]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
Merge tag 'pull-trivial-patches' of https://gitlab.com/mjt0k/qemu into staging
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72
73 /***********************************************************/
74 /* ram save/restore */
75
76 /*
77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78 * worked for pages that were filled with the same char. We switched
79 * it to only search for the zero value. And to avoid confusion with
80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81 */
82 /*
83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84 */
85 #define RAM_SAVE_FLAG_FULL 0x01
86 #define RAM_SAVE_FLAG_ZERO 0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE 0x08
89 #define RAM_SAVE_FLAG_EOS 0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE 0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
95 /* We can't use any flag that is bigger than 0x200 */
96
97 XBZRLECacheStats xbzrle_counters;
98
99 /* used by the search for pages to send */
100 struct PageSearchStatus {
101 /* The migration channel used for a specific host page */
102 QEMUFile *pss_channel;
103 /* Last block from where we have sent data */
104 RAMBlock *last_sent_block;
105 /* Current block being searched */
106 RAMBlock *block;
107 /* Current page to search from */
108 unsigned long page;
109 /* Set once we wrap around */
110 bool complete_round;
111 /* Whether we're sending a host page */
112 bool host_page_sending;
113 /* The start/end of current host page. Invalid if host_page_sending==false */
114 unsigned long host_page_start;
115 unsigned long host_page_end;
116 };
117 typedef struct PageSearchStatus PageSearchStatus;
118
119 /* struct contains XBZRLE cache and a static page
120 used by the compression */
121 static struct {
122 /* buffer used for XBZRLE encoding */
123 uint8_t *encoded_buf;
124 /* buffer for storing page content */
125 uint8_t *current_buf;
126 /* Cache for XBZRLE, Protected by lock. */
127 PageCache *cache;
128 QemuMutex lock;
129 /* it will store a page full of zeros */
130 uint8_t *zero_target_page;
131 /* buffer used for XBZRLE decoding */
132 uint8_t *decoded_buf;
133 } XBZRLE;
134
135 static void XBZRLE_cache_lock(void)
136 {
137 if (migrate_xbzrle()) {
138 qemu_mutex_lock(&XBZRLE.lock);
139 }
140 }
141
142 static void XBZRLE_cache_unlock(void)
143 {
144 if (migrate_xbzrle()) {
145 qemu_mutex_unlock(&XBZRLE.lock);
146 }
147 }
148
149 /**
150 * xbzrle_cache_resize: resize the xbzrle cache
151 *
152 * This function is called from migrate_params_apply in main
153 * thread, possibly while a migration is in progress. A running
154 * migration may be using the cache and might finish during this call,
155 * hence changes to the cache are protected by XBZRLE.lock().
156 *
157 * Returns 0 for success or -1 for error
158 *
159 * @new_size: new cache size
160 * @errp: set *errp if the check failed, with reason
161 */
162 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
163 {
164 PageCache *new_cache;
165 int64_t ret = 0;
166
167 /* Check for truncation */
168 if (new_size != (size_t)new_size) {
169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
170 "exceeding address space");
171 return -1;
172 }
173
174 if (new_size == migrate_xbzrle_cache_size()) {
175 /* nothing to do */
176 return 0;
177 }
178
179 XBZRLE_cache_lock();
180
181 if (XBZRLE.cache != NULL) {
182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
183 if (!new_cache) {
184 ret = -1;
185 goto out;
186 }
187
188 cache_fini(XBZRLE.cache);
189 XBZRLE.cache = new_cache;
190 }
191 out:
192 XBZRLE_cache_unlock();
193 return ret;
194 }
195
196 static bool postcopy_preempt_active(void)
197 {
198 return migrate_postcopy_preempt() && migration_in_postcopy();
199 }
200
201 bool migrate_ram_is_ignored(RAMBlock *block)
202 {
203 return !qemu_ram_is_migratable(block) ||
204 (migrate_ignore_shared() && qemu_ram_is_shared(block)
205 && qemu_ram_is_named_file(block));
206 }
207
208 #undef RAMBLOCK_FOREACH
209
210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
211 {
212 RAMBlock *block;
213 int ret = 0;
214
215 RCU_READ_LOCK_GUARD();
216
217 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
218 ret = func(block, opaque);
219 if (ret) {
220 break;
221 }
222 }
223 return ret;
224 }
225
226 static void ramblock_recv_map_init(void)
227 {
228 RAMBlock *rb;
229
230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
231 assert(!rb->receivedmap);
232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
233 }
234 }
235
236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
237 {
238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
239 rb->receivedmap);
240 }
241
242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
243 {
244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
245 }
246
247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
248 {
249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
250 }
251
252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
253 size_t nr)
254 {
255 bitmap_set_atomic(rb->receivedmap,
256 ramblock_recv_bitmap_offset(host_addr, rb),
257 nr);
258 }
259
260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
261
262 /*
263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264 *
265 * Returns >0 if success with sent bytes, or <0 if error.
266 */
267 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
268 const char *block_name)
269 {
270 RAMBlock *block = qemu_ram_block_by_name(block_name);
271 unsigned long *le_bitmap, nbits;
272 uint64_t size;
273
274 if (!block) {
275 error_report("%s: invalid block name: %s", __func__, block_name);
276 return -1;
277 }
278
279 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
280
281 /*
282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
283 * machines we may need 4 more bytes for padding (see below
284 * comment). So extend it a bit before hand.
285 */
286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
287
288 /*
289 * Always use little endian when sending the bitmap. This is
290 * required that when source and destination VMs are not using the
291 * same endianness. (Note: big endian won't work.)
292 */
293 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
294
295 /* Size of the bitmap, in bytes */
296 size = DIV_ROUND_UP(nbits, 8);
297
298 /*
299 * size is always aligned to 8 bytes for 64bit machines, but it
300 * may not be true for 32bit machines. We need this padding to
301 * make sure the migration can survive even between 32bit and
302 * 64bit machines.
303 */
304 size = ROUND_UP(size, 8);
305
306 qemu_put_be64(file, size);
307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
308 g_free(le_bitmap);
309 /*
310 * Mark as an end, in case the middle part is screwed up due to
311 * some "mysterious" reason.
312 */
313 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
314 int ret = qemu_fflush(file);
315 if (ret) {
316 return ret;
317 }
318
319 return size + sizeof(size);
320 }
321
322 /*
323 * An outstanding page request, on the source, having been received
324 * and queued
325 */
326 struct RAMSrcPageRequest {
327 RAMBlock *rb;
328 hwaddr offset;
329 hwaddr len;
330
331 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
332 };
333
334 /* State of RAM for migration */
335 struct RAMState {
336 /*
337 * PageSearchStatus structures for the channels when send pages.
338 * Protected by the bitmap_mutex.
339 */
340 PageSearchStatus pss[RAM_CHANNEL_MAX];
341 /* UFFD file descriptor, used in 'write-tracking' migration */
342 int uffdio_fd;
343 /* total ram size in bytes */
344 uint64_t ram_bytes_total;
345 /* Last block that we have visited searching for dirty pages */
346 RAMBlock *last_seen_block;
347 /* Last dirty target page we have sent */
348 ram_addr_t last_page;
349 /* last ram version we have seen */
350 uint32_t last_version;
351 /* How many times we have dirty too many pages */
352 int dirty_rate_high_cnt;
353 /* these variables are used for bitmap sync */
354 /* last time we did a full bitmap_sync */
355 int64_t time_last_bitmap_sync;
356 /* bytes transferred at start_time */
357 uint64_t bytes_xfer_prev;
358 /* number of dirty pages since start_time */
359 uint64_t num_dirty_pages_period;
360 /* xbzrle misses since the beginning of the period */
361 uint64_t xbzrle_cache_miss_prev;
362 /* Amount of xbzrle pages since the beginning of the period */
363 uint64_t xbzrle_pages_prev;
364 /* Amount of xbzrle encoded bytes since the beginning of the period */
365 uint64_t xbzrle_bytes_prev;
366 /* Are we really using XBZRLE (e.g., after the first round). */
367 bool xbzrle_started;
368 /* Are we on the last stage of migration */
369 bool last_stage;
370
371 /* total handled target pages at the beginning of period */
372 uint64_t target_page_count_prev;
373 /* total handled target pages since start */
374 uint64_t target_page_count;
375 /* number of dirty bits in the bitmap */
376 uint64_t migration_dirty_pages;
377 /*
378 * Protects:
379 * - dirty/clear bitmap
380 * - migration_dirty_pages
381 * - pss structures
382 */
383 QemuMutex bitmap_mutex;
384 /* The RAMBlock used in the last src_page_requests */
385 RAMBlock *last_req_rb;
386 /* Queue of outstanding page requests from the destination */
387 QemuMutex src_page_req_mutex;
388 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
389
390 /*
391 * This is only used when postcopy is in recovery phase, to communicate
392 * between the migration thread and the return path thread on dirty
393 * bitmap synchronizations. This field is unused in other stages of
394 * RAM migration.
395 */
396 unsigned int postcopy_bmap_sync_requested;
397 };
398 typedef struct RAMState RAMState;
399
400 static RAMState *ram_state;
401
402 static NotifierWithReturnList precopy_notifier_list;
403
404 /* Whether postcopy has queued requests? */
405 static bool postcopy_has_request(RAMState *rs)
406 {
407 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
408 }
409
410 void precopy_infrastructure_init(void)
411 {
412 notifier_with_return_list_init(&precopy_notifier_list);
413 }
414
415 void precopy_add_notifier(NotifierWithReturn *n)
416 {
417 notifier_with_return_list_add(&precopy_notifier_list, n);
418 }
419
420 void precopy_remove_notifier(NotifierWithReturn *n)
421 {
422 notifier_with_return_remove(n);
423 }
424
425 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
426 {
427 PrecopyNotifyData pnd;
428 pnd.reason = reason;
429 pnd.errp = errp;
430
431 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
432 }
433
434 uint64_t ram_bytes_remaining(void)
435 {
436 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
437 0;
438 }
439
440 void ram_transferred_add(uint64_t bytes)
441 {
442 if (runstate_is_running()) {
443 stat64_add(&mig_stats.precopy_bytes, bytes);
444 } else if (migration_in_postcopy()) {
445 stat64_add(&mig_stats.postcopy_bytes, bytes);
446 } else {
447 stat64_add(&mig_stats.downtime_bytes, bytes);
448 }
449 }
450
451 struct MigrationOps {
452 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
453 };
454 typedef struct MigrationOps MigrationOps;
455
456 MigrationOps *migration_ops;
457
458 static int ram_save_host_page_urgent(PageSearchStatus *pss);
459
460 /* NOTE: page is the PFN not real ram_addr_t. */
461 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
462 {
463 pss->block = rb;
464 pss->page = page;
465 pss->complete_round = false;
466 }
467
468 /*
469 * Check whether two PSSs are actively sending the same page. Return true
470 * if it is, false otherwise.
471 */
472 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
473 {
474 return pss1->host_page_sending && pss2->host_page_sending &&
475 (pss1->host_page_start == pss2->host_page_start);
476 }
477
478 /**
479 * save_page_header: write page header to wire
480 *
481 * If this is the 1st block, it also writes the block identification
482 *
483 * Returns the number of bytes written
484 *
485 * @pss: current PSS channel status
486 * @block: block that contains the page we want to send
487 * @offset: offset inside the block for the page
488 * in the lower bits, it contains flags
489 */
490 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
491 RAMBlock *block, ram_addr_t offset)
492 {
493 size_t size, len;
494 bool same_block = (block == pss->last_sent_block);
495
496 if (same_block) {
497 offset |= RAM_SAVE_FLAG_CONTINUE;
498 }
499 qemu_put_be64(f, offset);
500 size = 8;
501
502 if (!same_block) {
503 len = strlen(block->idstr);
504 qemu_put_byte(f, len);
505 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
506 size += 1 + len;
507 pss->last_sent_block = block;
508 }
509 return size;
510 }
511
512 /**
513 * mig_throttle_guest_down: throttle down the guest
514 *
515 * Reduce amount of guest cpu execution to hopefully slow down memory
516 * writes. If guest dirty memory rate is reduced below the rate at
517 * which we can transfer pages to the destination then we should be
518 * able to complete migration. Some workloads dirty memory way too
519 * fast and will not effectively converge, even with auto-converge.
520 */
521 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
522 uint64_t bytes_dirty_threshold)
523 {
524 uint64_t pct_initial = migrate_cpu_throttle_initial();
525 uint64_t pct_increment = migrate_cpu_throttle_increment();
526 bool pct_tailslow = migrate_cpu_throttle_tailslow();
527 int pct_max = migrate_max_cpu_throttle();
528
529 uint64_t throttle_now = cpu_throttle_get_percentage();
530 uint64_t cpu_now, cpu_ideal, throttle_inc;
531
532 /* We have not started throttling yet. Let's start it. */
533 if (!cpu_throttle_active()) {
534 cpu_throttle_set(pct_initial);
535 } else {
536 /* Throttling already on, just increase the rate */
537 if (!pct_tailslow) {
538 throttle_inc = pct_increment;
539 } else {
540 /* Compute the ideal CPU percentage used by Guest, which may
541 * make the dirty rate match the dirty rate threshold. */
542 cpu_now = 100 - throttle_now;
543 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
544 bytes_dirty_period);
545 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
546 }
547 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
548 }
549 }
550
551 void mig_throttle_counter_reset(void)
552 {
553 RAMState *rs = ram_state;
554
555 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
556 rs->num_dirty_pages_period = 0;
557 rs->bytes_xfer_prev = migration_transferred_bytes();
558 }
559
560 /**
561 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
562 *
563 * @current_addr: address for the zero page
564 *
565 * Update the xbzrle cache to reflect a page that's been sent as all 0.
566 * The important thing is that a stale (not-yet-0'd) page be replaced
567 * by the new data.
568 * As a bonus, if the page wasn't in the cache it gets added so that
569 * when a small write is made into the 0'd page it gets XBZRLE sent.
570 */
571 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
572 {
573 /* We don't care if this fails to allocate a new cache page
574 * as long as it updated an old one */
575 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
576 stat64_get(&mig_stats.dirty_sync_count));
577 }
578
579 #define ENCODING_FLAG_XBZRLE 0x1
580
581 /**
582 * save_xbzrle_page: compress and send current page
583 *
584 * Returns: 1 means that we wrote the page
585 * 0 means that page is identical to the one already sent
586 * -1 means that xbzrle would be longer than normal
587 *
588 * @rs: current RAM state
589 * @pss: current PSS channel
590 * @current_data: pointer to the address of the page contents
591 * @current_addr: addr of the page
592 * @block: block that contains the page we want to send
593 * @offset: offset inside the block for the page
594 */
595 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
596 uint8_t **current_data, ram_addr_t current_addr,
597 RAMBlock *block, ram_addr_t offset)
598 {
599 int encoded_len = 0, bytes_xbzrle;
600 uint8_t *prev_cached_page;
601 QEMUFile *file = pss->pss_channel;
602 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
603
604 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
605 xbzrle_counters.cache_miss++;
606 if (!rs->last_stage) {
607 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
608 generation) == -1) {
609 return -1;
610 } else {
611 /* update *current_data when the page has been
612 inserted into cache */
613 *current_data = get_cached_data(XBZRLE.cache, current_addr);
614 }
615 }
616 return -1;
617 }
618
619 /*
620 * Reaching here means the page has hit the xbzrle cache, no matter what
621 * encoding result it is (normal encoding, overflow or skipping the page),
622 * count the page as encoded. This is used to calculate the encoding rate.
