]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
tests: fix leaks in test-io-channel-command
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
38 #include "migration/migration.h"
39 #include "migration/postcopy-ram.h"
40 #include "exec/address-spaces.h"
41 #include "migration/page_cache.h"
42 #include "qemu/error-report.h"
43 #include "trace.h"
44 #include "exec/ram_addr.h"
45 #include "qemu/rcu_queue.h"
46 #include "migration/colo.h"
47
48 static int dirty_rate_high_cnt;
49
50 static uint64_t bitmap_sync_count;
51
52 /***********************************************************/
53 /* ram save/restore */
54
55 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
56 #define RAM_SAVE_FLAG_COMPRESS 0x02
57 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
58 #define RAM_SAVE_FLAG_PAGE 0x08
59 #define RAM_SAVE_FLAG_EOS 0x10
60 #define RAM_SAVE_FLAG_CONTINUE 0x20
61 #define RAM_SAVE_FLAG_XBZRLE 0x40
62 /* 0x80 is reserved in migration.h start with 0x100 next */
63 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
64
65 static uint8_t *ZERO_TARGET_PAGE;
66
67 static inline bool is_zero_range(uint8_t *p, uint64_t size)
68 {
69 return buffer_is_zero(p, size);
70 }
71
72 /* struct contains XBZRLE cache and a static page
73 used by the compression */
74 static struct {
75 /* buffer used for XBZRLE encoding */
76 uint8_t *encoded_buf;
77 /* buffer for storing page content */
78 uint8_t *current_buf;
79 /* Cache for XBZRLE, Protected by lock. */
80 PageCache *cache;
81 QemuMutex lock;
82 } XBZRLE;
83
84 /* buffer used for XBZRLE decoding */
85 static uint8_t *xbzrle_decoded_buf;
86
87 static void XBZRLE_cache_lock(void)
88 {
89 if (migrate_use_xbzrle())
90 qemu_mutex_lock(&XBZRLE.lock);
91 }
92
93 static void XBZRLE_cache_unlock(void)
94 {
95 if (migrate_use_xbzrle())
96 qemu_mutex_unlock(&XBZRLE.lock);
97 }
98
99 /*
100 * called from qmp_migrate_set_cache_size in main thread, possibly while
101 * a migration is in progress.
102 * A running migration maybe using the cache and might finish during this
103 * call, hence changes to the cache are protected by XBZRLE.lock().
104 */
105 int64_t xbzrle_cache_resize(int64_t new_size)
106 {
107 PageCache *new_cache;
108 int64_t ret;
109
110 if (new_size < TARGET_PAGE_SIZE) {
111 return -1;
112 }
113
114 XBZRLE_cache_lock();
115
116 if (XBZRLE.cache != NULL) {
117 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
118 goto out_new_size;
119 }
120 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
121 TARGET_PAGE_SIZE);
122 if (!new_cache) {
123 error_report("Error creating cache");
124 ret = -1;
125 goto out;
126 }
127
128 cache_fini(XBZRLE.cache);
129 XBZRLE.cache = new_cache;
130 }
131
132 out_new_size:
133 ret = pow2floor(new_size);
134 out:
135 XBZRLE_cache_unlock();
136 return ret;
137 }
138
139 /* accounting for migration statistics */
140 typedef struct AccountingInfo {
141 uint64_t dup_pages;
142 uint64_t skipped_pages;
143 uint64_t norm_pages;
144 uint64_t iterations;
145 uint64_t xbzrle_bytes;
146 uint64_t xbzrle_pages;
147 uint64_t xbzrle_cache_miss;
148 double xbzrle_cache_miss_rate;
149 uint64_t xbzrle_overflows;
150 } AccountingInfo;
151
152 static AccountingInfo acct_info;
153
154 static void acct_clear(void)
155 {
156 memset(&acct_info, 0, sizeof(acct_info));
157 }
158
159 uint64_t dup_mig_bytes_transferred(void)
160 {
161 return acct_info.dup_pages * TARGET_PAGE_SIZE;
162 }
163
164 uint64_t dup_mig_pages_transferred(void)
165 {
166 return acct_info.dup_pages;
167 }
168
169 uint64_t skipped_mig_bytes_transferred(void)
170 {
171 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
172 }
173
174 uint64_t skipped_mig_pages_transferred(void)
175 {
176 return acct_info.skipped_pages;
177 }
178
179 uint64_t norm_mig_bytes_transferred(void)
180 {
181 return acct_info.norm_pages * TARGET_PAGE_SIZE;
182 }
183
184 uint64_t norm_mig_pages_transferred(void)
185 {
186 return acct_info.norm_pages;
187 }
188
189 uint64_t xbzrle_mig_bytes_transferred(void)
190 {
191 return acct_info.xbzrle_bytes;
192 }
193
194 uint64_t xbzrle_mig_pages_transferred(void)
195 {
196 return acct_info.xbzrle_pages;
197 }
198
199 uint64_t xbzrle_mig_pages_cache_miss(void)
200 {
201 return acct_info.xbzrle_cache_miss;
202 }
203
204 double xbzrle_mig_cache_miss_rate(void)
205 {
206 return acct_info.xbzrle_cache_miss_rate;
207 }
208
209 uint64_t xbzrle_mig_pages_overflow(void)
210 {
211 return acct_info.xbzrle_overflows;
212 }
213
214 /* This is the last block that we have visited serching for dirty pages
