]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
a5320aa889725841eb7284475bd320f080588d47
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "sysemu/cpu-throttle.h"
57 #include "savevm.h"
58 #include "qemu/iov.h"
59 #include "multifd.h"
60 #include "sysemu/runstate.h"
61 #include "rdma.h"
62 #include "options.h"
63 #include "sysemu/dirtylimit.h"
64 #include "sysemu/kvm.h"
65
66 #include "hw/boards.h" /* for machine_dump_guest_core() */
67
68 #if defined(__linux__)
69 #include "qemu/userfaultfd.h"
70 #endif /* defined(__linux__) */
71
72 /***********************************************************/
73 /* ram save/restore */
74
75 /*
76 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
77 * worked for pages that were filled with the same char. We switched
78 * it to only search for the zero value. And to avoid confusion with
79 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
80 */
81 /*
82 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
83 */
84 #define RAM_SAVE_FLAG_FULL 0x01
85 #define RAM_SAVE_FLAG_ZERO 0x02
86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
87 #define RAM_SAVE_FLAG_PAGE 0x08
88 #define RAM_SAVE_FLAG_EOS 0x10
89 #define RAM_SAVE_FLAG_CONTINUE 0x20
90 #define RAM_SAVE_FLAG_XBZRLE 0x40
91 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
92 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
93 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
94 /* We can't use any flag that is bigger than 0x200 */
95
96 /*
97 * mapped-ram migration supports O_DIRECT, so we need to make sure the
98 * userspace buffer, the IO operation size and the file offset are
99 * aligned according to the underlying device's block size. The first
100 * two are already aligned to page size, but we need to add padding to
101 * the file to align the offset. We cannot read the block size
102 * dynamically because the migration file can be moved between
103 * different systems, so use 1M to cover most block sizes and to keep
104 * the file offset aligned at page size as well.
105 */
106 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
107
108 /*
109 * When doing mapped-ram migration, this is the amount we read from
110 * the pages region in the migration file at a time.
111 */
112 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
113
114 XBZRLECacheStats xbzrle_counters;
115
116 /* used by the search for pages to send */
117 struct PageSearchStatus {
118 /* The migration channel used for a specific host page */
119 QEMUFile *pss_channel;
120 /* Last block from where we have sent data */
121 RAMBlock *last_sent_block;
122 /* Current block being searched */
123 RAMBlock *block;
124 /* Current page to search from */
125 unsigned long page;
126 /* Set once we wrap around */
127 bool complete_round;
128 /* Whether we're sending a host page */
129 bool host_page_sending;
130 /* The start/end of current host page. Invalid if host_page_sending==false */
131 unsigned long host_page_start;
132 unsigned long host_page_end;
133 };
134 typedef struct PageSearchStatus PageSearchStatus;
135
136 /* struct contains XBZRLE cache and a static page
137 used by the compression */
138 static struct {
139 /* buffer used for XBZRLE encoding */
140 uint8_t *encoded_buf;
141 /* buffer for storing page content */
142 uint8_t *current_buf;
143 /* Cache for XBZRLE, Protected by lock. */
144 PageCache *cache;
145 QemuMutex lock;
146 /* it will store a page full of zeros */
147 uint8_t *zero_target_page;
148 /* buffer used for XBZRLE decoding */
149 uint8_t *decoded_buf;
150 } XBZRLE;
151
152 static void XBZRLE_cache_lock(void)
153 {
154 if (migrate_xbzrle()) {
155 qemu_mutex_lock(&XBZRLE.lock);
156 }
157 }
158
159 static void XBZRLE_cache_unlock(void)
160 {
161 if (migrate_xbzrle()) {
162 qemu_mutex_unlock(&XBZRLE.lock);
163 }
164 }
165
166 /**
167 * xbzrle_cache_resize: resize the xbzrle cache
168 *
169 * This function is called from migrate_params_apply in main
170 * thread, possibly while a migration is in progress. A running
171 * migration may be using the cache and might finish during this call,
172 * hence changes to the cache are protected by XBZRLE.lock().
173 *
174 * Returns 0 for success or -1 for error
175 *
176 * @new_size: new cache size
177 * @errp: set *errp if the check failed, with reason
178 */
179 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
180 {
181 PageCache *new_cache;
182 int64_t ret = 0;
183
184 /* Check for truncation */
185 if (new_size != (size_t)new_size) {
186 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
187 "exceeding address space");
188 return -1;
189 }
190
191 if (new_size == migrate_xbzrle_cache_size()) {
192 /* nothing to do */
193 return 0;
194 }
195
196 XBZRLE_cache_lock();
197
198 if (XBZRLE.cache != NULL) {
199 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
200 if (!new_cache) {
201 ret = -1;
202 goto out;
203 }
204
205 cache_fini(XBZRLE.cache);
206 XBZRLE.cache = new_cache;
207 }
208 out:
209 XBZRLE_cache_unlock();
210 return ret;
211 }
212
213 static bool postcopy_preempt_active(void)
214 {
215 return migrate_postcopy_preempt() && migration_in_postcopy();
216 }
217
218 bool migrate_ram_is_ignored(RAMBlock *block)
219 {
220 return !qemu_ram_is_migratable(block) ||
221 (migrate_ignore_shared() && qemu_ram_is_shared(block)
222 && qemu_ram_is_named_file(block));
223 }
224
225 #undef RAMBLOCK_FOREACH
226
227 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
228 {
229 RAMBlock *block;
230 int ret = 0;
231
232 RCU_READ_LOCK_GUARD();
233
234 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
235 ret = func(block, opaque);
236 if (ret) {
237 break;
238 }
239 }
240 return ret;
241 }
242
243 static void ramblock_recv_map_init(void)
244 {
245 RAMBlock *rb;
246
247 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
248 assert(!rb->receivedmap);
249 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
250 }
251 }
252
253 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
254 {
255 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
256 rb->receivedmap);
257 }
258
259 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
260 {
261 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
262 }
263
264 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
265 {
266 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
267 }
268
269 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
270 size_t nr)
271 {
272 bitmap_set_atomic(rb->receivedmap,
273 ramblock_recv_bitmap_offset(host_addr, rb),
274 nr);
275 }
276
277 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
278 {
279 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
280 }
281 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
282
283 /*
284 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
285 *
286 * Returns >0 if success with sent bytes, or <0 if error.
287 */
288 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
289 const char *block_name)
290 {
291 RAMBlock *block = qemu_ram_block_by_name(block_name);
292 unsigned long *le_bitmap, nbits;
293 uint64_t size;
294
295 if (!block) {
296 error_report("%s: invalid block name: %s", __func__, block_name);
297 return -1;
298 }
299
300 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
301
302 /*
303 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
304 * machines we may need 4 more bytes for padding (see below
305 * comment). So extend it a bit before hand.
306 */
307 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
308
309 /*
310 * Always use little endian when sending the bitmap. This is
311 * required that when source and destination VMs are not using the
312 * same endianness. (Note: big endian won't work.)
313 */
314 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
315
316 /* Size of the bitmap, in bytes */
317 size = DIV_ROUND_UP(nbits, 8);
318
319 /*
320 * size is always aligned to 8 bytes for 64bit machines, but it
321 * may not be true for 32bit machines. We need this padding to
322 * make sure the migration can survive even between 32bit and
323 * 64bit machines.
324 */
325 size = ROUND_UP(size, 8);
326
327 qemu_put_be64(file, size);
328 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
329 g_free(le_bitmap);
330 /*
331 * Mark as an end, in case the middle part is screwed up due to
332 * some "mysterious" reason.
333 */
334 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
335 int ret = qemu_fflush(file);
336 if (ret) {
337 return ret;
338 }
339
340 return size + sizeof(size);
341 }
342
343 /*
344 * An outstanding page request, on the source, having been received
345 * and queued
346 */
347 struct RAMSrcPageRequest {
348 RAMBlock *rb;
349 hwaddr offset;
350 hwaddr len;
351
352 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
353 };
354
355 /* State of RAM for migration */
356 struct RAMState {
357 /*
358 * PageSearchStatus structures for the channels when send pages.
359 * Protected by the bitmap_mutex.
360 */
361 PageSearchStatus pss[RAM_CHANNEL_MAX];
362 /* UFFD file descriptor, used in 'write-tracking' migration */
363 int uffdio_fd;
364 /* total ram size in bytes */
365 uint64_t ram_bytes_total;
366 /* Last block that we have visited searching for dirty pages */
367 RAMBlock *last_seen_block;
368 /* Last dirty target page we have sent */
369 ram_addr_t last_page;
370 /* last ram version we have seen */
371 uint32_t last_version;
372 /* How many times we have dirty too many pages */
373 int dirty_rate_high_cnt;
374 /* these variables are used for bitmap sync */
375 /* last time we did a full bitmap_sync */
376 int64_t time_last_bitmap_sync;
377 /* bytes transferred at start_time */
378 uint64_t bytes_xfer_prev;
379 /* number of dirty pages since start_time */
380 uint64_t num_dirty_pages_period;
381 /* xbzrle misses since the beginning of the period */
382 uint64_t xbzrle_cache_miss_prev;
383 /* Amount of xbzrle pages since the beginning of the period */
384 uint64_t xbzrle_pages_prev;
385 /* Amount of xbzrle encoded bytes since the beginning of the period */
386 uint64_t xbzrle_bytes_prev;
387 /* Are we really using XBZRLE (e.g., after the first round). */
388 bool xbzrle_started;
389 /* Are we on the last stage of migration */
390 bool last_stage;
391
392 /* total handled target pages at the beginning of period */
393 uint64_t target_page_count_prev;
394 /* total handled target pages since start */
395 uint64_t target_page_count;
396 /* number of dirty bits in the bitmap */
397 uint64_t migration_dirty_pages;
398 /*
399 * Protects:
400 * - dirty/clear bitmap
401 * - migration_dirty_pages
402 * - pss structures
403 */
404 QemuMutex bitmap_mutex;
405 /* The RAMBlock used in the last src_page_requests */
406 RAMBlock *last_req_rb;
407 /* Queue of outstanding page requests from the destination */
408 QemuMutex src_page_req_mutex;
409 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
410
411 /*
412 * This is only used when postcopy is in recovery phase, to communicate
413 * between the migration thread and the return path thread on dirty
414 * bitmap synchronizations. This field is unused in other stages of
415 * RAM migration.
416 */
417 unsigned int postcopy_bmap_sync_requested;
418 };
419 typedef struct RAMState RAMState;
420
421 static RAMState *ram_state;
422
423 static NotifierWithReturnList precopy_notifier_list;
424
425 /* Whether postcopy has queued requests? */
426 static bool postcopy_has_request(RAMState *rs)
427 {
428 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
429 }
430
431 void precopy_infrastructure_init(void)
432 {
433 notifier_with_return_list_init(&precopy_notifier_list);
434 }
435
436 void precopy_add_notifier(NotifierWithReturn *n)
437 {
438 notifier_with_return_list_add(&precopy_notifier_list, n);
439 }
440
441 void precopy_remove_notifier(NotifierWithReturn *n)
442 {
443 notifier_with_return_remove(n);
444 }
445
446 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
447 {
448 PrecopyNotifyData pnd;
449 pnd.reason = reason;
450
451 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
452 }
453
454 uint64_t ram_bytes_remaining(void)
455 {
456 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
457 0;
458 }
459
460 void ram_transferred_add(uint64_t bytes)
461 {
462 if (runstate_is_running()) {
463 stat64_add(&mig_stats.precopy_bytes, bytes);
464 } else if (migration_in_postcopy()) {
465 stat64_add(&mig_stats.postcopy_bytes, bytes);
466 } else {
467 stat64_add(&mig_stats.downtime_bytes, bytes);
468 }
469 }
470
471 struct MigrationOps {
472 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
473 };
474 typedef struct MigrationOps MigrationOps;
475
476 MigrationOps *migration_ops;
477
478 static int ram_save_host_page_urgent(PageSearchStatus *pss);
479
480 /* NOTE: page is the PFN not real ram_addr_t. */
481 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
482 {
483 pss->block = rb;
484 pss->page = page;
485 pss->complete_round = false;
486 }
487
488 /*
489 * Check whether two PSSs are actively sending the same page. Return true
490 * if it is, false otherwise.
491 */
492 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
493 {
494 return pss1->host_page_sending && pss2->host_page_sending &&
495 (pss1->host_page_start == pss2->host_page_start);
496 }
497
498 /**
499 * save_page_header: write page header to wire
500 *
501 * If this is the 1st block, it also writes the block identification
502 *
503 * Returns the number of bytes written
504 *
505 * @pss: current PSS channel status
506 * @block: block that contains the page we want to send
507 * @offset: offset inside the block for the page
508 * in the lower bits, it contains flags
509 */
510 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
511 RAMBlock *block, ram_addr_t offset)
512 {
513 size_t size, len;
514 bool same_block = (block == pss->last_sent_block);
515
516 if (same_block) {
517 offset |= RAM_SAVE_FLAG_CONTINUE;
518 }
519 qemu_put_be64(f, offset);
520 size = 8;
521
522 if (!same_block) {
523 len = strlen(block->idstr);
524 qemu_put_byte(f, len);
525 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
526 size += 1 + len;
527 pss->last_sent_block = block;
528 }
529 return size;
530 }
531
532 /**
533 * mig_throttle_guest_down: throttle down the guest
534 *
535 * Reduce amount of guest cpu execution to hopefully slow down memory
536 * writes. If guest dirty memory rate is reduced below the rate at
537 * which we can transfer pages to the destination then we should be
538 * able to complete migration. Some workloads dirty memory way too
539 * fast and will not effectively converge, even with auto-converge.
540 */
541 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
542 uint64_t bytes_dirty_threshold)
543 {
544 uint64_t pct_initial = migrate_cpu_throttle_initial();
545 uint64_t pct_increment = migrate_cpu_throttle_increment();
546 bool pct_tailslow = migrate_cpu_throttle_tailslow();
547 int pct_max = migrate_max_cpu_throttle();
548
549 uint64_t throttle_now = cpu_throttle_get_percentage();
550 uint64_t cpu_now, cpu_ideal, throttle_inc;
551
552 /* We have not started throttling yet. Let's start it. */
553 if (!cpu_throttle_active()) {
554 cpu_throttle_set(pct_initial);
555 } else {
556 /* Throttling already on, just increase the rate */
557 if (!pct_tailslow) {
558 throttle_inc = pct_increment;
559 } else {
560 /* Compute the ideal CPU percentage used by Guest, which may
561 * make the dirty rate match the dirty rate threshold. */
562 cpu_now = 100 - throttle_now;
563 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
564 bytes_dirty_period);
565 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
566 }
567 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
568 }
569 }
570
571 void mig_throttle_counter_reset(void)
572 {
573 RAMState *rs = ram_state;
574
575 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
576 rs->num_dirty_pages_period = 0;
577 rs->bytes_xfer_prev = migration_transferred_bytes();
578 }
579
580 /**
581 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
582 *
583 * @current_addr: address for the zero page
584 *
585 * Update the xbzrle cache to reflect a page that's been sent as all 0.
586 * The important thing is that a stale (not-yet-0'd) page be replaced
587 * by the new data.
588 * As a bonus, if the page wasn't in the cache it gets added so that
589 * when a small write is made into the 0'd page it gets XBZRLE sent.
590 */
591 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
592 {
593 /* We don't care if this fails to allocate a new cache page
594 * as long as it updated an old one */
595 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
596 stat64_get(&mig_stats.dirty_sync_count));
597 }
598
599 #define ENCODING_FLAG_XBZRLE 0x1
600
601 /**
602 * save_xbzrle_page: compress and send current page
603 *
604 * Returns: 1 means that we wrote the page
605 * 0 means that page is identical to the one already sent
606 * -1 means that xbzrle would be longer than normal
607 *
608 * @rs: current RAM state
609 * @pss: current PSS channel
610 * @current_data: pointer to the address of the page contents
611 * @current_addr: addr of the page
612 * @block: block that contains the page we want to send
613 * @offset: offset inside the block for the page
614 */
615 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
616 uint8_t **current_data, ram_addr_t current_addr,
617 RAMBlock *block, ram_addr_t offset)
618 {
619 int encoded_len = 0, bytes_xbzrle;
620 uint8_t *prev_cached_page;
621 QEMUFile *file = pss->pss_channel;
622 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
623
624 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
625 xbzrle_counters.cache_miss++;
626 if (!rs->last_stage) {
627 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
628 generation) == -1) {
629 return -1;
630 } else {
631 /* update *current_data when the page has been
632 inserted into cache */
633 *current_data = get_cached_data(XBZRLE.cache, current_addr);
634 }
635 }
636 return -1;
637 }
638
639 /*
640 * Reaching here means the page has hit the xbzrle cache, no matter what
641 * encoding result it is (normal encoding, overflow or skipping the page),
642 * count the page as encoded. This is used to calculate the encoding rate.
