136 if (multifd_send_initial_packet(p, &local_err) < 0) {
1137 ret = -1;
1138 goto out;
1139 }
1140 /* initial packet */
1141 p->num_packets = 1;
1142
1143 while (true) {
1144 qemu_sem_wait(&p->sem);
1145
1146 if (atomic_read(&multifd_send_state->exiting)) {
1147 break;
1148 }
1149 qemu_mutex_lock(&p->mutex);
1150
1151 if (p->pending_job) {
1152 uint32_t used = p->pages->used;
1153 uint64_t packet_num = p->packet_num;
1154 flags = p->flags;
1155
1156 p->next_packet_size = used * qemu_target_page_size();
1157 multifd_send_fill_packet(p);
1158 p->flags = 0;
1159 p->num_packets++;
1160 p->num_pages += used;
1161 p->pages->used = 0;
1162 p->pages->block = NULL;
1163 qemu_mutex_unlock(&p->mutex);
1164
1165 trace_multifd_send(p->id, packet_num, used, flags,
1166 p->next_packet_size);
1167
1168 ret = qio_channel_write_all(p->c, (void *)p->packet,
1169 p->packet_len, &local_err);
1170 if (ret != 0) {
1171 break;
1172 }
1173
1174 if (used) {
1175 ret = qio_channel_writev_all(p->c, p->pages->iov,
1176 used, &local_err);
1177 if (ret != 0) {
1178 break;
1179 }
1180 }
1181
1182 qemu_mutex_lock(&p->mutex);
1183 p->pending_job--;
1184 qemu_mutex_unlock(&p->mutex);
1185
1186 if (flags & MULTIFD_FLAG_SYNC) {
1187 qemu_sem_post(&p->sem_sync);
1188 }
1189 qemu_sem_post(&multifd_send_state->channels_ready);
1190 } else if (p->quit) {
1191 qemu_mutex_unlock(&p->mutex);
1192 break;
1193 } else {
1194 qemu_mutex_unlock(&p->mutex);
1195 /* sometimes there are spurious wakeups */
1196 }
1197 }
1198
1199 out:
1200 if (local_err) {
1201 trace_multifd_send_error(p->id);
1202 multifd_send_terminate_threads(local_err);
1203 }
1204
1205 /*
1206 * Error happen, I will exit, but I can't just leave, tell
1207 * who pay attention to me.
1208 */
1209 if (ret != 0) {
1210 qemu_sem_post(&p->sem_sync);
1211 qemu_sem_post(&multifd_send_state->channels_ready);
1212 }
1213
1214 qemu_mutex_lock(&p->mutex);
1215 p->running = false;
1216 qemu_mutex_unlock(&p->mutex);
1217
1218 rcu_unregister_thread();
1219 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1220
1221 return NULL;
1222 }
1223
1224 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1225 {
1226 MultiFDSendParams *p = opaque;
1227 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1228 Error *local_err = NULL;
1229
1230 trace_multifd_new_send_channel_async(p->id);
1231 if (qio_task_propagate_error(task, &local_err)) {
1232 migrate_set_error(migrate_get_current(), local_err);
1233 multifd_save_cleanup();
1234 } else {
1235 p->c = QIO_CHANNEL(sioc);
1236 qio_channel_set_delay(p->c, false);
1237 p->running = true;
1238 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1239 QEMU_THREAD_JOINABLE);
1240 }
1241 }
1242
1243 int multifd_save_setup(void)
1244 {
1245 int thread_count;
1246 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1247 uint8_t i;
1248
1249 if (!migrate_use_multifd()) {
1250 return 0;
1251 }
1252 thread_count = migrate_multifd_channels();
1253 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1254 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1255 multifd_send_state->pages = multifd_pages_init(page_count);
1256 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1257 atomic_set(&multifd_send_state->exiting, 0);
1258
1259 for (i = 0; i < thread_count; i++) {
1260 MultiFDSendParams *p = &multifd_send_state->params[i];
1261
1262 qemu_mutex_init(&p->mutex);
1263 qemu_sem_init(&p->sem, 0);
1264 qemu_sem_init(&p->sem_sync, 0);
1265 p->quit = false;
1266 p->pending_job = 0;
1267 p->id = i;
1268 p->pages = multifd_pages_init(page_count);
1269 p->packet_len = sizeof(MultiFDPacket_t)
1270 + sizeof(ram_addr_t) * page_count;
1271 p->packet = g_malloc0(p->packet_len);
1272 p->packet->magic = cpu_to_be32(MULTIFD_MAGIC);
1273 p->packet->version = cpu_to_be32(MULTIFD_VERSION);
1274 p->name = g_strdup_printf("multifdsend_%d", i);
1275 socket_send_channel_create(multifd_new_send_channel_async, p);
1276 }
1277 return 0;
1278 }
1279
1280 struct {
1281 MultiFDRecvParams *params;
1282 /* number of created threads */
1283 int count;
1284 /* syncs main thread and channels */
1285 QemuSemaphore sem_sync;
1286 /* global number of generated multifd packets */
1287 uint64_t packet_num;
1288 } *multifd_recv_state;
1289
1290 static void multifd_recv_terminate_threads(Error *err)
1291 {
1292 int i;
1293
1294 trace_multifd_recv_terminate_threads(err != NULL);
1295
1296 if (err) {
1297 MigrationState *s = migrate_get_current();
1298 migrate_set_error(s, err);
1299 if (s->state == MIGRATION_STATUS_SETUP ||
1300 s->state == MIGRATION_STATUS_ACTIVE) {
1301 migrate_set_state(&s->state, s->state,
1302 MIGRATION_STATUS_FAILED);
1303 }
1304 }
1305
1306 for (i = 0; i < migrate_multifd_channels(); i++) {
1307 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1308
1309 qemu_mutex_lock(&p->mutex);
1310 p->quit = true;
1311 /* We could arrive here for two reasons:
1312 - normal quit, i.e. everything went fine, just finished
1313 - error quit: We close the channels so the channel threads
1314 finish the qio_channel_read_all_eof() */
1315 if (p->c) {
1316 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1317 }
1318 qemu_mutex_unlock(&p->mutex);
1319 }
1320 }
1321
1322 int multifd_load_cleanup(Error **errp)
1323 {
1324 int i;
1325 int ret = 0;
1326
1327 if (!migrate_use_multifd()) {
1328 return 0;
1329 }
1330 multifd_recv_terminate_threads(NULL);
1331 for (i = 0; i < migrate_multifd_channels(); i++) {
1332 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1333
1334 if (p->running) {
1335 p->quit = true;
1336 /*
1337 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1338 * however try to wakeup it without harm in cleanup phase.
1339 */
1340 qemu_sem_post(&p->sem_sync);
1341 qemu_thread_join(&p->thread);
1342 }
1343 }
1344 for (i = 0; i < migrate_multifd_channels(); i++) {
1345 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1346
1347 object_unref(OBJECT(p->c));
1348 p->c = NULL;
1349 qemu_mutex_destroy(&p->mutex);
1350 qemu_sem_destroy(&p->sem_sync);
1351 g_free(p->name);
1352 p->name = NULL;
1353 multifd_pages_clear(p->pages);
1354 p->pages = NULL;
1355 p->packet_len = 0;
1356 g_free(p->packet);
1357 p->packet = NULL;
1358 }
1359 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1360 g_free(multifd_recv_state->params);
1361 multifd_recv_state->params = NULL;
1362 g_free(multifd_recv_state);
1363 multifd_recv_state = NULL;
1364
1365 return ret;
1366 }
1367
1368 static void multifd_recv_sync_main(void)
1369 {
1370 int i;
1371
1372 if (!migrate_use_multifd()) {
1373 return;
1374 }
1375 for (i = 0; i < migrate_multifd_channels(); i++) {
1376 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1377
1378 trace_multifd_recv_sync_main_wait(p->id);
1379 qemu_sem_wait(&multifd_recv_state->sem_sync);
1380 }
1381 for (i = 0; i < migrate_multifd_channels(); i++) {
1382 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1383
1384 qemu_mutex_lock(&p->mutex);
1385 if (multifd_recv_state->packet_num < p->packet_num) {
1386 multifd_recv_state->packet_num = p->packet_num;
1387 }
1388 qemu_mutex_unlock(&p->mutex);
1389 trace_multifd_recv_sync_main_signal(p->id);
1390 qemu_sem_post(&p->sem_sync);
1391 }
1392 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1393 }
1394
1395 static void *multifd_recv_thread(void *opaque)
1396 {
1397 MultiFDRecvParams *p = opaque;
1398 Error *local_err = NULL;
1399 int ret;
1400
1401 trace_multifd_recv_thread_start(p->id);
1402 rcu_register_thread();
1403
1404 while (true) {
1405 uint32_t used;
1406 uint32_t flags;
1407
1408 if (p->quit) {
1409 break;
1410 }
1411
1412 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1413 p->packet_len, &local_err);
1414 if (ret == 0) { /* EOF */
1415 break;
1416 }
1417 if (ret == -1) { /* Error */
1418 break;
1419 }
1420
1421 qemu_mutex_lock(&p->mutex);
1422 ret = multifd_recv_unfill_packet(p, &local_err);
1423 if (ret) {
1424 qemu_mutex_unlock(&p->mutex);
1425 break;
1426 }
1427
1428 used = p->pages->used;
1429 flags = p->flags;
1430 trace_multifd_recv(p->id, p->packet_num, used, flags,
1431 p->next_packet_size);
1432 p->num_packets++;
1433 p->num_pages += used;
1434 qemu_mutex_unlock(&p->mutex);
1435
1436 if (used) {
1437 ret = qio_channel_readv_all(p->c, p->pages->iov,
1438 used, &local_err);
1439 if (ret != 0) {
1440 break;
1441 }
1442 }
1443
1444 if (flags & MULTIFD_FLAG_SYNC) {
1445 qemu_sem_post(&multifd_recv_state->sem_sync);
1446 qemu_sem_wait(&p->sem_sync);
1447 }
1448 }
1449
1450 if (local_err) {
1451 multifd_recv_terminate_threads(local_err);
1452 }
1453 qemu_mutex_lock(&p->mutex);
1454 p->running = false;
1455 qemu_mutex_unlock(&p->mutex);
1456
1457 rcu_unregister_thread();
1458 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1459
1460 return NULL;
1461 }
1462
1463 int multifd_load_setup(void)
1464 {
1465 int thread_count;
1466 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1467 uint8_t i;
1468
1469 if (!migrate_use_multifd()) {
1470 return 0;
1471 }
1472 thread_count = migrate_multifd_channels();
1473 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1474 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1475 atomic_set(&multifd_recv_state->count, 0);
1476 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1477
1478 for (i = 0; i < thread_count; i++) {
1479 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1480
1481 qemu_mutex_init(&p->mutex);
1482 qemu_sem_init(&p->sem_sync, 0);
1483 p->quit = false;
1484 p->id = i;
1485 p->pages = multifd_pages_init(page_count);
1486 p->packet_len = sizeof(MultiFDPacket_t)
1487 + sizeof(ram_addr_t) * page_count;
1488 p->packet = g_malloc0(p->packet_len);
1489 p->name = g_strdup_printf("multifdrecv_%d", i);
1490 }
1491 return 0;
1492 }
1493
1494 bool multifd_recv_all_channels_created(void)
1495 {
1496 int thread_count = migrate_multifd_channels();
1497
1498 if (!migrate_use_multifd()) {
1499 return true;
1500 }
1501
1502 return thread_count == atomic_read(&multifd_recv_state->count);
1503 }
1504
1505 /*
1506 * Try to receive all multifd channels to get ready for the migration.
1507 * - Return true and do not set @errp when correctly receving all channels;
1508 * - Return false and do not set @errp when correctly receiving the current one;
1509 * - Return false and set @errp when failing to receive the current channel.