215 */
216 static RAMBlock *last_seen_block;
217 /* This is the last block from where we have sent data */
218 static RAMBlock *last_sent_block;
219 static ram_addr_t last_offset;
220 static QemuMutex migration_bitmap_mutex;
221 static uint64_t migration_dirty_pages;
222 static uint32_t last_version;
223 static bool ram_bulk_stage;
224
225 /* used by the search for pages to send */
226 struct PageSearchStatus {
227 /* Current block being searched */
228 RAMBlock *block;
229 /* Current offset to search from */
230 ram_addr_t offset;
231 /* Set once we wrap around */
232 bool complete_round;
233 };
234 typedef struct PageSearchStatus PageSearchStatus;
235
236 static struct BitmapRcu {
237 struct rcu_head rcu;
238 /* Main migration bitmap */
239 unsigned long *bmap;
240 /* bitmap of pages that haven't been sent even once
241 * only maintained and used in postcopy at the moment
242 * where it's used to send the dirtymap at the start
243 * of the postcopy phase
244 */
245 unsigned long *unsentmap;
246 } *migration_bitmap_rcu;
247
248 struct CompressParam {
249 bool done;
250 bool quit;
251 QEMUFile *file;
252 QemuMutex mutex;
253 QemuCond cond;
254 RAMBlock *block;
255 ram_addr_t offset;
256 };
257 typedef struct CompressParam CompressParam;
258
259 struct DecompressParam {
260 bool done;
261 bool quit;
262 QemuMutex mutex;
263 QemuCond cond;
264 void *des;
265 uint8_t *compbuf;
266 int len;
267 };
268 typedef struct DecompressParam DecompressParam;
269
270 static CompressParam *comp_param;
271 static QemuThread *compress_threads;
272 /* comp_done_cond is used to wake up the migration thread when
273 * one of the compression threads has finished the compression.
274 * comp_done_lock is used to co-work with comp_done_cond.
275 */
276 static QemuMutex comp_done_lock;
277 static QemuCond comp_done_cond;
278 /* The empty QEMUFileOps will be used by file in CompressParam */
279 static const QEMUFileOps empty_ops = { };
280
281 static bool compression_switch;
282 static DecompressParam *decomp_param;
283 static QemuThread *decompress_threads;
284 static QemuMutex decomp_done_lock;
285 static QemuCond decomp_done_cond;
286
287 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
288 ram_addr_t offset);
289
290 static void *do_data_compress(void *opaque)
291 {
292 CompressParam *param = opaque;
293 RAMBlock *block;
294 ram_addr_t offset;
295
296 qemu_mutex_lock(&param->mutex);
297 while (!param->quit) {
298 if (param->block) {
299 block = param->block;
300 offset = param->offset;
301 param->block = NULL;
302 qemu_mutex_unlock(&param->mutex);
303
304 do_compress_ram_page(param->file, block, offset);
305
306 qemu_mutex_lock(&comp_done_lock);
307 param->done = true;
308 qemu_cond_signal(&comp_done_cond);
309 qemu_mutex_unlock(&comp_done_lock);
310
311 qemu_mutex_lock(&param->mutex);
312 } else {
313 qemu_cond_wait(&param->cond, &param->mutex);
314 }
315 }
316 qemu_mutex_unlock(&param->mutex);
317
318 return NULL;
319 }
320
321 static inline void terminate_compression_threads(void)
322 {
323 int idx, thread_count;
324
325 thread_count = migrate_compress_threads();
326 for (idx = 0; idx < thread_count; idx++) {
327 qemu_mutex_lock(&comp_param[idx].mutex);
328 comp_param[idx].quit = true;
329 qemu_cond_signal(&comp_param[idx].cond);
330 qemu_mutex_unlock(&comp_param[idx].mutex);
331 }
332 }
333
334 void migrate_compress_threads_join(void)
335 {
336 int i, thread_count;
337
338 if (!migrate_use_compression()) {
339 return;
340 }
341 terminate_compression_threads();
342 thread_count = migrate_compress_threads();
343 for (i = 0; i < thread_count; i++) {
344 qemu_thread_join(compress_threads + i);
345 qemu_fclose(comp_param[i].file);
346 qemu_mutex_destroy(&comp_param[i].mutex);
347 qemu_cond_destroy(&comp_param[i].cond);
348 }
349 qemu_mutex_destroy(&comp_done_lock);
350 qemu_cond_destroy(&comp_done_cond);
351 g_free(compress_threads);
352 g_free(comp_param);
353 compress_threads = NULL;
354 comp_param = NULL;
355 }
356
357 void migrate_compress_threads_create(void)
358 {
359 int i, thread_count;
360
361 if (!migrate_use_compression()) {
362 return;
363 }
364 compression_switch = true;
365 thread_count = migrate_compress_threads();
366 compress_threads = g_new0(QemuThread, thread_count);
367 comp_param = g_new0(CompressParam, thread_count);
368 qemu_cond_init(&comp_done_cond);
369 qemu_mutex_init(&comp_done_lock);
370 for (i = 0; i < thread_count; i++) {
371 /* comp_param[i].file is just used as a dummy buffer to save data,
372 * set its ops to empty.