643 *
644 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
645 * 2nd page turns out to be skipped (i.e. no new bytes written to the
646 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
647 * skipped page included. In this way, the encoding rate can tell if the
648 * guest page is good for xbzrle encoding.
649 */
650 xbzrle_counters.pages++;
651 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
652
653 /* save current buffer into memory */
654 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
655
656 /* XBZRLE encoding (if there is no overflow) */
657 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
658 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
659 TARGET_PAGE_SIZE);
660
661 /*
662 * Update the cache contents, so that it corresponds to the data
663 * sent, in all cases except where we skip the page.
664 */
665 if (!rs->last_stage && encoded_len != 0) {
666 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
667 /*
668 * In the case where we couldn't compress, ensure that the caller
669 * sends the data from the cache, since the guest might have
670 * changed the RAM since we copied it.
671 */
672 *current_data = prev_cached_page;
673 }
674
675 if (encoded_len == 0) {
676 trace_save_xbzrle_page_skipping();
677 return 0;
678 } else if (encoded_len == -1) {
679 trace_save_xbzrle_page_overflow();
680 xbzrle_counters.overflow++;
681 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
682 return -1;
683 }
684
685 /* Send XBZRLE based compressed page */
686 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
687 offset | RAM_SAVE_FLAG_XBZRLE);
688 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
689 qemu_put_be16(file, encoded_len);
690 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
691 bytes_xbzrle += encoded_len + 1 + 2;
692 /*
693 * Like compressed_size (please see update_compress_thread_counts),
694 * the xbzrle encoded bytes don't count the 8 byte header with
695 * RAM_SAVE_FLAG_CONTINUE.
696 */
697 xbzrle_counters.bytes += bytes_xbzrle - 8;
698 ram_transferred_add(bytes_xbzrle);
699
700 return 1;
701 }
702
703 /**
704 * pss_find_next_dirty: find the next dirty page of current ramblock
705 *
706 * This function updates pss->page to point to the next dirty page index
707 * within the ramblock to migrate, or the end of ramblock when nothing
708 * found. Note that when pss->host_page_sending==true it means we're
709 * during sending a host page, so we won't look for dirty page that is
710 * outside the host page boundary.
711 *
712 * @pss: the current page search status
713 */
714 static void pss_find_next_dirty(PageSearchStatus *pss)
715 {
716 RAMBlock *rb = pss->block;
717 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
718 unsigned long *bitmap = rb->bmap;
719
720 if (migrate_ram_is_ignored(rb)) {
721 /* Points directly to the end, so we know no dirty page */
722 pss->page = size;
723 return;
724 }
725
726 /*
727 * If during sending a host page, only look for dirty pages within the
728 * current host page being send.
729 */
730 if (pss->host_page_sending) {
731 assert(pss->host_page_end);
732 size = MIN(size, pss->host_page_end);
733 }
734
735 pss->page = find_next_bit(bitmap, size, pss->page);
736 }
737
738 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
739 unsigned long page)
740 {
741 uint8_t shift;
742 hwaddr size, start;
743
744 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
745 return;
746 }
747
748 shift = rb->clear_bmap_shift;
749 /*
750 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
751 * can make things easier sometimes since then start address
752 * of the small chunk will always be 64 pages aligned so the
753 * bitmap will always be aligned to unsigned long. We should
754 * even be able to remove this restriction but I'm simply
755 * keeping it.
756 */
757 assert(shift >= 6);
758
759 size = 1ULL << (TARGET_PAGE_BITS + shift);
760 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
761 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
762 memory_region_clear_dirty_bitmap(rb->mr, start, size);
763 }
764
765 static void
766 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
767 unsigned long start,
768 unsigned long npages)
769 {
770 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
771 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
772 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
773
774 /*
775 * Clear pages from start to start + npages - 1, so the end boundary is
776 * exclusive.
777 */
778 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
779 migration_clear_memory_region_dirty_bitmap(rb, i);
780 }
781 }
782
783 /*
784 * colo_bitmap_find_diry:find contiguous dirty pages from start
785 *
786 * Returns the page offset within memory region of the start of the contiguout
787 * dirty page
788 *
789 * @rs: current RAM state
790 * @rb: RAMBlock where to search for dirty pages
791 * @start: page where we start the search
792 * @num: the number of contiguous dirty pages
793 */
794 static inline
795 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
796 unsigned long start, unsigned long *num)
797 {
798 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
799 unsigned long *bitmap = rb->bmap;
800 unsigned long first, next;
801
802 *num = 0;
803
804 if (migrate_ram_is_ignored(rb)) {
805 return size;
806 }
807
808 first = find_next_bit(bitmap, size, start);
809 if (first >= size) {
810 return first;
811 }
812 next = find_next_zero_bit(bitmap, size, first + 1);
813 assert(next >= first);
814 *num = next - first;
815 return first;
816 }
817
818 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
819 RAMBlock *rb,
820 unsigned long page)
821 {
822 bool ret;
823
824 /*
825 * Clear dirty bitmap if needed. This _must_ be called before we
826 * send any of the page in the chunk because we need to make sure
827 * we can capture further page content changes when we sync dirty
828 * log the next time. So as long as we are going to send any of
829 * the page in the chunk we clear the remote dirty bitmap for all.
830 * Clearing it earlier won't be a problem, but too late will.
831 */
832 migration_clear_memory_region_dirty_bitmap(rb, page);
833
834 ret = test_and_clear_bit(page, rb->bmap);
835 if (ret) {
836 rs->migration_dirty_pages--;
837 }
838
839 return ret;
840 }
841
842 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
843 void *opaque)
844 {
845 const hwaddr offset = section->offset_within_region;
846 const hwaddr size = int128_get64(section->size);
847 const unsigned long start = offset >> TARGET_PAGE_BITS;
848 const unsigned long npages = size >> TARGET_PAGE_BITS;
849 RAMBlock *rb = section->mr->ram_block;
850 uint64_t *cleared_bits = opaque;
851
852 /*
853 * We don't grab ram_state->bitmap_mutex because we expect to run
854 * only when starting migration or during postcopy recovery where
855 * we don't have concurrent access.
856 */
857 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
858 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
859 }
860 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
861 bitmap_clear(rb->bmap, start, npages);
862 }
863
864 /*
865 * Exclude all dirty pages from migration that fall into a discarded range as
866 * managed by a RamDiscardManager responsible for the mapped memory region of
867 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
868 *
869 * Discarded pages ("logically unplugged") have undefined content and must
870 * not get migrated, because even reading these pages for migration might
871 * result in undesired behavior.
872 *
873 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
874 *
875 * Note: The result is only stable while migrating (precopy/postcopy).
876 */
877 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
878 {
879 uint64_t cleared_bits = 0;
880
881 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
882 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
883 MemoryRegionSection section = {
884 .mr = rb->mr,
885 .offset_within_region = 0,
886 .size = int128_make64(qemu_ram_get_used_length(rb)),
887 };
888
889 ram_discard_manager_replay_discarded(rdm, &section,
890 dirty_bitmap_clear_section,
891 &cleared_bits);
892 }
893 return cleared_bits;
894 }
895
896 /*
897 * Check if a host-page aligned page falls into a discarded range as managed by
898 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
899 *
900 * Note: The result is only stable while migrating (precopy/postcopy).
901 */
902 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
903 {
904 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
905 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
906 MemoryRegionSection section = {
907 .mr = rb->mr,
908 .offset_within_region = start,
909 .size = int128_make64(qemu_ram_pagesize(rb)),
910 };
911
912 return !ram_discard_manager_is_populated(rdm, &section);
913 }
914 return false;
915 }
916
917 /* Called with RCU critical section */
918 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
919 {
920 uint64_t new_dirty_pages =
921 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
922
923 rs->migration_dirty_pages += new_dirty_pages;
924 rs->num_dirty_pages_period += new_dirty_pages;
925 }
926
927 /**
928 * ram_pagesize_summary: calculate all the pagesizes of a VM
929 *
930 * Returns a summary bitmap of the page sizes of all RAMBlocks
931 *
932 * For VMs with just normal pages this is equivalent to the host page
933 * size. If it's got some huge pages then it's the OR of all the
934 * different page sizes.
935 */
936 uint64_t ram_pagesize_summary(void)
937 {
938 RAMBlock *block;
939 uint64_t summary = 0;
940
941 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
942 summary |= block->page_size;
943 }
944
945 return summary;
946 }
947
948 uint64_t ram_get_total_transferred_pages(void)
949 {
950 return stat64_get(&mig_stats.normal_pages) +
951 stat64_get(&mig_stats.zero_pages) +
952 compress_ram_pages() + xbzrle_counters.pages;
953 }
954
955 static void migration_update_rates(RAMState *rs, int64_t end_time)
956 {
957 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
958
959 /* calculate period counters */
960 stat64_set(&mig_stats.dirty_pages_rate,
961 rs->num_dirty_pages_period * 1000 /
962 (end_time - rs->time_last_bitmap_sync));
963
964 if (!page_count) {
965 return;
966 }
967
968 if (migrate_xbzrle()) {
969 double encoded_size, unencoded_size;
970
971 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
972 rs->xbzrle_cache_miss_prev) / page_count;
973 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
974 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
975 TARGET_PAGE_SIZE;
976 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
977 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
978 xbzrle_counters.encoding_rate = 0;
979 } else {
980 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
981 }
982 rs->xbzrle_pages_prev = xbzrle_counters.pages;
983 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
984 }
985 compress_update_rates(page_count);
986 }
987
988 /*
989 * Enable dirty-limit to throttle down the guest
990 */
991 static void migration_dirty_limit_guest(void)
992 {
993 /*
994 * dirty page rate quota for all vCPUs fetched from
995 * migration parameter 'vcpu_dirty_limit'
996 */
997 static int64_t quota_dirtyrate;
998 MigrationState *s = migrate_get_current();
999
1000 /*
1001 * If dirty limit already enabled and migration parameter
1002 * vcpu-dirty-limit untouched.
1003 */
1004 if (dirtylimit_in_service() &&
1005 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1006 return;
1007 }
1008
1009 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1010
1011 /*
1012 * Set all vCPU a quota dirtyrate, note that the second
1013 * parameter will be ignored if setting all vCPU for the vm
1014 */
1015 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1016 trace_migration_dirty_limit_guest(quota_dirtyrate);
1017 }
1018
1019 static void migration_trigger_throttle(RAMState *rs)
1020 {
1021 uint64_t threshold = migrate_throttle_trigger_threshold();
1022 uint64_t bytes_xfer_period =
1023 migration_transferred_bytes() - rs->bytes_xfer_prev;
1024 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1025 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1026
1027 /*
1028 * The following detection logic can be refined later. For now:
1029 * Check to see if the ratio between dirtied bytes and the approx.
1030 * amount of bytes that just got transferred since the last time
1031 * we were in this routine reaches the threshold. If that happens
1032 * twice, start or increase throttling.
1033 */
1034 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1035 (++rs->dirty_rate_high_cnt >= 2)) {
1036 rs->dirty_rate_high_cnt = 0;
1037 if (migrate_auto_converge()) {
1038 trace_migration_throttle();
1039 mig_throttle_guest_down(bytes_dirty_period,
1040 bytes_dirty_threshold);
1041 } else if (migrate_dirty_limit()) {
1042 migration_dirty_limit_guest();
1043 }
1044 }
1045 }
1046
1047 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1048 {
1049 RAMBlock *block;
1050 int64_t end_time;
1051
1052 stat64_add(&mig_stats.dirty_sync_count, 1);
1053
1054 if (!rs->time_last_bitmap_sync) {
1055 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1056 }
1057
1058 trace_migration_bitmap_sync_start();
1059 memory_global_dirty_log_sync(last_stage);
1060
1061 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
1062 WITH_RCU_READ_LOCK_GUARD() {
1063 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1064 ramblock_sync_dirty_bitmap(rs, block);
1065 }
1066 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1067 }
1068 }
1069
1070 memory_global_after_dirty_log_sync();
1071 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1072
1073 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1074
1075 /* more than 1 second = 1000 millisecons */
1076 if (end_time > rs->time_last_bitmap_sync + 1000) {
1077 migration_trigger_throttle(rs);
1078
1079 migration_update_rates(rs, end_time);
1080
1081 rs->target_page_count_prev = rs->target_page_count;
1082
1083 /* reset period counters */
1084 rs->time_last_bitmap_sync = end_time;
1085 rs->num_dirty_pages_period = 0;
1086 rs->bytes_xfer_prev = migration_transferred_bytes();
1087 }
1088 if (migrate_events()) {
1089 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1090 qapi_event_send_migration_pass(generation);
1091 }
1092 }
1093
1094 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1095 {
1096 Error *local_err = NULL;
1097
1098 /*
1099 * The current notifier usage is just an optimization to migration, so we
1100 * don't stop the normal migration process in the error case.
1101 */
1102 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1103 error_report_err(local_err);
1104 local_err = NULL;
1105 }
1106
1107 migration_bitmap_sync(rs, last_stage);
1108
1109 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1110 error_report_err(local_err);
1111 }
1112 }
1113
1114 void ram_release_page(const char *rbname, uint64_t offset)
1115 {
1116 if (!migrate_release_ram() || !migration_in_postcopy()) {
1117 return;
1118 }
1119
1120 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1121 }
1122
1123 /**
1124 * save_zero_page: send the zero page to the stream
1125 *
1126 * Returns the number of pages written.
1127 *
1128 * @rs: current RAM state
1129 * @pss: current PSS channel
1130 * @offset: offset inside the block for the page
1131 */
1132 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1133 ram_addr_t offset)
1134 {
1135 uint8_t *p = pss->block->host + offset;
1136 QEMUFile *file = pss->pss_channel;
1137 int len = 0;
1138
1139 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1140 return 0;
1141 }
1142
1143 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1144 return 0;
1145 }
1146
1147 stat64_add(&mig_stats.zero_pages, 1);
1148
1149 if (migrate_mapped_ram()) {
1150 /* zero pages are not transferred with mapped-ram */
1151 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1152 return 1;
1153 }
1154
1155 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1156 qemu_put_byte(file, 0);
1157 len += 1;
1158 ram_release_page(pss->block->idstr, offset);
1159 ram_transferred_add(len);
1160
1161 /*
1162 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1163 * page would be stale.
1164 */
1165 if (rs->xbzrle_started) {
1166 XBZRLE_cache_lock();
1167 xbzrle_cache_zero_page(pss->block->offset + offset);
1168 XBZRLE_cache_unlock();
1169 }
1170
1171 return len;
1172 }
1173
1174 /*
1175 * @pages: the number of pages written by the control path,
1176 * < 0 - error
1177 * > 0 - number of pages written
1178 *
1179 * Return true if the pages has been saved, otherwise false is returned.
1180 */
1181 static bool control_save_page(PageSearchStatus *pss,
1182 ram_addr_t offset, int *pages)
1183 {
1184 int ret;
1185
1186 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1187 TARGET_PAGE_SIZE);
1188 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1189 return false;
1190 }
1191
1192 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1193 *pages = 1;
1194 return true;
1195 }
1196 *pages = ret;
1197 return true;
1198 }
1199
1200 /*
1201 * directly send the page to the stream
1202 *
1203 * Returns the number of pages written.
1204 *
1205 * @pss: current PSS channel
1206 * @block: block that contains the page we want to send
1207 * @offset: offset inside the block for the page
1208 * @buf: the page to be sent
1209 * @async: send to page asyncly
1210 */
1211 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1212 ram_addr_t offset, uint8_t *buf, bool async)
1213 {
1214 QEMUFile *file = pss->pss_channel;
1215
1216 if (migrate_mapped_ram()) {
1217 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1218 block->pages_offset + offset);
1219 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1220 } else {
1221 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1222 offset | RAM_SAVE_FLAG_PAGE));
1223 if (async) {
1224 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1225 migrate_release_ram() &&
1226 migration_in_postcopy());
1227 } else {
1228 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1229 }
1230 }
1231 ram_transferred_add(TARGET_PAGE_SIZE);
1232 stat64_add(&mig_stats.normal_pages, 1);
1233 return 1;
1234 }
1235
1236 /**
1237 * ram_save_page: send the given page to the stream
1238 *
1239 * Returns the number of pages written.