1510 */
1511 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1512 {
1513 MultiFDRecvParams *p;
1514 Error *local_err = NULL;
1515 int id;
1516
1517 id = multifd_recv_initial_packet(ioc, &local_err);
1518 if (id < 0) {
1519 multifd_recv_terminate_threads(local_err);
1520 error_propagate_prepend(errp, local_err,
1521 "failed to receive packet"
1522 " via multifd channel %d: ",
1523 atomic_read(&multifd_recv_state->count));
1524 return false;
1525 }
1526 trace_multifd_recv_new_channel(id);
1527
1528 p = &multifd_recv_state->params[id];
1529 if (p->c != NULL) {
1530 error_setg(&local_err, "multifd: received id '%d' already setup'",
1531 id);
1532 multifd_recv_terminate_threads(local_err);
1533 error_propagate(errp, local_err);
1534 return false;
1535 }
1536 p->c = ioc;
1537 object_ref(OBJECT(ioc));
1538 /* initial packet */
1539 p->num_packets = 1;
1540
1541 p->running = true;
1542 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1543 QEMU_THREAD_JOINABLE);
1544 atomic_inc(&multifd_recv_state->count);
1545 return atomic_read(&multifd_recv_state->count) ==
1546 migrate_multifd_channels();
1547 }
1548
1549 /**
1550 * save_page_header: write page header to wire
1551 *
1552 * If this is the 1st block, it also writes the block identification
1553 *
1554 * Returns the number of bytes written
1555 *
1556 * @f: QEMUFile where to send the data
1557 * @block: block that contains the page we want to send
1558 * @offset: offset inside the block for the page
1559 * in the lower bits, it contains flags
1560 */
1561 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1562 ram_addr_t offset)
1563 {
1564 size_t size, len;
1565
1566 if (block == rs->last_sent_block) {
1567 offset |= RAM_SAVE_FLAG_CONTINUE;
1568 }
1569 qemu_put_be64(f, offset);
1570 size = 8;
1571
1572 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1573 len = strlen(block->idstr);
1574 qemu_put_byte(f, len);
1575 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1576 size += 1 + len;
1577 rs->last_sent_block = block;
1578 }
1579 return size;
1580 }
1581
1582 /**
1583 * mig_throttle_guest_down: throotle down the guest
1584 *
1585 * Reduce amount of guest cpu execution to hopefully slow down memory
1586 * writes. If guest dirty memory rate is reduced below the rate at
1587 * which we can transfer pages to the destination then we should be
1588 * able to complete migration. Some workloads dirty memory way too
1589 * fast and will not effectively converge, even with auto-converge.
1590 */
1591 static void mig_throttle_guest_down(void)
1592 {
1593 MigrationState *s = migrate_get_current();
1594 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1595 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1596 int pct_max = s->parameters.max_cpu_throttle;
1597
1598 /* We have not started throttling yet. Let's start it. */
1599 if (!cpu_throttle_active()) {
1600 cpu_throttle_set(pct_initial);
1601 } else {
1602 /* Throttling already on, just increase the rate */
1603 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1604 pct_max));
1605 }
1606 }
1607
1608 /**
1609 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1610 *
1611 * @rs: current RAM state
1612 * @current_addr: address for the zero page
1613 *
1614 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1615 * The important thing is that a stale (not-yet-0'd) page be replaced
1616 * by the new data.
1617 * As a bonus, if the page wasn't in the cache it gets added so that
1618 * when a small write is made into the 0'd page it gets XBZRLE sent.
1619 */
1620 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1621 {
1622 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1623 return;
1624 }
1625
1626 /* We don't care if this fails to allocate a new cache page
1627 * as long as it updated an old one */
1628 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1629 ram_counters.dirty_sync_count);
1630 }
1631
1632 #define ENCODING_FLAG_XBZRLE 0x1
1633
1634 /**
1635 * save_xbzrle_page: compress and send current page
1636 *
1637 * Returns: 1 means that we wrote the page
1638 * 0 means that page is identical to the one already sent
1639 * -1 means that xbzrle would be longer than normal
1640 *
1641 * @rs: current RAM state
1642 * @current_data: pointer to the address of the page contents
1643 * @current_addr: addr of the page
1644 * @block: block that contains the page we want to send
1645 * @offset: offset inside the block for the page
1646 * @last_stage: if we are at the completion stage
1647 */
1648 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1649 ram_addr_t current_addr, RAMBlock *block,
1650 ram_addr_t offset, bool last_stage)
1651 {
1652 int encoded_len = 0, bytes_xbzrle;
1653 uint8_t *prev_cached_page;
1654
1655 if (!cache_is_cached(XBZRLE.cache, current_addr,
1656 ram_counters.dirty_sync_count)) {
1657 xbzrle_counters.cache_miss++;
1658 if (!last_stage) {
1659 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1660 ram_counters.dirty_sync_count) == -1) {
1661 return -1;
1662 } else {
1663 /* update *current_data when the page has been
1664 inserted into cache */
1665 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1666 }
1667 }
1668 return -1;
1669 }
1670
1671 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1672
1673 /* save current buffer into memory */
1674 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1675
1676 /* XBZRLE encoding (if there is no overflow) */
1677 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1678 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1679 TARGET_PAGE_SIZE);
1680
1681 /*
1682 * Update the cache contents, so that it corresponds to the data
1683 * sent, in all cases except where we skip the page.
1684 */
1685 if (!last_stage && encoded_len != 0) {
1686 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1687 /*
1688 * In the case where we couldn't compress, ensure that the caller
1689 * sends the data from the cache, since the guest might have
1690 * changed the RAM since we copied it.
1691 */
1692 *current_data = prev_cached_page;
1693 }
1694
1695 if (encoded_len == 0) {
1696 trace_save_xbzrle_page_skipping();
1697 return 0;
1698 } else if (encoded_len == -1) {
1699 trace_save_xbzrle_page_overflow();
1700 xbzrle_counters.overflow++;
1701 return -1;
1702 }
1703
1704 /* Send XBZRLE based compressed page */
1705 bytes_xbzrle = save_page_header(rs, rs->f, block,
1706 offset | RAM_SAVE_FLAG_XBZRLE);
1707 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1708 qemu_put_be16(rs->f, encoded_len);
1709 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1710 bytes_xbzrle += encoded_len + 1 + 2;
1711 xbzrle_counters.pages++;
1712 xbzrle_counters.bytes += bytes_xbzrle;
1713 ram_counters.transferred += bytes_xbzrle;
1714
1715 return 1;
1716 }
1717
1718 /**
1719 * migration_bitmap_find_dirty: find the next dirty page from start
1720 *
1721 * Returns the page offset within memory region of the start of a dirty page
1722 *
1723 * @rs: current RAM state
1724 * @rb: RAMBlock where to search for dirty pages
1725 * @start: page where we start the search
1726 */
1727 static inline
1728 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1729 unsigned long start)
1730 {
1731 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1732 unsigned long *bitmap = rb->bmap;
1733 unsigned long next;
1734
1735 if (ramblock_is_ignored(rb)) {
1736 return size;
1737 }
1738
1739 /*
1740 * When the free page optimization is enabled, we need to check the bitmap
1741 * to send the non-free pages rather than all the pages in the bulk stage.
1742 */
1743 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1744 next = start + 1;
1745 } else {
1746 next = find_next_bit(bitmap, size, start);
1747 }
1748
1749 return next;
1750 }
1751
1752 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1753 RAMBlock *rb,
1754 unsigned long page)
1755 {
1756 bool ret;
1757
1758 qemu_mutex_lock(&rs->bitmap_mutex);
1759
1760 /*
1761 * Clear dirty bitmap if needed. This _must_ be called before we
1762 * send any of the page in the chunk because we need to make sure
1763 * we can capture further page content changes when we sync dirty
1764 * log the next time. So as long as we are going to send any of
1765 * the page in the chunk we clear the remote dirty bitmap for all.
1766 * Clearing it earlier won't be a problem, but too late will.
1767 */
1768 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1769 uint8_t shift = rb->clear_bmap_shift;
1770 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1771 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1772
1773 /*
1774 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1775 * can make things easier sometimes since then start address
1776 * of the small chunk will always be 64 pages aligned so the
1777 * bitmap will always be aligned to unsigned long. We should
1778 * even be able to remove this restriction but I'm simply
1779 * keeping it.
1780 */
1781 assert(shift >= 6);
1782 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1783 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1784 }
1785
1786 ret = test_and_clear_bit(page, rb->bmap);
1787
1788 if (ret) {
1789 rs->migration_dirty_pages--;
1790 }
1791 qemu_mutex_unlock(&rs->bitmap_mutex);
1792
1793 return ret;
1794 }
1795
1796 /* Called with RCU critical section */
1797 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1798 {
1799 rs->migration_dirty_pages +=
1800 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1801 &rs->num_dirty_pages_period);
1802 }
1803
1804 /**
1805 * ram_pagesize_summary: calculate all the pagesizes of a VM
1806 *
1807 * Returns a summary bitmap of the page sizes of all RAMBlocks
1808 *
1809 * For VMs with just normal pages this is equivalent to the host page
1810 * size. If it's got some huge pages then it's the OR of all the
1811 * different page sizes.
1812 */
1813 uint64_t ram_pagesize_summary(void)
1814 {
1815 RAMBlock *block;
1816 uint64_t summary = 0;
1817
1818 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1819 summary |= block->page_size;
1820 }
1821
1822 return summary;
1823 }
1824
1825 uint64_t ram_get_total_transferred_pages(void)
1826 {
1827 return ram_counters.normal + ram_counters.duplicate +
1828 compression_counters.pages + xbzrle_counters.pages;
1829 }
1830
1831 static void migration_update_rates(RAMState *rs, int64_t end_time)
1832 {
1833 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1834 double compressed_size;
1835
1836 /* calculate period counters */
1837 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1838 / (end_time - rs->time_last_bitmap_sync);
1839
1840 if (!page_count) {
1841 return;
1842 }
1843
1844 if (migrate_use_xbzrle()) {
1845 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1846 rs->xbzrle_cache_miss_prev) / page_count;
1847 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1848 }
1849
1850 if (migrate_use_compression()) {
1851 compression_counters.busy_rate = (double)(compression_counters.busy -
1852 rs->compress_thread_busy_prev) / page_count;
1853 rs->compress_thread_busy_prev = compression_counters.busy;
1854
1855 compressed_size = compression_counters.compressed_size -
1856 rs->compressed_size_prev;
1857 if (compressed_size) {
1858 double uncompressed_size = (compression_counters.pages -
1859 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1860
1861 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1862 compression_counters.compression_rate =
1863 uncompressed_size / compressed_size;
1864
1865 rs->compress_pages_prev = compression_counters.pages;
1866 rs->compressed_size_prev = compression_counters.compressed_size;
1867 }
1868 }
1869 }
1870
1871 static void migration_bitmap_sync(RAMState *rs)
1872 {
1873 RAMBlock *block;
1874 int64_t end_time;
1875 uint64_t bytes_xfer_now;
1876
1877 ram_counters.dirty_sync_count++;
1878
1879 if (!rs->time_last_bitmap_sync) {
1880 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1881 }
1882
1883 trace_migration_bitmap_sync_start();
1884 memory_global_dirty_log_sync();
1885
1886 qemu_mutex_lock(&rs->bitmap_mutex);
1887 WITH_RCU_READ_LOCK_GUARD() {
1888 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1889 ramblock_sync_dirty_bitmap(rs, block);
1890 }
1891 ram_counters.remaining = ram_bytes_remaining();
1892 }
1893 qemu_mutex_unlock(&rs->bitmap_mutex);
1894
1895 memory_global_after_dirty_log_sync();
1896 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1897
1898 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1899
1900 /* more than 1 second = 1000 millisecons */
1901 if (end_time > rs->time_last_bitmap_sync + 1000) {
1902 bytes_xfer_now = ram_counters.transferred;
1903
1904 /* During block migration the auto-converge logic incorrectly detects
1905 * that ram migration makes no progress. Avoid this by disabling the
1906 * throttling logic during the bulk phase of block migration. */
1907 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1908 /* The following detection logic can be refined later. For now:
1909 Check to see if the dirtied bytes is 50% more than the approx.
1910 amount of bytes that just got transferred since the last time we
1911 were in this routine. If that happens twice, start or increase
1912 throttling */
1913
1914 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1915 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1916 (++rs->dirty_rate_high_cnt >= 2)) {
1917 trace_migration_throttle();
1918 rs->dirty_rate_high_cnt = 0;
1919 mig_throttle_guest_down();
1920 }
1921 }
1922
1923 migration_update_rates(rs, end_time);
1924
1925 rs->target_page_count_prev = rs->target_page_count;
1926
1927 /* reset period counters */
1928 rs->time_last_bitmap_sync = end_time;
1929 rs->num_dirty_pages_period = 0;
1930 rs->bytes_xfer_prev = bytes_xfer_now;
1931 }
1932 if (migrate_use_events()) {
1933 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1934 }
1935 }
1936
1937 static void migration_bitmap_sync_precopy(RAMState *rs)
1938 {
1939 Error *local_err = NULL;
1940
1941 /*
1942 * The current notifier usage is just an optimization to migration, so we
1943 * don't stop the normal migration process in the error case.
1944 */
1945 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1946 error_report_err(local_err);
1947 }
1948
1949 migration_bitmap_sync(rs);
1950
1951 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1952 error_report_err(local_err);
1953 }
1954 }
1955
1956 /**
1957 * save_zero_page_to_file: send the zero page to the file
1958 *
1959 * Returns the size of data written to the file, 0 means the page is not
1960 * a zero page
1961 *
1962 * @rs: current RAM state
1963 * @file: the file where the data is saved
1964 * @block: block that contains the page we want to send
1965 * @offset: offset inside the block for the page
1966 */
1967 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1968 RAMBlock *block, ram_addr_t offset)
1969 {
1970 uint8_t *p = block->host + offset;
1971 int len = 0;
1972
1973 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1974 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1975 qemu_put_byte(file, 0);
1976 len += 1;
1977 }
1978 return len;
1979 }
1980
1981 /**
1982 * save_zero_page: send the zero page to the stream
1983 *
1984 * Returns the number of pages written.