623 *
624 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
625 * 2nd page turns out to be skipped (i.e. no new bytes written to the
626 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
627 * skipped page included. In this way, the encoding rate can tell if the
628 * guest page is good for xbzrle encoding.
629 */
630 xbzrle_counters.pages++;
631 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
632
633 /* save current buffer into memory */
634 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
635
636 /* XBZRLE encoding (if there is no overflow) */
637 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
638 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
639 TARGET_PAGE_SIZE);
640
641 /*
642 * Update the cache contents, so that it corresponds to the data
643 * sent, in all cases except where we skip the page.
644 */
645 if (!rs->last_stage && encoded_len != 0) {
646 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
647 /*
648 * In the case where we couldn't compress, ensure that the caller
649 * sends the data from the cache, since the guest might have
650 * changed the RAM since we copied it.
651 */
652 *current_data = prev_cached_page;
653 }
654
655 if (encoded_len == 0) {
656 trace_save_xbzrle_page_skipping();
657 return 0;
658 } else if (encoded_len == -1) {
659 trace_save_xbzrle_page_overflow();
660 xbzrle_counters.overflow++;
661 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
662 return -1;
663 }
664
665 /* Send XBZRLE based compressed page */
666 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
667 offset | RAM_SAVE_FLAG_XBZRLE);
668 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
669 qemu_put_be16(file, encoded_len);
670 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
671 bytes_xbzrle += encoded_len + 1 + 2;
672 /*
673 * Like compressed_size (please see update_compress_thread_counts),
674 * the xbzrle encoded bytes don't count the 8 byte header with
675 * RAM_SAVE_FLAG_CONTINUE.
676 */
677 xbzrle_counters.bytes += bytes_xbzrle - 8;
678 ram_transferred_add(bytes_xbzrle);
679
680 return 1;
681 }
682
683 /**
684 * pss_find_next_dirty: find the next dirty page of current ramblock
685 *
686 * This function updates pss->page to point to the next dirty page index
687 * within the ramblock to migrate, or the end of ramblock when nothing
688 * found. Note that when pss->host_page_sending==true it means we're
689 * during sending a host page, so we won't look for dirty page that is
690 * outside the host page boundary.
691 *
692 * @pss: the current page search status
693 */
694 static void pss_find_next_dirty(PageSearchStatus *pss)
695 {
696 RAMBlock *rb = pss->block;
697 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
698 unsigned long *bitmap = rb->bmap;
699
700 if (migrate_ram_is_ignored(rb)) {
701 /* Points directly to the end, so we know no dirty page */
702 pss->page = size;
703 return;
704 }
705
706 /*
707 * If during sending a host page, only look for dirty pages within the
708 * current host page being send.
709 */
710 if (pss->host_page_sending) {
711 assert(pss->host_page_end);
712 size = MIN(size, pss->host_page_end);
713 }
714
715 pss->page = find_next_bit(bitmap, size, pss->page);
716 }
717
718 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
719 unsigned long page)
720 {
721 uint8_t shift;
722 hwaddr size, start;
723
724 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
725 return;
726 }
727
728 shift = rb->clear_bmap_shift;
729 /*
730 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
731 * can make things easier sometimes since then start address
732 * of the small chunk will always be 64 pages aligned so the
733 * bitmap will always be aligned to unsigned long. We should
734 * even be able to remove this restriction but I'm simply
735 * keeping it.
736 */
737 assert(shift >= 6);
738
739 size = 1ULL << (TARGET_PAGE_BITS + shift);
740 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
741 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
742 memory_region_clear_dirty_bitmap(rb->mr, start, size);
743 }
744
745 static void
746 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
747 unsigned long start,
748 unsigned long npages)
749 {
750 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
751 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
752 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
753
754 /*
755 * Clear pages from start to start + npages - 1, so the end boundary is
756 * exclusive.
757 */
758 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
759 migration_clear_memory_region_dirty_bitmap(rb, i);
760 }
761 }
762
763 /*
764 * colo_bitmap_find_diry:find contiguous dirty pages from start
765 *
766 * Returns the page offset within memory region of the start of the contiguout
767 * dirty page
768 *
769 * @rs: current RAM state
770 * @rb: RAMBlock where to search for dirty pages
771 * @start: page where we start the search
772 * @num: the number of contiguous dirty pages
773 */
774 static inline
775 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
776 unsigned long start, unsigned long *num)
777 {
778 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
779 unsigned long *bitmap = rb->bmap;
780 unsigned long first, next;
781
782 *num = 0;
783
784 if (migrate_ram_is_ignored(rb)) {
785 return size;
786 }
787
788 first = find_next_bit(bitmap, size, start);
789 if (first >= size) {
790 return first;
791 }
792 next = find_next_zero_bit(bitmap, size, first + 1);
793 assert(next >= first);
794 *num = next - first;
795 return first;
796 }
797
798 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
799 RAMBlock *rb,
800 unsigned long page)
801 {
802 bool ret;
803
804 /*
805 * Clear dirty bitmap if needed. This _must_ be called before we
806 * send any of the page in the chunk because we need to make sure
807 * we can capture further page content changes when we sync dirty
808 * log the next time. So as long as we are going to send any of
809 * the page in the chunk we clear the remote dirty bitmap for all.
810 * Clearing it earlier won't be a problem, but too late will.
811 */
812 migration_clear_memory_region_dirty_bitmap(rb, page);
813
814 ret = test_and_clear_bit(page, rb->bmap);
815 if (ret) {
816 rs->migration_dirty_pages--;
817 }
818
819 return ret;
820 }
821
822 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
823 void *opaque)
824 {
825 const hwaddr offset = section->offset_within_region;
826 const hwaddr size = int128_get64(section->size);
827 const unsigned long start = offset >> TARGET_PAGE_BITS;
828 const unsigned long npages = size >> TARGET_PAGE_BITS;
829 RAMBlock *rb = section->mr->ram_block;
830 uint64_t *cleared_bits = opaque;
831
832 /*
833 * We don't grab ram_state->bitmap_mutex because we expect to run
834 * only when starting migration or during postcopy recovery where
835 * we don't have concurrent access.
836 */
837 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
838 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
839 }
840 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
841 bitmap_clear(rb->bmap, start, npages);
842 }
843
844 /*
845 * Exclude all dirty pages from migration that fall into a discarded range as
846 * managed by a RamDiscardManager responsible for the mapped memory region of
847 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
848 *
849 * Discarded pages ("logically unplugged") have undefined content and must
850 * not get migrated, because even reading these pages for migration might
851 * result in undesired behavior.
852 *
853 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
854 *
855 * Note: The result is only stable while migrating (precopy/postcopy).
856 */
857 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
858 {
859 uint64_t cleared_bits = 0;
860
861 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
862 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
863 MemoryRegionSection section = {
864 .mr = rb->mr,
865 .offset_within_region = 0,
866 .size = int128_make64(qemu_ram_get_used_length(rb)),
867 };
868
869 ram_discard_manager_replay_discarded(rdm, &section,
870 dirty_bitmap_clear_section,
871 &cleared_bits);
872 }
873 return cleared_bits;
874 }
875
876 /*
877 * Check if a host-page aligned page falls into a discarded range as managed by
878 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
879 *
880 * Note: The result is only stable while migrating (precopy/postcopy).
881 */
882 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
883 {
884 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
885 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
886 MemoryRegionSection section = {
887 .mr = rb->mr,
888 .offset_within_region = start,
889 .size = int128_make64(qemu_ram_pagesize(rb)),
890 };
891
892 return !ram_discard_manager_is_populated(rdm, &section);
893 }
894 return false;
895 }
896
897 /* Called with RCU critical section */
898 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
899 {
900 uint64_t new_dirty_pages =
901 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
902
903 rs->migration_dirty_pages += new_dirty_pages;
904 rs->num_dirty_pages_period += new_dirty_pages;
905 }
906
907 /**
908 * ram_pagesize_summary: calculate all the pagesizes of a VM
909 *
910 * Returns a summary bitmap of the page sizes of all RAMBlocks
911 *
912 * For VMs with just normal pages this is equivalent to the host page
913 * size. If it's got some huge pages then it's the OR of all the
914 * different page sizes.
915 */
916 uint64_t ram_pagesize_summary(void)
917 {
918 RAMBlock *block;
919 uint64_t summary = 0;
920
921 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
922 summary |= block->page_size;
923 }
924
925 return summary;
926 }
927
928 uint64_t ram_get_total_transferred_pages(void)
929 {
930 return stat64_get(&mig_stats.normal_pages) +
931 stat64_get(&mig_stats.zero_pages) +
932 compress_ram_pages() + xbzrle_counters.pages;
933 }
934
935 static void migration_update_rates(RAMState *rs, int64_t end_time)
936 {
937 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
938
939 /* calculate period counters */
940 stat64_set(&mig_stats.dirty_pages_rate,
941 rs->num_dirty_pages_period * 1000 /
942 (end_time - rs->time_last_bitmap_sync));
943
944 if (!page_count) {
945 return;
946 }
947
948 if (migrate_xbzrle()) {
949 double encoded_size, unencoded_size;
950
951 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
952 rs->xbzrle_cache_miss_prev) / page_count;
953 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
954 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
955 TARGET_PAGE_SIZE;
956 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
957 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
958 xbzrle_counters.encoding_rate = 0;
959 } else {
960 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
961 }
962 rs->xbzrle_pages_prev = xbzrle_counters.pages;
963 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
964 }
965 compress_update_rates(page_count);
966 }
967
968 /*
969 * Enable dirty-limit to throttle down the guest
970 */
971 static void migration_dirty_limit_guest(void)
972 {
973 /*
974 * dirty page rate quota for all vCPUs fetched from
975 * migration parameter 'vcpu_dirty_limit'
976 */
977 static int64_t quota_dirtyrate;
978 MigrationState *s = migrate_get_current();
979
980 /*
981 * If dirty limit already enabled and migration parameter
982 * vcpu-dirty-limit untouched.
983 */
984 if (dirtylimit_in_service() &&
985 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
986 return;
987 }
988
989 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
990
991 /*
992 * Set all vCPU a quota dirtyrate, note that the second
993 * parameter will be ignored if setting all vCPU for the vm
994 */
995 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
996 trace_migration_dirty_limit_guest(quota_dirtyrate);
997 }
998
999 static void migration_trigger_throttle(RAMState *rs)
1000 {
1001 uint64_t threshold = migrate_throttle_trigger_threshold();
1002 uint64_t bytes_xfer_period =
1003 migration_transferred_bytes() - rs->bytes_xfer_prev;
1004 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1005 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1006
1007 /* During block migration the auto-converge logic incorrectly detects
1008 * that ram migration makes no progress. Avoid this by disabling the
1009 * throttling logic during the bulk phase of block migration. */
1010 if (blk_mig_bulk_active()) {
1011 return;
1012 }
1013
1014 /*
1015 * The following detection logic can be refined later. For now:
1016 * Check to see if the ratio between dirtied bytes and the approx.
1017 * amount of bytes that just got transferred since the last time
1018 * we were in this routine reaches the threshold. If that happens
1019 * twice, start or increase throttling.
1020 */
1021 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1022 (++rs->dirty_rate_high_cnt >= 2)) {
1023 rs->dirty_rate_high_cnt = 0;
1024 if (migrate_auto_converge()) {
1025 trace_migration_throttle();
1026 mig_throttle_guest_down(bytes_dirty_period,
1027 bytes_dirty_threshold);
1028 } else if (migrate_dirty_limit()) {
1029 migration_dirty_limit_guest();
1030 }
1031 }
1032 }
1033
1034 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1035 {
1036 RAMBlock *block;
1037 int64_t end_time;
1038
1039 stat64_add(&mig_stats.dirty_sync_count, 1);
1040
1041 if (!rs->time_last_bitmap_sync) {
1042 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1043 }
1044
1045 trace_migration_bitmap_sync_start();
1046 memory_global_dirty_log_sync(last_stage);
1047
1048 qemu_mutex_lock(&rs->bitmap_mutex);
1049 WITH_RCU_READ_LOCK_GUARD() {
1050 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1051 ramblock_sync_dirty_bitmap(rs, block);
1052 }
1053 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1054 }
1055 qemu_mutex_unlock(&rs->bitmap_mutex);
1056
1057 memory_global_after_dirty_log_sync();
1058 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1059
1060 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1061
1062 /* more than 1 second = 1000 millisecons */
1063 if (end_time > rs->time_last_bitmap_sync + 1000) {
1064 migration_trigger_throttle(rs);
1065
1066 migration_update_rates(rs, end_time);
1067
1068 rs->target_page_count_prev = rs->target_page_count;
1069
1070 /* reset period counters */
1071 rs->time_last_bitmap_sync = end_time;
1072 rs->num_dirty_pages_period = 0;
1073 rs->bytes_xfer_prev = migration_transferred_bytes();
1074 }
1075 if (migrate_events()) {
1076 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1077 qapi_event_send_migration_pass(generation);
1078 }
1079 }
1080
1081 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1082 {
1083 Error *local_err = NULL;
1084
1085 /*
1086 * The current notifier usage is just an optimization to migration, so we
1087 * don't stop the normal migration process in the error case.
1088 */
1089 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1090 error_report_err(local_err);
1091 local_err = NULL;
1092 }
1093
1094 migration_bitmap_sync(rs, last_stage);
1095
1096 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1097 error_report_err(local_err);
1098 }
1099 }
1100
1101 void ram_release_page(const char *rbname, uint64_t offset)
1102 {
1103 if (!migrate_release_ram() || !migration_in_postcopy()) {
1104 return;
1105 }
1106
1107 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1108 }
1109
1110 /**
1111 * save_zero_page: send the zero page to the stream
1112 *
1113 * Returns the number of pages written.
1114 *
1115 * @rs: current RAM state
1116 * @pss: current PSS channel
1117 * @offset: offset inside the block for the page
1118 */
1119 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1120 ram_addr_t offset)
1121 {
1122 uint8_t *p = pss->block->host + offset;
1123 QEMUFile *file = pss->pss_channel;
1124 int len = 0;
1125
1126 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1127 return 0;
1128 }
1129
1130 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1131 qemu_put_byte(file, 0);
1132 len += 1;
1133 ram_release_page(pss->block->idstr, offset);
1134
1135 stat64_add(&mig_stats.zero_pages, 1);
1136 ram_transferred_add(len);
1137
1138 /*
1139 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1140 * page would be stale.
1141 */
1142 if (rs->xbzrle_started) {
1143 XBZRLE_cache_lock();
1144 xbzrle_cache_zero_page(pss->block->offset + offset);
1145 XBZRLE_cache_unlock();
1146 }
1147
1148 return len;
1149 }
1150
1151 /*
1152 * @pages: the number of pages written by the control path,
1153 * < 0 - error
1154 * > 0 - number of pages written
1155 *
1156 * Return true if the pages has been saved, otherwise false is returned.