373 */
374 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
375 comp_param[i].done = true;
376 comp_param[i].quit = false;
377 qemu_mutex_init(&comp_param[i].mutex);
378 qemu_cond_init(&comp_param[i].cond);
379 qemu_thread_create(compress_threads + i, "compress",
380 do_data_compress, comp_param + i,
381 QEMU_THREAD_JOINABLE);
382 }
383 }
384
385 /**
386 * save_page_header: Write page header to wire
387 *
388 * If this is the 1st block, it also writes the block identification
389 *
390 * Returns: Number of bytes written
391 *
392 * @f: QEMUFile where to send the data
393 * @block: block that contains the page we want to send
394 * @offset: offset inside the block for the page
395 * in the lower bits, it contains flags
396 */
397 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
398 {
399 size_t size, len;
400
401 qemu_put_be64(f, offset);
402 size = 8;
403
404 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
405 len = strlen(block->idstr);
406 qemu_put_byte(f, len);
407 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
408 size += 1 + len;
409 }
410 return size;
411 }
412
413 /* Reduce amount of guest cpu execution to hopefully slow down memory writes.
414 * If guest dirty memory rate is reduced below the rate at which we can
415 * transfer pages to the destination then we should be able to complete
416 * migration. Some workloads dirty memory way too fast and will not effectively
417 * converge, even with auto-converge.
418 */
419 static void mig_throttle_guest_down(void)
420 {
421 MigrationState *s = migrate_get_current();
422 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
423 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
424
425 /* We have not started throttling yet. Let's start it. */
426 if (!cpu_throttle_active()) {
427 cpu_throttle_set(pct_initial);
428 } else {
429 /* Throttling already on, just increase the rate */
430 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
431 }
432 }
433
434 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
435 * The important thing is that a stale (not-yet-0'd) page be replaced
436 * by the new data.
437 * As a bonus, if the page wasn't in the cache it gets added so that
438 * when a small write is made into the 0'd page it gets XBZRLE sent
439 */
440 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
441 {
442 if (ram_bulk_stage || !migrate_use_xbzrle()) {
443 return;
444 }
445
446 /* We don't care if this fails to allocate a new cache page
447 * as long as it updated an old one */
448 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
449 bitmap_sync_count);
450 }
451
452 #define ENCODING_FLAG_XBZRLE 0x1
453
454 /**
455 * save_xbzrle_page: compress and send current page
456 *
457 * Returns: 1 means that we wrote the page
458 * 0 means that page is identical to the one already sent
459 * -1 means that xbzrle would be longer than normal
460 *
461 * @f: QEMUFile where to send the data
462 * @current_data:
463 * @current_addr:
464 * @block: block that contains the page we want to send
465 * @offset: offset inside the block for the page
466 * @last_stage: if we are at the completion stage
467 * @bytes_transferred: increase it with the number of transferred bytes
468 */
469 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
470 ram_addr_t current_addr, RAMBlock *block,
471 ram_addr_t offset, bool last_stage,
472 uint64_t *bytes_transferred)
473 {
474 int encoded_len = 0, bytes_xbzrle;
475 uint8_t *prev_cached_page;
476
477 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
478 acct_info.xbzrle_cache_miss++;
479 if (!last_stage) {
480 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
481 bitmap_sync_count) == -1) {
482 return -1;
483 } else {
484 /* update *current_data when the page has been
485 inserted into cache */
486 *current_data = get_cached_data(XBZRLE.cache, current_addr);
487 }
488 }
489 return -1;
490 }
491
492 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
493
494 /* save current buffer into memory */
495 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
496
497 /* XBZRLE encoding (if there is no overflow) */
498 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
499 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
500 TARGET_PAGE_SIZE);
501 if (encoded_len == 0) {