1985 *
1986 * @rs: current RAM state
1987 * @block: block that contains the page we want to send
1988 * @offset: offset inside the block for the page
1989 */
1990 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1991 {
1992 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1993
1994 if (len) {
1995 ram_counters.duplicate++;
1996 ram_counters.transferred += len;
1997 return 1;
1998 }
1999 return -1;
2000 }
2001
2002 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
2003 {
2004 if (!migrate_release_ram() || !migration_in_postcopy()) {
2005 return;
2006 }
2007
2008 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
2009 }
2010
2011 /*
2012 * @pages: the number of pages written by the control path,
2013 * < 0 - error
2014 * > 0 - number of pages written
2015 *
2016 * Return true if the pages has been saved, otherwise false is returned.
2017 */
2018 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2019 int *pages)
2020 {
2021 uint64_t bytes_xmit = 0;
2022 int ret;
2023
2024 *pages = -1;
2025 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
2026 &bytes_xmit);
2027 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
2028 return false;
2029 }
2030
2031 if (bytes_xmit) {
2032 ram_counters.transferred += bytes_xmit;
2033 *pages = 1;
2034 }
2035
2036 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2037 return true;
2038 }
2039
2040 if (bytes_xmit > 0) {
2041 ram_counters.normal++;
2042 } else if (bytes_xmit == 0) {
2043 ram_counters.duplicate++;
2044 }
2045
2046 return true;
2047 }
2048
2049 /*
2050 * directly send the page to the stream
2051 *
2052 * Returns the number of pages written.
2053 *
2054 * @rs: current RAM state
2055 * @block: block that contains the page we want to send
2056 * @offset: offset inside the block for the page
2057 * @buf: the page to be sent
2058 * @async: send to page asyncly
2059 */
2060 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2061 uint8_t *buf, bool async)
2062 {
2063 ram_counters.transferred += save_page_header(rs, rs->f, block,
2064 offset | RAM_SAVE_FLAG_PAGE);
2065 if (async) {
2066 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2067 migrate_release_ram() &
2068 migration_in_postcopy());
2069 } else {
2070 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2071 }
2072 ram_counters.transferred += TARGET_PAGE_SIZE;
2073 ram_counters.normal++;
2074 return 1;
2075 }
2076
2077 /**
2078 * ram_save_page: send the given page to the stream
2079 *
2080 * Returns the number of pages written.
2081 * < 0 - error
2082 * >=0 - Number of pages written - this might legally be 0
2083 * if xbzrle noticed the page was the same.
2084 *
2085 * @rs: current RAM state
2086 * @block: block that contains the page we want to send
2087 * @offset: offset inside the block for the page
2088 * @last_stage: if we are at the completion stage
2089 */
2090 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2091 {
2092 int pages = -1;
2093 uint8_t *p;
2094 bool send_async = true;
2095 RAMBlock *block = pss->block;
2096 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2097 ram_addr_t current_addr = block->offset + offset;
2098
2099 p = block->host + offset;
2100 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2101
2102 XBZRLE_cache_lock();
2103 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2104 migrate_use_xbzrle()) {
2105 pages = save_xbzrle_page(rs, &p, current_addr, block,
2106 offset, last_stage);
2107 if (!last_stage) {
2108 /* Can't send this cached data async, since the cache page
2109 * might get updated before it gets to the wire
2110 */
2111 send_async = false;
2112 }
2113 }
2114
2115 /* XBZRLE overflow or normal page */
2116 if (pages == -1) {
2117 pages = save_normal_page(rs, block, offset, p, send_async);
2118 }
2119
2120 XBZRLE_cache_unlock();
2121
2122 return pages;
2123 }
2124
2125 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2126 ram_addr_t offset)
2127 {
2128 if (multifd_queue_page(rs, block, offset) < 0) {
2129 return -1;
2130 }
2131 ram_counters.normal++;
2132
2133 return 1;
2134 }
2135
2136 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2137 ram_addr_t offset, uint8_t *source_buf)
2138 {
2139 RAMState *rs = ram_state;
2140 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2141 bool zero_page = false;
2142 int ret;
2143
2144 if (save_zero_page_to_file(rs, f, block, offset)) {
2145 zero_page = true;
2146 goto exit;
2147 }
2148
2149 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2150
2151 /*
2152 * copy it to a internal buffer to avoid it being modified by VM
2153 * so that we can catch up the error during compression and
2154 * decompression
2155 */
2156 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2157 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2158 if (ret < 0) {
2159 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2160 error_report("compressed data failed!");
2161 return false;
2162 }
2163
2164 exit:
2165 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2166 return zero_page;
2167 }
2168
2169 static void
2170 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2171 {
2172 ram_counters.transferred += bytes_xmit;
2173
2174 if (param->zero_page) {
2175 ram_counters.duplicate++;
2176 return;
2177 }
2178
2179 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2180 compression_counters.compressed_size += bytes_xmit - 8;
2181 compression_counters.pages++;
2182 }
2183
2184 static bool save_page_use_compression(RAMState *rs);
2185
2186 static void flush_compressed_data(RAMState *rs)
2187 {
2188 int idx, len, thread_count;
2189
2190 if (!save_page_use_compression(rs)) {
2191 return;
2192 }
2193 thread_count = migrate_compress_threads();
2194
2195 qemu_mutex_lock(&comp_done_lock);
2196 for (idx = 0; idx < thread_count; idx++) {
2197 while (!comp_param[idx].done) {
2198 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2199 }
2200 }
2201 qemu_mutex_unlock(&comp_done_lock);
2202
2203 for (idx = 0; idx < thread_count; idx++) {
2204 qemu_mutex_lock(&comp_param[idx].mutex);
2205 if (!comp_param[idx].quit) {
2206 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2207 /*
2208 * it's safe to fetch zero_page without holding comp_done_lock
2209 * as there is no further request submitted to the thread,
2210 * i.e, the thread should be waiting for a request at this point.
2211 */
2212 update_compress_thread_counts(&comp_param[idx], len);
2213 }
2214 qemu_mutex_unlock(&comp_param[idx].mutex);
2215 }
2216 }
2217
2218 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2219 ram_addr_t offset)
2220 {
2221 param->block = block;
2222 param->offset = offset;
2223 }
2224
2225 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2226 ram_addr_t offset)
2227 {
2228 int idx, thread_count, bytes_xmit = -1, pages = -1;
2229 bool wait = migrate_compress_wait_thread();
2230
2231 thread_count = migrate_compress_threads();
2232 qemu_mutex_lock(&comp_done_lock);
2233 retry:
2234 for (idx = 0; idx < thread_count; idx++) {
2235 if (comp_param[idx].done) {
2236 comp_param[idx].done = false;
2237 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2238 qemu_mutex_lock(&comp_param[idx].mutex);
2239 set_compress_params(&comp_param[idx], block, offset);
2240 qemu_cond_signal(&comp_param[idx].cond);
2241 qemu_mutex_unlock(&comp_param[idx].mutex);
2242 pages = 1;
2243 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2244 break;
2245 }
2246 }
2247
2248 /*
2249 * wait for the free thread if the user specifies 'compress-wait-thread',
2250 * otherwise we will post the page out in the main thread as normal page.
2251 */
2252 if (pages < 0 && wait) {
2253 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2254 goto retry;
2255 }
2256 qemu_mutex_unlock(&comp_done_lock);
2257
2258 return pages;
2259 }
2260
2261 /**
2262 * find_dirty_block: find the next dirty page and update any state
2263 * associated with the search process.
2264 *
2265 * Returns true if a page is found
2266 *
2267 * @rs: current RAM state
2268 * @pss: data about the state of the current dirty page scan
2269 * @again: set to false if the search has scanned the whole of RAM
2270 */
2271 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2272 {
2273 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2274 if (pss->complete_round && pss->block == rs->last_seen_block &&
2275 pss->page >= rs->last_page) {
2276 /*
2277 * We've been once around the RAM and haven't found anything.
2278 * Give up.
2279 */
2280 *again = false;
2281 return false;
2282 }
2283 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2284 /* Didn't find anything in this RAM Block */
2285 pss->page = 0;
2286 pss->block = QLIST_NEXT_RCU(pss->block, next);
2287 if (!pss->block) {
2288 /*
2289 * If memory migration starts over, we will meet a dirtied page
2290 * which may still exists in compression threads's ring, so we
2291 * should flush the compressed data to make sure the new page
2292 * is not overwritten by the old one in the destination.
2293 *
2294 * Also If xbzrle is on, stop using the data compression at this
2295 * point. In theory, xbzrle can do better than compression.
2296 */
2297 flush_compressed_data(rs);
2298
2299 /* Hit the end of the list */
2300 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2301 /* Flag that we've looped */
2302 pss->complete_round = true;
2303 rs->ram_bulk_stage = false;
2304 }
2305 /* Didn't find anything this time, but try again on the new block */
2306 *again = true;
2307 return false;
2308 } else {
2309 /* Can go around again, but... */
2310 *again = true;
2311 /* We've found something so probably don't need to */
2312 return true;
2313 }
2314 }
2315
2316 /**
2317 * unqueue_page: gets a page of the queue
2318 *
2319 * Helper for 'get_queued_page' - gets a page off the queue
2320 *
2321 * Returns the block of the page (or NULL if none available)
2322 *
2323 * @rs: current RAM state
2324 * @offset: used to return the offset within the RAMBlock
2325 */
2326 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2327 {
2328 RAMBlock *block = NULL;
2329
2330 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2331 return NULL;
2332 }
2333
2334 qemu_mutex_lock(&rs->src_page_req_mutex);
2335 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2336 struct RAMSrcPageRequest *entry =
2337 QSIMPLEQ_FIRST(&rs->src_page_requests);
2338 block = entry->rb;
2339 *offset = entry->offset;
2340
2341 if (entry->len > TARGET_PAGE_SIZE) {
2342 entry->len -= TARGET_PAGE_SIZE;
2343 entry->offset += TARGET_PAGE_SIZE;
2344 } else {
2345 memory_region_unref(block->mr);
2346 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2347 g_free(entry);
2348 migration_consume_urgent_request();
2349 }
2350 }
2351 qemu_mutex_unlock(&rs->src_page_req_mutex);
2352
2353 return block;
2354 }
2355
2356 /**
2357 * get_queued_page: unqueue a page from the postcopy requests
2358 *
2359 * Skips pages that are already sent (!dirty)
2360 *
2361 * Returns true if a queued page is found
2362 *
2363 * @rs: current RAM state
2364 * @pss: data about the state of the current dirty page scan
2365 */
2366 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2367 {
2368 RAMBlock *block;
2369 ram_addr_t offset;
2370 bool dirty;
2371
2372 do {
2373 block = unqueue_page(rs, &offset);
2374 /*
2375 * We're sending this page, and since it's postcopy nothing else
2376 * will dirty it, and we must make sure it doesn't get sent again
2377 * even if this queue request was received after the background
2378 * search already sent it.
2379 */
2380 if (block) {
2381 unsigned long page;
2382
2383 page = offset >> TARGET_PAGE_BITS;
2384 dirty = test_bit(page, block->bmap);
2385 if (!dirty) {
2386 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2387 page);
2388 } else {
2389 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2390 }
2391 }
2392
2393 } while (block && !dirty);
2394
2395 if (block) {
2396 /*
2397 * As soon as we start servicing pages out of order, then we have
2398 * to kill the bulk stage, since the bulk stage assumes
2399 * in (migration_bitmap_find_and_reset_dirty) that every page is
2400 * dirty, that's no longer true.
2401 */
2402 rs->ram_bulk_stage = false;
2403
2404 /*
2405 * We want the background search to continue from the queued page
2406 * since the guest is likely to want other pages near to the page
2407 * it just requested.
2408 */
2409 pss->block = block;
2410 pss->page = offset >> TARGET_PAGE_BITS;
2411
2412 /*
2413 * This unqueued page would break the "one round" check, even is
2414 * really rare.
2415 */
2416 pss->complete_round = false;
2417 }
2418
2419 return !!block;
2420 }
2421
2422 /**
2423 * migration_page_queue_free: drop any remaining pages in the ram
2424 * request queue
2425 *
2426 * It should be empty at the end anyway, but in error cases there may
2427 * be some left. in case that there is any page left, we drop it.
2428 *
2429 */
2430 static void migration_page_queue_free(RAMState *rs)
2431 {
2432 struct RAMSrcPageRequest *mspr, *next_mspr;
2433 /* This queue generally should be empty - but in the case of a failed
2434 * migration might have some droppings in.