1157 */
1158 static bool control_save_page(PageSearchStatus *pss,
1159 ram_addr_t offset, int *pages)
1160 {
1161 int ret;
1162
1163 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1164 TARGET_PAGE_SIZE);
1165 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1166 return false;
1167 }
1168
1169 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1170 *pages = 1;
1171 return true;
1172 }
1173 *pages = ret;
1174 return true;
1175 }
1176
1177 /*
1178 * directly send the page to the stream
1179 *
1180 * Returns the number of pages written.
1181 *
1182 * @pss: current PSS channel
1183 * @block: block that contains the page we want to send
1184 * @offset: offset inside the block for the page
1185 * @buf: the page to be sent
1186 * @async: send to page asyncly
1187 */
1188 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1189 ram_addr_t offset, uint8_t *buf, bool async)
1190 {
1191 QEMUFile *file = pss->pss_channel;
1192
1193 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1194 offset | RAM_SAVE_FLAG_PAGE));
1195 if (async) {
1196 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1197 migrate_release_ram() &&
1198 migration_in_postcopy());
1199 } else {
1200 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1201 }
1202 ram_transferred_add(TARGET_PAGE_SIZE);
1203 stat64_add(&mig_stats.normal_pages, 1);
1204 return 1;
1205 }
1206
1207 /**
1208 * ram_save_page: send the given page to the stream
1209 *
1210 * Returns the number of pages written.
1211 * < 0 - error
1212 * >=0 - Number of pages written - this might legally be 0
1213 * if xbzrle noticed the page was the same.
1214 *
1215 * @rs: current RAM state
1216 * @block: block that contains the page we want to send
1217 * @offset: offset inside the block for the page
1218 */
1219 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1220 {
1221 int pages = -1;
1222 uint8_t *p;
1223 bool send_async = true;
1224 RAMBlock *block = pss->block;
1225 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1226 ram_addr_t current_addr = block->offset + offset;
1227
1228 p = block->host + offset;
1229 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1230
1231 XBZRLE_cache_lock();
1232 if (rs->xbzrle_started && !migration_in_postcopy()) {
1233 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1234 block, offset);
1235 if (!rs->last_stage) {
1236 /* Can't send this cached data async, since the cache page
1237 * might get updated before it gets to the wire
1238 */
1239 send_async = false;
1240 }
1241 }
1242
1243 /* XBZRLE overflow or normal page */
1244 if (pages == -1) {
1245 pages = save_normal_page(pss, block, offset, p, send_async);
1246 }
1247
1248 XBZRLE_cache_unlock();
1249
1250 return pages;
1251 }
1252
1253 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1254 {
1255 if (multifd_queue_page(block, offset) < 0) {
1256 return -1;
1257 }
1258 stat64_add(&mig_stats.normal_pages, 1);
1259
1260 return 1;
1261 }
1262
1263 int compress_send_queued_data(CompressParam *param)
1264 {
1265 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1266 MigrationState *ms = migrate_get_current();
1267 QEMUFile *file = ms->to_dst_file;
1268 int len = 0;
1269
1270 RAMBlock *block = param->block;
1271 ram_addr_t offset = param->offset;
1272
1273 if (param->result == RES_NONE) {
1274 return 0;
1275 }
1276
1277 assert(block == pss->last_sent_block);
1278
1279 if (param->result == RES_ZEROPAGE) {
1280 assert(qemu_file_buffer_empty(param->file));
1281 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1282 qemu_put_byte(file, 0);
1283 len += 1;
1284 ram_release_page(block->idstr, offset);
1285 } else if (param->result == RES_COMPRESS) {
1286 assert(!qemu_file_buffer_empty(param->file));
1287 len += save_page_header(pss, file, block,
1288 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1289 len += qemu_put_qemu_file(file, param->file);
1290 } else {
1291 abort();
1292 }
1293
1294 update_compress_thread_counts(param, len);
1295
1296 return len;
1297 }
1298
1299 #define PAGE_ALL_CLEAN 0
1300 #define PAGE_TRY_AGAIN 1
1301 #define PAGE_DIRTY_FOUND 2
1302 /**
1303 * find_dirty_block: find the next dirty page and update any state
1304 * associated with the search process.
1305 *
1306 * Returns:
1307 * <0: An error happened
1308 * PAGE_ALL_CLEAN: no dirty page found, give up
1309 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1310 * PAGE_DIRTY_FOUND: dirty page found
1311 *
1312 * @rs: current RAM state
1313 * @pss: data about the state of the current dirty page scan
1314 * @again: set to false if the search has scanned the whole of RAM
1315 */
1316 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1317 {
1318 /* Update pss->page for the next dirty bit in ramblock */
1319 pss_find_next_dirty(pss);
1320
1321 if (pss->complete_round && pss->block == rs->last_seen_block &&
1322 pss->page >= rs->last_page) {
1323 /*
1324 * We've been once around the RAM and haven't found anything.
1325 * Give up.
1326 */
1327 return PAGE_ALL_CLEAN;
1328 }
1329 if (!offset_in_ramblock(pss->block,
1330 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1331 /* Didn't find anything in this RAM Block */
1332 pss->page = 0;
1333 pss->block = QLIST_NEXT_RCU(pss->block, next);
1334 if (!pss->block) {
1335 if (migrate_multifd() &&
1336 !migrate_multifd_flush_after_each_section()) {
1337 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1338 int ret = multifd_send_sync_main();
1339 if (ret < 0) {
1340 return ret;
1341 }
1342 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1343 qemu_fflush(f);
1344 }
1345 /*
1346 * If memory migration starts over, we will meet a dirtied page
1347 * which may still exists in compression threads's ring, so we
1348 * should flush the compressed data to make sure the new page
1349 * is not overwritten by the old one in the destination.
1350 *
1351 * Also If xbzrle is on, stop using the data compression at this
1352 * point. In theory, xbzrle can do better than compression.
1353 */
1354 compress_flush_data();
1355
1356 /* Hit the end of the list */
1357 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1358 /* Flag that we've looped */
1359 pss->complete_round = true;
1360 /* After the first round, enable XBZRLE. */
1361 if (migrate_xbzrle()) {
1362 rs->xbzrle_started = true;
1363 }
1364 }
1365 /* Didn't find anything this time, but try again on the new block */
1366 return PAGE_TRY_AGAIN;
1367 } else {
1368 /* We've found something */
1369 return PAGE_DIRTY_FOUND;
1370 }
1371 }
1372
1373 /**
1374 * unqueue_page: gets a page of the queue
1375 *
1376 * Helper for 'get_queued_page' - gets a page off the queue
1377 *
1378 * Returns the block of the page (or NULL if none available)
1379 *
1380 * @rs: current RAM state
1381 * @offset: used to return the offset within the RAMBlock
1382 */
1383 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1384 {
1385 struct RAMSrcPageRequest *entry;
1386 RAMBlock *block = NULL;
1387
1388 if (!postcopy_has_request(rs)) {
1389 return NULL;
1390 }
1391
1392 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1393
1394 /*
1395 * This should _never_ change even after we take the lock, because no one
1396 * should be taking anything off the request list other than us.
1397 */
1398 assert(postcopy_has_request(rs));
1399
1400 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1401 block = entry->rb;
1402 *offset = entry->offset;
1403
1404 if (entry->len > TARGET_PAGE_SIZE) {
1405 entry->len -= TARGET_PAGE_SIZE;
1406 entry->offset += TARGET_PAGE_SIZE;
1407 } else {
1408 memory_region_unref(block->mr);
1409 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1410 g_free(entry);
1411 migration_consume_urgent_request();
1412 }
1413
1414 return block;
1415 }
1416
1417 #if defined(__linux__)
1418 /**
1419 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1420 * is found, return RAM block pointer and page offset
1421 *
1422 * Returns pointer to the RAMBlock containing faulting page,
1423 * NULL if no write faults are pending
1424 *
1425 * @rs: current RAM state
1426 * @offset: page offset from the beginning of the block
1427 */
1428 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1429 {
1430 struct uffd_msg uffd_msg;
1431 void *page_address;
1432 RAMBlock *block;
1433 int res;
1434
1435 if (!migrate_background_snapshot()) {
1436 return NULL;
1437 }
1438
1439 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1440 if (res <= 0) {
1441 return NULL;
1442 }
1443
1444 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1445 block = qemu_ram_block_from_host(page_address, false, offset);
1446 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1447 return block;
1448 }
1449
1450 /**
1451 * ram_save_release_protection: release UFFD write protection after
1452 * a range of pages has been saved
1453 *
1454 * @rs: current RAM state
1455 * @pss: page-search-status structure
1456 * @start_page: index of the first page in the range relative to pss->block
1457 *
1458 * Returns 0 on success, negative value in case of an error
1459 */
1460 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1461 unsigned long start_page)
1462 {
1463 int res = 0;
1464
1465 /* Check if page is from UFFD-managed region. */
1466 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1467 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1468 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1469
1470 /* Flush async buffers before un-protect. */
1471 qemu_fflush(pss->pss_channel);
1472 /* Un-protect memory range. */
1473 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1474 false, false);
1475 }
1476
1477 return res;
1478 }
1479
1480 /* ram_write_tracking_available: check if kernel supports required UFFD features
1481 *
1482 * Returns true if supports, false otherwise
1483 */
1484 bool ram_write_tracking_available(void)
1485 {
1486 uint64_t uffd_features;
1487 int res;
1488
1489 res = uffd_query_features(&uffd_features);
1490 return (res == 0 &&
1491 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1492 }
1493
1494 /* ram_write_tracking_compatible: check if guest configuration is
1495 * compatible with 'write-tracking'
1496 *
1497 * Returns true if compatible, false otherwise
1498 */
1499 bool ram_write_tracking_compatible(void)
1500 {
1501 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1502 int uffd_fd;
1503 RAMBlock *block;
1504 bool ret = false;
1505
1506 /* Open UFFD file descriptor */
1507 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1508 if (uffd_fd < 0) {
1509 return false;
1510 }
1511
1512 RCU_READ_LOCK_GUARD();
1513
1514 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1515 uint64_t uffd_ioctls;
1516
1517 /* Nothing to do with read-only and MMIO-writable regions */
1518 if (block->mr->readonly || block->mr->rom_device) {
1519 continue;
1520 }
1521 /* Try to register block memory via UFFD-IO to track writes */
1522 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1523 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1524 goto out;
1525 }
1526 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1527 goto out;
1528 }
1529 }
1530 ret = true;
1531
1532 out:
1533 uffd_close_fd(uffd_fd);
1534 return ret;
1535 }
1536
1537 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1538 ram_addr_t size)
1539 {
1540 const ram_addr_t end = offset + size;
1541
1542 /*
1543 * We read one byte of each page; this will preallocate page tables if
1544 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1545 * where no page was populated yet. This might require adaption when
1546 * supporting other mappings, like shmem.
1547 */
1548 for (; offset < end; offset += block->page_size) {
1549 char tmp = *((char *)block->host + offset);
1550
1551 /* Don't optimize the read out */
1552 asm volatile("" : "+r" (tmp));
1553 }
1554 }
1555
1556 static inline int populate_read_section(MemoryRegionSection *section,
1557 void *opaque)
1558 {
1559 const hwaddr size = int128_get64(section->size);
1560 hwaddr offset = section->offset_within_region;
1561 RAMBlock *block = section->mr->ram_block;
1562
1563 populate_read_range(block, offset, size);
1564 return 0;
1565 }
1566
1567 /*
1568 * ram_block_populate_read: preallocate page tables and populate pages in the
1569 * RAM block by reading a byte of each page.
1570 *
1571 * Since it's solely used for userfault_fd WP feature, here we just
1572 * hardcode page size to qemu_real_host_page_size.
1573 *
1574 * @block: RAM block to populate
1575 */
1576 static void ram_block_populate_read(RAMBlock *rb)
1577 {
1578 /*
1579 * Skip populating all pages that fall into a discarded range as managed by
1580 * a RamDiscardManager responsible for the mapped memory region of the
1581 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1582 * must not get populated automatically. We don't have to track
1583 * modifications via userfaultfd WP reliably, because these pages will
1584 * not be part of the migration stream either way -- see
1585 * ramblock_dirty_bitmap_exclude_discarded_pages().
1586 *
1587 * Note: The result is only stable while migrating (precopy/postcopy).
1588 */
1589 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1590 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1591 MemoryRegionSection section = {
1592 .mr = rb->mr,
1593 .offset_within_region = 0,
1594 .size = rb->mr->size,
1595 };
1596
1597 ram_discard_manager_replay_populated(rdm, &section,
1598 populate_read_section, NULL);
1599 } else {
1600 populate_read_range(rb, 0, rb->used_length);
1601 }
1602 }
1603
1604 /*
1605 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1606 */
1607 void ram_write_tracking_prepare(void)
1608 {
1609 RAMBlock *block;
1610
1611 RCU_READ_LOCK_GUARD();
1612
1613 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1614 /* Nothing to do with read-only and MMIO-writable regions */
1615 if (block->mr->readonly || block->mr->rom_device) {
1616 continue;
1617 }
1618
1619 /*
1620 * Populate pages of the RAM block before enabling userfault_fd
1621 * write protection.
1622 *
1623 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1624 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1625 * pages with pte_none() entries in page table.