502 trace_save_xbzrle_page_skipping();
503 return 0;
504 } else if (encoded_len == -1) {
505 trace_save_xbzrle_page_overflow();
506 acct_info.xbzrle_overflows++;
507 /* update data in the cache */
508 if (!last_stage) {
509 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
510 *current_data = prev_cached_page;
511 }
512 return -1;
513 }
514
515 /* we need to update the data in the cache, in order to get the same data */
516 if (!last_stage) {
517 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
518 }
519
520 /* Send XBZRLE based compressed page */
521 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
522 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
523 qemu_put_be16(f, encoded_len);
524 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
525 bytes_xbzrle += encoded_len + 1 + 2;
526 acct_info.xbzrle_pages++;
527 acct_info.xbzrle_bytes += bytes_xbzrle;
528 *bytes_transferred += bytes_xbzrle;
529
530 return 1;
531 }
532
533 /* Called with rcu_read_lock() to protect migration_bitmap
534 * rb: The RAMBlock to search for dirty pages in
535 * start: Start address (typically so we can continue from previous page)
536 * ram_addr_abs: Pointer into which to store the address of the dirty page
537 * within the global ram_addr space
538 *
539 * Returns: byte offset within memory region of the start of a dirty page
540 */
541 static inline
542 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb,
543 ram_addr_t start,
544 ram_addr_t *ram_addr_abs)
545 {
546 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
547 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
548 uint64_t rb_size = rb->used_length;
549 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
550 unsigned long *bitmap;
551
552 unsigned long next;
553
554 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
555 if (ram_bulk_stage && nr > base) {
556 next = nr + 1;
557 } else {
558 next = find_next_bit(bitmap, size, nr);
559 }
560
561 *ram_addr_abs = next << TARGET_PAGE_BITS;
562 return (next - base) << TARGET_PAGE_BITS;
563 }
564
565 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr)
566 {
567 bool ret;
568 int nr = addr >> TARGET_PAGE_BITS;
569 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
570
571 ret = test_and_clear_bit(nr, bitmap);
572
573 if (ret) {
574 migration_dirty_pages--;
575 }
576 return ret;
577 }
578
579 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
580 {
581 unsigned long *bitmap;
582 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
583 migration_dirty_pages +=
584 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
585 }
586
587 /* Fix me: there are too many global variables used in migration process. */
588 static int64_t start_time;
589 static int64_t bytes_xfer_prev;
590 static int64_t num_dirty_pages_period;
591 static uint64_t xbzrle_cache_miss_prev;
592 static uint64_t iterations_prev;
593
594 static void migration_bitmap_sync_init(void)
595 {
596 start_time = 0;
597 bytes_xfer_prev = 0;
598 num_dirty_pages_period = 0;
599 xbzrle_cache_miss_prev = 0;
600 iterations_prev = 0;
601 }
602
603 static void migration_bitmap_sync(void)
604 {
605 RAMBlock *block;
606 uint64_t num_dirty_pages_init = migration_dirty_pages;
607 MigrationState *s = migrate_get_current();
608 int64_t end_time;
609 int64_t bytes_xfer_now;
610
611 bitmap_sync_count++;
612
613 if (!bytes_xfer_prev) {
614 bytes_xfer_prev = ram_bytes_transferred();
615 }
616
617 if (!start_time) {
618 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
619 }
620
621 trace_migration_bitmap_sync_start();
622 memory_global_dirty_log_sync();
623
624 qemu_mutex_lock(&migration_bitmap_mutex);
625 rcu_read_lock();
626 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
627 migration_bitmap_sync_range(block->offset, block->used_length);
628 }
629 rcu_read_unlock();
630 qemu_mutex_unlock(&migration_bitmap_mutex);
631
632 trace_migration_bitmap_sync_end(migration_dirty_pages
633 - num_dirty_pages_init);
634 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
635 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
636
637 /* more than 1 second = 1000 millisecons */
638 if (end_time > start_time + 1000) {
639 if (migrate_auto_converge()) {
640 /* The following detection logic can be refined later. For now:
641 Check to see if the dirtied bytes is 50% more than the approx.
642 amount of bytes that just got transferred since the last time we
643 were in this routine. If that happens twice, start or increase
644 throttling */
645 bytes_xfer_now = ram_bytes_transferred();
646
647 if (s->dirty_pages_rate &&
648 (num_dirty_pages_period * TARGET_PAGE_SIZE >
649 (bytes_xfer_now - bytes_xfer_prev)/2) &&
650 (dirty_rate_high_cnt++ >= 2)) {
651 trace_migration_throttle();
652 dirty_rate_high_cnt = 0;
653 mig_throttle_guest_down();
654 }
655 bytes_xfer_prev = bytes_xfer_now;
656 }
657
658 if (migrate_use_xbzrle()) {
659 if (iterations_prev != acct_info.iterations) {
660 acct_info.xbzrle_cache_miss_rate =
661 (double)(acct_info.xbzrle_cache_miss -
662 xbzrle_cache_miss_prev) /
663 (acct_info.iterations - iterations_prev);
664 }
665 iterations_prev = acct_info.iterations;
666 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
667 }
668 s->dirty_pages_rate = num_dirty_pages_period * 1000
669 / (end_time - start_time);
670 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
671 start_time = end_time;
672 num_dirty_pages_period = 0;
673 }
674 s->dirty_sync_count = bitmap_sync_count;
675 if (migrate_use_events()) {
676 qapi_event_send_migration_pass(bitmap_sync_count, NULL);
677 }
678 }
679
680 /**
681 * save_zero_page: Send the zero page to the stream
682 *
683 * Returns: Number of pages written.
684 *
685 * @f: QEMUFile where to send the data
686 * @block: block that contains the page we want to send
687 * @offset: offset inside the block for the page
688 * @p: pointer to the page
689 * @bytes_transferred: increase it with the number of transferred bytes
690 */
691 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
692 uint8_t *p, uint64_t *bytes_transferred)
693 {
694 int pages = -1;
695
696 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
697 acct_info.dup_pages++;
698 *bytes_transferred += save_page_header(f, block,
699 offset | RAM_SAVE_FLAG_COMPRESS);
700 qemu_put_byte(f, 0);
701 *bytes_transferred += 1;
702 pages = 1;
703 }
704
705 return pages;
706 }
707
708 static void ram_release_pages(MigrationState *ms, const char *block_name,
709 uint64_t offset, int pages)
710 {
711 if (!migrate_release_ram() || !migration_in_postcopy(ms)) {
712 return;
713 }
714
715 ram_discard_range(NULL, block_name, offset, pages << TARGET_PAGE_BITS);
716 }
717
718 /**
719 * ram_save_page: Send the given page to the stream
720 *
721 * Returns: Number of pages written.
722 * < 0 - error
723 * >=0 - Number of pages written - this might legally be 0
724 * if xbzrle noticed the page was the same.
725 *
726 * @ms: The current migration state.
727 * @f: QEMUFile where to send the data
728 * @block: block that contains the page we want to send
729 * @offset: offset inside the block for the page
730 * @last_stage: if we are at the completion stage
731 * @bytes_transferred: increase it with the number of transferred bytes
732 */
733 static int ram_save_page(MigrationState *ms, QEMUFile *f, PageSearchStatus *pss,
734 bool last_stage, uint64_t *bytes_transferred)
735 {
736 int pages = -1;
737 uint64_t bytes_xmit;
738 ram_addr_t current_addr;
739 uint8_t *p;
740 int ret;
741 bool send_async = true;
742 RAMBlock *block = pss->block;
743 ram_addr_t offset = pss->offset;
744
745 p = block->host + offset;
746
747 /* In doubt sent page as normal */
748 bytes_xmit = 0;
749 ret = ram_control_save_page(f, block->offset,
750 offset, TARGET_PAGE_SIZE, &bytes_xmit);
751 if (bytes_xmit) {
752 *bytes_transferred += bytes_xmit;
753 pages = 1;
754 }
755
756 XBZRLE_cache_lock();
757
758 current_addr = block->offset + offset;
759
760 if (block == last_sent_block) {
761 offset |= RAM_SAVE_FLAG_CONTINUE;
762 }
763 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
764 if (ret != RAM_SAVE_CONTROL_DELAYED) {
765 if (bytes_xmit > 0) {
766 acct_info.norm_pages++;
767 } else if (bytes_xmit == 0) {
768 acct_info.dup_pages++;