2435 */
2436 RCU_READ_LOCK_GUARD();
2437 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2438 memory_region_unref(mspr->rb->mr);
2439 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2440 g_free(mspr);
2441 }
2442 }
2443
2444 /**
2445 * ram_save_queue_pages: queue the page for transmission
2446 *
2447 * A request from postcopy destination for example.
2448 *
2449 * Returns zero on success or negative on error
2450 *
2451 * @rbname: Name of the RAMBLock of the request. NULL means the
2452 * same that last one.
2453 * @start: starting address from the start of the RAMBlock
2454 * @len: length (in bytes) to send
2455 */
2456 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2457 {
2458 RAMBlock *ramblock;
2459 RAMState *rs = ram_state;
2460
2461 ram_counters.postcopy_requests++;
2462 RCU_READ_LOCK_GUARD();
2463
2464 if (!rbname) {
2465 /* Reuse last RAMBlock */
2466 ramblock = rs->last_req_rb;
2467
2468 if (!ramblock) {
2469 /*
2470 * Shouldn't happen, we can't reuse the last RAMBlock if
2471 * it's the 1st request.
2472 */
2473 error_report("ram_save_queue_pages no previous block");
2474 return -1;
2475 }
2476 } else {
2477 ramblock = qemu_ram_block_by_name(rbname);
2478
2479 if (!ramblock) {
2480 /* We shouldn't be asked for a non-existent RAMBlock */
2481 error_report("ram_save_queue_pages no block '%s'", rbname);
2482 return -1;
2483 }
2484 rs->last_req_rb = ramblock;
2485 }
2486 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2487 if (start+len > ramblock->used_length) {
2488 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2489 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2490 __func__, start, len, ramblock->used_length);
2491 return -1;
2492 }
2493
2494 struct RAMSrcPageRequest *new_entry =
2495 g_malloc0(sizeof(struct RAMSrcPageRequest));
2496 new_entry->rb = ramblock;
2497 new_entry->offset = start;
2498 new_entry->len = len;
2499
2500 memory_region_ref(ramblock->mr);
2501 qemu_mutex_lock(&rs->src_page_req_mutex);
2502 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2503 migration_make_urgent_request();
2504 qemu_mutex_unlock(&rs->src_page_req_mutex);
2505
2506 return 0;
2507 }
2508
2509 static bool save_page_use_compression(RAMState *rs)
2510 {
2511 if (!migrate_use_compression()) {
2512 return false;
2513 }
2514
2515 /*
2516 * If xbzrle is on, stop using the data compression after first
2517 * round of migration even if compression is enabled. In theory,
2518 * xbzrle can do better than compression.
2519 */
2520 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2521 return true;
2522 }
2523
2524 return false;
2525 }
2526
2527 /*
2528 * try to compress the page before posting it out, return true if the page
2529 * has been properly handled by compression, otherwise needs other
2530 * paths to handle it
2531 */
2532 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2533 {
2534 if (!save_page_use_compression(rs)) {
2535 return false;
2536 }
2537
2538 /*
2539 * When starting the process of a new block, the first page of
2540 * the block should be sent out before other pages in the same
2541 * block, and all the pages in last block should have been sent
2542 * out, keeping this order is important, because the 'cont' flag
2543 * is used to avoid resending the block name.
2544 *
2545 * We post the fist page as normal page as compression will take
2546 * much CPU resource.
2547 */
2548 if (block != rs->last_sent_block) {
2549 flush_compressed_data(rs);
2550 return false;
2551 }
2552
2553 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2554 return true;
2555 }
2556
2557 compression_counters.busy++;
2558 return false;
2559 }
2560
2561 /**
2562 * ram_save_target_page: save one target page
2563 *
2564 * Returns the number of pages written
2565 *
2566 * @rs: current RAM state
2567 * @pss: data about the page we want to send
2568 * @last_stage: if we are at the completion stage
2569 */
2570 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2571 bool last_stage)
2572 {
2573 RAMBlock *block = pss->block;
2574 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2575 int res;
2576
2577 if (control_save_page(rs, block, offset, &res)) {
2578 return res;
2579 }
2580
2581 if (save_compress_page(rs, block, offset)) {
2582 return 1;
2583 }
2584
2585 res = save_zero_page(rs, block, offset);
2586 if (res > 0) {
2587 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2588 * page would be stale
2589 */
2590 if (!save_page_use_compression(rs)) {
2591 XBZRLE_cache_lock();
2592 xbzrle_cache_zero_page(rs, block->offset + offset);
2593 XBZRLE_cache_unlock();
2594 }
2595 ram_release_pages(block->idstr, offset, res);
2596 return res;
2597 }
2598
2599 /*
2600 * Do not use multifd for:
2601 * 1. Compression as the first page in the new block should be posted out
2602 * before sending the compressed page
2603 * 2. In postcopy as one whole host page should be placed
2604 */
2605 if (!save_page_use_compression(rs) && migrate_use_multifd()
2606 && !migration_in_postcopy()) {
2607 return ram_save_multifd_page(rs, block, offset);
2608 }
2609
2610 return ram_save_page(rs, pss, last_stage);
2611 }
2612
2613 /**
2614 * ram_save_host_page: save a whole host page
2615 *
2616 * Starting at *offset send pages up to the end of the current host
2617 * page. It's valid for the initial offset to point into the middle of
2618 * a host page in which case the remainder of the hostpage is sent.
2619 * Only dirty target pages are sent. Note that the host page size may
2620 * be a huge page for this block.
2621 * The saving stops at the boundary of the used_length of the block
2622 * if the RAMBlock isn't a multiple of the host page size.
2623 *
2624 * Returns the number of pages written or negative on error
2625 *
2626 * @rs: current RAM state
2627 * @ms: current migration state
2628 * @pss: data about the page we want to send
2629 * @last_stage: if we are at the completion stage
2630 */
2631 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2632 bool last_stage)
2633 {
2634 int tmppages, pages = 0;
2635 size_t pagesize_bits =
2636 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2637
2638 if (ramblock_is_ignored(pss->block)) {
2639 error_report("block %s should not be migrated !", pss->block->idstr);
2640 return 0;
2641 }
2642
2643 do {
2644 /* Check the pages is dirty and if it is send it */
2645 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2646 pss->page++;
2647 continue;
2648 }
2649
2650 tmppages = ram_save_target_page(rs, pss, last_stage);
2651 if (tmppages < 0) {
2652 return tmppages;
2653 }
2654
2655 pages += tmppages;
2656 pss->page++;
2657 /* Allow rate limiting to happen in the middle of huge pages */
2658 migration_rate_limit();
2659 } while ((pss->page & (pagesize_bits - 1)) &&
2660 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2661
2662 /* The offset we leave with is the last one we looked at */
2663 pss->page--;
2664 return pages;
2665 }
2666
2667 /**
2668 * ram_find_and_save_block: finds a dirty page and sends it to f
2669 *
2670 * Called within an RCU critical section.
2671 *
2672 * Returns the number of pages written where zero means no dirty pages,
2673 * or negative on error
2674 *
2675 * @rs: current RAM state
2676 * @last_stage: if we are at the completion stage
2677 *
2678 * On systems where host-page-size > target-page-size it will send all the
2679 * pages in a host page that are dirty.
2680 */
2681
2682 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2683 {
2684 PageSearchStatus pss;
2685 int pages = 0;
2686 bool again, found;
2687
2688 /* No dirty page as there is zero RAM */
2689 if (!ram_bytes_total()) {
2690 return pages;
2691 }
2692
2693 pss.block = rs->last_seen_block;
2694 pss.page = rs->last_page;
2695 pss.complete_round = false;
2696
2697 if (!pss.block) {
2698 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2699 }
2700
2701 do {
2702 again = true;
2703 found = get_queued_page(rs, &pss);
2704
2705 if (!found) {
2706 /* priority queue empty, so just search for something dirty */
2707 found = find_dirty_block(rs, &pss, &again);
2708 }
2709
2710 if (found) {
2711 pages = ram_save_host_page(rs, &pss, last_stage);
2712 }
2713 } while (!pages && again);
2714
2715 rs->last_seen_block = pss.block;
2716 rs->last_page = pss.page;
2717
2718 return pages;
2719 }
2720
2721 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2722 {
2723 uint64_t pages = size / TARGET_PAGE_SIZE;
2724
2725 if (zero) {
2726 ram_counters.duplicate += pages;
2727 } else {
2728 ram_counters.normal += pages;
2729 ram_counters.transferred += size;
2730 qemu_update_position(f, size);
2731 }
2732 }
2733
2734 static uint64_t ram_bytes_total_common(bool count_ignored)
2735 {
2736 RAMBlock *block;
2737 uint64_t total = 0;
2738
2739 RCU_READ_LOCK_GUARD();
2740
2741 if (count_ignored) {
2742 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2743 total += block->used_length;
2744 }
2745 } else {
2746 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2747 total += block->used_length;
2748 }
2749 }
2750 return total;
2751 }
2752
2753 uint64_t ram_bytes_total(void)
2754 {
2755 return ram_bytes_total_common(false);
2756 }
2757
2758 static void xbzrle_load_setup(void)
2759 {
2760 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2761 }
2762
2763 static void xbzrle_load_cleanup(void)
2764 {
2765 g_free(XBZRLE.decoded_buf);
2766 XBZRLE.decoded_buf = NULL;
2767 }
2768
2769 static void ram_state_cleanup(RAMState **rsp)
2770 {
2771 if (*rsp) {
2772 migration_page_queue_free(*rsp);
2773 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2774 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2775 g_free(*rsp);
2776 *rsp = NULL;
2777 }
2778 }
2779
2780 static void xbzrle_cleanup(void)
2781 {
2782 XBZRLE_cache_lock();
2783 if (XBZRLE.cache) {
2784 cache_fini(XBZRLE.cache);
2785 g_free(XBZRLE.encoded_buf);
2786 g_free(XBZRLE.current_buf);
2787 g_free(XBZRLE.zero_target_page);
2788 XBZRLE.cache = NULL;
2789 XBZRLE.encoded_buf = NULL;
2790 XBZRLE.current_buf = NULL;
2791 XBZRLE.zero_target_page = NULL;
2792 }
2793 XBZRLE_cache_unlock();
2794 }
2795
2796 static void ram_save_cleanup(void *opaque)
2797 {
2798 RAMState **rsp = opaque;
2799 RAMBlock *block;
2800
2801 /* caller have hold iothread lock or is in a bh, so there is
2802 * no writing race against the migration bitmap
2803 */
2804 memory_global_dirty_log_stop();
2805
2806 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2807 g_free(block->clear_bmap);
2808 block->clear_bmap = NULL;
2809 g_free(block->bmap);
2810 block->bmap = NULL;
2811 }
2812
2813 xbzrle_cleanup();
2814 compress_threads_save_cleanup();
2815 ram_state_cleanup(rsp);
2816 }
2817
2818 static void ram_state_reset(RAMState *rs)
2819 {
2820 rs->last_seen_block = NULL;
2821 rs->last_sent_block = NULL;
2822 rs->last_page = 0;
2823 rs->last_version = ram_list.version;
2824 rs->ram_bulk_stage = true;
2825 rs->fpo_enabled = false;
2826 }
2827
2828 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2829
2830 /*
2831 * 'expected' is the value you expect the bitmap mostly to be full
2832 * of; it won't bother printing lines that are all this value.
2833 * If 'todump' is null the migration bitmap is dumped.
2834 */
2835 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2836 unsigned long pages)
2837 {
2838 int64_t cur;
2839 int64_t linelen = 128;
2840 char linebuf[129];
2841
2842 for (cur = 0; cur < pages; cur += linelen) {
2843 int64_t curb;
2844 bool found = false;
2845 /*
2846 * Last line; catch the case where the line length
2847 * is longer than remaining ram
2848 */
2849 if (cur + linelen > pages) {
2850 linelen = pages - cur;
2851 }
2852 for (curb = 0; curb < linelen; curb++) {
2853 bool thisbit = test_bit(cur + curb, todump);
2854 linebuf[curb] = thisbit ? '1' : '.';
2855 found = found || (thisbit != expected);
2856 }
2857 if (found) {
2858 linebuf[curb] = '\0';
2859 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2860 }
2861 }
2862 }
2863
2864 /* **** functions for postcopy ***** */
2865
2866 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2867 {
2868 struct RAMBlock *block;
2869
2870 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2871 unsigned long *bitmap = block->bmap;
2872 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2873 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2874
2875 while (run_start < range) {
2876 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2877 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2878 (run_end - run_start) << TARGET_PAGE_BITS);
2879 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2880 }
2881 }
2882 }
2883
2884 /**
2885 * postcopy_send_discard_bm_ram: discard a RAMBlock
2886 *
2887 * Returns zero on success
2888 *
2889 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2890 *
2891 * @ms: current migration state
2892 * @block: RAMBlock to discard
2893 */
2894 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2895 {
2896 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2897 unsigned long current;
2898 unsigned long *bitmap = block->bmap;
2899
2900 for (current = 0; current < end; ) {
2901 unsigned long one = find_next_bit(bitmap, end, current);
2902 unsigned long zero, discard_length;
2903
2904 if (one >= end) {
2905 break;
2906 }
2907
2908 zero = find_next_zero_bit(bitmap, end, one + 1);
2909
2910 if (zero >= end) {
2911 discard_length = end - one;
2912 } else {
2913 discard_length = zero - one;
2914 }
2915 postcopy_discard_send_range(ms, one, discard_length);
2916 current = one + discard_length;
2917 }
2918
2919 return 0;
2920 }
2921
2922 /**
2923 * postcopy_each_ram_send_discard: discard all RAMBlocks
2924 *
2925 * Returns 0 for success or negative for error
2926 *
2927 * Utility for the outgoing postcopy code.