1626 */
1627 ram_block_populate_read(block);
1628 }
1629 }
1630
1631 static inline int uffd_protect_section(MemoryRegionSection *section,
1632 void *opaque)
1633 {
1634 const hwaddr size = int128_get64(section->size);
1635 const hwaddr offset = section->offset_within_region;
1636 RAMBlock *rb = section->mr->ram_block;
1637 int uffd_fd = (uintptr_t)opaque;
1638
1639 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1640 false);
1641 }
1642
1643 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1644 {
1645 assert(rb->flags & RAM_UF_WRITEPROTECT);
1646
1647 /* See ram_block_populate_read() */
1648 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1649 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1650 MemoryRegionSection section = {
1651 .mr = rb->mr,
1652 .offset_within_region = 0,
1653 .size = rb->mr->size,
1654 };
1655
1656 return ram_discard_manager_replay_populated(rdm, &section,
1657 uffd_protect_section,
1658 (void *)(uintptr_t)uffd_fd);
1659 }
1660 return uffd_change_protection(uffd_fd, rb->host,
1661 rb->used_length, true, false);
1662 }
1663
1664 /*
1665 * ram_write_tracking_start: start UFFD-WP memory tracking
1666 *
1667 * Returns 0 for success or negative value in case of error
1668 */
1669 int ram_write_tracking_start(void)
1670 {
1671 int uffd_fd;
1672 RAMState *rs = ram_state;
1673 RAMBlock *block;
1674
1675 /* Open UFFD file descriptor */
1676 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1677 if (uffd_fd < 0) {
1678 return uffd_fd;
1679 }
1680 rs->uffdio_fd = uffd_fd;
1681
1682 RCU_READ_LOCK_GUARD();
1683
1684 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1685 /* Nothing to do with read-only and MMIO-writable regions */
1686 if (block->mr->readonly || block->mr->rom_device) {
1687 continue;
1688 }
1689
1690 /* Register block memory with UFFD to track writes */
1691 if (uffd_register_memory(rs->uffdio_fd, block->host,
1692 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1693 goto fail;
1694 }
1695 block->flags |= RAM_UF_WRITEPROTECT;
1696 memory_region_ref(block->mr);
1697
1698 /* Apply UFFD write protection to the block memory range */
1699 if (ram_block_uffd_protect(block, uffd_fd)) {
1700 goto fail;
1701 }
1702
1703 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1704 block->host, block->max_length);
1705 }
1706
1707 return 0;
1708
1709 fail:
1710 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1711
1712 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1713 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1714 continue;
1715 }
1716 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1717 /* Cleanup flags and remove reference */
1718 block->flags &= ~RAM_UF_WRITEPROTECT;
1719 memory_region_unref(block->mr);
1720 }
1721
1722 uffd_close_fd(uffd_fd);
1723 rs->uffdio_fd = -1;
1724 return -1;
1725 }
1726
1727 /**
1728 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1729 */
1730 void ram_write_tracking_stop(void)
1731 {
1732 RAMState *rs = ram_state;
1733 RAMBlock *block;
1734
1735 RCU_READ_LOCK_GUARD();
1736
1737 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1738 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1739 continue;
1740 }
1741 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1742
1743 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1744 block->host, block->max_length);
1745
1746 /* Cleanup flags and remove reference */
1747 block->flags &= ~RAM_UF_WRITEPROTECT;
1748 memory_region_unref(block->mr);
1749 }
1750
1751 /* Finally close UFFD file descriptor */
1752 uffd_close_fd(rs->uffdio_fd);
1753 rs->uffdio_fd = -1;
1754 }
1755
1756 #else
1757 /* No target OS support, stubs just fail or ignore */
1758
1759 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1760 {
1761 (void) rs;
1762 (void) offset;
1763
1764 return NULL;
1765 }
1766
1767 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1768 unsigned long start_page)
1769 {
1770 (void) rs;
1771 (void) pss;
1772 (void) start_page;
1773
1774 return 0;
1775 }
1776
1777 bool ram_write_tracking_available(void)
1778 {
1779 return false;
1780 }
1781
1782 bool ram_write_tracking_compatible(void)
1783 {
1784 assert(0);
1785 return false;
1786 }
1787
1788 int ram_write_tracking_start(void)
1789 {
1790 assert(0);
1791 return -1;
1792 }
1793
1794 void ram_write_tracking_stop(void)
1795 {
1796 assert(0);
1797 }
1798 #endif /* defined(__linux__) */
1799
1800 /**
1801 * get_queued_page: unqueue a page from the postcopy requests
1802 *
1803 * Skips pages that are already sent (!dirty)
1804 *
1805 * Returns true if a queued page is found
1806 *
1807 * @rs: current RAM state
1808 * @pss: data about the state of the current dirty page scan
1809 */
1810 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1811 {
1812 RAMBlock *block;
1813 ram_addr_t offset;
1814 bool dirty;
1815
1816 do {
1817 block = unqueue_page(rs, &offset);
1818 /*
1819 * We're sending this page, and since it's postcopy nothing else
1820 * will dirty it, and we must make sure it doesn't get sent again
1821 * even if this queue request was received after the background
1822 * search already sent it.
1823 */
1824 if (block) {
1825 unsigned long page;
1826
1827 page = offset >> TARGET_PAGE_BITS;
1828 dirty = test_bit(page, block->bmap);
1829 if (!dirty) {
1830 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1831 page);
1832 } else {
1833 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1834 }
1835 }
1836
1837 } while (block && !dirty);
1838
1839 if (!block) {
1840 /*
1841 * Poll write faults too if background snapshot is enabled; that's
1842 * when we have vcpus got blocked by the write protected pages.
1843 */
1844 block = poll_fault_page(rs, &offset);
1845 }
1846
1847 if (block) {
1848 /*
1849 * We want the background search to continue from the queued page
1850 * since the guest is likely to want other pages near to the page
1851 * it just requested.
1852 */
1853 pss->block = block;
1854 pss->page = offset >> TARGET_PAGE_BITS;
1855
1856 /*
1857 * This unqueued page would break the "one round" check, even is
1858 * really rare.
1859 */
1860 pss->complete_round = false;
1861 }
1862
1863 return !!block;
1864 }
1865
1866 /**
1867 * migration_page_queue_free: drop any remaining pages in the ram
1868 * request queue
1869 *
1870 * It should be empty at the end anyway, but in error cases there may
1871 * be some left. in case that there is any page left, we drop it.
1872 *
1873 */
1874 static void migration_page_queue_free(RAMState *rs)
1875 {
1876 struct RAMSrcPageRequest *mspr, *next_mspr;
1877 /* This queue generally should be empty - but in the case of a failed
1878 * migration might have some droppings in.
1879 */
1880 RCU_READ_LOCK_GUARD();
1881 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1882 memory_region_unref(mspr->rb->mr);
1883 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1884 g_free(mspr);
1885 }
1886 }
1887
1888 /**
1889 * ram_save_queue_pages: queue the page for transmission
1890 *
1891 * A request from postcopy destination for example.
1892 *
1893 * Returns zero on success or negative on error
1894 *
1895 * @rbname: Name of the RAMBLock of the request. NULL means the
1896 * same that last one.
1897 * @start: starting address from the start of the RAMBlock
1898 * @len: length (in bytes) to send
1899 */
1900 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1901 Error **errp)
1902 {
1903 RAMBlock *ramblock;
1904 RAMState *rs = ram_state;
1905
1906 stat64_add(&mig_stats.postcopy_requests, 1);
1907 RCU_READ_LOCK_GUARD();
1908
1909 if (!rbname) {
1910 /* Reuse last RAMBlock */
1911 ramblock = rs->last_req_rb;
1912
1913 if (!ramblock) {
1914 /*
1915 * Shouldn't happen, we can't reuse the last RAMBlock if
1916 * it's the 1st request.
1917 */
1918 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1919 return -1;
1920 }
1921 } else {
1922 ramblock = qemu_ram_block_by_name(rbname);
1923
1924 if (!ramblock) {
1925 /* We shouldn't be asked for a non-existent RAMBlock */
1926 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1927 return -1;
1928 }
1929 rs->last_req_rb = ramblock;
1930 }
1931 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1932 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1933 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1934 "start=" RAM_ADDR_FMT " len="
1935 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1936 start, len, ramblock->used_length);
1937 return -1;
1938 }
1939
1940 /*
1941 * When with postcopy preempt, we send back the page directly in the
1942 * rp-return thread.
1943 */
1944 if (postcopy_preempt_active()) {
1945 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1946 size_t page_size = qemu_ram_pagesize(ramblock);
1947 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1948 int ret = 0;
1949
1950 qemu_mutex_lock(&rs->bitmap_mutex);
1951
1952 pss_init(pss, ramblock, page_start);
1953 /*
1954 * Always use the preempt channel, and make sure it's there. It's
1955 * safe to access without lock, because when rp-thread is running
1956 * we should be the only one who operates on the qemufile
1957 */
1958 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1959 assert(pss->pss_channel);
1960
1961 /*
1962 * It must be either one or multiple of host page size. Just
1963 * assert; if something wrong we're mostly split brain anyway.
1964 */
1965 assert(len % page_size == 0);
1966 while (len) {
1967 if (ram_save_host_page_urgent(pss)) {
1968 error_setg(errp, "ram_save_host_page_urgent() failed: "
1969 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1970 ramblock->idstr, start);
1971 ret = -1;
1972 break;
1973 }
1974 /*
1975 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1976 * will automatically be moved and point to the next host page
1977 * we're going to send, so no need to update here.
1978 *
1979 * Normally QEMU never sends >1 host page in requests, so
1980 * logically we don't even need that as the loop should only
1981 * run once, but just to be consistent.
1982 */
1983 len -= page_size;
1984 };
1985 qemu_mutex_unlock(&rs->bitmap_mutex);
1986
1987 return ret;
1988 }
1989
1990 struct RAMSrcPageRequest *new_entry =
1991 g_new0(struct RAMSrcPageRequest, 1);
1992 new_entry->rb = ramblock;
1993 new_entry->offset = start;
1994 new_entry->len = len;
1995
1996 memory_region_ref(ramblock->mr);
1997 qemu_mutex_lock(&rs->src_page_req_mutex);
1998 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1999 migration_make_urgent_request();
2000 qemu_mutex_unlock(&rs->src_page_req_mutex);
2001
2002 return 0;
2003 }
2004
2005 /*
2006 * try to compress the page before posting it out, return true if the page
2007 * has been properly handled by compression, otherwise needs other
2008 * paths to handle it
2009 */
2010 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2011 ram_addr_t offset)
2012 {
2013 if (!migrate_compress()) {
2014 return false;
2015 }
2016
2017 /*
2018 * When starting the process of a new block, the first page of
2019 * the block should be sent out before other pages in the same
2020 * block, and all the pages in last block should have been sent
2021 * out, keeping this order is important, because the 'cont' flag
2022 * is used to avoid resending the block name.
2023 *
2024 * We post the fist page as normal page as compression will take
2025 * much CPU resource.
2026 */
2027 if (pss->block != pss->last_sent_block) {
2028 compress_flush_data();
2029 return false;
2030 }
2031
2032 return compress_page_with_multi_thread(pss->block, offset,
2033 compress_send_queued_data);
2034 }
2035
2036 /**
2037 * ram_save_target_page_legacy: save one target page
2038 *
2039 * Returns the number of pages written
2040 *
2041 * @rs: current RAM state
2042 * @pss: data about the page we want to send
2043 */
2044 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2045 {
2046 RAMBlock *block = pss->block;
2047 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2048 int res;
2049
2050 if (control_save_page(pss, offset, &res)) {
2051 return res;
2052 }
2053
2054 if (save_compress_page(rs, pss, offset)) {
2055 return 1;
2056 }
2057
2058 if (save_zero_page(rs, pss, offset)) {
2059 return 1;
2060 }
2061
2062 /*
2063 * Do not use multifd in postcopy as one whole host page should be
2064 * placed. Meanwhile postcopy requires atomic update of pages, so even
2065 * if host page size == guest page size the dest guest during run may
2066 * still see partially copied pages which is data corruption.
2067 */
2068 if (migrate_multifd() && !migration_in_postcopy()) {
2069 return ram_save_multifd_page(block, offset);
2070 }
2071
2072 return ram_save_page(rs, pss);
2073 }
2074
2075 /* Should be called before sending a host page */
2076 static void pss_host_page_prepare(PageSearchStatus *pss)
2077 {
2078 /* How many guest pages are there in one host page? */
2079 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2080
2081 pss->host_page_sending = true;
2082 if (guest_pfns <= 1) {
2083 /*
2084 * This covers both when guest psize == host psize, or when guest
2085 * has larger psize than the host (guest_pfns==0).
2086 *
2087 * For the latter, we always send one whole guest page per
2088 * iteration of the host page (example: an Alpha VM on x86 host
2089 * will have guest psize 8K while host psize 4K).
2090 */
2091 pss->host_page_start = pss->page;
2092 pss->host_page_end = pss->page + 1;
2093 } else {
2094 /*
2095 * The host page spans over multiple guest pages, we send them
2096 * within the same host page iteration.
2097 */
2098 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2099 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2100 }
2101 }
2102
2103 /*
2104 * Whether the page pointed by PSS is within the host page being sent.
2105 * Must be called after a previous pss_host_page_prepare().
2106 */
2107 static bool pss_within_range(PageSearchStatus *pss)
2108 {
2109 ram_addr_t ram_addr;
2110
2111 assert(pss->host_page_sending);
2112
2113 /* Over host-page boundary? */
2114 if (pss->page >= pss->host_page_end) {
2115 return false;
2116 }
2117
2118 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2119
2120 return offset_in_ramblock(pss->block, ram_addr);
2121 }
2122
2123 static void pss_host_page_finish(PageSearchStatus *pss)
2124 {
2125 pss->host_page_sending = false;
2126 /* This is not needed, but just to reset it */
2127 pss->host_page_start = pss->host_page_end = 0;
2128 }
2129
2130 /*
2131 * Send an urgent host page specified by `pss'. Need to be called with
2132 * bitmap_mutex held.
2133 *
2134 * Returns 0 if save host page succeeded, false otherwise.
2135 */
2136 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2137 {
2138 bool page_dirty, sent = false;
2139 RAMState *rs = ram_state;
2140 int ret = 0;
2141
2142 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2143 pss_host_page_prepare(pss);
2144
2145 /*
2146 * If precopy is sending the same page, let it be done in precopy, or
2147 * we could send the same page in two channels and none of them will
2148 * receive the whole page.
2149 */
2150 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2151 trace_postcopy_preempt_hit(pss->block->idstr,
2152 pss->page << TARGET_PAGE_BITS);
2153 return 0;
2154 }
2155
2156 do {
2157 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2158
2159 if (page_dirty) {
2160 /* Be strict to return code; it must be 1, or what else? */
2161 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2162 error_report_once("%s: ram_save_target_page failed", __func__);
2163 ret = -1;
2164 goto out;
2165 }
2166 sent = true;
2167 }
2168 pss_find_next_dirty(pss);
2169 } while (pss_within_range(pss));
2170 out:
2171 pss_host_page_finish(pss);
2172 /* For urgent requests, flush immediately if sent */
2173 if (sent) {
2174 qemu_fflush(pss->pss_channel);
2175 }
2176 return ret;
2177 }
2178
2179 /**
2180 * ram_save_host_page: save a whole host page
2181 *
2182 * Starting at *offset send pages up to the end of the current host
2183 * page. It's valid for the initial offset to point into the middle of
2184 * a host page in which case the remainder of the hostpage is sent.
2185 * Only dirty target pages are sent. Note that the host page size may
2186 * be a huge page for this block.
2187 *
2188 * The saving stops at the boundary of the used_length of the block
2189 * if the RAMBlock isn't a multiple of the host page size.
2190 *
2191 * The caller must be with ram_state.bitmap_mutex held to call this
2192 * function. Note that this function can temporarily release the lock, but
2193 * when the function is returned it'll make sure the lock is still held.
2194 *
2195 * Returns the number of pages written or negative on error
2196 *
2197 * @rs: current RAM state
2198 * @pss: data about the page we want to send
2199 */
2200 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2201 {
2202 bool page_dirty, preempt_active = postcopy_preempt_active();
2203 int tmppages, pages = 0;
2204 size_t pagesize_bits =
2205 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2206 unsigned long start_page = pss->page;
2207 int res;
2208
2209 if (migrate_ram_is_ignored(pss->block)) {
2210 error_report("block %s should not be migrated !", pss->block->idstr);
2211 return 0;
2212 }
2213
2214 /* Update host page boundary information */
2215 pss_host_page_prepare(pss);
2216
2217 do {
2218 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2219
2220 /* Check the pages is dirty and if it is send it */
2221 if (page_dirty) {
2222 /*
2223 * Properly yield the lock only in postcopy preempt mode
2224 * because both migration thread and rp-return thread can
2225 * operate on the bitmaps.