769 }
770 }
771 } else {
772 pages = save_zero_page(f, block, offset, p, bytes_transferred);
773 if (pages > 0) {
774 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
775 * page would be stale
776 */
777 xbzrle_cache_zero_page(current_addr);
778 ram_release_pages(ms, block->idstr, pss->offset, pages);
779 } else if (!ram_bulk_stage &&
780 !migration_in_postcopy(ms) && migrate_use_xbzrle()) {
781 pages = save_xbzrle_page(f, &p, current_addr, block,
782 offset, last_stage, bytes_transferred);
783 if (!last_stage) {
784 /* Can't send this cached data async, since the cache page
785 * might get updated before it gets to the wire
786 */
787 send_async = false;
788 }
789 }
790 }
791
792 /* XBZRLE overflow or normal page */
793 if (pages == -1) {
794 *bytes_transferred += save_page_header(f, block,
795 offset | RAM_SAVE_FLAG_PAGE);
796 if (send_async) {
797 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE,
798 migrate_release_ram() &
799 migration_in_postcopy(ms));
800 } else {
801 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
802 }
803 *bytes_transferred += TARGET_PAGE_SIZE;
804 pages = 1;
805 acct_info.norm_pages++;
806 }
807
808 XBZRLE_cache_unlock();
809
810 return pages;
811 }
812
813 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
814 ram_addr_t offset)
815 {
816 int bytes_sent, blen;
817 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
818
819 bytes_sent = save_page_header(f, block, offset |
820 RAM_SAVE_FLAG_COMPRESS_PAGE);
821 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
822 migrate_compress_level());
823 if (blen < 0) {
824 bytes_sent = 0;
825 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
826 error_report("compressed data failed!");
827 } else {
828 bytes_sent += blen;
829 ram_release_pages(migrate_get_current(), block->idstr,
830 offset & TARGET_PAGE_MASK, 1);
831 }
832
833 return bytes_sent;
834 }
835
836 static uint64_t bytes_transferred;
837
838 static void flush_compressed_data(QEMUFile *f)
839 {
840 int idx, len, thread_count;
841
842 if (!migrate_use_compression()) {
843 return;
844 }
845 thread_count = migrate_compress_threads();
846
847 qemu_mutex_lock(&comp_done_lock);
848 for (idx = 0; idx < thread_count; idx++) {
849 while (!comp_param[idx].done) {
850 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
851 }
852 }
853 qemu_mutex_unlock(&comp_done_lock);
854
855 for (idx = 0; idx < thread_count; idx++) {
856 qemu_mutex_lock(&comp_param[idx].mutex);
857 if (!comp_param[idx].quit) {
858 len = qemu_put_qemu_file(f, comp_param[idx].file);
859 bytes_transferred += len;
860 }
861 qemu_mutex_unlock(&comp_param[idx].mutex);
862 }
863 }
864
865 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
866 ram_addr_t offset)
867 {
868 param->block = block;
869 param->offset = offset;
870 }
871
872 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
873 ram_addr_t offset,
874 uint64_t *bytes_transferred)
875 {
876 int idx, thread_count, bytes_xmit = -1, pages = -1;
877
878 thread_count = migrate_compress_threads();
879 qemu_mutex_lock(&comp_done_lock);
880 while (true) {
881 for (idx = 0; idx < thread_count; idx++) {
882 if (comp_param[idx].done) {
883 comp_param[idx].done = false;
884 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
885 qemu_mutex_lock(&comp_param[idx].mutex);
886 set_compress_params(&comp_param[idx], block, offset);
887 qemu_cond_signal(&comp_param[idx].cond);
888 qemu_mutex_unlock(&comp_param[idx].mutex);
889 pages = 1;
890 acct_info.norm_pages++;
891 *bytes_transferred += bytes_xmit;
892 break;
893 }
894 }
895 if (pages > 0) {
896 break;
897 } else {
898 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
899 }
900 }
901 qemu_mutex_unlock(&comp_done_lock);
902
903 return pages;
904 }
905
906 /**
907 * ram_save_compressed_page: compress the given page and send it to the stream
908 *
909 * Returns: Number of pages written.
910 *
911 * @ms: The current migration state.