1240 * < 0 - error
1241 * >=0 - Number of pages written - this might legally be 0
1242 * if xbzrle noticed the page was the same.
1243 *
1244 * @rs: current RAM state
1245 * @block: block that contains the page we want to send
1246 * @offset: offset inside the block for the page
1247 */
1248 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1249 {
1250 int pages = -1;
1251 uint8_t *p;
1252 bool send_async = true;
1253 RAMBlock *block = pss->block;
1254 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1255 ram_addr_t current_addr = block->offset + offset;
1256
1257 p = block->host + offset;
1258 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1259
1260 XBZRLE_cache_lock();
1261 if (rs->xbzrle_started && !migration_in_postcopy()) {
1262 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1263 block, offset);
1264 if (!rs->last_stage) {
1265 /* Can't send this cached data async, since the cache page
1266 * might get updated before it gets to the wire
1267 */
1268 send_async = false;
1269 }
1270 }
1271
1272 /* XBZRLE overflow or normal page */
1273 if (pages == -1) {
1274 pages = save_normal_page(pss, block, offset, p, send_async);
1275 }
1276
1277 XBZRLE_cache_unlock();
1278
1279 return pages;
1280 }
1281
1282 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1283 {
1284 if (!multifd_queue_page(block, offset)) {
1285 return -1;
1286 }
1287
1288 return 1;
1289 }
1290
1291 int compress_send_queued_data(CompressParam *param)
1292 {
1293 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1294 MigrationState *ms = migrate_get_current();
1295 QEMUFile *file = ms->to_dst_file;
1296 int len = 0;
1297
1298 RAMBlock *block = param->block;
1299 ram_addr_t offset = param->offset;
1300
1301 if (param->result == RES_NONE) {
1302 return 0;
1303 }
1304
1305 assert(block == pss->last_sent_block);
1306
1307 if (param->result == RES_ZEROPAGE) {
1308 assert(qemu_file_buffer_empty(param->file));
1309 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1310 qemu_put_byte(file, 0);
1311 len += 1;
1312 ram_release_page(block->idstr, offset);
1313 } else if (param->result == RES_COMPRESS) {
1314 assert(!qemu_file_buffer_empty(param->file));
1315 len += save_page_header(pss, file, block,
1316 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1317 len += qemu_put_qemu_file(file, param->file);
1318 } else {
1319 abort();
1320 }
1321
1322 update_compress_thread_counts(param, len);
1323
1324 return len;
1325 }
1326
1327 #define PAGE_ALL_CLEAN 0
1328 #define PAGE_TRY_AGAIN 1
1329 #define PAGE_DIRTY_FOUND 2
1330 /**
1331 * find_dirty_block: find the next dirty page and update any state
1332 * associated with the search process.
1333 *
1334 * Returns:
1335 * <0: An error happened
1336 * PAGE_ALL_CLEAN: no dirty page found, give up
1337 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1338 * PAGE_DIRTY_FOUND: dirty page found
1339 *
1340 * @rs: current RAM state
1341 * @pss: data about the state of the current dirty page scan
1342 * @again: set to false if the search has scanned the whole of RAM
1343 */
1344 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1345 {
1346 /* Update pss->page for the next dirty bit in ramblock */
1347 pss_find_next_dirty(pss);
1348
1349 if (pss->complete_round && pss->block == rs->last_seen_block &&
1350 pss->page >= rs->last_page) {
1351 /*
1352 * We've been once around the RAM and haven't found anything.
1353 * Give up.
1354 */
1355 return PAGE_ALL_CLEAN;
1356 }
1357 if (!offset_in_ramblock(pss->block,
1358 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1359 /* Didn't find anything in this RAM Block */
1360 pss->page = 0;
1361 pss->block = QLIST_NEXT_RCU(pss->block, next);
1362 if (!pss->block) {
1363 if (migrate_multifd() &&
1364 (!migrate_multifd_flush_after_each_section() ||
1365 migrate_mapped_ram())) {
1366 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1367 int ret = multifd_send_sync_main();
1368 if (ret < 0) {
1369 return ret;
1370 }
1371
1372 if (!migrate_mapped_ram()) {
1373 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1374 qemu_fflush(f);
1375 }
1376 }
1377 /*
1378 * If memory migration starts over, we will meet a dirtied page
1379 * which may still exists in compression threads's ring, so we
1380 * should flush the compressed data to make sure the new page
1381 * is not overwritten by the old one in the destination.
1382 *
1383 * Also If xbzrle is on, stop using the data compression at this
1384 * point. In theory, xbzrle can do better than compression.
1385 */
1386 compress_flush_data();
1387
1388 /* Hit the end of the list */
1389 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1390 /* Flag that we've looped */
1391 pss->complete_round = true;
1392 /* After the first round, enable XBZRLE. */
1393 if (migrate_xbzrle()) {
1394 rs->xbzrle_started = true;
1395 }
1396 }
1397 /* Didn't find anything this time, but try again on the new block */
1398 return PAGE_TRY_AGAIN;
1399 } else {
1400 /* We've found something */
1401 return PAGE_DIRTY_FOUND;
1402 }
1403 }
1404
1405 /**
1406 * unqueue_page: gets a page of the queue
1407 *
1408 * Helper for 'get_queued_page' - gets a page off the queue
1409 *
1410 * Returns the block of the page (or NULL if none available)
1411 *
1412 * @rs: current RAM state
1413 * @offset: used to return the offset within the RAMBlock
1414 */
1415 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1416 {
1417 struct RAMSrcPageRequest *entry;
1418 RAMBlock *block = NULL;
1419
1420 if (!postcopy_has_request(rs)) {
1421 return NULL;
1422 }
1423
1424 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1425
1426 /*
1427 * This should _never_ change even after we take the lock, because no one
1428 * should be taking anything off the request list other than us.
1429 */
1430 assert(postcopy_has_request(rs));
1431
1432 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1433 block = entry->rb;
1434 *offset = entry->offset;
1435
1436 if (entry->len > TARGET_PAGE_SIZE) {
1437 entry->len -= TARGET_PAGE_SIZE;
1438 entry->offset += TARGET_PAGE_SIZE;
1439 } else {
1440 memory_region_unref(block->mr);
1441 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1442 g_free(entry);
1443 migration_consume_urgent_request();
1444 }
1445
1446 return block;
1447 }
1448
1449 #if defined(__linux__)
1450 /**
1451 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1452 * is found, return RAM block pointer and page offset
1453 *
1454 * Returns pointer to the RAMBlock containing faulting page,
1455 * NULL if no write faults are pending
1456 *
1457 * @rs: current RAM state
1458 * @offset: page offset from the beginning of the block
1459 */
1460 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1461 {
1462 struct uffd_msg uffd_msg;
1463 void *page_address;
1464 RAMBlock *block;
1465 int res;
1466
1467 if (!migrate_background_snapshot()) {
1468 return NULL;
1469 }
1470
1471 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1472 if (res <= 0) {
1473 return NULL;
1474 }
1475
1476 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1477 block = qemu_ram_block_from_host(page_address, false, offset);
1478 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1479 return block;
1480 }
1481
1482 /**
1483 * ram_save_release_protection: release UFFD write protection after
1484 * a range of pages has been saved
1485 *
1486 * @rs: current RAM state
1487 * @pss: page-search-status structure
1488 * @start_page: index of the first page in the range relative to pss->block
1489 *
1490 * Returns 0 on success, negative value in case of an error
1491 */
1492 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1493 unsigned long start_page)
1494 {
1495 int res = 0;
1496
1497 /* Check if page is from UFFD-managed region. */
1498 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1499 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1500 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1501
1502 /* Flush async buffers before un-protect. */
1503 qemu_fflush(pss->pss_channel);
1504 /* Un-protect memory range. */
1505 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1506 false, false);
1507 }
1508
1509 return res;
1510 }
1511
1512 /* ram_write_tracking_available: check if kernel supports required UFFD features
1513 *
1514 * Returns true if supports, false otherwise
1515 */
1516 bool ram_write_tracking_available(void)
1517 {
1518 uint64_t uffd_features;
1519 int res;
1520
1521 res = uffd_query_features(&uffd_features);
1522 return (res == 0 &&
1523 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1524 }
1525
1526 /* ram_write_tracking_compatible: check if guest configuration is
1527 * compatible with 'write-tracking'
1528 *
1529 * Returns true if compatible, false otherwise
1530 */
1531 bool ram_write_tracking_compatible(void)
1532 {
1533 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1534 int uffd_fd;
1535 RAMBlock *block;
1536 bool ret = false;
1537
1538 /* Open UFFD file descriptor */
1539 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1540 if (uffd_fd < 0) {
1541 return false;
1542 }
1543
1544 RCU_READ_LOCK_GUARD();
1545
1546 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1547 uint64_t uffd_ioctls;
1548
1549 /* Nothing to do with read-only and MMIO-writable regions */
1550 if (block->mr->readonly || block->mr->rom_device) {
1551 continue;
1552 }
1553 /* Try to register block memory via UFFD-IO to track writes */
1554 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1555 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1556 goto out;
1557 }
1558 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1559 goto out;
1560 }
1561 }
1562 ret = true;
1563
1564 out:
1565 uffd_close_fd(uffd_fd);
1566 return ret;
1567 }
1568
1569 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1570 ram_addr_t size)
1571 {
1572 const ram_addr_t end = offset + size;
1573
1574 /*
1575 * We read one byte of each page; this will preallocate page tables if
1576 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1577 * where no page was populated yet. This might require adaption when
1578 * supporting other mappings, like shmem.
1579 */
1580 for (; offset < end; offset += block->page_size) {
1581 char tmp = *((char *)block->host + offset);
1582
1583 /* Don't optimize the read out */
1584 asm volatile("" : "+r" (tmp));
1585 }
1586 }
1587
1588 static inline int populate_read_section(MemoryRegionSection *section,
1589 void *opaque)
1590 {
1591 const hwaddr size = int128_get64(section->size);
1592 hwaddr offset = section->offset_within_region;
1593 RAMBlock *block = section->mr->ram_block;
1594
1595 populate_read_range(block, offset, size);
1596 return 0;
1597 }
1598
1599 /*
1600 * ram_block_populate_read: preallocate page tables and populate pages in the
1601 * RAM block by reading a byte of each page.
1602 *
1603 * Since it's solely used for userfault_fd WP feature, here we just
1604 * hardcode page size to qemu_real_host_page_size.
1605 *
1606 * @block: RAM block to populate
1607 */
1608 static void ram_block_populate_read(RAMBlock *rb)
1609 {
1610 /*
1611 * Skip populating all pages that fall into a discarded range as managed by
1612 * a RamDiscardManager responsible for the mapped memory region of the
1613 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1614 * must not get populated automatically. We don't have to track
1615 * modifications via userfaultfd WP reliably, because these pages will
1616 * not be part of the migration stream either way -- see
1617 * ramblock_dirty_bitmap_exclude_discarded_pages().
1618 *
1619 * Note: The result is only stable while migrating (precopy/postcopy).
1620 */
1621 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1622 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1623 MemoryRegionSection section = {
1624 .mr = rb->mr,
1625 .offset_within_region = 0,
1626 .size = rb->mr->size,
1627 };
1628
1629 ram_discard_manager_replay_populated(rdm, &section,
1630 populate_read_section, NULL);
1631 } else {
1632 populate_read_range(rb, 0, rb->used_length);
1633 }
1634 }
1635
1636 /*
1637 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1638 */
1639 void ram_write_tracking_prepare(void)
1640 {
1641 RAMBlock *block;
1642
1643 RCU_READ_LOCK_GUARD();
1644
1645 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1646 /* Nothing to do with read-only and MMIO-writable regions */
1647 if (block->mr->readonly || block->mr->rom_device) {
1648 continue;
1649 }
1650
1651 /*
1652 * Populate pages of the RAM block before enabling userfault_fd
1653 * write protection.
1654 *
1655 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1656 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1657 * pages with pte_none() entries in page table.
1658 */
1659 ram_block_populate_read(block);
1660 }
1661 }
1662
1663 static inline int uffd_protect_section(MemoryRegionSection *section,
1664 void *opaque)
1665 {
1666 const hwaddr size = int128_get64(section->size);
1667 const hwaddr offset = section->offset_within_region;
1668 RAMBlock *rb = section->mr->ram_block;
1669 int uffd_fd = (uintptr_t)opaque;
1670
1671 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1672 false);
1673 }
1674
1675 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1676 {
1677 assert(rb->flags & RAM_UF_WRITEPROTECT);
1678
1679 /* See ram_block_populate_read() */
1680 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1681 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1682 MemoryRegionSection section = {
1683 .mr = rb->mr,
1684 .offset_within_region = 0,
1685 .size = rb->mr->size,
1686 };
1687
1688 return ram_discard_manager_replay_populated(rdm, &section,
1689 uffd_protect_section,
1690 (void *)(uintptr_t)uffd_fd);
1691 }
1692 return uffd_change_protection(uffd_fd, rb->host,
1693 rb->used_length, true, false);
1694 }
1695
1696 /*
1697 * ram_write_tracking_start: start UFFD-WP memory tracking
1698 *
1699 * Returns 0 for success or negative value in case of error
1700 */
1701 int ram_write_tracking_start(void)
1702 {
1703 int uffd_fd;
1704 RAMState *rs = ram_state;
1705 RAMBlock *block;
1706
1707 /* Open UFFD file descriptor */
1708 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1709 if (uffd_fd < 0) {
1710 return uffd_fd;
1711 }
1712 rs->uffdio_fd = uffd_fd;
1713
1714 RCU_READ_LOCK_GUARD();
1715
1716 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1717 /* Nothing to do with read-only and MMIO-writable regions */
1718 if (block->mr->readonly || block->mr->rom_device) {
1719 continue;
1720 }
1721
1722 /* Register block memory with UFFD to track writes */
1723 if (uffd_register_memory(rs->uffdio_fd, block->host,
1724 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1725 goto fail;
1726 }
1727 block->flags |= RAM_UF_WRITEPROTECT;
1728 memory_region_ref(block->mr);
1729
1730 /* Apply UFFD write protection to the block memory range */
1731 if (ram_block_uffd_protect(block, uffd_fd)) {
1732 goto fail;
1733 }
1734
1735 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1736 block->host, block->max_length);
1737 }
1738
1739 return 0;
1740
1741 fail:
1742 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1743
1744 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1745 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1746 continue;
1747 }
1748 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1749 /* Cleanup flags and remove reference */
1750 block->flags &= ~RAM_UF_WRITEPROTECT;
1751 memory_region_unref(block->mr);
1752 }
1753
1754 uffd_close_fd(uffd_fd);
1755 rs->uffdio_fd = -1;
1756 return -1;
1757 }
1758
1759 /**
1760 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1761 */
1762 void ram_write_tracking_stop(void)
1763 {
1764 RAMState *rs = ram_state;
1765 RAMBlock *block;
1766
1767 RCU_READ_LOCK_GUARD();
1768
1769 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1770 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1771 continue;
1772 }
1773 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1774
1775 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1776 block->host, block->max_length);
1777
1778 /* Cleanup flags and remove reference */
1779 block->flags &= ~RAM_UF_WRITEPROTECT;
1780 memory_region_unref(block->mr);
1781 }
1782
1783 /* Finally close UFFD file descriptor */
1784 uffd_close_fd(rs->uffdio_fd);
1785 rs->uffdio_fd = -1;
1786 }
1787
1788 #else
1789 /* No target OS support, stubs just fail or ignore */
1790
1791 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1792 {
1793 (void) rs;
1794 (void) offset;
1795
1796 return NULL;
1797 }
1798
1799 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1800 unsigned long start_page)
1801 {
1802 (void) rs;
1803 (void) pss;
1804 (void) start_page;
1805
1806 return 0;
1807 }
1808
1809 bool ram_write_tracking_available(void)
1810 {
1811 return false;
1812 }
1813
1814 bool ram_write_tracking_compatible(void)
1815 {
1816 assert(0);
1817 return false;
1818 }
1819
1820 int ram_write_tracking_start(void)
1821 {
1822 assert(0);
1823 return -1;
1824 }
1825
1826 void ram_write_tracking_stop(void)
1827 {
1828 assert(0);
1829 }
1830 #endif /* defined(__linux__) */
1831
1832 /**
1833 * get_queued_page: unqueue a page from the postcopy requests
1834 *
1835 * Skips pages that are already sent (!dirty)
1836 *
1837 * Returns true if a queued page is found
1838 *
1839 * @rs: current RAM state
1840 * @pss: data about the state of the current dirty page scan
1841 */
1842 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1843 {
1844 RAMBlock *block;
1845 ram_addr_t offset;
1846 bool dirty;
1847
1848 do {
1849 block = unqueue_page(rs, &offset);
1850 /*
1851 * We're sending this page, and since it's postcopy nothing else
1852 * will dirty it, and we must make sure it doesn't get sent again
1853 * even if this queue request was received after the background
1854 * search already sent it.