2226 */
2227 if (preempt_active) {
2228 qemu_mutex_unlock(&rs->bitmap_mutex);
2229 }
2230 tmppages = migration_ops->ram_save_target_page(rs, pss);
2231 if (tmppages >= 0) {
2232 pages += tmppages;
2233 /*
2234 * Allow rate limiting to happen in the middle of huge pages if
2235 * something is sent in the current iteration.
2236 */
2237 if (pagesize_bits > 1 && tmppages > 0) {
2238 migration_rate_limit();
2239 }
2240 }
2241 if (preempt_active) {
2242 qemu_mutex_lock(&rs->bitmap_mutex);
2243 }
2244 } else {
2245 tmppages = 0;
2246 }
2247
2248 if (tmppages < 0) {
2249 pss_host_page_finish(pss);
2250 return tmppages;
2251 }
2252
2253 pss_find_next_dirty(pss);
2254 } while (pss_within_range(pss));
2255
2256 pss_host_page_finish(pss);
2257
2258 res = ram_save_release_protection(rs, pss, start_page);
2259 return (res < 0 ? res : pages);
2260 }
2261
2262 /**
2263 * ram_find_and_save_block: finds a dirty page and sends it to f
2264 *
2265 * Called within an RCU critical section.
2266 *
2267 * Returns the number of pages written where zero means no dirty pages,
2268 * or negative on error
2269 *
2270 * @rs: current RAM state
2271 *
2272 * On systems where host-page-size > target-page-size it will send all the
2273 * pages in a host page that are dirty.
2274 */
2275 static int ram_find_and_save_block(RAMState *rs)
2276 {
2277 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2278 int pages = 0;
2279
2280 /* No dirty page as there is zero RAM */
2281 if (!rs->ram_bytes_total) {
2282 return pages;
2283 }
2284
2285 /*
2286 * Always keep last_seen_block/last_page valid during this procedure,
2287 * because find_dirty_block() relies on these values (e.g., we compare
2288 * last_seen_block with pss.block to see whether we searched all the
2289 * ramblocks) to detect the completion of migration. Having NULL value
2290 * of last_seen_block can conditionally cause below loop to run forever.
2291 */
2292 if (!rs->last_seen_block) {
2293 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2294 rs->last_page = 0;
2295 }
2296
2297 pss_init(pss, rs->last_seen_block, rs->last_page);
2298
2299 while (true){
2300 if (!get_queued_page(rs, pss)) {
2301 /* priority queue empty, so just search for something dirty */
2302 int res = find_dirty_block(rs, pss);
2303 if (res != PAGE_DIRTY_FOUND) {
2304 if (res == PAGE_ALL_CLEAN) {
2305 break;
2306 } else if (res == PAGE_TRY_AGAIN) {
2307 continue;
2308 } else if (res < 0) {
2309 pages = res;
2310 break;
2311 }
2312 }
2313 }
2314 pages = ram_save_host_page(rs, pss);
2315 if (pages) {
2316 break;
2317 }
2318 }
2319
2320 rs->last_seen_block = pss->block;
2321 rs->last_page = pss->page;
2322
2323 return pages;
2324 }
2325
2326 static uint64_t ram_bytes_total_with_ignored(void)
2327 {
2328 RAMBlock *block;
2329 uint64_t total = 0;
2330
2331 RCU_READ_LOCK_GUARD();
2332
2333 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2334 total += block->used_length;
2335 }
2336 return total;
2337 }
2338
2339 uint64_t ram_bytes_total(void)
2340 {
2341 RAMBlock *block;
2342 uint64_t total = 0;
2343
2344 RCU_READ_LOCK_GUARD();
2345
2346 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2347 total += block->used_length;
2348 }
2349 return total;
2350 }
2351
2352 static void xbzrle_load_setup(void)
2353 {
2354 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2355 }
2356
2357 static void xbzrle_load_cleanup(void)
2358 {
2359 g_free(XBZRLE.decoded_buf);
2360 XBZRLE.decoded_buf = NULL;
2361 }
2362
2363 static void ram_state_cleanup(RAMState **rsp)
2364 {
2365 if (*rsp) {
2366 migration_page_queue_free(*rsp);
2367 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2368 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2369 g_free(*rsp);
2370 *rsp = NULL;
2371 }
2372 }
2373
2374 static void xbzrle_cleanup(void)
2375 {
2376 XBZRLE_cache_lock();
2377 if (XBZRLE.cache) {
2378 cache_fini(XBZRLE.cache);
2379 g_free(XBZRLE.encoded_buf);
2380 g_free(XBZRLE.current_buf);
2381 g_free(XBZRLE.zero_target_page);
2382 XBZRLE.cache = NULL;
2383 XBZRLE.encoded_buf = NULL;
2384 XBZRLE.current_buf = NULL;
2385 XBZRLE.zero_target_page = NULL;
2386 }
2387 XBZRLE_cache_unlock();
2388 }
2389
2390 static void ram_save_cleanup(void *opaque)
2391 {
2392 RAMState **rsp = opaque;
2393 RAMBlock *block;
2394
2395 /* We don't use dirty log with background snapshots */
2396 if (!migrate_background_snapshot()) {
2397 /* caller have hold BQL or is in a bh, so there is
2398 * no writing race against the migration bitmap
2399 */
2400 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2401 /*
2402 * do not stop dirty log without starting it, since
2403 * memory_global_dirty_log_stop will assert that
2404 * memory_global_dirty_log_start/stop used in pairs
2405 */
2406 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2407 }
2408 }
2409
2410 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2411 g_free(block->clear_bmap);
2412 block->clear_bmap = NULL;
2413 g_free(block->bmap);
2414 block->bmap = NULL;
2415 }
2416
2417 xbzrle_cleanup();
2418 compress_threads_save_cleanup();
2419 ram_state_cleanup(rsp);
2420 g_free(migration_ops);
2421 migration_ops = NULL;
2422 }
2423
2424 static void ram_state_reset(RAMState *rs)
2425 {
2426 int i;
2427
2428 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2429 rs->pss[i].last_sent_block = NULL;
2430 }
2431
2432 rs->last_seen_block = NULL;
2433 rs->last_page = 0;
2434 rs->last_version = ram_list.version;
2435 rs->xbzrle_started = false;
2436 }
2437
2438 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2439
2440 /* **** functions for postcopy ***** */
2441
2442 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2443 {
2444 struct RAMBlock *block;
2445
2446 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2447 unsigned long *bitmap = block->bmap;
2448 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2449 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2450
2451 while (run_start < range) {
2452 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2453 ram_discard_range(block->idstr,
2454 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2455 ((ram_addr_t)(run_end - run_start))
2456 << TARGET_PAGE_BITS);
2457 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2458 }
2459 }
2460 }
2461
2462 /**
2463 * postcopy_send_discard_bm_ram: discard a RAMBlock
2464 *
2465 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2466 *
2467 * @ms: current migration state
2468 * @block: RAMBlock to discard
2469 */
2470 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2471 {
2472 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2473 unsigned long current;
2474 unsigned long *bitmap = block->bmap;
2475
2476 for (current = 0; current < end; ) {
2477 unsigned long one = find_next_bit(bitmap, end, current);
2478 unsigned long zero, discard_length;
2479
2480 if (one >= end) {
2481 break;
2482 }
2483
2484 zero = find_next_zero_bit(bitmap, end, one + 1);
2485
2486 if (zero >= end) {
2487 discard_length = end - one;
2488 } else {
2489 discard_length = zero - one;
2490 }
2491 postcopy_discard_send_range(ms, one, discard_length);
2492 current = one + discard_length;
2493 }
2494 }
2495
2496 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2497
2498 /**
2499 * postcopy_each_ram_send_discard: discard all RAMBlocks
2500 *
2501 * Utility for the outgoing postcopy code.
2502 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2503 * passing it bitmap indexes and name.
2504 * (qemu_ram_foreach_block ends up passing unscaled lengths
2505 * which would mean postcopy code would have to deal with target page)
2506 *
2507 * @ms: current migration state
2508 */
2509 static void postcopy_each_ram_send_discard(MigrationState *ms)
2510 {
2511 struct RAMBlock *block;
2512
2513 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2514 postcopy_discard_send_init(ms, block->idstr);
2515
2516 /*
2517 * Deal with TPS != HPS and huge pages. It discard any partially sent
2518 * host-page size chunks, mark any partially dirty host-page size
2519 * chunks as all dirty. In this case the host-page is the host-page
2520 * for the particular RAMBlock, i.e. it might be a huge page.
2521 */
2522 postcopy_chunk_hostpages_pass(ms, block);
2523
2524 /*
2525 * Postcopy sends chunks of bitmap over the wire, but it
2526 * just needs indexes at this point, avoids it having
2527 * target page specific code.
2528 */
2529 postcopy_send_discard_bm_ram(ms, block);
2530 postcopy_discard_send_finish(ms);
2531 }
2532 }
2533
2534 /**
2535 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2536 *
2537 * Helper for postcopy_chunk_hostpages; it's called twice to
2538 * canonicalize the two bitmaps, that are similar, but one is
2539 * inverted.
2540 *
2541 * Postcopy requires that all target pages in a hostpage are dirty or
2542 * clean, not a mix. This function canonicalizes the bitmaps.
2543 *
2544 * @ms: current migration state
2545 * @block: block that contains the page we want to canonicalize
2546 */
2547 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2548 {
2549 RAMState *rs = ram_state;
2550 unsigned long *bitmap = block->bmap;
2551 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2552 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2553 unsigned long run_start;
2554
2555 if (block->page_size == TARGET_PAGE_SIZE) {
2556 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2557 return;
2558 }
2559
2560 /* Find a dirty page */
2561 run_start = find_next_bit(bitmap, pages, 0);
2562
2563 while (run_start < pages) {
2564
2565 /*
2566 * If the start of this run of pages is in the middle of a host
2567 * page, then we need to fixup this host page.
2568 */
2569 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2570 /* Find the end of this run */
2571 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2572 /*
2573 * If the end isn't at the start of a host page, then the
2574 * run doesn't finish at the end of a host page
2575 * and we need to discard.
2576 */
2577 }
2578
2579 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2580 unsigned long page;
2581 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2582 host_ratio);
2583 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2584
2585 /* Clean up the bitmap */
2586 for (page = fixup_start_addr;
2587 page < fixup_start_addr + host_ratio; page++) {
2588 /*
2589 * Remark them as dirty, updating the count for any pages
2590 * that weren't previously dirty.
2591 */
2592 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2593 }
2594 }
2595
2596 /* Find the next dirty page for the next iteration */
2597 run_start = find_next_bit(bitmap, pages, run_start);
2598 }
2599 }
2600
2601 /**
2602 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2603 *
2604 * Transmit the set of pages to be discarded after precopy to the target
2605 * these are pages that:
2606 * a) Have been previously transmitted but are now dirty again
2607 * b) Pages that have never been transmitted, this ensures that
2608 * any pages on the destination that have been mapped by background
2609 * tasks get discarded (transparent huge pages is the specific concern)
2610 * Hopefully this is pretty sparse
2611 *
2612 * @ms: current migration state
2613 */
2614 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2615 {
2616 RAMState *rs = ram_state;
2617
2618 RCU_READ_LOCK_GUARD();
2619
2620 /* This should be our last sync, the src is now paused */
2621 migration_bitmap_sync(rs, false);
2622
2623 /* Easiest way to make sure we don't resume in the middle of a host-page */
2624 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2625 rs->last_seen_block = NULL;
2626 rs->last_page = 0;
2627
2628 postcopy_each_ram_send_discard(ms);
2629
2630 trace_ram_postcopy_send_discard_bitmap();
2631 }
2632
2633 /**
2634 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2635 *
2636 * Returns zero on success
2637 *
2638 * @rbname: name of the RAMBlock of the request. NULL means the
2639 * same that last one.
2640 * @start: RAMBlock starting page
2641 * @length: RAMBlock size
2642 */
2643 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2644 {
2645 trace_ram_discard_range(rbname, start, length);
2646
2647 RCU_READ_LOCK_GUARD();
2648 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2649
2650 if (!rb) {
2651 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2652 return -1;
2653 }
2654
2655 /*
2656 * On source VM, we don't need to update the received bitmap since
2657 * we don't even have one.
2658 */
2659 if (rb->receivedmap) {
2660 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2661 length >> qemu_target_page_bits());
2662 }
2663
2664 return ram_block_discard_range(rb, start, length);
2665 }
2666
2667 /*
2668 * For every allocation, we will try not to crash the VM if the
2669 * allocation failed.
2670 */
2671 static int xbzrle_init(void)
2672 {
2673 Error *local_err = NULL;
2674
2675 if (!migrate_xbzrle()) {
2676 return 0;
2677 }
2678
2679 XBZRLE_cache_lock();
2680
2681 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2682 if (!XBZRLE.zero_target_page) {
2683 error_report("%s: Error allocating zero page", __func__);
2684 goto err_out;
2685 }
2686
2687 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2688 TARGET_PAGE_SIZE, &local_err);
2689 if (!XBZRLE.cache) {
2690 error_report_err(local_err);
2691 goto free_zero_page;
2692 }
2693
2694 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2695 if (!XBZRLE.encoded_buf) {
2696 error_report("%s: Error allocating encoded_buf", __func__);
2697 goto free_cache;
2698 }
2699
2700 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2701 if (!XBZRLE.current_buf) {
2702 error_report("%s: Error allocating current_buf", __func__);
2703 goto free_encoded_buf;
2704 }
2705
2706 /* We are all good */
2707 XBZRLE_cache_unlock();
2708 return 0;
2709
2710 free_encoded_buf:
2711 g_free(XBZRLE.encoded_buf);
2712 XBZRLE.encoded_buf = NULL;
2713 free_cache:
2714 cache_fini(XBZRLE.cache);
2715 XBZRLE.cache = NULL;
2716 free_zero_page:
2717 g_free(XBZRLE.zero_target_page);
2718 XBZRLE.zero_target_page = NULL;
2719 err_out:
2720 XBZRLE_cache_unlock();
2721 return -ENOMEM;
2722 }
2723
2724 static int ram_state_init(RAMState **rsp)
2725 {
2726 *rsp = g_try_new0(RAMState, 1);
2727
2728 if (!*rsp) {
2729 error_report("%s: Init ramstate fail", __func__);
2730 return -1;
2731 }
2732
2733 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2734 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2735 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2736 (*rsp)->ram_bytes_total = ram_bytes_total();
2737
2738 /*
2739 * Count the total number of pages used by ram blocks not including any
2740 * gaps due to alignment or unplugs.
2741 * This must match with the initial values of dirty bitmap.