912 * @f: QEMUFile where to send the data
913 * @block: block that contains the page we want to send
914 * @offset: offset inside the block for the page
915 * @last_stage: if we are at the completion stage
916 * @bytes_transferred: increase it with the number of transferred bytes
917 */
918 static int ram_save_compressed_page(MigrationState *ms, QEMUFile *f,
919 PageSearchStatus *pss, bool last_stage,
920 uint64_t *bytes_transferred)
921 {
922 int pages = -1;
923 uint64_t bytes_xmit = 0;
924 uint8_t *p;
925 int ret, blen;
926 RAMBlock *block = pss->block;
927 ram_addr_t offset = pss->offset;
928
929 p = block->host + offset;
930
931 ret = ram_control_save_page(f, block->offset,
932 offset, TARGET_PAGE_SIZE, &bytes_xmit);
933 if (bytes_xmit) {
934 *bytes_transferred += bytes_xmit;
935 pages = 1;
936 }
937 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
938 if (ret != RAM_SAVE_CONTROL_DELAYED) {
939 if (bytes_xmit > 0) {
940 acct_info.norm_pages++;
941 } else if (bytes_xmit == 0) {
942 acct_info.dup_pages++;
943 }
944 }
945 } else {
946 /* When starting the process of a new block, the first page of
947 * the block should be sent out before other pages in the same
948 * block, and all the pages in last block should have been sent
949 * out, keeping this order is important, because the 'cont' flag
950 * is used to avoid resending the block name.
951 */
952 if (block != last_sent_block) {
953 flush_compressed_data(f);
954 pages = save_zero_page(f, block, offset, p, bytes_transferred);
955 if (pages == -1) {
956 /* Make sure the first page is sent out before other pages */
957 bytes_xmit = save_page_header(f, block, offset |
958 RAM_SAVE_FLAG_COMPRESS_PAGE);
959 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
960 migrate_compress_level());
961 if (blen > 0) {
962 *bytes_transferred += bytes_xmit + blen;
963 acct_info.norm_pages++;
964 pages = 1;
965 } else {
966 qemu_file_set_error(f, blen);
967 error_report("compressed data failed!");
968 }
969 }
970 if (pages > 0) {
971 ram_release_pages(ms, block->idstr, pss->offset, pages);
972 }
973 } else {
974 offset |= RAM_SAVE_FLAG_CONTINUE;
975 pages = save_zero_page(f, block, offset, p, bytes_transferred);
976 if (pages == -1) {
977 pages = compress_page_with_multi_thread(f, block, offset,
978 bytes_transferred);
979 } else {
980 ram_release_pages(ms, block->idstr, pss->offset, pages);
981 }
982 }
983 }
984
985 return pages;
986 }
987
988 /*
989 * Find the next dirty page and update any state associated with
990 * the search process.
991 *
992 * Returns: True if a page is found
993 *
994 * @f: Current migration stream.
995 * @pss: Data about the state of the current dirty page scan.
996 * @*again: Set to false if the search has scanned the whole of RAM
997 * *ram_addr_abs: Pointer into which to store the address of the dirty page
998 * within the global ram_addr space
999 */
1000 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss,
1001 bool *again, ram_addr_t *ram_addr_abs)
1002 {
1003 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset,
1004 ram_addr_abs);
1005 if (pss->complete_round && pss->block == last_seen_block &&
1006 pss->offset >= last_offset) {
1007 /*
1008 * We've been once around the RAM and haven't found anything.
1009 * Give up.
1010 */
1011 *again = false;
1012 return false;
1013 }
1014 if (pss->offset >= pss->block->used_length) {
1015 /* Didn't find anything in this RAM Block */
1016 pss->offset = 0;
1017 pss->block = QLIST_NEXT_RCU(pss->block, next);
1018 if (!pss->block) {
1019 /* Hit the end of the list */
1020 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1021 /* Flag that we've looped */
1022 pss->complete_round = true;
1023 ram_bulk_stage = false;
1024 if (migrate_use_xbzrle()) {
1025 /* If xbzrle is on, stop using the data compression at this
1026 * point. In theory, xbzrle can do better than compression.