1855 */
1856 if (block) {
1857 unsigned long page;
1858
1859 page = offset >> TARGET_PAGE_BITS;
1860 dirty = test_bit(page, block->bmap);
1861 if (!dirty) {
1862 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1863 page);
1864 } else {
1865 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1866 }
1867 }
1868
1869 } while (block && !dirty);
1870
1871 if (!block) {
1872 /*
1873 * Poll write faults too if background snapshot is enabled; that's
1874 * when we have vcpus got blocked by the write protected pages.
1875 */
1876 block = poll_fault_page(rs, &offset);
1877 }
1878
1879 if (block) {
1880 /*
1881 * We want the background search to continue from the queued page
1882 * since the guest is likely to want other pages near to the page
1883 * it just requested.
1884 */
1885 pss->block = block;
1886 pss->page = offset >> TARGET_PAGE_BITS;
1887
1888 /*
1889 * This unqueued page would break the "one round" check, even is
1890 * really rare.
1891 */
1892 pss->complete_round = false;
1893 }
1894
1895 return !!block;
1896 }
1897
1898 /**
1899 * migration_page_queue_free: drop any remaining pages in the ram
1900 * request queue
1901 *
1902 * It should be empty at the end anyway, but in error cases there may
1903 * be some left. in case that there is any page left, we drop it.
1904 *
1905 */
1906 static void migration_page_queue_free(RAMState *rs)
1907 {
1908 struct RAMSrcPageRequest *mspr, *next_mspr;
1909 /* This queue generally should be empty - but in the case of a failed
1910 * migration might have some droppings in.
1911 */
1912 RCU_READ_LOCK_GUARD();
1913 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1914 memory_region_unref(mspr->rb->mr);
1915 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1916 g_free(mspr);
1917 }
1918 }
1919
1920 /**
1921 * ram_save_queue_pages: queue the page for transmission
1922 *
1923 * A request from postcopy destination for example.
1924 *
1925 * Returns zero on success or negative on error
1926 *
1927 * @rbname: Name of the RAMBLock of the request. NULL means the
1928 * same that last one.
1929 * @start: starting address from the start of the RAMBlock
1930 * @len: length (in bytes) to send
1931 */
1932 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1933 Error **errp)
1934 {
1935 RAMBlock *ramblock;
1936 RAMState *rs = ram_state;
1937
1938 stat64_add(&mig_stats.postcopy_requests, 1);
1939 RCU_READ_LOCK_GUARD();
1940
1941 if (!rbname) {
1942 /* Reuse last RAMBlock */
1943 ramblock = rs->last_req_rb;
1944
1945 if (!ramblock) {
1946 /*
1947 * Shouldn't happen, we can't reuse the last RAMBlock if
1948 * it's the 1st request.
1949 */
1950 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1951 return -1;
1952 }
1953 } else {
1954 ramblock = qemu_ram_block_by_name(rbname);
1955
1956 if (!ramblock) {
1957 /* We shouldn't be asked for a non-existent RAMBlock */
1958 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1959 return -1;
1960 }
1961 rs->last_req_rb = ramblock;
1962 }
1963 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1964 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1965 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1966 "start=" RAM_ADDR_FMT " len="
1967 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1968 start, len, ramblock->used_length);
1969 return -1;
1970 }
1971
1972 /*
1973 * When with postcopy preempt, we send back the page directly in the
1974 * rp-return thread.
1975 */
1976 if (postcopy_preempt_active()) {
1977 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1978 size_t page_size = qemu_ram_pagesize(ramblock);
1979 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1980 int ret = 0;
1981
1982 qemu_mutex_lock(&rs->bitmap_mutex);
1983
1984 pss_init(pss, ramblock, page_start);
1985 /*
1986 * Always use the preempt channel, and make sure it's there. It's
1987 * safe to access without lock, because when rp-thread is running
1988 * we should be the only one who operates on the qemufile
1989 */
1990 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1991 assert(pss->pss_channel);
1992
1993 /*
1994 * It must be either one or multiple of host page size. Just
1995 * assert; if something wrong we're mostly split brain anyway.
1996 */
1997 assert(len % page_size == 0);
1998 while (len) {
1999 if (ram_save_host_page_urgent(pss)) {
2000 error_setg(errp, "ram_save_host_page_urgent() failed: "
2001 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2002 ramblock->idstr, start);
2003 ret = -1;
2004 break;
2005 }
2006 /*
2007 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2008 * will automatically be moved and point to the next host page
2009 * we're going to send, so no need to update here.
2010 *
2011 * Normally QEMU never sends >1 host page in requests, so
2012 * logically we don't even need that as the loop should only
2013 * run once, but just to be consistent.
2014 */
2015 len -= page_size;
2016 };
2017 qemu_mutex_unlock(&rs->bitmap_mutex);
2018
2019 return ret;
2020 }
2021
2022 struct RAMSrcPageRequest *new_entry =
2023 g_new0(struct RAMSrcPageRequest, 1);
2024 new_entry->rb = ramblock;
2025 new_entry->offset = start;
2026 new_entry->len = len;
2027
2028 memory_region_ref(ramblock->mr);
2029 qemu_mutex_lock(&rs->src_page_req_mutex);
2030 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2031 migration_make_urgent_request();
2032 qemu_mutex_unlock(&rs->src_page_req_mutex);
2033
2034 return 0;
2035 }
2036
2037 /*
2038 * try to compress the page before posting it out, return true if the page
2039 * has been properly handled by compression, otherwise needs other
2040 * paths to handle it
2041 */
2042 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2043 ram_addr_t offset)
2044 {
2045 if (!migrate_compress()) {
2046 return false;
2047 }
2048
2049 /*
2050 * When starting the process of a new block, the first page of
2051 * the block should be sent out before other pages in the same
2052 * block, and all the pages in last block should have been sent
2053 * out, keeping this order is important, because the 'cont' flag
2054 * is used to avoid resending the block name.
2055 *
2056 * We post the fist page as normal page as compression will take
2057 * much CPU resource.
2058 */
2059 if (pss->block != pss->last_sent_block) {
2060 compress_flush_data();
2061 return false;
2062 }
2063
2064 return compress_page_with_multi_thread(pss->block, offset,
2065 compress_send_queued_data);
2066 }
2067
2068 /**
2069 * ram_save_target_page_legacy: save one target page
2070 *
2071 * Returns the number of pages written
2072 *
2073 * @rs: current RAM state
2074 * @pss: data about the page we want to send
2075 */
2076 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2077 {
2078 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2079 int res;
2080
2081 if (control_save_page(pss, offset, &res)) {
2082 return res;
2083 }
2084
2085 if (save_compress_page(rs, pss, offset)) {
2086 return 1;
2087 }
2088
2089 if (save_zero_page(rs, pss, offset)) {
2090 return 1;
2091 }
2092
2093 return ram_save_page(rs, pss);
2094 }
2095
2096 /**
2097 * ram_save_target_page_multifd: send one target page to multifd workers
2098 *
2099 * Returns 1 if the page was queued, -1 otherwise.
2100 *
2101 * @rs: current RAM state
2102 * @pss: data about the page we want to send
2103 */
2104 static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
2105 {
2106 RAMBlock *block = pss->block;
2107 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2108
2109 /*
2110 * While using multifd live migration, we still need to handle zero
2111 * page checking on the migration main thread.
2112 */
2113 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2114 if (save_zero_page(rs, pss, offset)) {
2115 return 1;
2116 }
2117 }
2118
2119 return ram_save_multifd_page(block, offset);
2120 }
2121
2122 /* Should be called before sending a host page */
2123 static void pss_host_page_prepare(PageSearchStatus *pss)
2124 {
2125 /* How many guest pages are there in one host page? */
2126 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2127
2128 pss->host_page_sending = true;
2129 if (guest_pfns <= 1) {
2130 /*
2131 * This covers both when guest psize == host psize, or when guest
2132 * has larger psize than the host (guest_pfns==0).
2133 *
2134 * For the latter, we always send one whole guest page per
2135 * iteration of the host page (example: an Alpha VM on x86 host
2136 * will have guest psize 8K while host psize 4K).
2137 */
2138 pss->host_page_start = pss->page;
2139 pss->host_page_end = pss->page + 1;
2140 } else {
2141 /*
2142 * The host page spans over multiple guest pages, we send them
2143 * within the same host page iteration.
2144 */
2145 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2146 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2147 }
2148 }
2149
2150 /*
2151 * Whether the page pointed by PSS is within the host page being sent.
2152 * Must be called after a previous pss_host_page_prepare().
2153 */
2154 static bool pss_within_range(PageSearchStatus *pss)
2155 {
2156 ram_addr_t ram_addr;
2157
2158 assert(pss->host_page_sending);
2159
2160 /* Over host-page boundary? */
2161 if (pss->page >= pss->host_page_end) {
2162 return false;
2163 }
2164
2165 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2166
2167 return offset_in_ramblock(pss->block, ram_addr);
2168 }
2169
2170 static void pss_host_page_finish(PageSearchStatus *pss)
2171 {
2172 pss->host_page_sending = false;
2173 /* This is not needed, but just to reset it */
2174 pss->host_page_start = pss->host_page_end = 0;
2175 }
2176
2177 /*
2178 * Send an urgent host page specified by `pss'. Need to be called with
2179 * bitmap_mutex held.
2180 *
2181 * Returns 0 if save host page succeeded, false otherwise.
2182 */
2183 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2184 {
2185 bool page_dirty, sent = false;
2186 RAMState *rs = ram_state;
2187 int ret = 0;
2188
2189 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2190 pss_host_page_prepare(pss);
2191
2192 /*
2193 * If precopy is sending the same page, let it be done in precopy, or
2194 * we could send the same page in two channels and none of them will
2195 * receive the whole page.
2196 */
2197 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2198 trace_postcopy_preempt_hit(pss->block->idstr,
2199 pss->page << TARGET_PAGE_BITS);
2200 return 0;
2201 }
2202
2203 do {
2204 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2205
2206 if (page_dirty) {
2207 /* Be strict to return code; it must be 1, or what else? */
2208 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2209 error_report_once("%s: ram_save_target_page failed", __func__);
2210 ret = -1;
2211 goto out;
2212 }
2213 sent = true;
2214 }
2215 pss_find_next_dirty(pss);
2216 } while (pss_within_range(pss));
2217 out:
2218 pss_host_page_finish(pss);
2219 /* For urgent requests, flush immediately if sent */
2220 if (sent) {
2221 qemu_fflush(pss->pss_channel);
2222 }
2223 return ret;
2224 }
2225
2226 /**
2227 * ram_save_host_page: save a whole host page
2228 *
2229 * Starting at *offset send pages up to the end of the current host
2230 * page. It's valid for the initial offset to point into the middle of
2231 * a host page in which case the remainder of the hostpage is sent.
2232 * Only dirty target pages are sent. Note that the host page size may
2233 * be a huge page for this block.
2234 *
2235 * The saving stops at the boundary of the used_length of the block
2236 * if the RAMBlock isn't a multiple of the host page size.
2237 *
2238 * The caller must be with ram_state.bitmap_mutex held to call this
2239 * function. Note that this function can temporarily release the lock, but
2240 * when the function is returned it'll make sure the lock is still held.
2241 *
2242 * Returns the number of pages written or negative on error
2243 *
2244 * @rs: current RAM state
2245 * @pss: data about the page we want to send
2246 */
2247 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2248 {
2249 bool page_dirty, preempt_active = postcopy_preempt_active();
2250 int tmppages, pages = 0;
2251 size_t pagesize_bits =
2252 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2253 unsigned long start_page = pss->page;
2254 int res;
2255
2256 if (migrate_ram_is_ignored(pss->block)) {
2257 error_report("block %s should not be migrated !", pss->block->idstr);
2258 return 0;
2259 }
2260
2261 /* Update host page boundary information */
2262 pss_host_page_prepare(pss);
2263
2264 do {
2265 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2266
2267 /* Check the pages is dirty and if it is send it */
2268 if (page_dirty) {
2269 /*
2270 * Properly yield the lock only in postcopy preempt mode
2271 * because both migration thread and rp-return thread can
2272 * operate on the bitmaps.
2273 */
2274 if (preempt_active) {
2275 qemu_mutex_unlock(&rs->bitmap_mutex);
2276 }
2277 tmppages = migration_ops->ram_save_target_page(rs, pss);
2278 if (tmppages >= 0) {
2279 pages += tmppages;
2280 /*
2281 * Allow rate limiting to happen in the middle of huge pages if
2282 * something is sent in the current iteration.
2283 */
2284 if (pagesize_bits > 1 && tmppages > 0) {
2285 migration_rate_limit();
2286 }
2287 }
2288 if (preempt_active) {
2289 qemu_mutex_lock(&rs->bitmap_mutex);
2290 }
2291 } else {
2292 tmppages = 0;
2293 }
2294
2295 if (tmppages < 0) {
2296 pss_host_page_finish(pss);
2297 return tmppages;
2298 }
2299
2300 pss_find_next_dirty(pss);
2301 } while (pss_within_range(pss));
2302
2303 pss_host_page_finish(pss);
2304
2305 res = ram_save_release_protection(rs, pss, start_page);
2306 return (res < 0 ? res : pages);
2307 }
2308
2309 /**
2310 * ram_find_and_save_block: finds a dirty page and sends it to f
2311 *
2312 * Called within an RCU critical section.
2313 *
2314 * Returns the number of pages written where zero means no dirty pages,
2315 * or negative on error
2316 *
2317 * @rs: current RAM state
2318 *
2319 * On systems where host-page-size > target-page-size it will send all the
2320 * pages in a host page that are dirty.
2321 */
2322 static int ram_find_and_save_block(RAMState *rs)
2323 {
2324 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2325 int pages = 0;
2326
2327 /* No dirty page as there is zero RAM */
2328 if (!rs->ram_bytes_total) {
2329 return pages;
2330 }
2331
2332 /*
2333 * Always keep last_seen_block/last_page valid during this procedure,
2334 * because find_dirty_block() relies on these values (e.g., we compare
2335 * last_seen_block with pss.block to see whether we searched all the
2336 * ramblocks) to detect the completion of migration. Having NULL value
2337 * of last_seen_block can conditionally cause below loop to run forever.