2742 */
2743 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2744 ram_state_reset(*rsp);
2745
2746 return 0;
2747 }
2748
2749 static void ram_list_init_bitmaps(void)
2750 {
2751 MigrationState *ms = migrate_get_current();
2752 RAMBlock *block;
2753 unsigned long pages;
2754 uint8_t shift;
2755
2756 /* Skip setting bitmap if there is no RAM */
2757 if (ram_bytes_total()) {
2758 shift = ms->clear_bitmap_shift;
2759 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2760 error_report("clear_bitmap_shift (%u) too big, using "
2761 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2762 shift = CLEAR_BITMAP_SHIFT_MAX;
2763 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2764 error_report("clear_bitmap_shift (%u) too small, using "
2765 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2766 shift = CLEAR_BITMAP_SHIFT_MIN;
2767 }
2768
2769 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2770 pages = block->max_length >> TARGET_PAGE_BITS;
2771 /*
2772 * The initial dirty bitmap for migration must be set with all
2773 * ones to make sure we'll migrate every guest RAM page to
2774 * destination.
2775 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2776 * new migration after a failed migration, ram_list.
2777 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2778 * guest memory.
2779 */
2780 block->bmap = bitmap_new(pages);
2781 bitmap_set(block->bmap, 0, pages);
2782 block->clear_bmap_shift = shift;
2783 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2784 }
2785 }
2786 }
2787
2788 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2789 {
2790 unsigned long pages;
2791 RAMBlock *rb;
2792
2793 RCU_READ_LOCK_GUARD();
2794
2795 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2796 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2797 rs->migration_dirty_pages -= pages;
2798 }
2799 }
2800
2801 static void ram_init_bitmaps(RAMState *rs)
2802 {
2803 qemu_mutex_lock_ramlist();
2804
2805 WITH_RCU_READ_LOCK_GUARD() {
2806 ram_list_init_bitmaps();
2807 /* We don't use dirty log with background snapshots */
2808 if (!migrate_background_snapshot()) {
2809 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2810 migration_bitmap_sync_precopy(rs, false);
2811 }
2812 }
2813 qemu_mutex_unlock_ramlist();
2814
2815 /*
2816 * After an eventual first bitmap sync, fixup the initial bitmap
2817 * containing all 1s to exclude any discarded pages from migration.
2818 */
2819 migration_bitmap_clear_discarded_pages(rs);
2820 }
2821
2822 static int ram_init_all(RAMState **rsp)
2823 {
2824 if (ram_state_init(rsp)) {
2825 return -1;
2826 }
2827
2828 if (xbzrle_init()) {
2829 ram_state_cleanup(rsp);
2830 return -1;
2831 }
2832
2833 ram_init_bitmaps(*rsp);
2834
2835 return 0;
2836 }
2837
2838 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2839 {
2840 RAMBlock *block;
2841 uint64_t pages = 0;
2842
2843 /*
2844 * Postcopy is not using xbzrle/compression, so no need for that.
2845 * Also, since source are already halted, we don't need to care
2846 * about dirty page logging as well.
2847 */
2848
2849 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2850 pages += bitmap_count_one(block->bmap,
2851 block->used_length >> TARGET_PAGE_BITS);
2852 }
2853
2854 /* This may not be aligned with current bitmaps. Recalculate. */
2855 rs->migration_dirty_pages = pages;
2856
2857 ram_state_reset(rs);
2858
2859 /* Update RAMState cache of output QEMUFile */
2860 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2861
2862 trace_ram_state_resume_prepare(pages);
2863 }
2864
2865 /*
2866 * This function clears bits of the free pages reported by the caller from the
2867 * migration dirty bitmap. @addr is the host address corresponding to the
2868 * start of the continuous guest free pages, and @len is the total bytes of
2869 * those pages.
2870 */
2871 void qemu_guest_free_page_hint(void *addr, size_t len)
2872 {
2873 RAMBlock *block;
2874 ram_addr_t offset;
2875 size_t used_len, start, npages;
2876 MigrationState *s = migrate_get_current();
2877
2878 /* This function is currently expected to be used during live migration */
2879 if (!migration_is_setup_or_active(s->state)) {
2880 return;
2881 }
2882
2883 for (; len > 0; len -= used_len, addr += used_len) {
2884 block = qemu_ram_block_from_host(addr, false, &offset);
2885 if (unlikely(!block || offset >= block->used_length)) {
2886 /*
2887 * The implementation might not support RAMBlock resize during
2888 * live migration, but it could happen in theory with future
2889 * updates. So we add a check here to capture that case.
2890 */
2891 error_report_once("%s unexpected error", __func__);
2892 return;
2893 }
2894
2895 if (len <= block->used_length - offset) {
2896 used_len = len;
2897 } else {
2898 used_len = block->used_length - offset;
2899 }
2900
2901 start = offset >> TARGET_PAGE_BITS;
2902 npages = used_len >> TARGET_PAGE_BITS;
2903
2904 qemu_mutex_lock(&ram_state->bitmap_mutex);
2905 /*
2906 * The skipped free pages are equavalent to be sent from clear_bmap's
2907 * perspective, so clear the bits from the memory region bitmap which
2908 * are initially set. Otherwise those skipped pages will be sent in
2909 * the next round after syncing from the memory region bitmap.
2910 */
2911 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2912 ram_state->migration_dirty_pages -=
2913 bitmap_count_one_with_offset(block->bmap, start, npages);
2914 bitmap_clear(block->bmap, start, npages);
2915 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2916 }
2917 }
2918
2919 /*
2920 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2921 * long-running RCU critical section. When rcu-reclaims in the code
2922 * start to become numerous it will be necessary to reduce the
2923 * granularity of these critical sections.
2924 */
2925
2926 /**
2927 * ram_save_setup: Setup RAM for migration
2928 *
2929 * Returns zero to indicate success and negative for error
2930 *
2931 * @f: QEMUFile where to send the data
2932 * @opaque: RAMState pointer
2933 */
2934 static int ram_save_setup(QEMUFile *f, void *opaque)
2935 {
2936 RAMState **rsp = opaque;
2937 RAMBlock *block;
2938 int ret;
2939
2940 if (compress_threads_save_setup()) {
2941 return -1;
2942 }
2943
2944 /* migration has already setup the bitmap, reuse it. */
2945 if (!migration_in_colo_state()) {
2946 if (ram_init_all(rsp) != 0) {
2947 compress_threads_save_cleanup();
2948 return -1;
2949 }
2950 }
2951 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
2952
2953 WITH_RCU_READ_LOCK_GUARD() {
2954 qemu_put_be64(f, ram_bytes_total_with_ignored()
2955 | RAM_SAVE_FLAG_MEM_SIZE);
2956
2957 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2958 qemu_put_byte(f, strlen(block->idstr));
2959 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2960 qemu_put_be64(f, block->used_length);
2961 if (migrate_postcopy_ram() && block->page_size !=
2962 qemu_host_page_size) {
2963 qemu_put_be64(f, block->page_size);
2964 }
2965 if (migrate_ignore_shared()) {
2966 qemu_put_be64(f, block->mr->addr);
2967 }
2968 }
2969 }
2970
2971 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
2972 if (ret < 0) {
2973 qemu_file_set_error(f, ret);
2974 return ret;
2975 }
2976
2977 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
2978 if (ret < 0) {
2979 qemu_file_set_error(f, ret);
2980 return ret;
2981 }
2982
2983 migration_ops = g_malloc0(sizeof(MigrationOps));
2984 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
2985
2986 bql_unlock();
2987 ret = multifd_send_sync_main();
2988 bql_lock();
2989 if (ret < 0) {
2990 return ret;
2991 }
2992
2993 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
2994 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
2995 }
2996
2997 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2998 return qemu_fflush(f);
2999 }
3000
3001 /**
3002 * ram_save_iterate: iterative stage for migration
3003 *
3004 * Returns zero to indicate success and negative for error
3005 *
3006 * @f: QEMUFile where to send the data
3007 * @opaque: RAMState pointer
3008 */
3009 static int ram_save_iterate(QEMUFile *f, void *opaque)
3010 {
3011 RAMState **temp = opaque;
3012 RAMState *rs = *temp;
3013 int ret = 0;
3014 int i;
3015 int64_t t0;
3016 int done = 0;
3017
3018 if (blk_mig_bulk_active()) {
3019 /* Avoid transferring ram during bulk phase of block migration as
3020 * the bulk phase will usually take a long time and transferring
3021 * ram updates during that time is pointless. */
3022 goto out;
3023 }
3024
3025 /*
3026 * We'll take this lock a little bit long, but it's okay for two reasons.
3027 * Firstly, the only possible other thread to take it is who calls
3028 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3029 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3030 * guarantees that we'll at least released it in a regular basis.
3031 */
3032 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3033 WITH_RCU_READ_LOCK_GUARD() {
3034 if (ram_list.version != rs->last_version) {
3035 ram_state_reset(rs);
3036 }
3037
3038 /* Read version before ram_list.blocks */
3039 smp_rmb();
3040
3041 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3042 if (ret < 0) {
3043 qemu_file_set_error(f, ret);
3044 goto out;
3045 }
3046
3047 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3048 i = 0;
3049 while ((ret = migration_rate_exceeded(f)) == 0 ||
3050 postcopy_has_request(rs)) {
3051 int pages;
3052
3053 if (qemu_file_get_error(f)) {
3054 break;
3055 }
3056
3057 pages = ram_find_and_save_block(rs);
3058 /* no more pages to sent */
3059 if (pages == 0) {
3060 done = 1;
3061 break;
3062 }
3063
3064 if (pages < 0) {
3065 qemu_file_set_error(f, pages);
3066 break;
3067 }
3068
3069 rs->target_page_count += pages;
3070
3071 /*
3072 * During postcopy, it is necessary to make sure one whole host
3073 * page is sent in one chunk.
3074 */
3075 if (migrate_postcopy_ram()) {
3076 compress_flush_data();
3077 }
3078
3079 /*
3080 * we want to check in the 1st loop, just in case it was the 1st
3081 * time and we had to sync the dirty bitmap.
3082 * qemu_clock_get_ns() is a bit expensive, so we only check each
3083 * some iterations
3084 */
3085 if ((i & 63) == 0) {
3086 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3087 1000000;
3088 if (t1 > MAX_WAIT) {
3089 trace_ram_save_iterate_big_wait(t1, i);
3090 break;
3091 }
3092 }
3093 i++;
3094 }
3095 }
3096 }
3097
3098 /*
3099 * Must occur before EOS (or any QEMUFile operation)
3100 * because of RDMA protocol.
3101 */
3102 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3103 if (ret < 0) {
3104 qemu_file_set_error(f, ret);
3105 }
3106
3107 out:
3108 if (ret >= 0
3109 && migration_is_setup_or_active(migrate_get_current()->state)) {
3110 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) {
3111 ret = multifd_send_sync_main();
3112 if (ret < 0) {
3113 return ret;
3114 }
3115 }
3116
3117 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3118 ram_transferred_add(8);
3119 ret = qemu_fflush(f);
3120 }
3121 if (ret < 0) {
3122 return ret;
3123 }
3124
3125 return done;
3126 }
3127
3128 /**
3129 * ram_save_complete: function called to send the remaining amount of ram
3130 *
3131 * Returns zero to indicate success or negative on error
3132 *
3133 * Called with the BQL
3134 *
3135 * @f: QEMUFile where to send the data
3136 * @opaque: RAMState pointer
3137 */
3138 static int ram_save_complete(QEMUFile *f, void *opaque)
3139 {
3140 RAMState **temp = opaque;
3141 RAMState *rs = *temp;
3142 int ret = 0;
3143
3144 rs->last_stage = !migration_in_colo_state();
3145
3146 WITH_RCU_READ_LOCK_GUARD() {
3147 if (!migration_in_postcopy()) {
3148 migration_bitmap_sync_precopy(rs, true);
3149 }
3150
3151 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3152 if (ret < 0) {
3153 qemu_file_set_error(f, ret);
3154 return ret;
3155 }
3156
3157 /* try transferring iterative blocks of memory */
3158
3159 /* flush all remaining blocks regardless of rate limiting */
3160 qemu_mutex_lock(&rs->bitmap_mutex);
3161 while (true) {
3162 int pages;
3163
3164 pages = ram_find_and_save_block(rs);
3165 /* no more blocks to sent */
3166 if (pages == 0) {
3167 break;
3168 }
3169 if (pages < 0) {
3170 qemu_mutex_unlock(&rs->bitmap_mutex);
3171 return pages;
3172 }
3173 }
3174 qemu_mutex_unlock(&rs->bitmap_mutex);
3175
3176 compress_flush_data();
3177
3178 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3179 if (ret < 0) {
3180 qemu_file_set_error(f, ret);
3181 return ret;
3182 }
3183 }
3184
3185 ret = multifd_send_sync_main();
3186 if (ret < 0) {
3187 return ret;
3188 }
3189
3190 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3191 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3192 }
3193 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3194 return qemu_fflush(f);
3195 }
3196
3197 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3198 uint64_t *can_postcopy)
3199 {
3200 RAMState **temp = opaque;
3201 RAMState *rs = *temp;
3202
3203 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3204
3205 if (migrate_postcopy_ram()) {
3206 /* We can do postcopy, and all the data is postcopiable */
3207 *can_postcopy += remaining_size;
3208 } else {
3209 *must_precopy += remaining_size;
3210 }
3211 }
3212
3213 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3214 uint64_t *can_postcopy)
3215 {
3216 RAMState **temp = opaque;
3217 RAMState *rs = *temp;
3218 uint64_t remaining_size;
3219
3220 if (!migration_in_postcopy()) {
3221 bql_lock();
3222 WITH_RCU_READ_LOCK_GUARD() {
3223 migration_bitmap_sync_precopy(rs, false);
3224 }
3225 bql_unlock();
3226 }
3227
3228 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3229
3230 if (migrate_postcopy_ram()) {
3231 /* We can do postcopy, and all the data is postcopiable */
3232 *can_postcopy += remaining_size;
3233 } else {
3234 *must_precopy += remaining_size;
3235 }
3236 }
3237
3238 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3239 {
3240 unsigned int xh_len;
3241 int xh_flags;
3242 uint8_t *loaded_data;
3243
3244 /* extract RLE header */
3245 xh_flags = qemu_get_byte(f);
3246 xh_len = qemu_get_be16(f);
3247
3248 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3249 error_report("Failed to load XBZRLE page - wrong compression!");
3250 return -1;
3251 }
3252
3253 if (xh_len > TARGET_PAGE_SIZE) {
3254 error_report("Failed to load XBZRLE page - len overflow!");
3255 return -1;
3256 }
3257 loaded_data = XBZRLE.decoded_buf;
3258 /* load data and decode */
3259 /* it can change loaded_data to point to an internal buffer */
3260 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3261
3262 /* decode RLE */
3263 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3264 TARGET_PAGE_SIZE) == -1) {
3265 error_report("Failed to load XBZRLE page - decode error!");
3266 return -1;
3267 }
3268
3269 return 0;
3270 }
3271
3272 /**
3273 * ram_block_from_stream: read a RAMBlock id from the migration stream
3274 *
3275 * Must be called from within a rcu critical section.
3276 *
3277 * Returns a pointer from within the RCU-protected ram_list.