2928 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2929 * passing it bitmap indexes and name.
2930 * (qemu_ram_foreach_block ends up passing unscaled lengths
2931 * which would mean postcopy code would have to deal with target page)
2932 *
2933 * @ms: current migration state
2934 */
2935 static int postcopy_each_ram_send_discard(MigrationState *ms)
2936 {
2937 struct RAMBlock *block;
2938 int ret;
2939
2940 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2941 postcopy_discard_send_init(ms, block->idstr);
2942
2943 /*
2944 * Postcopy sends chunks of bitmap over the wire, but it
2945 * just needs indexes at this point, avoids it having
2946 * target page specific code.
2947 */
2948 ret = postcopy_send_discard_bm_ram(ms, block);
2949 postcopy_discard_send_finish(ms);
2950 if (ret) {
2951 return ret;
2952 }
2953 }
2954
2955 return 0;
2956 }
2957
2958 /**
2959 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2960 *
2961 * Helper for postcopy_chunk_hostpages; it's called twice to
2962 * canonicalize the two bitmaps, that are similar, but one is
2963 * inverted.
2964 *
2965 * Postcopy requires that all target pages in a hostpage are dirty or
2966 * clean, not a mix. This function canonicalizes the bitmaps.
2967 *
2968 * @ms: current migration state
2969 * @block: block that contains the page we want to canonicalize
2970 */
2971 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2972 {
2973 RAMState *rs = ram_state;
2974 unsigned long *bitmap = block->bmap;
2975 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2976 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2977 unsigned long run_start;
2978
2979 if (block->page_size == TARGET_PAGE_SIZE) {
2980 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2981 return;
2982 }
2983
2984 /* Find a dirty page */
2985 run_start = find_next_bit(bitmap, pages, 0);
2986
2987 while (run_start < pages) {
2988
2989 /*
2990 * If the start of this run of pages is in the middle of a host
2991 * page, then we need to fixup this host page.
2992 */
2993 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2994 /* Find the end of this run */
2995 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2996 /*
2997 * If the end isn't at the start of a host page, then the
2998 * run doesn't finish at the end of a host page
2999 * and we need to discard.
3000 */
3001 }
3002
3003 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
3004 unsigned long page;
3005 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
3006 host_ratio);
3007 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
3008
3009 /* Clean up the bitmap */
3010 for (page = fixup_start_addr;
3011 page < fixup_start_addr + host_ratio; page++) {
3012 /*
3013 * Remark them as dirty, updating the count for any pages
3014 * that weren't previously dirty.
3015 */
3016 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3017 }
3018 }
3019
3020 /* Find the next dirty page for the next iteration */
3021 run_start = find_next_bit(bitmap, pages, run_start);
3022 }
3023 }
3024
3025 /**
3026 * postcopy_chunk_hostpages: discard any partially sent host page
3027 *
3028 * Utility for the outgoing postcopy code.
3029 *
3030 * Discard any partially sent host-page size chunks, mark any partially
3031 * dirty host-page size chunks as all dirty. In this case the host-page
3032 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3033 *
3034 * Returns zero on success
3035 *
3036 * @ms: current migration state
3037 * @block: block we want to work with
3038 */
3039 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3040 {
3041 postcopy_discard_send_init(ms, block->idstr);
3042
3043 /*
3044 * Ensure that all partially dirty host pages are made fully dirty.
3045 */
3046 postcopy_chunk_hostpages_pass(ms, block);
3047
3048 postcopy_discard_send_finish(ms);
3049 return 0;
3050 }
3051
3052 /**
3053 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3054 *
3055 * Returns zero on success
3056 *
3057 * Transmit the set of pages to be discarded after precopy to the target
3058 * these are pages that:
3059 * a) Have been previously transmitted but are now dirty again
3060 * b) Pages that have never been transmitted, this ensures that
3061 * any pages on the destination that have been mapped by background
3062 * tasks get discarded (transparent huge pages is the specific concern)
3063 * Hopefully this is pretty sparse
3064 *
3065 * @ms: current migration state
3066 */
3067 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3068 {
3069 RAMState *rs = ram_state;
3070 RAMBlock *block;
3071 int ret;
3072
3073 RCU_READ_LOCK_GUARD();
3074
3075 /* This should be our last sync, the src is now paused */
3076 migration_bitmap_sync(rs);
3077
3078 /* Easiest way to make sure we don't resume in the middle of a host-page */
3079 rs->last_seen_block = NULL;
3080 rs->last_sent_block = NULL;
3081 rs->last_page = 0;
3082
3083 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3084 /* Deal with TPS != HPS and huge pages */
3085 ret = postcopy_chunk_hostpages(ms, block);
3086 if (ret) {
3087 return ret;
3088 }
3089
3090 #ifdef DEBUG_POSTCOPY
3091 ram_debug_dump_bitmap(block->bmap, true,
3092 block->used_length >> TARGET_PAGE_BITS);
3093 #endif
3094 }
3095 trace_ram_postcopy_send_discard_bitmap();
3096
3097 ret = postcopy_each_ram_send_discard(ms);
3098
3099 return ret;
3100 }
3101
3102 /**
3103 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3104 *
3105 * Returns zero on success
3106 *
3107 * @rbname: name of the RAMBlock of the request. NULL means the
3108 * same that last one.
3109 * @start: RAMBlock starting page
3110 * @length: RAMBlock size
3111 */
3112 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3113 {
3114 trace_ram_discard_range(rbname, start, length);
3115
3116 RCU_READ_LOCK_GUARD();
3117 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3118
3119 if (!rb) {
3120 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3121 return -1;
3122 }
3123
3124 /*
3125 * On source VM, we don't need to update the received bitmap since
3126 * we don't even have one.
3127 */
3128 if (rb->receivedmap) {
3129 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3130 length >> qemu_target_page_bits());
3131 }
3132
3133 return ram_block_discard_range(rb, start, length);
3134 }
3135
3136 /*
3137 * For every allocation, we will try not to crash the VM if the
3138 * allocation failed.
3139 */
3140 static int xbzrle_init(void)
3141 {
3142 Error *local_err = NULL;
3143
3144 if (!migrate_use_xbzrle()) {
3145 return 0;
3146 }
3147
3148 XBZRLE_cache_lock();
3149
3150 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3151 if (!XBZRLE.zero_target_page) {
3152 error_report("%s: Error allocating zero page", __func__);
3153 goto err_out;
3154 }
3155
3156 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3157 TARGET_PAGE_SIZE, &local_err);
3158 if (!XBZRLE.cache) {
3159 error_report_err(local_err);
3160 goto free_zero_page;
3161 }
3162
3163 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3164 if (!XBZRLE.encoded_buf) {
3165 error_report("%s: Error allocating encoded_buf", __func__);
3166 goto free_cache;
3167 }
3168
3169 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3170 if (!XBZRLE.current_buf) {
3171 error_report("%s: Error allocating current_buf", __func__);
3172 goto free_encoded_buf;
3173 }
3174
3175 /* We are all good */
3176 XBZRLE_cache_unlock();
3177 return 0;
3178
3179 free_encoded_buf:
3180 g_free(XBZRLE.encoded_buf);
3181 XBZRLE.encoded_buf = NULL;
3182 free_cache:
3183 cache_fini(XBZRLE.cache);
3184 XBZRLE.cache = NULL;
3185 free_zero_page:
3186 g_free(XBZRLE.zero_target_page);
3187 XBZRLE.zero_target_page = NULL;
3188 err_out:
3189 XBZRLE_cache_unlock();
3190 return -ENOMEM;
3191 }
3192
3193 static int ram_state_init(RAMState **rsp)
3194 {
3195 *rsp = g_try_new0(RAMState, 1);
3196
3197 if (!*rsp) {
3198 error_report("%s: Init ramstate fail", __func__);
3199 return -1;
3200 }
3201
3202 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3203 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3204 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3205
3206 /*
3207 * Count the total number of pages used by ram blocks not including any
3208 * gaps due to alignment or unplugs.
3209 * This must match with the initial values of dirty bitmap.
3210 */
3211 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3212 ram_state_reset(*rsp);
3213
3214 return 0;
3215 }
3216
3217 static void ram_list_init_bitmaps(void)
3218 {
3219 MigrationState *ms = migrate_get_current();
3220 RAMBlock *block;
3221 unsigned long pages;
3222 uint8_t shift;
3223
3224 /* Skip setting bitmap if there is no RAM */
3225 if (ram_bytes_total()) {
3226 shift = ms->clear_bitmap_shift;
3227 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3228 error_report("clear_bitmap_shift (%u) too big, using "
3229 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3230 shift = CLEAR_BITMAP_SHIFT_MAX;
3231 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3232 error_report("clear_bitmap_shift (%u) too small, using "
3233 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3234 shift = CLEAR_BITMAP_SHIFT_MIN;
3235 }
3236
3237 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3238 pages = block->max_length >> TARGET_PAGE_BITS;
3239 /*
3240 * The initial dirty bitmap for migration must be set with all
3241 * ones to make sure we'll migrate every guest RAM page to
3242 * destination.
3243 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3244 * new migration after a failed migration, ram_list.
3245 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3246 * guest memory.
3247 */
3248 block->bmap = bitmap_new(pages);
3249 bitmap_set(block->bmap, 0, pages);
3250 block->clear_bmap_shift = shift;
3251 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3252 }
3253 }
3254 }
3255
3256 static void ram_init_bitmaps(RAMState *rs)
3257 {
3258 /* For memory_global_dirty_log_start below. */
3259 qemu_mutex_lock_iothread();
3260 qemu_mutex_lock_ramlist();
3261
3262 WITH_RCU_READ_LOCK_GUARD() {
3263 ram_list_init_bitmaps();
3264 memory_global_dirty_log_start();
3265 migration_bitmap_sync_precopy(rs);
3266 }
3267 qemu_mutex_unlock_ramlist();
3268 qemu_mutex_unlock_iothread();
3269 }
3270
3271 static int ram_init_all(RAMState **rsp)
3272 {
3273 if (ram_state_init(rsp)) {
3274 return -1;
3275 }
3276
3277 if (xbzrle_init()) {
3278 ram_state_cleanup(rsp);
3279 return -1;
3280 }
3281
3282 ram_init_bitmaps(*rsp);
3283
3284 return 0;
3285 }
3286
3287 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3288 {
3289 RAMBlock *block;
3290 uint64_t pages = 0;
3291
3292 /*
3293 * Postcopy is not using xbzrle/compression, so no need for that.
3294 * Also, since source are already halted, we don't need to care
3295 * about dirty page logging as well.
3296 */
3297
3298 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3299 pages += bitmap_count_one(block->bmap,
3300 block->used_length >> TARGET_PAGE_BITS);
3301 }
3302
3303 /* This may not be aligned with current bitmaps. Recalculate. */
3304 rs->migration_dirty_pages = pages;
3305
3306 rs->last_seen_block = NULL;
3307 rs->last_sent_block = NULL;
3308 rs->last_page = 0;
3309 rs->last_version = ram_list.version;
3310 /*
3311 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3312 * matter what we have sent.
3313 */
3314 rs->ram_bulk_stage = false;
3315
3316 /* Update RAMState cache of output QEMUFile */
3317 rs->f = out;
3318
3319 trace_ram_state_resume_prepare(pages);
3320 }
3321
3322 /*
3323 * This function clears bits of the free pages reported by the caller from the
3324 * migration dirty bitmap. @addr is the host address corresponding to the
3325 * start of the continuous guest free pages, and @len is the total bytes of
3326 * those pages.
3327 */
3328 void qemu_guest_free_page_hint(void *addr, size_t len)
3329 {
3330 RAMBlock *block;
3331 ram_addr_t offset;
3332 size_t used_len, start, npages;
3333 MigrationState *s = migrate_get_current();
3334
3335 /* This function is currently expected to be used during live migration */
3336 if (!migration_is_setup_or_active(s->state)) {
3337 return;
3338 }
3339
3340 for (; len > 0; len -= used_len, addr += used_len) {
3341 block = qemu_ram_block_from_host(addr, false, &offset);
3342 if (unlikely(!block || offset >= block->used_length)) {
3343 /*
3344 * The implementation might not support RAMBlock resize during
3345 * live migration, but it could happen in theory with future
3346 * updates. So we add a check here to capture that case.