2338 */
2339 if (!rs->last_seen_block) {
2340 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2341 rs->last_page = 0;
2342 }
2343
2344 pss_init(pss, rs->last_seen_block, rs->last_page);
2345
2346 while (true){
2347 if (!get_queued_page(rs, pss)) {
2348 /* priority queue empty, so just search for something dirty */
2349 int res = find_dirty_block(rs, pss);
2350 if (res != PAGE_DIRTY_FOUND) {
2351 if (res == PAGE_ALL_CLEAN) {
2352 break;
2353 } else if (res == PAGE_TRY_AGAIN) {
2354 continue;
2355 } else if (res < 0) {
2356 pages = res;
2357 break;
2358 }
2359 }
2360 }
2361 pages = ram_save_host_page(rs, pss);
2362 if (pages) {
2363 break;
2364 }
2365 }
2366
2367 rs->last_seen_block = pss->block;
2368 rs->last_page = pss->page;
2369
2370 return pages;
2371 }
2372
2373 static uint64_t ram_bytes_total_with_ignored(void)
2374 {
2375 RAMBlock *block;
2376 uint64_t total = 0;
2377
2378 RCU_READ_LOCK_GUARD();
2379
2380 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2381 total += block->used_length;
2382 }
2383 return total;
2384 }
2385
2386 uint64_t ram_bytes_total(void)
2387 {
2388 RAMBlock *block;
2389 uint64_t total = 0;
2390
2391 RCU_READ_LOCK_GUARD();
2392
2393 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2394 total += block->used_length;
2395 }
2396 return total;
2397 }
2398
2399 static void xbzrle_load_setup(void)
2400 {
2401 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2402 }
2403
2404 static void xbzrle_load_cleanup(void)
2405 {
2406 g_free(XBZRLE.decoded_buf);
2407 XBZRLE.decoded_buf = NULL;
2408 }
2409
2410 static void ram_state_cleanup(RAMState **rsp)
2411 {
2412 if (*rsp) {
2413 migration_page_queue_free(*rsp);
2414 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2415 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2416 g_free(*rsp);
2417 *rsp = NULL;
2418 }
2419 }
2420
2421 static void xbzrle_cleanup(void)
2422 {
2423 XBZRLE_cache_lock();
2424 if (XBZRLE.cache) {
2425 cache_fini(XBZRLE.cache);
2426 g_free(XBZRLE.encoded_buf);
2427 g_free(XBZRLE.current_buf);
2428 g_free(XBZRLE.zero_target_page);
2429 XBZRLE.cache = NULL;
2430 XBZRLE.encoded_buf = NULL;
2431 XBZRLE.current_buf = NULL;
2432 XBZRLE.zero_target_page = NULL;
2433 }
2434 XBZRLE_cache_unlock();
2435 }
2436
2437 static void ram_bitmaps_destroy(void)
2438 {
2439 RAMBlock *block;
2440
2441 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2442 g_free(block->clear_bmap);
2443 block->clear_bmap = NULL;
2444 g_free(block->bmap);
2445 block->bmap = NULL;
2446 g_free(block->file_bmap);
2447 block->file_bmap = NULL;
2448 }
2449 }
2450
2451 static void ram_save_cleanup(void *opaque)
2452 {
2453 RAMState **rsp = opaque;
2454
2455 /* We don't use dirty log with background snapshots */
2456 if (!migrate_background_snapshot()) {
2457 /* caller have hold BQL or is in a bh, so there is
2458 * no writing race against the migration bitmap
2459 */
2460 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2461 /*
2462 * do not stop dirty log without starting it, since
2463 * memory_global_dirty_log_stop will assert that
2464 * memory_global_dirty_log_start/stop used in pairs
2465 */
2466 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2467 }
2468 }
2469
2470 ram_bitmaps_destroy();
2471
2472 xbzrle_cleanup();
2473 compress_threads_save_cleanup();
2474 ram_state_cleanup(rsp);
2475 g_free(migration_ops);
2476 migration_ops = NULL;
2477 }
2478
2479 static void ram_state_reset(RAMState *rs)
2480 {
2481 int i;
2482
2483 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2484 rs->pss[i].last_sent_block = NULL;
2485 }
2486
2487 rs->last_seen_block = NULL;
2488 rs->last_page = 0;
2489 rs->last_version = ram_list.version;
2490 rs->xbzrle_started = false;
2491 }
2492
2493 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2494
2495 /* **** functions for postcopy ***** */
2496
2497 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2498 {
2499 struct RAMBlock *block;
2500
2501 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2502 unsigned long *bitmap = block->bmap;
2503 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2504 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2505
2506 while (run_start < range) {
2507 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2508 ram_discard_range(block->idstr,
2509 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2510 ((ram_addr_t)(run_end - run_start))
2511 << TARGET_PAGE_BITS);
2512 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2513 }
2514 }
2515 }
2516
2517 /**
2518 * postcopy_send_discard_bm_ram: discard a RAMBlock
2519 *
2520 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2521 *
2522 * @ms: current migration state
2523 * @block: RAMBlock to discard
2524 */
2525 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2526 {
2527 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2528 unsigned long current;
2529 unsigned long *bitmap = block->bmap;
2530
2531 for (current = 0; current < end; ) {
2532 unsigned long one = find_next_bit(bitmap, end, current);
2533 unsigned long zero, discard_length;
2534
2535 if (one >= end) {
2536 break;
2537 }
2538
2539 zero = find_next_zero_bit(bitmap, end, one + 1);
2540
2541 if (zero >= end) {
2542 discard_length = end - one;
2543 } else {
2544 discard_length = zero - one;
2545 }
2546 postcopy_discard_send_range(ms, one, discard_length);
2547 current = one + discard_length;
2548 }
2549 }
2550
2551 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2552
2553 /**
2554 * postcopy_each_ram_send_discard: discard all RAMBlocks
2555 *
2556 * Utility for the outgoing postcopy code.
2557 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2558 * passing it bitmap indexes and name.
2559 * (qemu_ram_foreach_block ends up passing unscaled lengths
2560 * which would mean postcopy code would have to deal with target page)
2561 *
2562 * @ms: current migration state
2563 */
2564 static void postcopy_each_ram_send_discard(MigrationState *ms)
2565 {
2566 struct RAMBlock *block;
2567
2568 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2569 postcopy_discard_send_init(ms, block->idstr);
2570
2571 /*
2572 * Deal with TPS != HPS and huge pages. It discard any partially sent
2573 * host-page size chunks, mark any partially dirty host-page size
2574 * chunks as all dirty. In this case the host-page is the host-page
2575 * for the particular RAMBlock, i.e. it might be a huge page.
2576 */
2577 postcopy_chunk_hostpages_pass(ms, block);
2578
2579 /*
2580 * Postcopy sends chunks of bitmap over the wire, but it
2581 * just needs indexes at this point, avoids it having
2582 * target page specific code.
2583 */
2584 postcopy_send_discard_bm_ram(ms, block);
2585 postcopy_discard_send_finish(ms);
2586 }
2587 }
2588
2589 /**
2590 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2591 *
2592 * Helper for postcopy_chunk_hostpages; it's called twice to
2593 * canonicalize the two bitmaps, that are similar, but one is
2594 * inverted.
2595 *
2596 * Postcopy requires that all target pages in a hostpage are dirty or
2597 * clean, not a mix. This function canonicalizes the bitmaps.
2598 *
2599 * @ms: current migration state
2600 * @block: block that contains the page we want to canonicalize
2601 */
2602 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2603 {
2604 RAMState *rs = ram_state;
2605 unsigned long *bitmap = block->bmap;
2606 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2607 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2608 unsigned long run_start;
2609
2610 if (block->page_size == TARGET_PAGE_SIZE) {
2611 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2612 return;
2613 }
2614
2615 /* Find a dirty page */
2616 run_start = find_next_bit(bitmap, pages, 0);
2617
2618 while (run_start < pages) {
2619
2620 /*
2621 * If the start of this run of pages is in the middle of a host
2622 * page, then we need to fixup this host page.
2623 */
2624 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2625 /* Find the end of this run */
2626 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2627 /*
2628 * If the end isn't at the start of a host page, then the
2629 * run doesn't finish at the end of a host page
2630 * and we need to discard.
2631 */
2632 }
2633
2634 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2635 unsigned long page;
2636 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2637 host_ratio);
2638 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2639
2640 /* Clean up the bitmap */
2641 for (page = fixup_start_addr;
2642 page < fixup_start_addr + host_ratio; page++) {
2643 /*
2644 * Remark them as dirty, updating the count for any pages
2645 * that weren't previously dirty.
2646 */
2647 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2648 }
2649 }
2650
2651 /* Find the next dirty page for the next iteration */
2652 run_start = find_next_bit(bitmap, pages, run_start);
2653 }
2654 }
2655
2656 /**
2657 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2658 *
2659 * Transmit the set of pages to be discarded after precopy to the target
2660 * these are pages that:
2661 * a) Have been previously transmitted but are now dirty again
2662 * b) Pages that have never been transmitted, this ensures that
2663 * any pages on the destination that have been mapped by background
2664 * tasks get discarded (transparent huge pages is the specific concern)
2665 * Hopefully this is pretty sparse
2666 *
2667 * @ms: current migration state
2668 */
2669 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2670 {
2671 RAMState *rs = ram_state;
2672
2673 RCU_READ_LOCK_GUARD();
2674
2675 /* This should be our last sync, the src is now paused */
2676 migration_bitmap_sync(rs, false);
2677
2678 /* Easiest way to make sure we don't resume in the middle of a host-page */
2679 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2680 rs->last_seen_block = NULL;
2681 rs->last_page = 0;
2682
2683 postcopy_each_ram_send_discard(ms);
2684
2685 trace_ram_postcopy_send_discard_bitmap();
2686 }
2687
2688 /**
2689 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2690 *
2691 * Returns zero on success
2692 *
2693 * @rbname: name of the RAMBlock of the request. NULL means the
2694 * same that last one.
2695 * @start: RAMBlock starting page
2696 * @length: RAMBlock size
2697 */
2698 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2699 {
2700 trace_ram_discard_range(rbname, start, length);
2701
2702 RCU_READ_LOCK_GUARD();
2703 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2704
2705 if (!rb) {
2706 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2707 return -1;
2708 }
2709
2710 /*
2711 * On source VM, we don't need to update the received bitmap since
2712 * we don't even have one.
2713 */
2714 if (rb->receivedmap) {
2715 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2716 length >> qemu_target_page_bits());
2717 }
2718
2719 return ram_block_discard_range(rb, start, length);
2720 }
2721
2722 /*
2723 * For every allocation, we will try not to crash the VM if the
2724 * allocation failed.
2725 */
2726 static bool xbzrle_init(Error **errp)
2727 {
2728 if (!migrate_xbzrle()) {
2729 return true;
2730 }
2731
2732 XBZRLE_cache_lock();
2733
2734 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2735 if (!XBZRLE.zero_target_page) {
2736 error_setg(errp, "%s: Error allocating zero page", __func__);
2737 goto err_out;
2738 }
2739
2740 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2741 TARGET_PAGE_SIZE, errp);
2742 if (!XBZRLE.cache) {
2743 goto free_zero_page;
2744 }
2745
2746 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2747 if (!XBZRLE.encoded_buf) {
2748 error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2749 goto free_cache;
2750 }
2751
2752 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2753 if (!XBZRLE.current_buf) {
2754 error_setg(errp, "%s: Error allocating current_buf", __func__);
2755 goto free_encoded_buf;
2756 }
2757
2758 /* We are all good */
2759 XBZRLE_cache_unlock();
2760 return true;
2761
2762 free_encoded_buf:
2763 g_free(XBZRLE.encoded_buf);
2764 XBZRLE.encoded_buf = NULL;
2765 free_cache:
2766 cache_fini(XBZRLE.cache);
2767 XBZRLE.cache = NULL;
2768 free_zero_page:
2769 g_free(XBZRLE.zero_target_page);
2770 XBZRLE.zero_target_page = NULL;
2771 err_out:
2772 XBZRLE_cache_unlock();
2773 return false;
2774 }
2775
2776 static bool ram_state_init(RAMState **rsp, Error **errp)
2777 {
2778 *rsp = g_try_new0(RAMState, 1);
2779
2780 if (!*rsp) {
2781 error_setg(errp, "%s: Init ramstate fail", __func__);
2782 return false;
2783 }
2784
2785 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2786 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2787 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2788 (*rsp)->ram_bytes_total = ram_bytes_total();
2789
2790 /*
2791 * Count the total number of pages used by ram blocks not including any
2792 * gaps due to alignment or unplugs.
2793 * This must match with the initial values of dirty bitmap.
2794 */
2795 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2796 ram_state_reset(*rsp);
2797
2798 return true;
2799 }
2800
2801 static void ram_list_init_bitmaps(void)
2802 {
2803 MigrationState *ms = migrate_get_current();
2804 RAMBlock *block;
2805 unsigned long pages;
2806 uint8_t shift;
2807
2808 /* Skip setting bitmap if there is no RAM */
2809 if (ram_bytes_total()) {
2810 shift = ms->clear_bitmap_shift;
2811 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2812 error_report("clear_bitmap_shift (%u) too big, using "
2813 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2814 shift = CLEAR_BITMAP_SHIFT_MAX;
2815 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2816 error_report("clear_bitmap_shift (%u) too small, using "
2817 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2818 shift = CLEAR_BITMAP_SHIFT_MIN;
2819 }
2820
2821 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2822 pages = block->max_length >> TARGET_PAGE_BITS;
2823 /*
2824 * The initial dirty bitmap for migration must be set with all
2825 * ones to make sure we'll migrate every guest RAM page to
2826 * destination.
2827 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2828 * new migration after a failed migration, ram_list.
2829 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2830 * guest memory.
2831 */
2832 block->bmap = bitmap_new(pages);
2833 bitmap_set(block->bmap, 0, pages);
2834 if (migrate_mapped_ram()) {
2835 block->file_bmap = bitmap_new(pages);
2836 }
2837 block->clear_bmap_shift = shift;
2838 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2839 }
2840 }
2841 }
2842
2843 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2844 {
2845 unsigned long pages;
2846 RAMBlock *rb;
2847
2848 RCU_READ_LOCK_GUARD();
2849
2850 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2851 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2852 rs->migration_dirty_pages -= pages;
2853 }
2854 }
2855
2856 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2857 {
2858 bool ret = true;
2859
2860 qemu_mutex_lock_ramlist();
2861
2862 WITH_RCU_READ_LOCK_GUARD() {
2863 ram_list_init_bitmaps();
2864 /* We don't use dirty log with background snapshots */
2865 if (!migrate_background_snapshot()) {
2866 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2867 if (!ret) {
2868 goto out_unlock;
2869 }
2870 migration_bitmap_sync_precopy(rs, false);
2871 }
2872 }
2873 out_unlock:
2874 qemu_mutex_unlock_ramlist();
2875
2876 if (!ret) {
2877 ram_bitmaps_destroy();
2878 return false;
2879 }
2880
2881 /*
2882 * After an eventual first bitmap sync, fixup the initial bitmap
2883 * containing all 1s to exclude any discarded pages from migration.
2884 */
2885 migration_bitmap_clear_discarded_pages(rs);
2886 return true;
2887 }
2888
2889 static int ram_init_all(RAMState **rsp, Error **errp)
2890 {
2891 if (!ram_state_init(rsp, errp)) {
2892 return -1;
2893 }
2894
2895 if (!xbzrle_init(errp)) {
2896 ram_state_cleanup(rsp);
2897 return -1;
2898 }
2899
2900 if (!ram_init_bitmaps(*rsp, errp)) {
2901 return -1;
2902 }
2903
2904 return 0;
2905 }
2906
2907 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2908 {
2909 RAMBlock *block;
2910 uint64_t pages = 0;
2911
2912 /*
2913 * Postcopy is not using xbzrle/compression, so no need for that.
2914 * Also, since source are already halted, we don't need to care
2915 * about dirty page logging as well.
2916 */
2917
2918 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2919 pages += bitmap_count_one(block->bmap,
2920 block->used_length >> TARGET_PAGE_BITS);
2921 }
2922
2923 /* This may not be aligned with current bitmaps. Recalculate. */
2924 rs->migration_dirty_pages = pages;
2925
2926 ram_state_reset(rs);
2927
2928 /* Update RAMState cache of output QEMUFile */
2929 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2930
2931 trace_ram_state_resume_prepare(pages);
2932 }
2933
2934 /*
2935 * This function clears bits of the free pages reported by the caller from the
2936 * migration dirty bitmap. @addr is the host address corresponding to the
2937 * start of the continuous guest free pages, and @len is the total bytes of
2938 * those pages.
2939 */
2940 void qemu_guest_free_page_hint(void *addr, size_t len)
2941 {
2942 RAMBlock *block;
2943 ram_addr_t offset;
2944 size_t used_len, start, npages;
2945
2946 /* This function is currently expected to be used during live migration */
2947 if (!migration_is_setup_or_active()) {
2948 return;
2949 }
2950
2951 for (; len > 0; len -= used_len, addr += used_len) {
2952 block = qemu_ram_block_from_host(addr, false, &offset);
2953 if (unlikely(!block || offset >= block->used_length)) {
2954 /*
2955 * The implementation might not support RAMBlock resize during
2956 * live migration, but it could happen in theory with future
2957 * updates. So we add a check here to capture that case.
2958 */
2959 error_report_once("%s unexpected error", __func__);
2960 return;
2961 }
2962
2963 if (len <= block->used_length - offset) {
2964 used_len = len;
2965 } else {
2966 used_len = block->used_length - offset;
2967 }
2968
2969 start = offset >> TARGET_PAGE_BITS;
2970 npages = used_len >> TARGET_PAGE_BITS;
2971
2972 qemu_mutex_lock(&ram_state->bitmap_mutex);
2973 /*
2974 * The skipped free pages are equavalent to be sent from clear_bmap's
2975 * perspective, so clear the bits from the memory region bitmap which
2976 * are initially set. Otherwise those skipped pages will be sent in
2977 * the next round after syncing from the memory region bitmap.