3278 *
3279 * @mis: the migration incoming state pointer
3280 * @f: QEMUFile where to read the data from
3281 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3282 * @channel: the channel we're using
3283 */
3284 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3285 QEMUFile *f, int flags,
3286 int channel)
3287 {
3288 RAMBlock *block = mis->last_recv_block[channel];
3289 char id[256];
3290 uint8_t len;
3291
3292 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3293 if (!block) {
3294 error_report("Ack, bad migration stream!");
3295 return NULL;
3296 }
3297 return block;
3298 }
3299
3300 len = qemu_get_byte(f);
3301 qemu_get_buffer(f, (uint8_t *)id, len);
3302 id[len] = 0;
3303
3304 block = qemu_ram_block_by_name(id);
3305 if (!block) {
3306 error_report("Can't find block %s", id);
3307 return NULL;
3308 }
3309
3310 if (migrate_ram_is_ignored(block)) {
3311 error_report("block %s should not be migrated !", id);
3312 return NULL;
3313 }
3314
3315 mis->last_recv_block[channel] = block;
3316
3317 return block;
3318 }
3319
3320 static inline void *host_from_ram_block_offset(RAMBlock *block,
3321 ram_addr_t offset)
3322 {
3323 if (!offset_in_ramblock(block, offset)) {
3324 return NULL;
3325 }
3326
3327 return block->host + offset;
3328 }
3329
3330 static void *host_page_from_ram_block_offset(RAMBlock *block,
3331 ram_addr_t offset)
3332 {
3333 /* Note: Explicitly no check against offset_in_ramblock(). */
3334 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3335 block->page_size);
3336 }
3337
3338 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3339 ram_addr_t offset)
3340 {
3341 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3342 }
3343
3344 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3345 {
3346 qemu_mutex_lock(&ram_state->bitmap_mutex);
3347 for (int i = 0; i < pages; i++) {
3348 ram_addr_t offset = normal[i];
3349 ram_state->migration_dirty_pages += !test_and_set_bit(
3350 offset >> TARGET_PAGE_BITS,
3351 block->bmap);
3352 }
3353 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3354 }
3355
3356 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3357 ram_addr_t offset, bool record_bitmap)
3358 {
3359 if (!offset_in_ramblock(block, offset)) {
3360 return NULL;
3361 }
3362 if (!block->colo_cache) {
3363 error_report("%s: colo_cache is NULL in block :%s",
3364 __func__, block->idstr);
3365 return NULL;
3366 }
3367
3368 /*
3369 * During colo checkpoint, we need bitmap of these migrated pages.
3370 * It help us to decide which pages in ram cache should be flushed
3371 * into VM's RAM later.
3372 */
3373 if (record_bitmap) {
3374 colo_record_bitmap(block, &offset, 1);
3375 }
3376 return block->colo_cache + offset;
3377 }
3378
3379 /**
3380 * ram_handle_zero: handle the zero page case
3381 *
3382 * If a page (or a whole RDMA chunk) has been
3383 * determined to be zero, then zap it.
3384 *
3385 * @host: host address for the zero page
3386 * @ch: what the page is filled from. We only support zero
3387 * @size: size of the zero page
3388 */
3389 void ram_handle_zero(void *host, uint64_t size)
3390 {
3391 if (!buffer_is_zero(host, size)) {
3392 memset(host, 0, size);
3393 }
3394 }
3395
3396 static void colo_init_ram_state(void)
3397 {
3398 ram_state_init(&ram_state);
3399 }
3400
3401 /*
3402 * colo cache: this is for secondary VM, we cache the whole
3403 * memory of the secondary VM, it is need to hold the global lock
3404 * to call this helper.
3405 */
3406 int colo_init_ram_cache(void)
3407 {
3408 RAMBlock *block;
3409
3410 WITH_RCU_READ_LOCK_GUARD() {
3411 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3412 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3413 NULL, false, false);
3414 if (!block->colo_cache) {
3415 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3416 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3417 block->used_length);
3418 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3419 if (block->colo_cache) {
3420 qemu_anon_ram_free(block->colo_cache, block->used_length);
3421 block->colo_cache = NULL;
3422 }
3423 }
3424 return -errno;
3425 }
3426 if (!machine_dump_guest_core(current_machine)) {
3427 qemu_madvise(block->colo_cache, block->used_length,
3428 QEMU_MADV_DONTDUMP);
3429 }
3430 }
3431 }
3432
3433 /*
3434 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3435 * with to decide which page in cache should be flushed into SVM's RAM. Here
3436 * we use the same name 'ram_bitmap' as for migration.
3437 */
3438 if (ram_bytes_total()) {
3439 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3440 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3441 block->bmap = bitmap_new(pages);
3442 }
3443 }
3444
3445 colo_init_ram_state();
3446 return 0;
3447 }
3448
3449 /* TODO: duplicated with ram_init_bitmaps */
3450 void colo_incoming_start_dirty_log(void)
3451 {
3452 RAMBlock *block = NULL;
3453 /* For memory_global_dirty_log_start below. */
3454 bql_lock();
3455 qemu_mutex_lock_ramlist();
3456
3457 memory_global_dirty_log_sync(false);
3458 WITH_RCU_READ_LOCK_GUARD() {
3459 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3460 ramblock_sync_dirty_bitmap(ram_state, block);
3461 /* Discard this dirty bitmap record */
3462 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3463 }
3464 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3465 }
3466 ram_state->migration_dirty_pages = 0;
3467 qemu_mutex_unlock_ramlist();
3468 bql_unlock();
3469 }
3470
3471 /* It is need to hold the global lock to call this helper */
3472 void colo_release_ram_cache(void)
3473 {
3474 RAMBlock *block;
3475
3476 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3477 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3478 g_free(block->bmap);
3479 block->bmap = NULL;
3480 }
3481
3482 WITH_RCU_READ_LOCK_GUARD() {
3483 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3484 if (block->colo_cache) {
3485 qemu_anon_ram_free(block->colo_cache, block->used_length);
3486 block->colo_cache = NULL;
3487 }
3488 }
3489 }
3490 ram_state_cleanup(&ram_state);
3491 }
3492
3493 /**
3494 * ram_load_setup: Setup RAM for migration incoming side
3495 *
3496 * Returns zero to indicate success and negative for error
3497 *
3498 * @f: QEMUFile where to receive the data
3499 * @opaque: RAMState pointer
3500 */
3501 static int ram_load_setup(QEMUFile *f, void *opaque)
3502 {
3503 xbzrle_load_setup();
3504 ramblock_recv_map_init();
3505
3506 return 0;
3507 }
3508
3509 static int ram_load_cleanup(void *opaque)
3510 {
3511 RAMBlock *rb;
3512
3513 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3514 qemu_ram_block_writeback(rb);
3515 }
3516
3517 xbzrle_load_cleanup();
3518
3519 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3520 g_free(rb->receivedmap);
3521 rb->receivedmap = NULL;
3522 }
3523
3524 return 0;
3525 }
3526
3527 /**
3528 * ram_postcopy_incoming_init: allocate postcopy data structures
3529 *
3530 * Returns 0 for success and negative if there was one error
3531 *
3532 * @mis: current migration incoming state
3533 *
3534 * Allocate data structures etc needed by incoming migration with
3535 * postcopy-ram. postcopy-ram's similarly names
3536 * postcopy_ram_incoming_init does the work.
3537 */
3538 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3539 {
3540 return postcopy_ram_incoming_init(mis);
3541 }
3542
3543 /**
3544 * ram_load_postcopy: load a page in postcopy case
3545 *
3546 * Returns 0 for success or -errno in case of error
3547 *
3548 * Called in postcopy mode by ram_load().
3549 * rcu_read_lock is taken prior to this being called.
3550 *
3551 * @f: QEMUFile where to send the data
3552 * @channel: the channel to use for loading
3553 */
3554 int ram_load_postcopy(QEMUFile *f, int channel)
3555 {
3556 int flags = 0, ret = 0;
3557 bool place_needed = false;
3558 bool matches_target_page_size = false;
3559 MigrationIncomingState *mis = migration_incoming_get_current();
3560 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3561
3562 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3563 ram_addr_t addr;
3564 void *page_buffer = NULL;
3565 void *place_source = NULL;
3566 RAMBlock *block = NULL;
3567 uint8_t ch;
3568 int len;
3569
3570 addr = qemu_get_be64(f);
3571
3572 /*
3573 * If qemu file error, we should stop here, and then "addr"
3574 * may be invalid
3575 */
3576 ret = qemu_file_get_error(f);
3577 if (ret) {
3578 break;
3579 }
3580
3581 flags = addr & ~TARGET_PAGE_MASK;
3582 addr &= TARGET_PAGE_MASK;
3583
3584 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3585 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3586 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3587 block = ram_block_from_stream(mis, f, flags, channel);
3588 if (!block) {
3589 ret = -EINVAL;
3590 break;
3591 }
3592
3593 /*
3594 * Relying on used_length is racy and can result in false positives.
3595 * We might place pages beyond used_length in case RAM was shrunk
3596 * while in postcopy, which is fine - trying to place via
3597 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3598 */
3599 if (!block->host || addr >= block->postcopy_length) {
3600 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3601 ret = -EINVAL;
3602 break;
3603 }
3604 tmp_page->target_pages++;
3605 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3606 /*
3607 * Postcopy requires that we place whole host pages atomically;
3608 * these may be huge pages for RAMBlocks that are backed by
3609 * hugetlbfs.
3610 * To make it atomic, the data is read into a temporary page
3611 * that's moved into place later.
3612 * The migration protocol uses, possibly smaller, target-pages
3613 * however the source ensures it always sends all the components
3614 * of a host page in one chunk.
3615 */
3616 page_buffer = tmp_page->tmp_huge_page +
3617 host_page_offset_from_ram_block_offset(block, addr);
3618 /* If all TP are zero then we can optimise the place */
3619 if (tmp_page->target_pages == 1) {
3620 tmp_page->host_addr =
3621 host_page_from_ram_block_offset(block, addr);
3622 } else if (tmp_page->host_addr !=
3623 host_page_from_ram_block_offset(block, addr)) {
3624 /* not the 1st TP within the HP */
3625 error_report("Non-same host page detected on channel %d: "
3626 "Target host page %p, received host page %p "
3627 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3628 channel, tmp_page->host_addr,
3629 host_page_from_ram_block_offset(block, addr),
3630 block->idstr, addr, tmp_page->target_pages);
3631 ret = -EINVAL;
3632 break;
3633 }
3634
3635 /*
3636 * If it's the last part of a host page then we place the host
3637 * page
3638 */
3639 if (tmp_page->target_pages ==
3640 (block->page_size / TARGET_PAGE_SIZE)) {
3641 place_needed = true;
3642 }
3643 place_source = tmp_page->tmp_huge_page;
3644 }
3645
3646 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3647 case RAM_SAVE_FLAG_ZERO:
3648 ch = qemu_get_byte(f);
3649 if (ch != 0) {
3650 error_report("Found a zero page with value %d", ch);
3651 ret = -EINVAL;
3652 break;
3653 }
3654 /*
3655 * Can skip to set page_buffer when
3656 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3657 */
3658 if (!matches_target_page_size) {
3659 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3660 }
3661 break;
3662
3663 case RAM_SAVE_FLAG_PAGE:
3664 tmp_page->all_zero = false;
3665 if (!matches_target_page_size) {
3666 /* For huge pages, we always use temporary buffer */
3667 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3668 } else {
3669 /*
3670 * For small pages that matches target page size, we
3671 * avoid the qemu_file copy. Instead we directly use
3672 * the buffer of QEMUFile to place the page. Note: we
3673 * cannot do any QEMUFile operation before using that
3674 * buffer to make sure the buffer is valid when
3675 * placing the page.
3676 */
3677 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3678 TARGET_PAGE_SIZE);
3679 }
3680 break;
3681 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3682 tmp_page->all_zero = false;
3683 len = qemu_get_be32(f);
3684 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3685 error_report("Invalid compressed data length: %d", len);
3686 ret = -EINVAL;
3687 break;
3688 }
3689 decompress_data_with_multi_threads(f, page_buffer, len);
3690 break;
3691 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3692 multifd_recv_sync_main();
3693 break;
3694 case RAM_SAVE_FLAG_EOS:
3695 /* normal exit */
3696 if (migrate_multifd() &&
3697 migrate_multifd_flush_after_each_section()) {
3698 multifd_recv_sync_main();
3699 }
3700 break;
3701 default:
3702 error_report("Unknown combination of migration flags: 0x%x"
3703 " (postcopy mode)", flags);
3704 ret = -EINVAL;
3705 break;
3706 }
3707
3708 /* Got the whole host page, wait for decompress before placing. */
3709 if (place_needed) {
3710 ret |= wait_for_decompress_done();
3711 }
3712
3713 /* Detect for any possible file errors */
3714 if (!ret && qemu_file_get_error(f)) {
3715 ret = qemu_file_get_error(f);
3716 }
3717
3718 if (!ret && place_needed) {
3719 if (tmp_page->all_zero) {
3720 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3721 } else {
3722 ret = postcopy_place_page(mis, tmp_page->host_addr,
3723 place_source, block);
3724 }
3725 place_needed = false;
3726 postcopy_temp_page_reset(tmp_page);
3727 }
3728 }
3729
3730 return ret;
3731 }
3732
3733 static bool postcopy_is_running(void)
3734 {
3735 PostcopyState ps = postcopy_state_get();
3736 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3737 }
3738
3739 /*
3740 * Flush content of RAM cache into SVM's memory.
3741 * Only flush the pages that be dirtied by PVM or SVM or both.