3347 */
3348 error_report_once("%s unexpected error", __func__);
3349 return;
3350 }
3351
3352 if (len <= block->used_length - offset) {
3353 used_len = len;
3354 } else {
3355 used_len = block->used_length - offset;
3356 }
3357
3358 start = offset >> TARGET_PAGE_BITS;
3359 npages = used_len >> TARGET_PAGE_BITS;
3360
3361 qemu_mutex_lock(&ram_state->bitmap_mutex);
3362 ram_state->migration_dirty_pages -=
3363 bitmap_count_one_with_offset(block->bmap, start, npages);
3364 bitmap_clear(block->bmap, start, npages);
3365 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3366 }
3367 }
3368
3369 /*
3370 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3371 * long-running RCU critical section. When rcu-reclaims in the code
3372 * start to become numerous it will be necessary to reduce the
3373 * granularity of these critical sections.
3374 */
3375
3376 /**
3377 * ram_save_setup: Setup RAM for migration
3378 *
3379 * Returns zero to indicate success and negative for error
3380 *
3381 * @f: QEMUFile where to send the data
3382 * @opaque: RAMState pointer
3383 */
3384 static int ram_save_setup(QEMUFile *f, void *opaque)
3385 {
3386 RAMState **rsp = opaque;
3387 RAMBlock *block;
3388
3389 if (compress_threads_save_setup()) {
3390 return -1;
3391 }
3392
3393 /* migration has already setup the bitmap, reuse it. */
3394 if (!migration_in_colo_state()) {
3395 if (ram_init_all(rsp) != 0) {
3396 compress_threads_save_cleanup();
3397 return -1;
3398 }
3399 }
3400 (*rsp)->f = f;
3401
3402 WITH_RCU_READ_LOCK_GUARD() {
3403 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3404
3405 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3406 qemu_put_byte(f, strlen(block->idstr));
3407 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3408 qemu_put_be64(f, block->used_length);
3409 if (migrate_postcopy_ram() && block->page_size !=
3410 qemu_host_page_size) {
3411 qemu_put_be64(f, block->page_size);
3412 }
3413 if (migrate_ignore_shared()) {
3414 qemu_put_be64(f, block->mr->addr);
3415 }
3416 }
3417 }
3418
3419 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3420 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3421
3422 multifd_send_sync_main(*rsp);
3423 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3424 qemu_fflush(f);
3425
3426 return 0;
3427 }
3428
3429 /**
3430 * ram_save_iterate: iterative stage for migration
3431 *
3432 * Returns zero to indicate success and negative for error
3433 *
3434 * @f: QEMUFile where to send the data
3435 * @opaque: RAMState pointer
3436 */
3437 static int ram_save_iterate(QEMUFile *f, void *opaque)
3438 {
3439 RAMState **temp = opaque;
3440 RAMState *rs = *temp;
3441 int ret;
3442 int i;
3443 int64_t t0;
3444 int done = 0;
3445
3446 if (blk_mig_bulk_active()) {
3447 /* Avoid transferring ram during bulk phase of block migration as
3448 * the bulk phase will usually take a long time and transferring
3449 * ram updates during that time is pointless. */
3450 goto out;
3451 }
3452
3453 WITH_RCU_READ_LOCK_GUARD() {
3454 if (ram_list.version != rs->last_version) {
3455 ram_state_reset(rs);
3456 }
3457
3458 /* Read version before ram_list.blocks */
3459 smp_rmb();
3460
3461 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3462
3463 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3464 i = 0;
3465 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3466 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3467 int pages;
3468
3469 if (qemu_file_get_error(f)) {
3470 break;
3471 }
3472
3473 pages = ram_find_and_save_block(rs, false);
3474 /* no more pages to sent */
3475 if (pages == 0) {
3476 done = 1;
3477 break;
3478 }
3479
3480 if (pages < 0) {
3481 qemu_file_set_error(f, pages);
3482 break;
3483 }
3484
3485 rs->target_page_count += pages;
3486
3487 /*
3488 * During postcopy, it is necessary to make sure one whole host
3489 * page is sent in one chunk.
3490 */
3491 if (migrate_postcopy_ram()) {
3492 flush_compressed_data(rs);
3493 }
3494
3495 /*
3496 * we want to check in the 1st loop, just in case it was the 1st
3497 * time and we had to sync the dirty bitmap.
3498 * qemu_clock_get_ns() is a bit expensive, so we only check each
3499 * some iterations
3500 */
3501 if ((i & 63) == 0) {
3502 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3503 1000000;
3504 if (t1 > MAX_WAIT) {
3505 trace_ram_save_iterate_big_wait(t1, i);
3506 break;
3507 }
3508 }
3509 i++;
3510 }
3511 }
3512
3513 /*
3514 * Must occur before EOS (or any QEMUFile operation)
3515 * because of RDMA protocol.
3516 */
3517 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3518
3519 out:
3520 multifd_send_sync_main(rs);
3521 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3522 qemu_fflush(f);
3523 ram_counters.transferred += 8;
3524
3525 ret = qemu_file_get_error(f);
3526 if (ret < 0) {
3527 return ret;
3528 }
3529
3530 return done;
3531 }
3532
3533 /**
3534 * ram_save_complete: function called to send the remaining amount of ram
3535 *
3536 * Returns zero to indicate success or negative on error
3537 *
3538 * Called with iothread lock
3539 *
3540 * @f: QEMUFile where to send the data
3541 * @opaque: RAMState pointer
3542 */
3543 static int ram_save_complete(QEMUFile *f, void *opaque)
3544 {
3545 RAMState **temp = opaque;
3546 RAMState *rs = *temp;
3547 int ret = 0;
3548
3549 WITH_RCU_READ_LOCK_GUARD() {
3550 if (!migration_in_postcopy()) {
3551 migration_bitmap_sync_precopy(rs);
3552 }
3553
3554 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3555
3556 /* try transferring iterative blocks of memory */
3557
3558 /* flush all remaining blocks regardless of rate limiting */
3559 while (true) {
3560 int pages;
3561
3562 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3563 /* no more blocks to sent */
3564 if (pages == 0) {
3565 break;
3566 }
3567 if (pages < 0) {
3568 ret = pages;
3569 break;
3570 }
3571 }
3572
3573 flush_compressed_data(rs);
3574 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3575 }
3576
3577 multifd_send_sync_main(rs);
3578 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3579 qemu_fflush(f);
3580
3581 return ret;
3582 }
3583
3584 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3585 uint64_t *res_precopy_only,
3586 uint64_t *res_compatible,
3587 uint64_t *res_postcopy_only)
3588 {
3589 RAMState **temp = opaque;
3590 RAMState *rs = *temp;
3591 uint64_t remaining_size;
3592
3593 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3594
3595 if (!migration_in_postcopy() &&
3596 remaining_size < max_size) {
3597 qemu_mutex_lock_iothread();
3598 WITH_RCU_READ_LOCK_GUARD() {
3599 migration_bitmap_sync_precopy(rs);
3600 }
3601 qemu_mutex_unlock_iothread();
3602 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3603 }
3604
3605 if (migrate_postcopy_ram()) {
3606 /* We can do postcopy, and all the data is postcopiable */
3607 *res_compatible += remaining_size;
3608 } else {
3609 *res_precopy_only += remaining_size;
3610 }
3611 }
3612
3613 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3614 {
3615 unsigned int xh_len;
3616 int xh_flags;
3617 uint8_t *loaded_data;
3618
3619 /* extract RLE header */
3620 xh_flags = qemu_get_byte(f);
3621 xh_len = qemu_get_be16(f);
3622
3623 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3624 error_report("Failed to load XBZRLE page - wrong compression!");
3625 return -1;
3626 }
3627
3628 if (xh_len > TARGET_PAGE_SIZE) {
3629 error_report("Failed to load XBZRLE page - len overflow!");
3630 return -1;
3631 }
3632 loaded_data = XBZRLE.decoded_buf;
3633 /* load data and decode */
3634 /* it can change loaded_data to point to an internal buffer */
3635 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3636
3637 /* decode RLE */
3638 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3639 TARGET_PAGE_SIZE) == -1) {
3640 error_report("Failed to load XBZRLE page - decode error!");
3641 return -1;
3642 }
3643
3644 return 0;
3645 }
3646
3647 /**
3648 * ram_block_from_stream: read a RAMBlock id from the migration stream
3649 *
3650 * Must be called from within a rcu critical section.
3651 *
3652 * Returns a pointer from within the RCU-protected ram_list.
3653 *
3654 * @f: QEMUFile where to read the data from
3655 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3656 */
3657 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3658 {
3659 static RAMBlock *block = NULL;
3660 char id[256];
3661 uint8_t len;
3662
3663 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3664 if (!block) {
3665 error_report("Ack, bad migration stream!");
3666 return NULL;
3667 }
3668 return block;
3669 }
3670
3671 len = qemu_get_byte(f);
3672 qemu_get_buffer(f, (uint8_t *)id, len);
3673 id[len] = 0;
3674
3675 block = qemu_ram_block_by_name(id);
3676 if (!block) {
3677 error_report("Can't find block %s", id);
3678 return NULL;
3679 }
3680
3681 if (ramblock_is_ignored(block)) {
3682 error_report("block %s should not be migrated !", id);
3683 return NULL;
3684 }
3685
3686 return block;
3687 }
3688
3689 static inline void *host_from_ram_block_offset(RAMBlock *block,
3690 ram_addr_t offset)
3691 {
3692 if (!offset_in_ramblock(block, offset)) {
3693 return NULL;
3694 }
3695
3696 return block->host + offset;
3697 }
3698
3699 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3700 ram_addr_t offset)
3701 {
3702 if (!offset_in_ramblock(block, offset)) {
3703 return NULL;
3704 }
3705 if (!block->colo_cache) {
3706 error_report("%s: colo_cache is NULL in block :%s",
3707 __func__, block->idstr);
3708 return NULL;
3709 }
3710
3711 /*
3712 * During colo checkpoint, we need bitmap of these migrated pages.
3713 * It help us to decide which pages in ram cache should be flushed
3714 * into VM's RAM later.
3715 */
3716 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3717 ram_state->migration_dirty_pages++;
3718 }
3719 return block->colo_cache + offset;
3720 }
3721
3722 /**
3723 * ram_handle_compressed: handle the zero page case
3724 *
3725 * If a page (or a whole RDMA chunk) has been
3726 * determined to be zero, then zap it.