2978 */
2979 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2980 ram_state->migration_dirty_pages -=
2981 bitmap_count_one_with_offset(block->bmap, start, npages);
2982 bitmap_clear(block->bmap, start, npages);
2983 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2984 }
2985 }
2986
2987 #define MAPPED_RAM_HDR_VERSION 1
2988 struct MappedRamHeader {
2989 uint32_t version;
2990 /*
2991 * The target's page size, so we know how many pages are in the
2992 * bitmap.
2993 */
2994 uint64_t page_size;
2995 /*
2996 * The offset in the migration file where the pages bitmap is
2997 * stored.
2998 */
2999 uint64_t bitmap_offset;
3000 /*
3001 * The offset in the migration file where the actual pages (data)
3002 * are stored.
3003 */
3004 uint64_t pages_offset;
3005 } QEMU_PACKED;
3006 typedef struct MappedRamHeader MappedRamHeader;
3007
3008 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
3009 {
3010 g_autofree MappedRamHeader *header = NULL;
3011 size_t header_size, bitmap_size;
3012 long num_pages;
3013
3014 header = g_new0(MappedRamHeader, 1);
3015 header_size = sizeof(MappedRamHeader);
3016
3017 num_pages = block->used_length >> TARGET_PAGE_BITS;
3018 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3019
3020 /*
3021 * Save the file offsets of where the bitmap and the pages should
3022 * go as they are written at the end of migration and during the
3023 * iterative phase, respectively.
3024 */
3025 block->bitmap_offset = qemu_get_offset(file) + header_size;
3026 block->pages_offset = ROUND_UP(block->bitmap_offset +
3027 bitmap_size,
3028 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
3029
3030 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
3031 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
3032 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
3033 header->pages_offset = cpu_to_be64(block->pages_offset);
3034
3035 qemu_put_buffer(file, (uint8_t *) header, header_size);
3036
3037 /* prepare offset for next ramblock */
3038 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
3039 }
3040
3041 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
3042 Error **errp)
3043 {
3044 size_t ret, header_size = sizeof(MappedRamHeader);
3045
3046 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
3047 if (ret != header_size) {
3048 error_setg(errp, "Could not read whole mapped-ram migration header "
3049 "(expected %zd, got %zd bytes)", header_size, ret);
3050 return false;
3051 }
3052
3053 /* migration stream is big-endian */
3054 header->version = be32_to_cpu(header->version);
3055
3056 if (header->version > MAPPED_RAM_HDR_VERSION) {
3057 error_setg(errp, "Migration mapped-ram capability version not "
3058 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3059 header->version);
3060 return false;
3061 }
3062
3063 header->page_size = be64_to_cpu(header->page_size);
3064 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3065 header->pages_offset = be64_to_cpu(header->pages_offset);
3066
3067 return true;
3068 }
3069
3070 /*
3071 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3072 * long-running RCU critical section. When rcu-reclaims in the code
3073 * start to become numerous it will be necessary to reduce the
3074 * granularity of these critical sections.
3075 */
3076
3077 /**
3078 * ram_save_setup: Setup RAM for migration
3079 *
3080 * Returns zero to indicate success and negative for error
3081 *
3082 * @f: QEMUFile where to send the data
3083 * @opaque: RAMState pointer
3084 * @errp: pointer to Error*, to store an error if it happens.
3085 */
3086 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
3087 {
3088 RAMState **rsp = opaque;
3089 RAMBlock *block;
3090 int ret, max_hg_page_size;
3091
3092 if (compress_threads_save_setup()) {
3093 error_setg(errp, "%s: failed to start compress threads", __func__);
3094 return -1;
3095 }
3096
3097 /* migration has already setup the bitmap, reuse it. */
3098 if (!migration_in_colo_state()) {
3099 if (ram_init_all(rsp, errp) != 0) {
3100 compress_threads_save_cleanup();
3101 return -1;
3102 }
3103 }
3104 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3105
3106 /*
3107 * ??? Mirrors the previous value of qemu_host_page_size,
3108 * but is this really what was intended for the migration?
3109 */
3110 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3111
3112 WITH_RCU_READ_LOCK_GUARD() {
3113 qemu_put_be64(f, ram_bytes_total_with_ignored()
3114 | RAM_SAVE_FLAG_MEM_SIZE);
3115
3116 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3117 qemu_put_byte(f, strlen(block->idstr));
3118 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3119 qemu_put_be64(f, block->used_length);
3120 if (migrate_postcopy_ram() &&
3121 block->page_size != max_hg_page_size) {
3122 qemu_put_be64(f, block->page_size);
3123 }
3124 if (migrate_ignore_shared()) {
3125 qemu_put_be64(f, block->mr->addr);
3126 }
3127
3128 if (migrate_mapped_ram()) {
3129 mapped_ram_setup_ramblock(f, block);
3130 }
3131 }
3132 }
3133
3134 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3135 if (ret < 0) {
3136 error_setg(errp, "%s: failed to start RDMA registration", __func__);
3137 qemu_file_set_error(f, ret);
3138 return ret;
3139 }
3140
3141 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3142 if (ret < 0) {
3143 error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3144 qemu_file_set_error(f, ret);
3145 return ret;
3146 }
3147
3148 migration_ops = g_malloc0(sizeof(MigrationOps));
3149
3150 if (migrate_multifd()) {
3151 migration_ops->ram_save_target_page = ram_save_target_page_multifd;
3152 } else {
3153 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3154 }
3155
3156 bql_unlock();
3157 ret = multifd_send_sync_main();
3158 bql_lock();
3159 if (ret < 0) {
3160 error_setg(errp, "%s: multifd synchronization failed", __func__);
3161 return ret;
3162 }
3163
3164 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3165 && !migrate_mapped_ram()) {
3166 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3167 }
3168
3169 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3170 ret = qemu_fflush(f);
3171 if (ret < 0) {
3172 error_setg_errno(errp, -ret, "%s failed", __func__);
3173 }
3174 return ret;
3175 }
3176
3177 static void ram_save_file_bmap(QEMUFile *f)
3178 {
3179 RAMBlock *block;
3180
3181 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3182 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3183 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3184
3185 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3186 block->bitmap_offset);
3187 ram_transferred_add(bitmap_size);
3188
3189 /*
3190 * Free the bitmap here to catch any synchronization issues
3191 * with multifd channels. No channels should be sending pages
3192 * after we've written the bitmap to file.
3193 */
3194 g_free(block->file_bmap);
3195 block->file_bmap = NULL;
3196 }
3197 }
3198
3199 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3200 {
3201 if (set) {
3202 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3203 } else {
3204 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3205 }
3206 }
3207
3208 /**
3209 * ram_save_iterate: iterative stage for migration
3210 *
3211 * Returns zero to indicate success and negative for error
3212 *
3213 * @f: QEMUFile where to send the data
3214 * @opaque: RAMState pointer
3215 */
3216 static int ram_save_iterate(QEMUFile *f, void *opaque)
3217 {
3218 RAMState **temp = opaque;
3219 RAMState *rs = *temp;
3220 int ret = 0;
3221 int i;
3222 int64_t t0;
3223 int done = 0;
3224
3225 /*
3226 * We'll take this lock a little bit long, but it's okay for two reasons.
3227 * Firstly, the only possible other thread to take it is who calls
3228 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3229 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3230 * guarantees that we'll at least released it in a regular basis.
3231 */
3232 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3233 WITH_RCU_READ_LOCK_GUARD() {
3234 if (ram_list.version != rs->last_version) {
3235 ram_state_reset(rs);
3236 }
3237
3238 /* Read version before ram_list.blocks */
3239 smp_rmb();
3240
3241 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3242 if (ret < 0) {
3243 qemu_file_set_error(f, ret);
3244 goto out;
3245 }
3246
3247 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3248 i = 0;
3249 while ((ret = migration_rate_exceeded(f)) == 0 ||
3250 postcopy_has_request(rs)) {
3251 int pages;
3252
3253 if (qemu_file_get_error(f)) {
3254 break;
3255 }
3256
3257 pages = ram_find_and_save_block(rs);
3258 /* no more pages to sent */
3259 if (pages == 0) {
3260 done = 1;
3261 break;
3262 }
3263
3264 if (pages < 0) {
3265 qemu_file_set_error(f, pages);
3266 break;
3267 }
3268
3269 rs->target_page_count += pages;
3270
3271 /*
3272 * During postcopy, it is necessary to make sure one whole host
3273 * page is sent in one chunk.
3274 */
3275 if (migrate_postcopy_ram()) {
3276 compress_flush_data();
3277 }
3278
3279 /*
3280 * we want to check in the 1st loop, just in case it was the 1st
3281 * time and we had to sync the dirty bitmap.
3282 * qemu_clock_get_ns() is a bit expensive, so we only check each
3283 * some iterations
3284 */
3285 if ((i & 63) == 0) {
3286 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3287 1000000;
3288 if (t1 > MAX_WAIT) {
3289 trace_ram_save_iterate_big_wait(t1, i);
3290 break;
3291 }
3292 }
3293 i++;
3294 }
3295 }
3296 }
3297
3298 /*
3299 * Must occur before EOS (or any QEMUFile operation)
3300 * because of RDMA protocol.
3301 */
3302 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3303 if (ret < 0) {
3304 qemu_file_set_error(f, ret);
3305 }
3306
3307 out:
3308 if (ret >= 0
3309 && migration_is_setup_or_active()) {
3310 if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3311 !migrate_mapped_ram()) {
3312 ret = multifd_send_sync_main();
3313 if (ret < 0) {
3314 return ret;
3315 }
3316 }
3317
3318 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3319 ram_transferred_add(8);
3320 ret = qemu_fflush(f);
3321 }
3322 if (ret < 0) {
3323 return ret;
3324 }
3325
3326 return done;
3327 }
3328
3329 /**
3330 * ram_save_complete: function called to send the remaining amount of ram
3331 *
3332 * Returns zero to indicate success or negative on error
3333 *
3334 * Called with the BQL
3335 *
3336 * @f: QEMUFile where to send the data
3337 * @opaque: RAMState pointer
3338 */
3339 static int ram_save_complete(QEMUFile *f, void *opaque)
3340 {
3341 RAMState **temp = opaque;
3342 RAMState *rs = *temp;
3343 int ret = 0;
3344
3345 rs->last_stage = !migration_in_colo_state();
3346
3347 WITH_RCU_READ_LOCK_GUARD() {
3348 if (!migration_in_postcopy()) {
3349 migration_bitmap_sync_precopy(rs, true);
3350 }
3351
3352 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3353 if (ret < 0) {
3354 qemu_file_set_error(f, ret);
3355 return ret;
3356 }
3357
3358 /* try transferring iterative blocks of memory */
3359
3360 /* flush all remaining blocks regardless of rate limiting */
3361 qemu_mutex_lock(&rs->bitmap_mutex);
3362 while (true) {
3363 int pages;
3364
3365 pages = ram_find_and_save_block(rs);
3366 /* no more blocks to sent */
3367 if (pages == 0) {
3368 break;
3369 }
3370 if (pages < 0) {
3371 qemu_mutex_unlock(&rs->bitmap_mutex);
3372 return pages;
3373 }
3374 }
3375 qemu_mutex_unlock(&rs->bitmap_mutex);
3376
3377 compress_flush_data();
3378
3379 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3380 if (ret < 0) {
3381 qemu_file_set_error(f, ret);
3382 return ret;
3383 }
3384 }
3385
3386 ret = multifd_send_sync_main();
3387 if (ret < 0) {
3388 return ret;
3389 }
3390
3391 if (migrate_mapped_ram()) {
3392 ram_save_file_bmap(f);
3393
3394 if (qemu_file_get_error(f)) {
3395 Error *local_err = NULL;
3396 int err = qemu_file_get_error_obj(f, &local_err);
3397
3398 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3399 return -err;
3400 }
3401 }
3402
3403 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() &&
3404 !migrate_mapped_ram()) {
3405 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3406 }
3407 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3408 return qemu_fflush(f);
3409 }
3410
3411 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3412 uint64_t *can_postcopy)
3413 {
3414 RAMState **temp = opaque;
3415 RAMState *rs = *temp;
3416
3417 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3418
3419 if (migrate_postcopy_ram()) {
3420 /* We can do postcopy, and all the data is postcopiable */
3421 *can_postcopy += remaining_size;
3422 } else {
3423 *must_precopy += remaining_size;
3424 }
3425 }
3426
3427 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3428 uint64_t *can_postcopy)
3429 {
3430 RAMState **temp = opaque;
3431 RAMState *rs = *temp;
3432 uint64_t remaining_size;
3433
3434 if (!migration_in_postcopy()) {
3435 bql_lock();
3436 WITH_RCU_READ_LOCK_GUARD() {
3437 migration_bitmap_sync_precopy(rs, false);
3438 }
3439 bql_unlock();
3440 }
3441
3442 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3443
3444 if (migrate_postcopy_ram()) {
3445 /* We can do postcopy, and all the data is postcopiable */
3446 *can_postcopy += remaining_size;
3447 } else {
3448 *must_precopy += remaining_size;
3449 }
3450 }
3451
3452 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3453 {
3454 unsigned int xh_len;
3455 int xh_flags;
3456 uint8_t *loaded_data;
3457
3458 /* extract RLE header */
3459 xh_flags = qemu_get_byte(f);
3460 xh_len = qemu_get_be16(f);
3461
3462 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3463 error_report("Failed to load XBZRLE page - wrong compression!");
3464 return -1;
3465 }
3466
3467 if (xh_len > TARGET_PAGE_SIZE) {
3468 error_report("Failed to load XBZRLE page - len overflow!");
3469 return -1;
3470 }
3471 loaded_data = XBZRLE.decoded_buf;
3472 /* load data and decode */
3473 /* it can change loaded_data to point to an internal buffer */
3474 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3475
3476 /* decode RLE */
3477 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3478 TARGET_PAGE_SIZE) == -1) {
3479 error_report("Failed to load XBZRLE page - decode error!");
3480 return -1;
3481 }
3482
3483 return 0;
3484 }
3485
3486 /**
3487 * ram_block_from_stream: read a RAMBlock id from the migration stream
3488 *
3489 * Must be called from within a rcu critical section.
3490 *
3491 * Returns a pointer from within the RCU-protected ram_list.
3492 *
3493 * @mis: the migration incoming state pointer
3494 * @f: QEMUFile where to read the data from
3495 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3496 * @channel: the channel we're using
3497 */
3498 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3499 QEMUFile *f, int flags,
3500 int channel)
3501 {
3502 RAMBlock *block = mis->last_recv_block[channel];
3503 char id[256];
3504 uint8_t len;
3505
3506 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3507 if (!block) {
3508 error_report("Ack, bad migration stream!");
3509 return NULL;
3510 }
3511 return block;
3512 }
3513
3514 len = qemu_get_byte(f);
3515 qemu_get_buffer(f, (uint8_t *)id, len);
3516 id[len] = 0;
3517
3518 block = qemu_ram_block_by_name(id);
3519 if (!block) {
3520 error_report("Can't find block %s", id);
3521 return NULL;
3522 }
3523
3524 if (migrate_ram_is_ignored(block)) {
3525 error_report("block %s should not be migrated !", id);
3526 return NULL;
3527 }
3528
3529 mis->last_recv_block[channel] = block;
3530
3531 return block;
3532 }
3533
3534 static inline void *host_from_ram_block_offset(RAMBlock *block,
3535 ram_addr_t offset)
3536 {
3537 if (!offset_in_ramblock(block, offset)) {
3538 return NULL;
3539 }
3540
3541 return block->host + offset;
3542 }
3543
3544 static void *host_page_from_ram_block_offset(RAMBlock *block,
3545 ram_addr_t offset)
3546 {
3547 /* Note: Explicitly no check against offset_in_ramblock(). */
3548 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3549 block->page_size);
3550 }
3551
3552 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3553 ram_addr_t offset)
3554 {
3555 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3556 }
3557
3558 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3559 {
3560 qemu_mutex_lock(&ram_state->bitmap_mutex);
3561 for (int i = 0; i < pages; i++) {
3562 ram_addr_t offset = normal[i];
3563 ram_state->migration_dirty_pages += !test_and_set_bit(
3564 offset >> TARGET_PAGE_BITS,
3565 block->bmap);
3566 }
3567 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3568 }
3569
3570 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3571 ram_addr_t offset, bool record_bitmap)
3572 {
3573 if (!offset_in_ramblock(block, offset)) {
3574 return NULL;
3575 }
3576 if (!block->colo_cache) {
3577 error_report("%s: colo_cache is NULL in block :%s",
3578 __func__, block->idstr);
3579 return NULL;
3580 }
3581
3582 /*
3583 * During colo checkpoint, we need bitmap of these migrated pages.