3742 */
3743 void colo_flush_ram_cache(void)
3744 {
3745 RAMBlock *block = NULL;
3746 void *dst_host;
3747 void *src_host;
3748 unsigned long offset = 0;
3749
3750 memory_global_dirty_log_sync(false);
3751 qemu_mutex_lock(&ram_state->bitmap_mutex);
3752 WITH_RCU_READ_LOCK_GUARD() {
3753 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3754 ramblock_sync_dirty_bitmap(ram_state, block);
3755 }
3756 }
3757
3758 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3759 WITH_RCU_READ_LOCK_GUARD() {
3760 block = QLIST_FIRST_RCU(&ram_list.blocks);
3761
3762 while (block) {
3763 unsigned long num = 0;
3764
3765 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3766 if (!offset_in_ramblock(block,
3767 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3768 offset = 0;
3769 num = 0;
3770 block = QLIST_NEXT_RCU(block, next);
3771 } else {
3772 unsigned long i = 0;
3773
3774 for (i = 0; i < num; i++) {
3775 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3776 }
3777 dst_host = block->host
3778 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3779 src_host = block->colo_cache
3780 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3781 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3782 offset += num;
3783 }
3784 }
3785 }
3786 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3787 trace_colo_flush_ram_cache_end();
3788 }
3789
3790 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
3791 {
3792 int ret = 0;
3793 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3794 bool postcopy_advised = migration_incoming_postcopy_advised();
3795
3796 assert(block);
3797
3798 if (!qemu_ram_is_migratable(block)) {
3799 error_report("block %s should not be migrated !", block->idstr);
3800 return -EINVAL;
3801 }
3802
3803 if (length != block->used_length) {
3804 Error *local_err = NULL;
3805
3806 ret = qemu_ram_resize(block, length, &local_err);
3807 if (local_err) {
3808 error_report_err(local_err);
3809 return ret;
3810 }
3811 }
3812 /* For postcopy we need to check hugepage sizes match */
3813 if (postcopy_advised && migrate_postcopy_ram() &&
3814 block->page_size != qemu_host_page_size) {
3815 uint64_t remote_page_size = qemu_get_be64(f);
3816 if (remote_page_size != block->page_size) {
3817 error_report("Mismatched RAM page size %s "
3818 "(local) %zd != %" PRId64, block->idstr,
3819 block->page_size, remote_page_size);
3820 return -EINVAL;
3821 }
3822 }
3823 if (migrate_ignore_shared()) {
3824 hwaddr addr = qemu_get_be64(f);
3825 if (migrate_ram_is_ignored(block) &&
3826 block->mr->addr != addr) {
3827 error_report("Mismatched GPAs for block %s "
3828 "%" PRId64 "!= %" PRId64, block->idstr,
3829 (uint64_t)addr, (uint64_t)block->mr->addr);
3830 return -EINVAL;
3831 }
3832 }
3833 ret = rdma_block_notification_handle(f, block->idstr);
3834 if (ret < 0) {
3835 qemu_file_set_error(f, ret);
3836 }
3837
3838 return ret;
3839 }
3840
3841 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
3842 {
3843 int ret = 0;
3844
3845 /* Synchronize RAM block list */
3846 while (!ret && total_ram_bytes) {
3847 RAMBlock *block;
3848 char id[256];
3849 ram_addr_t length;
3850 int len = qemu_get_byte(f);
3851
3852 qemu_get_buffer(f, (uint8_t *)id, len);
3853 id[len] = 0;
3854 length = qemu_get_be64(f);
3855
3856 block = qemu_ram_block_by_name(id);
3857 if (block) {
3858 ret = parse_ramblock(f, block, length);
3859 } else {
3860 error_report("Unknown ramblock \"%s\", cannot accept "
3861 "migration", id);
3862 ret = -EINVAL;
3863 }
3864 total_ram_bytes -= length;
3865 }
3866
3867 return ret;
3868 }
3869
3870 /**
3871 * ram_load_precopy: load pages in precopy case
3872 *
3873 * Returns 0 for success or -errno in case of error
3874 *
3875 * Called in precopy mode by ram_load().
3876 * rcu_read_lock is taken prior to this being called.
3877 *
3878 * @f: QEMUFile where to send the data
3879 */
3880 static int ram_load_precopy(QEMUFile *f)
3881 {
3882 MigrationIncomingState *mis = migration_incoming_get_current();
3883 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3884
3885 if (!migrate_compress()) {
3886 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3887 }
3888
3889 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3890 ram_addr_t addr;
3891 void *host = NULL, *host_bak = NULL;
3892 uint8_t ch;
3893
3894 /*
3895 * Yield periodically to let main loop run, but an iteration of
3896 * the main loop is expensive, so do it each some iterations
3897 */
3898 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3899 aio_co_schedule(qemu_get_current_aio_context(),
3900 qemu_coroutine_self());
3901 qemu_coroutine_yield();
3902 }
3903 i++;
3904
3905 addr = qemu_get_be64(f);
3906 flags = addr & ~TARGET_PAGE_MASK;
3907 addr &= TARGET_PAGE_MASK;
3908
3909 if (flags & invalid_flags) {
3910 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3911 error_report("Received an unexpected compressed page");
3912 }
3913
3914 ret = -EINVAL;
3915 break;
3916 }
3917
3918 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3919 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3920 RAMBlock *block = ram_block_from_stream(mis, f, flags,
3921 RAM_CHANNEL_PRECOPY);
3922
3923 host = host_from_ram_block_offset(block, addr);
3924 /*
3925 * After going into COLO stage, we should not load the page
3926 * into SVM's memory directly, we put them into colo_cache firstly.
3927 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3928 * Previously, we copied all these memory in preparing stage of COLO
3929 * while we need to stop VM, which is a time-consuming process.
3930 * Here we optimize it by a trick, back-up every page while in
3931 * migration process while COLO is enabled, though it affects the
3932 * speed of the migration, but it obviously reduce the downtime of
3933 * back-up all SVM'S memory in COLO preparing stage.
3934 */
3935 if (migration_incoming_colo_enabled()) {
3936 if (migration_incoming_in_colo_state()) {
3937 /* In COLO stage, put all pages into cache temporarily */
3938 host = colo_cache_from_block_offset(block, addr, true);
3939 } else {
3940 /*
3941 * In migration stage but before COLO stage,
3942 * Put all pages into both cache and SVM's memory.
3943 */
3944 host_bak = colo_cache_from_block_offset(block, addr, false);
3945 }
3946 }
3947 if (!host) {
3948 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3949 ret = -EINVAL;
3950 break;
3951 }
3952 if (!migration_incoming_in_colo_state()) {
3953 ramblock_recv_bitmap_set(block, host);
3954 }
3955
3956 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3957 }
3958
3959 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3960 case RAM_SAVE_FLAG_MEM_SIZE:
3961 ret = parse_ramblocks(f, addr);
3962 break;
3963
3964 case RAM_SAVE_FLAG_ZERO:
3965 ch = qemu_get_byte(f);
3966 if (ch != 0) {
3967 error_report("Found a zero page with value %d", ch);
3968 ret = -EINVAL;
3969 break;
3970 }
3971 ram_handle_zero(host, TARGET_PAGE_SIZE);
3972 break;
3973
3974 case RAM_SAVE_FLAG_PAGE:
3975 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3976 break;
3977
3978 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3979 len = qemu_get_be32(f);
3980 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3981 error_report("Invalid compressed data length: %d", len);
3982 ret = -EINVAL;
3983 break;
3984 }
3985 decompress_data_with_multi_threads(f, host, len);
3986 break;
3987
3988 case RAM_SAVE_FLAG_XBZRLE:
3989 if (load_xbzrle(f, addr, host) < 0) {
3990 error_report("Failed to decompress XBZRLE page at "
3991 RAM_ADDR_FMT, addr);
3992 ret = -EINVAL;
3993 break;
3994 }
3995 break;
3996 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3997 multifd_recv_sync_main();
3998 break;
3999 case RAM_SAVE_FLAG_EOS:
4000 /* normal exit */
4001 if (migrate_multifd() &&
4002 migrate_multifd_flush_after_each_section()) {
4003 multifd_recv_sync_main();
4004 }
4005 break;
4006 case RAM_SAVE_FLAG_HOOK:
4007 ret = rdma_registration_handle(f);
4008 if (ret < 0) {
4009 qemu_file_set_error(f, ret);
4010 }
4011 break;
4012 default:
4013 error_report("Unknown combination of migration flags: 0x%x", flags);
4014 ret = -EINVAL;
4015 }
4016 if (!ret) {
4017 ret = qemu_file_get_error(f);
4018 }
4019 if (!ret && host_bak) {
4020 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4021 }
4022 }
4023
4024 ret |= wait_for_decompress_done();
4025 return ret;
4026 }
4027
4028 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4029 {
4030 int ret = 0;
4031 static uint64_t seq_iter;
4032 /*
4033 * If system is running in postcopy mode, page inserts to host memory must
4034 * be atomic
4035 */
4036 bool postcopy_running = postcopy_is_running();
4037
4038 seq_iter++;
4039
4040 if (version_id != 4) {
4041 return -EINVAL;
4042 }
4043
4044 /*
4045 * This RCU critical section can be very long running.
4046 * When RCU reclaims in the code start to become numerous,
4047 * it will be necessary to reduce the granularity of this
4048 * critical section.
4049 */
4050 WITH_RCU_READ_LOCK_GUARD() {
4051 if (postcopy_running) {
4052 /*
4053 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4054 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4055 * service fast page faults.
4056 */
4057 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4058 } else {
4059 ret = ram_load_precopy(f);
4060 }
4061 }
4062 trace_ram_load_complete(ret, seq_iter);
4063
4064 return ret;
4065 }
4066
4067 static bool ram_has_postcopy(void *opaque)
4068 {
4069 RAMBlock *rb;
4070 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4071 if (ramblock_is_pmem(rb)) {
4072 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4073 "is not supported now!", rb->idstr, rb->host);
4074 return false;
4075 }
4076 }
4077
4078 return migrate_postcopy_ram();
4079 }
4080
4081 /* Sync all the dirty bitmap with destination VM. */
4082 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4083 {
4084 RAMBlock *block;
4085 QEMUFile *file = s->to_dst_file;
4086
4087 trace_ram_dirty_bitmap_sync_start();
4088
4089 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4090 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4091 qemu_savevm_send_recv_bitmap(file, block->idstr);
4092 trace_ram_dirty_bitmap_request(block->idstr);
4093 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4094 }
4095
4096 trace_ram_dirty_bitmap_sync_wait();
4097
4098 /* Wait until all the ramblocks' dirty bitmap synced */
4099 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4100 if (migration_rp_wait(s)) {
4101 return -1;
4102 }
4103 }
4104
4105 trace_ram_dirty_bitmap_sync_complete();
4106
4107 return 0;
4108 }
4109
4110 /*
4111 * Read the received bitmap, revert it as the initial dirty bitmap.
4112 * This is only used when the postcopy migration is paused but wants
4113 * to resume from a middle point.
4114 *
4115 * Returns true if succeeded, false for errors.
4116 */
4117 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4118 {
4119 /* from_dst_file is always valid because we're within rp_thread */
4120 QEMUFile *file = s->rp_state.from_dst_file;
4121 g_autofree unsigned long *le_bitmap = NULL;
4122 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4123 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4124 uint64_t size, end_mark;
4125 RAMState *rs = ram_state;
4126
4127 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4128
4129 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4130 error_setg(errp, "Reload bitmap in incorrect state %s",
4131 MigrationStatus_str(s->state));
4132 return false;
4133 }
4134
4135 /*
4136 * Note: see comments in ramblock_recv_bitmap_send() on why we
4137 * need the endianness conversion, and the paddings.
4138 */
4139 local_size = ROUND_UP(local_size, 8);
4140
4141 /* Add paddings */
4142 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4143
4144 size = qemu_get_be64(file);
4145
4146 /* The size of the bitmap should match with our ramblock */
4147 if (size != local_size) {
4148 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4149 " != 0x%"PRIx64")", block->idstr, size, local_size);
4150 return false;
4151 }
4152
4153 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4154 end_mark = qemu_get_be64(file);
4155
4156 if (qemu_file_get_error(file) || size != local_size) {
4157 error_setg(errp, "read bitmap failed for ramblock '%s': "
4158 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4159 block->idstr, local_size, size);
4160 return false;
4161 }
4162
4163 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4164 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4165 block->idstr, end_mark);
4166 return false;
4167 }
4168
4169 /*
4170 * Endianness conversion. We are during postcopy (though paused).
4171 * The dirty bitmap won't change. We can directly modify it.
4172 */
4173 bitmap_from_le(block->bmap, le_bitmap, nbits);
4174
4175 /*
4176 * What we received is "received bitmap". Revert it as the initial
4177 * dirty bitmap for this ramblock.
4178 */
4179 bitmap_complement(block->bmap, block->bmap, nbits);
4180
4181 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4182 ramblock_dirty_bitmap_clear_discarded_pages(block);
4183
4184 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4185 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4186
4187 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4188
4189 /*
4190 * We succeeded to sync bitmap for current ramblock. Always kick the
4191 * migration thread to check whether all requested bitmaps are
4192 * reloaded. NOTE: it's racy to only kick when requested==0, because
4193 * we don't know whether the migration thread may still be increasing
4194 * it.
4195 */
4196 migration_rp_kick(s);
4197
4198 return true;
4199 }
4200
4201 static int ram_resume_prepare(MigrationState *s, void *opaque)
4202 {
4203 RAMState *rs = *(RAMState **)opaque;
4204 int ret;
4205
4206 ret = ram_dirty_bitmap_sync_all(s, rs);
4207 if (ret) {
4208 return ret;
4209 }
4210
4211 ram_state_resume_prepare(rs, s->to_dst_file);
4212
4213 return 0;
4214 }
4215
4216 void postcopy_preempt_shutdown_file(MigrationState *s)
4217 {
4218 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4219 qemu_fflush(s->postcopy_qemufile_src);
4220 }
4221
4222 static SaveVMHandlers savevm_ram_handlers = {
4223 .save_setup = ram_save_setup,
4224 .save_live_iterate = ram_save_iterate,
4225 .save_live_complete_postcopy = ram_save_complete,
4226 .save_live_complete_precopy = ram_save_complete,
4227 .has_postcopy = ram_has_postcopy,
4228 .state_pending_exact = ram_state_pending_exact,
4229 .state_pending_estimate = ram_state_pending_estimate,
4230 .load_state = ram_load,
4231 .save_cleanup = ram_save_cleanup,
4232 .load_setup = ram_load_setup,
4233 .load_cleanup = ram_load_cleanup,
4234 .resume_prepare = ram_resume_prepare,
4235 };
4236
4237 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4238 size_t old_size, size_t new_size)
4239 {
4240 PostcopyState ps = postcopy_state_get();
4241 ram_addr_t offset;
4242 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4243 Error *err = NULL;
4244
4245 if (!rb) {
4246 error_report("RAM block not found");
4247 return;
4248 }
4249
4250 if (migrate_ram_is_ignored(rb)) {
4251 return;
4252 }
4253
4254 if (!migration_is_idle()) {
4255 /*
4256 * Precopy code on the source cannot deal with the size of RAM blocks
4257 * changing at random points in time - especially after sending the
4258 * RAM block sizes in the migration stream, they must no longer change.
4259 * Abort and indicate a proper reason.
4260 */
4261 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4262 migration_cancel(err);
4263 error_free(err);
4264 }
4265
4266 switch (ps) {
4267 case POSTCOPY_INCOMING_ADVISE:
4268 /*
4269 * Update what ram_postcopy_incoming_init()->init_range() does at the
4270 * time postcopy was advised. Syncing RAM blocks with the source will
4271 * result in RAM resizes.
4272 */
4273 if (old_size < new_size) {
4274 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4275 error_report("RAM block '%s' discard of resized RAM failed",
4276 rb->idstr);
4277 }
4278 }
4279 rb->postcopy_length = new_size;
4280 break;
4281 case POSTCOPY_INCOMING_NONE:
4282 case POSTCOPY_INCOMING_RUNNING:
4283 case POSTCOPY_INCOMING_END:
4284 /*
4285 * Once our guest is running, postcopy does no longer care about
4286 * resizes. When growing, the new memory was not available on the
4287 * source, no handler needed.
4288 */
4289 break;
4290 default:
4291 error_report("RAM block '%s' resized during postcopy state: %d",
4292 rb->idstr, ps);
4293 exit(-1);
4294 }
4295 }
4296
4297 static RAMBlockNotifier ram_mig_ram_notifier = {
4298 .ram_block_resized = ram_mig_ram_block_resized,
4299 };
4300
4301 void ram_mig_init(void)
4302 {
4303 qemu_mutex_init(&XBZRLE.lock);
4304 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4305 ram_block_notifier_add(&ram_mig_ram_notifier);
4306 }