3727 *
3728 * @host: host address for the zero page
3729 * @ch: what the page is filled from. We only support zero
3730 * @size: size of the zero page
3731 */
3732 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3733 {
3734 if (ch != 0 || !is_zero_range(host, size)) {
3735 memset(host, ch, size);
3736 }
3737 }
3738
3739 /* return the size after decompression, or negative value on error */
3740 static int
3741 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3742 const uint8_t *source, size_t source_len)
3743 {
3744 int err;
3745
3746 err = inflateReset(stream);
3747 if (err != Z_OK) {
3748 return -1;
3749 }
3750
3751 stream->avail_in = source_len;
3752 stream->next_in = (uint8_t *)source;
3753 stream->avail_out = dest_len;
3754 stream->next_out = dest;
3755
3756 err = inflate(stream, Z_NO_FLUSH);
3757 if (err != Z_STREAM_END) {
3758 return -1;
3759 }
3760
3761 return stream->total_out;
3762 }
3763
3764 static void *do_data_decompress(void *opaque)
3765 {
3766 DecompressParam *param = opaque;
3767 unsigned long pagesize;
3768 uint8_t *des;
3769 int len, ret;
3770
3771 qemu_mutex_lock(&param->mutex);
3772 while (!param->quit) {
3773 if (param->des) {
3774 des = param->des;
3775 len = param->len;
3776 param->des = 0;
3777 qemu_mutex_unlock(&param->mutex);
3778
3779 pagesize = TARGET_PAGE_SIZE;
3780
3781 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3782 param->compbuf, len);
3783 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3784 error_report("decompress data failed");
3785 qemu_file_set_error(decomp_file, ret);
3786 }
3787
3788 qemu_mutex_lock(&decomp_done_lock);
3789 param->done = true;
3790 qemu_cond_signal(&decomp_done_cond);
3791 qemu_mutex_unlock(&decomp_done_lock);
3792
3793 qemu_mutex_lock(&param->mutex);
3794 } else {
3795 qemu_cond_wait(&param->cond, &param->mutex);
3796 }
3797 }
3798 qemu_mutex_unlock(&param->mutex);
3799
3800 return NULL;
3801 }
3802
3803 static int wait_for_decompress_done(void)
3804 {
3805 int idx, thread_count;
3806
3807 if (!migrate_use_compression()) {
3808 return 0;
3809 }
3810
3811 thread_count = migrate_decompress_threads();
3812 qemu_mutex_lock(&decomp_done_lock);
3813 for (idx = 0; idx < thread_count; idx++) {
3814 while (!decomp_param[idx].done) {
3815 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3816 }
3817 }
3818 qemu_mutex_unlock(&decomp_done_lock);
3819 return qemu_file_get_error(decomp_file);
3820 }
3821
3822 static void compress_threads_load_cleanup(void)
3823 {
3824 int i, thread_count;
3825
3826 if (!migrate_use_compression()) {
3827 return;
3828 }
3829 thread_count = migrate_decompress_threads();
3830 for (i = 0; i < thread_count; i++) {
3831 /*
3832 * we use it as a indicator which shows if the thread is
3833 * properly init'd or not
3834 */
3835 if (!decomp_param[i].compbuf) {
3836 break;
3837 }
3838
3839 qemu_mutex_lock(&decomp_param[i].mutex);
3840 decomp_param[i].quit = true;
3841 qemu_cond_signal(&decomp_param[i].cond);
3842 qemu_mutex_unlock(&decomp_param[i].mutex);
3843 }
3844 for (i = 0; i < thread_count; i++) {
3845 if (!decomp_param[i].compbuf) {
3846 break;
3847 }
3848
3849 qemu_thread_join(decompress_threads + i);
3850 qemu_mutex_destroy(&decomp_param[i].mutex);
3851 qemu_cond_destroy(&decomp_param[i].cond);
3852 inflateEnd(&decomp_param[i].stream);
3853 g_free(decomp_param[i].compbuf);
3854 decomp_param[i].compbuf = NULL;
3855 }
3856 g_free(decompress_threads);
3857 g_free(decomp_param);
3858 decompress_threads = NULL;
3859 decomp_param = NULL;
3860 decomp_file = NULL;
3861 }
3862
3863 static int compress_threads_load_setup(QEMUFile *f)
3864 {
3865 int i, thread_count;
3866
3867 if (!migrate_use_compression()) {
3868 return 0;
3869 }
3870
3871 thread_count = migrate_decompress_threads();
3872 decompress_threads = g_new0(QemuThread, thread_count);
3873 decomp_param = g_new0(DecompressParam, thread_count);
3874 qemu_mutex_init(&decomp_done_lock);
3875 qemu_cond_init(&decomp_done_cond);
3876 decomp_file = f;
3877 for (i = 0; i < thread_count; i++) {
3878 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3879 goto exit;
3880 }
3881
3882 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3883 qemu_mutex_init(&decomp_param[i].mutex);
3884 qemu_cond_init(&decomp_param[i].cond);
3885 decomp_param[i].done = true;
3886 decomp_param[i].quit = false;
3887 qemu_thread_create(decompress_threads + i, "decompress",
3888 do_data_decompress, decomp_param + i,
3889 QEMU_THREAD_JOINABLE);
3890 }
3891 return 0;
3892 exit:
3893 compress_threads_load_cleanup();
3894 return -1;
3895 }
3896
3897 static void decompress_data_with_multi_threads(QEMUFile *f,
3898 void *host, int len)
3899 {
3900 int idx, thread_count;
3901
3902 thread_count = migrate_decompress_threads();
3903 qemu_mutex_lock(&decomp_done_lock);
3904 while (true) {
3905 for (idx = 0; idx < thread_count; idx++) {
3906 if (decomp_param[idx].done) {
3907 decomp_param[idx].done = false;
3908 qemu_mutex_lock(&decomp_param[idx].mutex);
3909 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3910 decomp_param[idx].des = host;
3911 decomp_param[idx].len = len;
3912 qemu_cond_signal(&decomp_param[idx].cond);
3913 qemu_mutex_unlock(&decomp_param[idx].mutex);
3914 break;
3915 }
3916 }
3917 if (idx < thread_count) {
3918 break;
3919 } else {
3920 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3921 }
3922 }
3923 qemu_mutex_unlock(&decomp_done_lock);
3924 }
3925
3926 /*
3927 * colo cache: this is for secondary VM, we cache the whole
3928 * memory of the secondary VM, it is need to hold the global lock
3929 * to call this helper.
3930 */
3931 int colo_init_ram_cache(void)
3932 {
3933 RAMBlock *block;
3934
3935 WITH_RCU_READ_LOCK_GUARD() {
3936 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3937 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3938 NULL,
3939 false);
3940 if (!block->colo_cache) {
3941 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3942 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3943 block->used_length);
3944 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3945 if (block->colo_cache) {
3946 qemu_anon_ram_free(block->colo_cache, block->used_length);
3947 block->colo_cache = NULL;
3948 }
3949 }
3950 return -errno;
3951 }
3952 memcpy(block->colo_cache, block->host, block->used_length);
3953 }
3954 }
3955
3956 /*
3957 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3958 * with to decide which page in cache should be flushed into SVM's RAM. Here
3959 * we use the same name 'ram_bitmap' as for migration.
3960 */
3961 if (ram_bytes_total()) {
3962 RAMBlock *block;
3963
3964 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3965 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3966
3967 block->bmap = bitmap_new(pages);
3968 bitmap_set(block->bmap, 0, pages);
3969 }
3970 }
3971 ram_state = g_new0(RAMState, 1);
3972 ram_state->migration_dirty_pages = 0;
3973 qemu_mutex_init(&ram_state->bitmap_mutex);
3974 memory_global_dirty_log_start();
3975
3976 return 0;
3977 }
3978
3979 /* It is need to hold the global lock to call this helper */
3980 void colo_release_ram_cache(void)
3981 {
3982 RAMBlock *block;
3983
3984 memory_global_dirty_log_stop();
3985 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3986 g_free(block->bmap);
3987 block->bmap = NULL;
3988 }
3989
3990 WITH_RCU_READ_LOCK_GUARD() {
3991 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3992 if (block->colo_cache) {
3993 qemu_anon_ram_free(block->colo_cache, block->used_length);
3994 block->colo_cache = NULL;
3995 }
3996 }
3997 }
3998 qemu_mutex_destroy(&ram_state->bitmap_mutex);
3999 g_free(ram_state);
4000 ram_state = NULL;
4001 }
4002
4003 /**
4004 * ram_load_setup: Setup RAM for migration incoming side
4005 *
4006 * Returns zero to indicate success and negative for error
4007 *
4008 * @f: QEMUFile where to receive the data
4009 * @opaque: RAMState pointer
4010 */
4011 static int ram_load_setup(QEMUFile *f, void *opaque)
4012 {
4013 if (compress_threads_load_setup(f)) {
4014 return -1;
4015 }
4016
4017 xbzrle_load_setup();
4018 ramblock_recv_map_init();
4019
4020 return 0;
4021 }
4022
4023 static int ram_load_cleanup(void *opaque)
4024 {
4025 RAMBlock *rb;
4026
4027 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4028 qemu_ram_block_writeback(rb);
4029 }
4030
4031 xbzrle_load_cleanup();
4032 compress_threads_load_cleanup();
4033
4034 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4035 g_free(rb->receivedmap);
4036 rb->receivedmap = NULL;
4037 }
4038
4039 return 0;
4040 }
4041
4042 /**
4043 * ram_postcopy_incoming_init: allocate postcopy data structures
4044 *
4045 * Returns 0 for success and negative if there was one error
4046 *
4047 * @mis: current migration incoming state
4048 *
4049 * Allocate data structures etc needed by incoming migration with
4050 * postcopy-ram. postcopy-ram's similarly names
4051 * postcopy_ram_incoming_init does the work.
4052 */
4053 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4054 {
4055 return postcopy_ram_incoming_init(mis);
4056 }
4057
4058 /**
4059 * ram_load_postcopy: load a page in postcopy case
4060 *
4061 * Returns 0 for success or -errno in case of error
4062 *
4063 * Called in postcopy mode by ram_load().
4064 * rcu_read_lock is taken prior to this being called.
4065 *
4066 * @f: QEMUFile where to send the data
4067 */
4068 static int ram_load_postcopy(QEMUFile *f)
4069 {
4070 int flags = 0, ret = 0;
4071 bool place_needed = false;
4072 bool matches_target_page_size = false;
4073 MigrationIncomingState *mis = migration_incoming_get_current();
4074 /* Temporary page that is later 'placed' */
4075 void *postcopy_host_page = mis->postcopy_tmp_page;
4076 void *this_host = NULL;
4077 bool all_zero = false;
4078 int target_pages = 0;
4079
4080 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4081 ram_addr_t addr;
4082 void *host = NULL;
4083 void *page_buffer = NULL;
4084 void *place_source = NULL;
4085 RAMBlock *block = NULL;
4086 uint8_t ch;
4087 int len;
4088
4089 addr = qemu_get_be64(f);
4090
4091 /*
4092 * If qemu file error, we should stop here, and then "addr"
4093 * may be invalid
4094 */
4095 ret = qemu_file_get_error(f);
4096 if (ret) {
4097 break;
4098 }
4099
4100 flags = addr & ~TARGET_PAGE_MASK;
4101 addr &= TARGET_PAGE_MASK;
4102
4103 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4104 place_needed = false;
4105 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4106 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
4107 block = ram_block_from_stream(f, flags);
4108
4109 host = host_from_ram_block_offset(block, addr);
4110 if (!host) {
4111 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4112 ret = -EINVAL;
4113 break;
4114 }
4115 target_pages++;
4116 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4117 /*
4118 * Postcopy requires that we place whole host pages atomically;
4119 * these may be huge pages for RAMBlocks that are backed by
4120 * hugetlbfs.
4121 * To make it atomic, the data is read into a temporary page
4122 * that's moved into place later.
4123 * The migration protocol uses, possibly smaller, target-pages
4124 * however the source ensures it always sends all the components
4125 * of a host page in one chunk.
4126 */
4127 page_buffer = postcopy_host_page +
4128 ((uintptr_t)host & (block->page_size - 1));
4129 /* If all TP are zero then we can optimise the place */
4130 if (target_pages == 1) {
4131 all_zero = true;
4132 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
4133 block->page_size);
4134 } else {
4135 /* not the 1st TP within the HP */
4136 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) !=
4137 (uintptr_t)this_host) {
4138 error_report("Non-same host page %p/%p",
4139 host, this_host);
4140 ret = -EINVAL;
4141 break;
4142 }
4143 }
4144
4145 /*
4146 * If it's the last part of a host page then we place the host
4147 * page
4148 */
4149 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
4150 place_needed = true;
4151 target_pages = 0;
4152 }
4153 place_source = postcopy_host_page;
4154 }
4155
4156 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4157 case RAM_SAVE_FLAG_ZERO:
4158 ch = qemu_get_byte(f);
4159 /*
4160 * Can skip to set page_buffer when
4161 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
4162 */
4163 if (ch || !matches_target_page_size) {
4164 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4165 }
4166 if (ch) {
4167 all_zero = false;
4168 }
4169 break;
4170
4171 case RAM_SAVE_FLAG_PAGE:
4172 all_zero = false;
4173 if (!matches_target_page_size) {
4174 /* For huge pages, we always use temporary buffer */
4175 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4176 } else {
4177 /*
4178 * For small pages that matches target page size, we
4179 * avoid the qemu_file copy. Instead we directly use
4180 * the buffer of QEMUFile to place the page. Note: we
4181 * cannot do any QEMUFile operation before using that
4182 * buffer to make sure the buffer is valid when
4183 * placing the page.
4184 */
4185 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4186 TARGET_PAGE_SIZE);
4187 }
4188 break;
4189 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4190 all_zero = false;
4191 len = qemu_get_be32(f);
4192 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4193 error_report("Invalid compressed data length: %d", len);
4194 ret = -EINVAL;
4195 break;
4196 }
4197 decompress_data_with_multi_threads(f, page_buffer, len);
4198 break;
4199
4200 case RAM_SAVE_FLAG_EOS:
4201 /* normal exit */
4202 multifd_recv_sync_main();
4203 break;
4204 default:
4205 error_report("Unknown combination of migration flags: %#x"
4206 " (postcopy mode)", flags);
4207 ret = -EINVAL;
4208 break;
4209 }
4210
4211 /* Got the whole host page, wait for decompress before placing. */
4212 if (place_needed) {
4213 ret |= wait_for_decompress_done();
4214 }
4215
4216 /* Detect for any possible file errors */
4217 if (!ret && qemu_file_get_error(f)) {
4218 ret = qemu_file_get_error(f);
4219 }
4220
4221 if (!ret && place_needed) {
4222 /* This gets called at the last target page in the host page */
4223 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
4224 block->page_size);
4225
4226 if (all_zero) {
4227 ret = postcopy_place_page_zero(mis, place_dest,
4228 block);
4229 } else {
4230 ret = postcopy_place_page(mis, place_dest,
4231 place_source, block);
4232 }
4233 }
4234 }
4235
4236 return ret;
4237 }
4238
4239 static bool postcopy_is_advised(void)
4240 {
4241 PostcopyState ps = postcopy_state_get();
4242 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4243 }
4244
4245 static bool postcopy_is_running(void)
4246 {
4247 PostcopyState ps = postcopy_state_get();
4248 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4249 }
4250
4251 /*
4252 * Flush content of RAM cache into SVM's memory.