3584 * It help us to decide which pages in ram cache should be flushed
3585 * into VM's RAM later.
3586 */
3587 if (record_bitmap) {
3588 colo_record_bitmap(block, &offset, 1);
3589 }
3590 return block->colo_cache + offset;
3591 }
3592
3593 /**
3594 * ram_handle_zero: handle the zero page case
3595 *
3596 * If a page (or a whole RDMA chunk) has been
3597 * determined to be zero, then zap it.
3598 *
3599 * @host: host address for the zero page
3600 * @ch: what the page is filled from. We only support zero
3601 * @size: size of the zero page
3602 */
3603 void ram_handle_zero(void *host, uint64_t size)
3604 {
3605 if (!buffer_is_zero(host, size)) {
3606 memset(host, 0, size);
3607 }
3608 }
3609
3610 static void colo_init_ram_state(void)
3611 {
3612 Error *local_err = NULL;
3613
3614 if (!ram_state_init(&ram_state, &local_err)) {
3615 error_report_err(local_err);
3616 }
3617 }
3618
3619 /*
3620 * colo cache: this is for secondary VM, we cache the whole
3621 * memory of the secondary VM, it is need to hold the global lock
3622 * to call this helper.
3623 */
3624 int colo_init_ram_cache(void)
3625 {
3626 RAMBlock *block;
3627
3628 WITH_RCU_READ_LOCK_GUARD() {
3629 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3630 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3631 NULL, false, false);
3632 if (!block->colo_cache) {
3633 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3634 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3635 block->used_length);
3636 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3637 if (block->colo_cache) {
3638 qemu_anon_ram_free(block->colo_cache, block->used_length);
3639 block->colo_cache = NULL;
3640 }
3641 }
3642 return -errno;
3643 }
3644 if (!machine_dump_guest_core(current_machine)) {
3645 qemu_madvise(block->colo_cache, block->used_length,
3646 QEMU_MADV_DONTDUMP);
3647 }
3648 }
3649 }
3650
3651 /*
3652 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3653 * with to decide which page in cache should be flushed into SVM's RAM. Here
3654 * we use the same name 'ram_bitmap' as for migration.
3655 */
3656 if (ram_bytes_total()) {
3657 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3658 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3659 block->bmap = bitmap_new(pages);
3660 }
3661 }
3662
3663 colo_init_ram_state();
3664 return 0;
3665 }
3666
3667 /* TODO: duplicated with ram_init_bitmaps */
3668 void colo_incoming_start_dirty_log(void)
3669 {
3670 RAMBlock *block = NULL;
3671 Error *local_err = NULL;
3672
3673 /* For memory_global_dirty_log_start below. */
3674 bql_lock();
3675 qemu_mutex_lock_ramlist();
3676
3677 memory_global_dirty_log_sync(false);
3678 WITH_RCU_READ_LOCK_GUARD() {
3679 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3680 ramblock_sync_dirty_bitmap(ram_state, block);
3681 /* Discard this dirty bitmap record */
3682 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3683 }
3684 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3685 &local_err)) {
3686 error_report_err(local_err);
3687 }
3688 }
3689 ram_state->migration_dirty_pages = 0;
3690 qemu_mutex_unlock_ramlist();
3691 bql_unlock();
3692 }
3693
3694 /* It is need to hold the global lock to call this helper */
3695 void colo_release_ram_cache(void)
3696 {
3697 RAMBlock *block;
3698
3699 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3700 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3701 g_free(block->bmap);
3702 block->bmap = NULL;
3703 }
3704
3705 WITH_RCU_READ_LOCK_GUARD() {
3706 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3707 if (block->colo_cache) {
3708 qemu_anon_ram_free(block->colo_cache, block->used_length);
3709 block->colo_cache = NULL;
3710 }
3711 }
3712 }
3713 ram_state_cleanup(&ram_state);
3714 }
3715
3716 /**
3717 * ram_load_setup: Setup RAM for migration incoming side
3718 *
3719 * Returns zero to indicate success and negative for error
3720 *
3721 * @f: QEMUFile where to receive the data
3722 * @opaque: RAMState pointer
3723 * @errp: pointer to Error*, to store an error if it happens.
3724 */
3725 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3726 {
3727 xbzrle_load_setup();
3728 ramblock_recv_map_init();
3729
3730 return 0;
3731 }
3732
3733 static int ram_load_cleanup(void *opaque)
3734 {
3735 RAMBlock *rb;
3736
3737 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3738 qemu_ram_block_writeback(rb);
3739 }
3740
3741 xbzrle_load_cleanup();
3742
3743 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3744 g_free(rb->receivedmap);
3745 rb->receivedmap = NULL;
3746 }
3747
3748 return 0;
3749 }
3750
3751 /**
3752 * ram_postcopy_incoming_init: allocate postcopy data structures
3753 *
3754 * Returns 0 for success and negative if there was one error
3755 *
3756 * @mis: current migration incoming state
3757 *
3758 * Allocate data structures etc needed by incoming migration with
3759 * postcopy-ram. postcopy-ram's similarly names
3760 * postcopy_ram_incoming_init does the work.
3761 */
3762 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3763 {
3764 return postcopy_ram_incoming_init(mis);
3765 }
3766
3767 /**
3768 * ram_load_postcopy: load a page in postcopy case
3769 *
3770 * Returns 0 for success or -errno in case of error
3771 *
3772 * Called in postcopy mode by ram_load().
3773 * rcu_read_lock is taken prior to this being called.
3774 *
3775 * @f: QEMUFile where to send the data
3776 * @channel: the channel to use for loading
3777 */
3778 int ram_load_postcopy(QEMUFile *f, int channel)
3779 {
3780 int flags = 0, ret = 0;
3781 bool place_needed = false;
3782 bool matches_target_page_size = false;
3783 MigrationIncomingState *mis = migration_incoming_get_current();
3784 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3785
3786 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3787 ram_addr_t addr;
3788 void *page_buffer = NULL;
3789 void *place_source = NULL;
3790 RAMBlock *block = NULL;
3791 uint8_t ch;
3792 int len;
3793
3794 addr = qemu_get_be64(f);
3795
3796 /*
3797 * If qemu file error, we should stop here, and then "addr"
3798 * may be invalid
3799 */
3800 ret = qemu_file_get_error(f);
3801 if (ret) {
3802 break;
3803 }
3804
3805 flags = addr & ~TARGET_PAGE_MASK;
3806 addr &= TARGET_PAGE_MASK;
3807
3808 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3809 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3810 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3811 block = ram_block_from_stream(mis, f, flags, channel);
3812 if (!block) {
3813 ret = -EINVAL;
3814 break;
3815 }
3816
3817 /*
3818 * Relying on used_length is racy and can result in false positives.
3819 * We might place pages beyond used_length in case RAM was shrunk
3820 * while in postcopy, which is fine - trying to place via
3821 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3822 */
3823 if (!block->host || addr >= block->postcopy_length) {
3824 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3825 ret = -EINVAL;
3826 break;
3827 }
3828 tmp_page->target_pages++;
3829 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3830 /*
3831 * Postcopy requires that we place whole host pages atomically;
3832 * these may be huge pages for RAMBlocks that are backed by
3833 * hugetlbfs.
3834 * To make it atomic, the data is read into a temporary page
3835 * that's moved into place later.
3836 * The migration protocol uses, possibly smaller, target-pages
3837 * however the source ensures it always sends all the components
3838 * of a host page in one chunk.
3839 */
3840 page_buffer = tmp_page->tmp_huge_page +
3841 host_page_offset_from_ram_block_offset(block, addr);
3842 /* If all TP are zero then we can optimise the place */
3843 if (tmp_page->target_pages == 1) {
3844 tmp_page->host_addr =
3845 host_page_from_ram_block_offset(block, addr);
3846 } else if (tmp_page->host_addr !=
3847 host_page_from_ram_block_offset(block, addr)) {
3848 /* not the 1st TP within the HP */
3849 error_report("Non-same host page detected on channel %d: "
3850 "Target host page %p, received host page %p "
3851 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3852 channel, tmp_page->host_addr,
3853 host_page_from_ram_block_offset(block, addr),
3854 block->idstr, addr, tmp_page->target_pages);
3855 ret = -EINVAL;
3856 break;
3857 }
3858
3859 /*
3860 * If it's the last part of a host page then we place the host
3861 * page
3862 */
3863 if (tmp_page->target_pages ==
3864 (block->page_size / TARGET_PAGE_SIZE)) {
3865 place_needed = true;
3866 }
3867 place_source = tmp_page->tmp_huge_page;
3868 }
3869
3870 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3871 case RAM_SAVE_FLAG_ZERO:
3872 ch = qemu_get_byte(f);
3873 if (ch != 0) {
3874 error_report("Found a zero page with value %d", ch);
3875 ret = -EINVAL;
3876 break;
3877 }
3878 /*
3879 * Can skip to set page_buffer when
3880 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3881 */
3882 if (!matches_target_page_size) {
3883 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3884 }
3885 break;
3886
3887 case RAM_SAVE_FLAG_PAGE:
3888 tmp_page->all_zero = false;
3889 if (!matches_target_page_size) {
3890 /* For huge pages, we always use temporary buffer */
3891 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3892 } else {
3893 /*
3894 * For small pages that matches target page size, we
3895 * avoid the qemu_file copy. Instead we directly use
3896 * the buffer of QEMUFile to place the page. Note: we
3897 * cannot do any QEMUFile operation before using that
3898 * buffer to make sure the buffer is valid when
3899 * placing the page.
3900 */
3901 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3902 TARGET_PAGE_SIZE);
3903 }
3904 break;
3905 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3906 tmp_page->all_zero = false;
3907 len = qemu_get_be32(f);
3908 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3909 error_report("Invalid compressed data length: %d", len);
3910 ret = -EINVAL;
3911 break;
3912 }
3913 decompress_data_with_multi_threads(f, page_buffer, len);
3914 break;
3915 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3916 multifd_recv_sync_main();
3917 break;
3918 case RAM_SAVE_FLAG_EOS:
3919 /* normal exit */
3920 if (migrate_multifd() &&
3921 migrate_multifd_flush_after_each_section()) {
3922 multifd_recv_sync_main();
3923 }
3924 break;
3925 default:
3926 error_report("Unknown combination of migration flags: 0x%x"
3927 " (postcopy mode)", flags);
3928 ret = -EINVAL;
3929 break;
3930 }
3931
3932 /* Got the whole host page, wait for decompress before placing. */
3933 if (place_needed) {
3934 ret |= wait_for_decompress_done();
3935 }
3936
3937 /* Detect for any possible file errors */
3938 if (!ret && qemu_file_get_error(f)) {
3939 ret = qemu_file_get_error(f);
3940 }
3941
3942 if (!ret && place_needed) {
3943 if (tmp_page->all_zero) {
3944 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3945 } else {
3946 ret = postcopy_place_page(mis, tmp_page->host_addr,
3947 place_source, block);
3948 }
3949 place_needed = false;
3950 postcopy_temp_page_reset(tmp_page);
3951 }
3952 }
3953
3954 return ret;
3955 }
3956
3957 static bool postcopy_is_running(void)
3958 {
3959 PostcopyState ps = postcopy_state_get();
3960 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3961 }
3962
3963 /*
3964 * Flush content of RAM cache into SVM's memory.
3965 * Only flush the pages that be dirtied by PVM or SVM or both.
3966 */
3967 void colo_flush_ram_cache(void)
3968 {
3969 RAMBlock *block = NULL;
3970 void *dst_host;
3971 void *src_host;
3972 unsigned long offset = 0;
3973
3974 memory_global_dirty_log_sync(false);
3975 qemu_mutex_lock(&ram_state->bitmap_mutex);
3976 WITH_RCU_READ_LOCK_GUARD() {
3977 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3978 ramblock_sync_dirty_bitmap(ram_state, block);
3979 }
3980 }
3981
3982 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3983 WITH_RCU_READ_LOCK_GUARD() {
3984 block = QLIST_FIRST_RCU(&ram_list.blocks);
3985
3986 while (block) {
3987 unsigned long num = 0;
3988
3989 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3990 if (!offset_in_ramblock(block,
3991 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3992 offset = 0;
3993 num = 0;
3994 block = QLIST_NEXT_RCU(block, next);
3995 } else {
3996 unsigned long i = 0;
3997
3998 for (i = 0; i < num; i++) {
3999 migration_bitmap_clear_dirty(ram_state, block, offset + i);
4000 }
4001 dst_host = block->host
4002 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4003 src_host = block->colo_cache
4004 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4005 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
4006 offset += num;
4007 }
4008 }
4009 }
4010 qemu_mutex_unlock(&ram_state->bitmap_mutex);
4011 trace_colo_flush_ram_cache_end();
4012 }
4013
4014 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
4015 uint64_t offset)
4016 {
4017 MultiFDRecvData *data = multifd_get_recv_data();
4018
4019 data->opaque = host_addr;
4020 data->file_offset = offset;
4021 data->size = size;
4022
4023 if (!multifd_recv()) {
4024 return 0;
4025 }
4026
4027 return size;
4028 }
4029
4030 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4031 long num_pages, unsigned long *bitmap,
4032 Error **errp)
4033 {
4034 ERRP_GUARD();
4035 unsigned long set_bit_idx, clear_bit_idx;
4036 ram_addr_t offset;
4037 void *host;
4038 size_t read, unread, size;
4039
4040 for (set_bit_idx = find_first_bit(bitmap, num_pages);
4041 set_bit_idx < num_pages;
4042 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
4043
4044 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
4045
4046 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
4047 offset = set_bit_idx << TARGET_PAGE_BITS;
4048
4049 while (unread > 0) {
4050 host = host_from_ram_block_offset(block, offset);
4051 if (!host) {
4052 error_setg(errp, "page outside of ramblock %s range",
4053 block->idstr);
4054 return false;
4055 }
4056
4057 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
4058
4059 if (migrate_multifd()) {
4060 read = ram_load_multifd_pages(host, size,
4061 block->pages_offset + offset);
4062 } else {
4063 read = qemu_get_buffer_at(f, host, size,
4064 block->pages_offset + offset);
4065 }
4066
4067 if (!read) {
4068 goto err;
4069 }
4070 offset += read;
4071 unread -= read;
4072 }
4073 }
4074
4075 return true;
4076
4077 err:
4078 qemu_file_get_error_obj(f, errp);
4079 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4080 "from file offset %" PRIx64 ": ", block->idstr, offset,
4081 block->pages_offset + offset);
4082 return false;
4083 }
4084
4085 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4086 ram_addr_t length, Error **errp)
4087 {
4088 g_autofree unsigned long *bitmap = NULL;
4089 MappedRamHeader header;
4090 size_t bitmap_size;
4091 long num_pages;
4092
4093 if (!mapped_ram_read_header(f, &header, errp)) {
4094 return;
4095 }
4096
4097 block->pages_offset = header.pages_offset;
4098
4099 /*
4100 * Check the alignment of the file region that contains pages. We
4101 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4102 * value to change in the future. Do only a sanity check with page
4103 * size alignment.
4104 */
4105 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4106 error_setg(errp,
4107 "Error reading ramblock %s pages, region has bad alignment",
4108 block->idstr);
4109 return;
4110 }
4111
4112 num_pages = length / header.page_size;
4113 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4114
4115 bitmap = g_malloc0(bitmap_size);
4116 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4117 header.bitmap_offset) != bitmap_size) {
4118 error_setg(errp, "Error reading dirty bitmap");
4119 return;
4120 }
4121
4122 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4123 return;
4124 }
4125
4126 /* Skip pages array */
4127 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4128
4129 return;
4130 }
4131
4132 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4133 {
4134 int ret = 0;
4135 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4136 bool postcopy_advised = migration_incoming_postcopy_advised();
4137 int max_hg_page_size;
4138 Error *local_err = NULL;
4139
4140 assert(block);
4141
4142 if (migrate_mapped_ram()) {
4143 parse_ramblock_mapped_ram(f, block, length, &local_err);
4144 if (local_err) {
4145 error_report_err(local_err);
4146 return -EINVAL;
4147 }
4148 return 0;
4149 }
4150
4151 if (!qemu_ram_is_migratable(block)) {
4152 error_report("block %s should not be migrated !", block->idstr);
4153 return -EINVAL;
4154 }
4155
4156 if (length != block->used_length) {
4157 ret = qemu_ram_resize(block, length, &local_err);
4158 if (local_err) {
4159 error_report_err(local_err);
4160 return ret;
4161 }
4162 }
4163
4164 /*
4165 * ??? Mirrors the previous value of qemu_host_page_size,
4166 * but is this really what was intended for the migration?