4253 * Only flush the pages that be dirtied by PVM or SVM or both.
4254 */
4255 static void colo_flush_ram_cache(void)
4256 {
4257 RAMBlock *block = NULL;
4258 void *dst_host;
4259 void *src_host;
4260 unsigned long offset = 0;
4261
4262 memory_global_dirty_log_sync();
4263 WITH_RCU_READ_LOCK_GUARD() {
4264 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4265 ramblock_sync_dirty_bitmap(ram_state, block);
4266 }
4267 }
4268
4269 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4270 WITH_RCU_READ_LOCK_GUARD() {
4271 block = QLIST_FIRST_RCU(&ram_list.blocks);
4272
4273 while (block) {
4274 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4275
4276 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4277 offset = 0;
4278 block = QLIST_NEXT_RCU(block, next);
4279 } else {
4280 migration_bitmap_clear_dirty(ram_state, block, offset);
4281 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4282 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4283 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4284 }
4285 }
4286 }
4287 trace_colo_flush_ram_cache_end();
4288 }
4289
4290 /**
4291 * ram_load_precopy: load pages in precopy case
4292 *
4293 * Returns 0 for success or -errno in case of error
4294 *
4295 * Called in precopy mode by ram_load().
4296 * rcu_read_lock is taken prior to this being called.
4297 *
4298 * @f: QEMUFile where to send the data
4299 */
4300 static int ram_load_precopy(QEMUFile *f)
4301 {
4302 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4303 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4304 bool postcopy_advised = postcopy_is_advised();
4305 if (!migrate_use_compression()) {
4306 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4307 }
4308
4309 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4310 ram_addr_t addr, total_ram_bytes;
4311 void *host = NULL;
4312 uint8_t ch;
4313
4314 /*
4315 * Yield periodically to let main loop run, but an iteration of
4316 * the main loop is expensive, so do it each some iterations
4317 */
4318 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4319 aio_co_schedule(qemu_get_current_aio_context(),
4320 qemu_coroutine_self());
4321 qemu_coroutine_yield();
4322 }
4323 i++;
4324
4325 addr = qemu_get_be64(f);
4326 flags = addr & ~TARGET_PAGE_MASK;
4327 addr &= TARGET_PAGE_MASK;
4328
4329 if (flags & invalid_flags) {
4330 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4331 error_report("Received an unexpected compressed page");
4332 }
4333
4334 ret = -EINVAL;
4335 break;
4336 }
4337
4338 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4339 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4340 RAMBlock *block = ram_block_from_stream(f, flags);
4341
4342 /*
4343 * After going into COLO, we should load the Page into colo_cache.
4344 */
4345 if (migration_incoming_in_colo_state()) {
4346 host = colo_cache_from_block_offset(block, addr);
4347 } else {
4348 host = host_from_ram_block_offset(block, addr);
4349 }
4350 if (!host) {
4351 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4352 ret = -EINVAL;
4353 break;
4354 }
4355
4356 if (!migration_incoming_in_colo_state()) {
4357 ramblock_recv_bitmap_set(block, host);
4358 }
4359
4360 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4361 }
4362
4363 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4364 case RAM_SAVE_FLAG_MEM_SIZE:
4365 /* Synchronize RAM block list */
4366 total_ram_bytes = addr;
4367 while (!ret && total_ram_bytes) {
4368 RAMBlock *block;
4369 char id[256];
4370 ram_addr_t length;
4371
4372 len = qemu_get_byte(f);
4373 qemu_get_buffer(f, (uint8_t *)id, len);
4374 id[len] = 0;
4375 length = qemu_get_be64(f);
4376
4377 block = qemu_ram_block_by_name(id);
4378 if (block && !qemu_ram_is_migratable(block)) {
4379 error_report("block %s should not be migrated !", id);
4380 ret = -EINVAL;
4381 } else if (block) {
4382 if (length != block->used_length) {
4383 Error *local_err = NULL;
4384
4385 ret = qemu_ram_resize(block, length,
4386 &local_err);
4387 if (local_err) {
4388 error_report_err(local_err);
4389 }
4390 }
4391 /* For postcopy we need to check hugepage sizes match */
4392 if (postcopy_advised &&
4393 block->page_size != qemu_host_page_size) {
4394 uint64_t remote_page_size = qemu_get_be64(f);
4395 if (remote_page_size != block->page_size) {
4396 error_report("Mismatched RAM page size %s "
4397 "(local) %zd != %" PRId64,
4398 id, block->page_size,
4399 remote_page_size);
4400 ret = -EINVAL;
4401 }
4402 }
4403 if (migrate_ignore_shared()) {
4404 hwaddr addr = qemu_get_be64(f);
4405 if (ramblock_is_ignored(block) &&
4406 block->mr->addr != addr) {
4407 error_report("Mismatched GPAs for block %s "
4408 "%" PRId64 "!= %" PRId64,
4409 id, (uint64_t)addr,
4410 (uint64_t)block->mr->addr);
4411 ret = -EINVAL;
4412 }
4413 }
4414 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4415 block->idstr);
4416 } else {
4417 error_report("Unknown ramblock \"%s\", cannot "
4418 "accept migration", id);
4419 ret = -EINVAL;
4420 }
4421
4422 total_ram_bytes -= length;
4423 }
4424 break;
4425
4426 case RAM_SAVE_FLAG_ZERO:
4427 ch = qemu_get_byte(f);
4428 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4429 break;
4430
4431 case RAM_SAVE_FLAG_PAGE:
4432 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4433 break;
4434
4435 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4436 len = qemu_get_be32(f);
4437 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4438 error_report("Invalid compressed data length: %d", len);
4439 ret = -EINVAL;
4440 break;
4441 }
4442 decompress_data_with_multi_threads(f, host, len);
4443 break;
4444
4445 case RAM_SAVE_FLAG_XBZRLE:
4446 if (load_xbzrle(f, addr, host) < 0) {
4447 error_report("Failed to decompress XBZRLE page at "
4448 RAM_ADDR_FMT, addr);
4449 ret = -EINVAL;
4450 break;
4451 }
4452 break;
4453 case RAM_SAVE_FLAG_EOS:
4454 /* normal exit */
4455 multifd_recv_sync_main();
4456 break;
4457 default:
4458 if (flags & RAM_SAVE_FLAG_HOOK) {
4459 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4460 } else {
4461 error_report("Unknown combination of migration flags: %#x",
4462 flags);
4463 ret = -EINVAL;
4464 }
4465 }
4466 if (!ret) {
4467 ret = qemu_file_get_error(f);
4468 }
4469 }
4470
4471 ret |= wait_for_decompress_done();
4472 return ret;
4473 }
4474
4475 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4476 {
4477 int ret = 0;
4478 static uint64_t seq_iter;
4479 /*
4480 * If system is running in postcopy mode, page inserts to host memory must
4481 * be atomic
4482 */
4483 bool postcopy_running = postcopy_is_running();
4484
4485 seq_iter++;
4486
4487 if (version_id != 4) {
4488 return -EINVAL;
4489 }
4490
4491 /*
4492 * This RCU critical section can be very long running.
4493 * When RCU reclaims in the code start to become numerous,
4494 * it will be necessary to reduce the granularity of this
4495 * critical section.
4496 */
4497 WITH_RCU_READ_LOCK_GUARD() {
4498 if (postcopy_running) {
4499 ret = ram_load_postcopy(f);
4500 } else {
4501 ret = ram_load_precopy(f);
4502 }
4503 }
4504 trace_ram_load_complete(ret, seq_iter);
4505
4506 if (!ret && migration_incoming_in_colo_state()) {
4507 colo_flush_ram_cache();
4508 }
4509 return ret;
4510 }
4511
4512 static bool ram_has_postcopy(void *opaque)
4513 {
4514 RAMBlock *rb;
4515 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4516 if (ramblock_is_pmem(rb)) {
4517 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4518 "is not supported now!", rb->idstr, rb->host);
4519 return false;
4520 }
4521 }
4522
4523 return migrate_postcopy_ram();
4524 }
4525
4526 /* Sync all the dirty bitmap with destination VM. */
4527 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4528 {
4529 RAMBlock *block;
4530 QEMUFile *file = s->to_dst_file;
4531 int ramblock_count = 0;
4532
4533 trace_ram_dirty_bitmap_sync_start();
4534
4535 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4536 qemu_savevm_send_recv_bitmap(file, block->idstr);
4537 trace_ram_dirty_bitmap_request(block->idstr);
4538 ramblock_count++;
4539 }
4540
4541 trace_ram_dirty_bitmap_sync_wait();
4542
4543 /* Wait until all the ramblocks' dirty bitmap synced */
4544 while (ramblock_count--) {
4545 qemu_sem_wait(&s->rp_state.rp_sem);
4546 }
4547
4548 trace_ram_dirty_bitmap_sync_complete();
4549
4550 return 0;
4551 }
4552
4553 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4554 {
4555 qemu_sem_post(&s->rp_state.rp_sem);
4556 }
4557
4558 /*
4559 * Read the received bitmap, revert it as the initial dirty bitmap.
4560 * This is only used when the postcopy migration is paused but wants
4561 * to resume from a middle point.
4562 */
4563 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4564 {
4565 int ret = -EINVAL;
4566 QEMUFile *file = s->rp_state.from_dst_file;
4567 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4568 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4569 uint64_t size, end_mark;
4570
4571 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4572
4573 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4574 error_report("%s: incorrect state %s", __func__,
4575 MigrationStatus_str(s->state));
4576 return -EINVAL;
4577 }
4578
4579 /*
4580 * Note: see comments in ramblock_recv_bitmap_send() on why we
4581 * need the endianess convertion, and the paddings.
4582 */
4583 local_size = ROUND_UP(local_size, 8);
4584
4585 /* Add paddings */
4586 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4587
4588 size = qemu_get_be64(file);
4589
4590 /* The size of the bitmap should match with our ramblock */
4591 if (size != local_size) {
4592 error_report("%s: ramblock '%s' bitmap size mismatch "
4593 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4594 block->idstr, size, local_size);
4595 ret = -EINVAL;
4596 goto out;
4597 }
4598
4599 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4600 end_mark = qemu_get_be64(file);
4601
4602 ret = qemu_file_get_error(file);
4603 if (ret || size != local_size) {
4604 error_report("%s: read bitmap failed for ramblock '%s': %d"
4605 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4606 __func__, block->idstr, ret, local_size, size);
4607 ret = -EIO;
4608 goto out;
4609 }
4610
4611 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4612 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4613 __func__, block->idstr, end_mark);
4614 ret = -EINVAL;
4615 goto out;
4616 }
4617
4618 /*
4619 * Endianess convertion. We are during postcopy (though paused).
4620 * The dirty bitmap won't change. We can directly modify it.
4621 */
4622 bitmap_from_le(block->bmap, le_bitmap, nbits);
4623
4624 /*
4625 * What we received is "received bitmap". Revert it as the initial
4626 * dirty bitmap for this ramblock.
4627 */
4628 bitmap_complement(block->bmap, block->bmap, nbits);
4629
4630 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4631
4632 /*
4633 * We succeeded to sync bitmap for current ramblock. If this is
4634 * the last one to sync, we need to notify the main send thread.
4635 */
4636 ram_dirty_bitmap_reload_notify(s);
4637
4638 ret = 0;
4639 out:
4640 g_free(le_bitmap);
4641 return ret;
4642 }
4643
4644 static int ram_resume_prepare(MigrationState *s, void *opaque)
4645 {
4646 RAMState *rs = *(RAMState **)opaque;
4647 int ret;
4648
4649 ret = ram_dirty_bitmap_sync_all(s, rs);
4650 if (ret) {
4651 return ret;
4652 }
4653
4654 ram_state_resume_prepare(rs, s->to_dst_file);
4655
4656 return 0;
4657 }
4658
4659 static SaveVMHandlers savevm_ram_handlers = {
4660 .save_setup = ram_save_setup,
4661 .save_live_iterate = ram_save_iterate,
4662 .save_live_complete_postcopy = ram_save_complete,
4663 .save_live_complete_precopy = ram_save_complete,
4664 .has_postcopy = ram_has_postcopy,
4665 .save_live_pending = ram_save_pending,
4666 .load_state = ram_load,
4667 .save_cleanup = ram_save_cleanup,
4668 .load_setup = ram_load_setup,
4669 .load_cleanup = ram_load_cleanup,
4670 .resume_prepare = ram_resume_prepare,
4671 };
4672
4673 void ram_mig_init(void)
4674 {
4675 qemu_mutex_init(&XBZRLE.lock);
4676 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4677 }