4167 */
4168 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4169
4170 /* For postcopy we need to check hugepage sizes match */
4171 if (postcopy_advised && migrate_postcopy_ram() &&
4172 block->page_size != max_hg_page_size) {
4173 uint64_t remote_page_size = qemu_get_be64(f);
4174 if (remote_page_size != block->page_size) {
4175 error_report("Mismatched RAM page size %s "
4176 "(local) %zd != %" PRId64, block->idstr,
4177 block->page_size, remote_page_size);
4178 return -EINVAL;
4179 }
4180 }
4181 if (migrate_ignore_shared()) {
4182 hwaddr addr = qemu_get_be64(f);
4183 if (migrate_ram_is_ignored(block) &&
4184 block->mr->addr != addr) {
4185 error_report("Mismatched GPAs for block %s "
4186 "%" PRId64 "!= %" PRId64, block->idstr,
4187 (uint64_t)addr, (uint64_t)block->mr->addr);
4188 return -EINVAL;
4189 }
4190 }
4191 ret = rdma_block_notification_handle(f, block->idstr);
4192 if (ret < 0) {
4193 qemu_file_set_error(f, ret);
4194 }
4195
4196 return ret;
4197 }
4198
4199 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4200 {
4201 int ret = 0;
4202
4203 /* Synchronize RAM block list */
4204 while (!ret && total_ram_bytes) {
4205 RAMBlock *block;
4206 char id[256];
4207 ram_addr_t length;
4208 int len = qemu_get_byte(f);
4209
4210 qemu_get_buffer(f, (uint8_t *)id, len);
4211 id[len] = 0;
4212 length = qemu_get_be64(f);
4213
4214 block = qemu_ram_block_by_name(id);
4215 if (block) {
4216 ret = parse_ramblock(f, block, length);
4217 } else {
4218 error_report("Unknown ramblock \"%s\", cannot accept "
4219 "migration", id);
4220 ret = -EINVAL;
4221 }
4222 total_ram_bytes -= length;
4223 }
4224
4225 return ret;
4226 }
4227
4228 /**
4229 * ram_load_precopy: load pages in precopy case
4230 *
4231 * Returns 0 for success or -errno in case of error
4232 *
4233 * Called in precopy mode by ram_load().
4234 * rcu_read_lock is taken prior to this being called.
4235 *
4236 * @f: QEMUFile where to send the data
4237 */
4238 static int ram_load_precopy(QEMUFile *f)
4239 {
4240 MigrationIncomingState *mis = migration_incoming_get_current();
4241 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4242
4243 if (!migrate_compress()) {
4244 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4245 }
4246
4247 if (migrate_mapped_ram()) {
4248 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4249 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4250 RAM_SAVE_FLAG_ZERO);
4251 }
4252
4253 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4254 ram_addr_t addr;
4255 void *host = NULL, *host_bak = NULL;
4256 uint8_t ch;
4257
4258 /*
4259 * Yield periodically to let main loop run, but an iteration of
4260 * the main loop is expensive, so do it each some iterations
4261 */
4262 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4263 aio_co_schedule(qemu_get_current_aio_context(),
4264 qemu_coroutine_self());
4265 qemu_coroutine_yield();
4266 }
4267 i++;
4268
4269 addr = qemu_get_be64(f);
4270 ret = qemu_file_get_error(f);
4271 if (ret) {
4272 error_report("Getting RAM address failed");
4273 break;
4274 }
4275
4276 flags = addr & ~TARGET_PAGE_MASK;
4277 addr &= TARGET_PAGE_MASK;
4278
4279 if (flags & invalid_flags) {
4280 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4281
4282 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4283 error_report("Received an unexpected compressed page");
4284 }
4285
4286 ret = -EINVAL;
4287 break;
4288 }
4289
4290 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4291 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4292 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4293 RAM_CHANNEL_PRECOPY);
4294
4295 host = host_from_ram_block_offset(block, addr);
4296 /*
4297 * After going into COLO stage, we should not load the page
4298 * into SVM's memory directly, we put them into colo_cache firstly.
4299 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4300 * Previously, we copied all these memory in preparing stage of COLO
4301 * while we need to stop VM, which is a time-consuming process.
4302 * Here we optimize it by a trick, back-up every page while in
4303 * migration process while COLO is enabled, though it affects the
4304 * speed of the migration, but it obviously reduce the downtime of
4305 * back-up all SVM'S memory in COLO preparing stage.
4306 */
4307 if (migration_incoming_colo_enabled()) {
4308 if (migration_incoming_in_colo_state()) {
4309 /* In COLO stage, put all pages into cache temporarily */
4310 host = colo_cache_from_block_offset(block, addr, true);
4311 } else {
4312 /*
4313 * In migration stage but before COLO stage,
4314 * Put all pages into both cache and SVM's memory.
4315 */
4316 host_bak = colo_cache_from_block_offset(block, addr, false);
4317 }
4318 }
4319 if (!host) {
4320 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4321 ret = -EINVAL;
4322 break;
4323 }
4324 if (!migration_incoming_in_colo_state()) {
4325 ramblock_recv_bitmap_set(block, host);
4326 }
4327
4328 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4329 }
4330
4331 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4332 case RAM_SAVE_FLAG_MEM_SIZE:
4333 ret = parse_ramblocks(f, addr);
4334 /*
4335 * For mapped-ram migration (to a file) using multifd, we sync
4336 * once and for all here to make sure all tasks we queued to
4337 * multifd threads are completed, so that all the ramblocks
4338 * (including all the guest memory pages within) are fully
4339 * loaded after this sync returns.
4340 */
4341 if (migrate_mapped_ram()) {
4342 multifd_recv_sync_main();
4343 }
4344 break;
4345
4346 case RAM_SAVE_FLAG_ZERO:
4347 ch = qemu_get_byte(f);
4348 if (ch != 0) {
4349 error_report("Found a zero page with value %d", ch);
4350 ret = -EINVAL;
4351 break;
4352 }
4353 ram_handle_zero(host, TARGET_PAGE_SIZE);
4354 break;
4355
4356 case RAM_SAVE_FLAG_PAGE:
4357 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4358 break;
4359
4360 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4361 len = qemu_get_be32(f);
4362 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4363 error_report("Invalid compressed data length: %d", len);
4364 ret = -EINVAL;
4365 break;
4366 }
4367 decompress_data_with_multi_threads(f, host, len);
4368 break;
4369
4370 case RAM_SAVE_FLAG_XBZRLE:
4371 if (load_xbzrle(f, addr, host) < 0) {
4372 error_report("Failed to decompress XBZRLE page at "
4373 RAM_ADDR_FMT, addr);
4374 ret = -EINVAL;
4375 break;
4376 }
4377 break;
4378 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4379 multifd_recv_sync_main();
4380 break;
4381 case RAM_SAVE_FLAG_EOS:
4382 /* normal exit */
4383 if (migrate_multifd() &&
4384 migrate_multifd_flush_after_each_section() &&
4385 /*
4386 * Mapped-ram migration flushes once and for all after
4387 * parsing ramblocks. Always ignore EOS for it.
4388 */
4389 !migrate_mapped_ram()) {
4390 multifd_recv_sync_main();
4391 }
4392 break;
4393 case RAM_SAVE_FLAG_HOOK:
4394 ret = rdma_registration_handle(f);
4395 if (ret < 0) {
4396 qemu_file_set_error(f, ret);
4397 }
4398 break;
4399 default:
4400 error_report("Unknown combination of migration flags: 0x%x", flags);
4401 ret = -EINVAL;
4402 }
4403 if (!ret) {
4404 ret = qemu_file_get_error(f);
4405 }
4406 if (!ret && host_bak) {
4407 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4408 }
4409 }
4410
4411 ret |= wait_for_decompress_done();
4412 return ret;
4413 }
4414
4415 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4416 {
4417 int ret = 0;
4418 static uint64_t seq_iter;
4419 /*
4420 * If system is running in postcopy mode, page inserts to host memory must
4421 * be atomic
4422 */
4423 bool postcopy_running = postcopy_is_running();
4424
4425 seq_iter++;
4426
4427 if (version_id != 4) {
4428 return -EINVAL;
4429 }
4430
4431 /*
4432 * This RCU critical section can be very long running.
4433 * When RCU reclaims in the code start to become numerous,
4434 * it will be necessary to reduce the granularity of this
4435 * critical section.
4436 */
4437 WITH_RCU_READ_LOCK_GUARD() {
4438 if (postcopy_running) {
4439 /*
4440 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4441 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4442 * service fast page faults.
4443 */
4444 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4445 } else {
4446 ret = ram_load_precopy(f);
4447 }
4448 }
4449 trace_ram_load_complete(ret, seq_iter);
4450
4451 return ret;
4452 }
4453
4454 static bool ram_has_postcopy(void *opaque)
4455 {
4456 RAMBlock *rb;
4457 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4458 if (ramblock_is_pmem(rb)) {
4459 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4460 "is not supported now!", rb->idstr, rb->host);
4461 return false;
4462 }
4463 }
4464
4465 return migrate_postcopy_ram();
4466 }
4467
4468 /* Sync all the dirty bitmap with destination VM. */
4469 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4470 {
4471 RAMBlock *block;
4472 QEMUFile *file = s->to_dst_file;
4473
4474 trace_ram_dirty_bitmap_sync_start();
4475
4476 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4477 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4478 qemu_savevm_send_recv_bitmap(file, block->idstr);
4479 trace_ram_dirty_bitmap_request(block->idstr);
4480 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4481 }
4482
4483 trace_ram_dirty_bitmap_sync_wait();
4484
4485 /* Wait until all the ramblocks' dirty bitmap synced */
4486 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4487 if (migration_rp_wait(s)) {
4488 return -1;
4489 }
4490 }
4491
4492 trace_ram_dirty_bitmap_sync_complete();
4493
4494 return 0;
4495 }
4496
4497 /*
4498 * Read the received bitmap, revert it as the initial dirty bitmap.
4499 * This is only used when the postcopy migration is paused but wants
4500 * to resume from a middle point.
4501 *
4502 * Returns true if succeeded, false for errors.
4503 */
4504 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4505 {
4506 /* from_dst_file is always valid because we're within rp_thread */
4507 QEMUFile *file = s->rp_state.from_dst_file;
4508 g_autofree unsigned long *le_bitmap = NULL;
4509 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4510 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4511 uint64_t size, end_mark;
4512 RAMState *rs = ram_state;
4513
4514 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4515
4516 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4517 error_setg(errp, "Reload bitmap in incorrect state %s",
4518 MigrationStatus_str(s->state));
4519 return false;
4520 }
4521
4522 /*
4523 * Note: see comments in ramblock_recv_bitmap_send() on why we
4524 * need the endianness conversion, and the paddings.
4525 */
4526 local_size = ROUND_UP(local_size, 8);
4527
4528 /* Add paddings */
4529 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4530
4531 size = qemu_get_be64(file);
4532
4533 /* The size of the bitmap should match with our ramblock */
4534 if (size != local_size) {
4535 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4536 " != 0x%"PRIx64")", block->idstr, size, local_size);
4537 return false;
4538 }
4539
4540 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4541 end_mark = qemu_get_be64(file);
4542
4543 if (qemu_file_get_error(file) || size != local_size) {
4544 error_setg(errp, "read bitmap failed for ramblock '%s': "
4545 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4546 block->idstr, local_size, size);
4547 return false;
4548 }
4549
4550 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4551 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4552 block->idstr, end_mark);
4553 return false;
4554 }
4555
4556 /*
4557 * Endianness conversion. We are during postcopy (though paused).
4558 * The dirty bitmap won't change. We can directly modify it.
4559 */
4560 bitmap_from_le(block->bmap, le_bitmap, nbits);
4561
4562 /*
4563 * What we received is "received bitmap". Revert it as the initial
4564 * dirty bitmap for this ramblock.
4565 */
4566 bitmap_complement(block->bmap, block->bmap, nbits);
4567
4568 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4569 ramblock_dirty_bitmap_clear_discarded_pages(block);
4570
4571 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4572 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4573
4574 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4575
4576 /*
4577 * We succeeded to sync bitmap for current ramblock. Always kick the
4578 * migration thread to check whether all requested bitmaps are
4579 * reloaded. NOTE: it's racy to only kick when requested==0, because
4580 * we don't know whether the migration thread may still be increasing
4581 * it.
4582 */
4583 migration_rp_kick(s);
4584
4585 return true;
4586 }
4587
4588 static int ram_resume_prepare(MigrationState *s, void *opaque)
4589 {
4590 RAMState *rs = *(RAMState **)opaque;
4591 int ret;
4592
4593 ret = ram_dirty_bitmap_sync_all(s, rs);
4594 if (ret) {
4595 return ret;
4596 }
4597
4598 ram_state_resume_prepare(rs, s->to_dst_file);
4599
4600 return 0;
4601 }
4602
4603 void postcopy_preempt_shutdown_file(MigrationState *s)
4604 {
4605 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4606 qemu_fflush(s->postcopy_qemufile_src);
4607 }
4608
4609 static SaveVMHandlers savevm_ram_handlers = {
4610 .save_setup = ram_save_setup,
4611 .save_live_iterate = ram_save_iterate,
4612 .save_live_complete_postcopy = ram_save_complete,
4613 .save_live_complete_precopy = ram_save_complete,
4614 .has_postcopy = ram_has_postcopy,
4615 .state_pending_exact = ram_state_pending_exact,
4616 .state_pending_estimate = ram_state_pending_estimate,
4617 .load_state = ram_load,
4618 .save_cleanup = ram_save_cleanup,
4619 .load_setup = ram_load_setup,
4620 .load_cleanup = ram_load_cleanup,
4621 .resume_prepare = ram_resume_prepare,
4622 };
4623
4624 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4625 size_t old_size, size_t new_size)
4626 {
4627 PostcopyState ps = postcopy_state_get();
4628 ram_addr_t offset;
4629 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4630 Error *err = NULL;
4631
4632 if (!rb) {
4633 error_report("RAM block not found");
4634 return;
4635 }
4636
4637 if (migrate_ram_is_ignored(rb)) {
4638 return;
4639 }
4640
4641 if (!migration_is_idle()) {
4642 /*
4643 * Precopy code on the source cannot deal with the size of RAM blocks
4644 * changing at random points in time - especially after sending the
4645 * RAM block sizes in the migration stream, they must no longer change.
4646 * Abort and indicate a proper reason.
4647 */
4648 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4649 migration_cancel(err);
4650 error_free(err);
4651 }
4652
4653 switch (ps) {
4654 case POSTCOPY_INCOMING_ADVISE:
4655 /*
4656 * Update what ram_postcopy_incoming_init()->init_range() does at the
4657 * time postcopy was advised. Syncing RAM blocks with the source will
4658 * result in RAM resizes.
4659 */
4660 if (old_size < new_size) {
4661 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4662 error_report("RAM block '%s' discard of resized RAM failed",
4663 rb->idstr);
4664 }
4665 }
4666 rb->postcopy_length = new_size;
4667 break;
4668 case POSTCOPY_INCOMING_NONE:
4669 case POSTCOPY_INCOMING_RUNNING:
4670 case POSTCOPY_INCOMING_END:
4671 /*
4672 * Once our guest is running, postcopy does no longer care about
4673 * resizes. When growing, the new memory was not available on the
4674 * source, no handler needed.
4675 */
4676 break;
4677 default:
4678 error_report("RAM block '%s' resized during postcopy state: %d",
4679 rb->idstr, ps);
4680 exit(-1);
4681 }
4682 }
4683
4684 static RAMBlockNotifier ram_mig_ram_notifier = {
4685 .ram_block_resized = ram_mig_ram_block_resized,
4686 };
4687
4688 void ram_mig_init(void)
4689 {
4690 qemu_mutex_init(&XBZRLE.lock);
4691 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4692 ram_block_notifier_add(&ram_mig_ram_notifier);
4693 }