1027 */
1028 flush_compressed_data(f);
1029 compression_switch = false;
1030 }
1031 }
1032 /* Didn't find anything this time, but try again on the new block */
1033 *again = true;
1034 return false;
1035 } else {
1036 /* Can go around again, but... */
1037 *again = true;
1038 /* We've found something so probably don't need to */
1039 return true;
1040 }
1041 }
1042
1043 /*
1044 * Helper for 'get_queued_page' - gets a page off the queue
1045 * ms: MigrationState in
1046 * *offset: Used to return the offset within the RAMBlock
1047 * ram_addr_abs: global offset in the dirty/sent bitmaps
1048 *
1049 * Returns: block (or NULL if none available)
1050 */
1051 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset,
1052 ram_addr_t *ram_addr_abs)
1053 {
1054 RAMBlock *block = NULL;
1055
1056 qemu_mutex_lock(&ms->src_page_req_mutex);
1057 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) {
1058 struct MigrationSrcPageRequest *entry =
1059 QSIMPLEQ_FIRST(&ms->src_page_requests);
1060 block = entry->rb;
1061 *offset = entry->offset;
1062 *ram_addr_abs = (entry->offset + entry->rb->offset) &
1063 TARGET_PAGE_MASK;
1064
1065 if (entry->len > TARGET_PAGE_SIZE) {
1066 entry->len -= TARGET_PAGE_SIZE;
1067 entry->offset += TARGET_PAGE_SIZE;
1068 } else {
1069 memory_region_unref(block->mr);
1070 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1071 g_free(entry);
1072 }
1073 }
1074 qemu_mutex_unlock(&ms->src_page_req_mutex);
1075
1076 return block;
1077 }
1078
1079 /*
1080 * Unqueue a page from the queue fed by postcopy page requests; skips pages
1081 * that are already sent (!dirty)
1082 *
1083 * ms: MigrationState in
1084 * pss: PageSearchStatus structure updated with found block/offset
1085 * ram_addr_abs: global offset in the dirty/sent bitmaps
1086 *
1087 * Returns: true if a queued page is found
1088 */
1089 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss,
1090 ram_addr_t *ram_addr_abs)
1091 {
1092 RAMBlock *block;
1093 ram_addr_t offset;
1094 bool dirty;
1095
1096 do {
1097 block = unqueue_page(ms, &offset, ram_addr_abs);
1098 /*
1099 * We're sending this page, and since it's postcopy nothing else
1100 * will dirty it, and we must make sure it doesn't get sent again
1101 * even if this queue request was received after the background
1102 * search already sent it.
1103 */
1104 if (block) {
1105 unsigned long *bitmap;
1106 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1107 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap);
1108 if (!dirty) {
1109 trace_get_queued_page_not_dirty(
1110 block->idstr, (uint64_t)offset,
1111 (uint64_t)*ram_addr_abs,
1112 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS,
1113 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap));
1114 } else {
1115 trace_get_queued_page(block->idstr,
1116 (uint64_t)offset,
1117 (uint64_t)*ram_addr_abs);
1118 }
1119 }
1120
1121 } while (block && !dirty);
1122
1123 if (block) {
1124 /*
1125 * As soon as we start servicing pages out of order, then we have
1126 * to kill the bulk stage, since the bulk stage assumes
1127 * in (migration_bitmap_find_and_reset_dirty) that every page is
1128 * dirty, that's no longer true.
1129 */
1130 ram_bulk_stage = false;
1131
1132 /*
1133 * We want the background search to continue from the queued page
1134 * since the guest is likely to want other pages near to the page
1135 * it just requested.
1136 */
1137 pss->block = block;
1138 pss->offset = offset;
1139 }
1140
1141 return !!block;
1142 }
1143
1144 /**
1145 * flush_page_queue: Flush any remaining pages in the ram request queue
1146 * it should be empty at the end anyway, but in error cases there may be
1147 * some left.
1148 *
1149 * ms: MigrationState
1150 */
1151 void flush_page_queue(MigrationState *ms)
1152 {
1153 struct MigrationSrcPageRequest *mspr, *next_mspr;
1154 /* This queue generally should be empty - but in the case of a failed
1155 * migration might have some droppings in.
1156 */
1157 rcu_read_lock();
1158 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) {
1159 memory_region_unref(mspr->rb->mr);
1160 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1161 g_free(mspr);
1162 }
1163 rcu_read_unlock();
1164 }
1165
1166 /**
1167 * Queue the pages for transmission, e.g. a request from postcopy destination
1168 * ms: MigrationStatus in which the queue is held
1169 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1170 * start: Offset from the start of the RAMBlock
1171 * len: Length (in bytes) to send
1172 * Return: 0 on success
1173 */
1174 int ram_save_queue_pages(MigrationState *ms, const char *rbname,
1175 ram_addr_t start, ram_addr_t len)
1176 {
1177 RAMBlock *ramblock;
1178
1179 ms->postcopy_requests++;
1180 rcu_read_lock();
1181 if (!rbname) {
1182 /* Reuse last RAMBlock */
1183 ramblock = ms->last_req_rb;
1184
1185 if (!ramblock) {
1186 /*
1187 * Shouldn't happen, we can't reuse the last RAMBlock if
1188 * it's the 1st request.
1189 */
1190 error_report("ram_save_queue_pages no previous block");
1191 goto err;
1192 }
1193 } else {
1194 ramblock = qemu_ram_block_by_name(rbname);
1195
1196 if (!ramblock) {
1197 /* We shouldn't be asked for a non-existent RAMBlock */
1198 error_report("ram_save_queue_pages no block '%s'", rbname);
1199 goto err;
1200 }
1201 ms->last_req_rb = ramblock;
1202 }
1203 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1204 if (start+len > ramblock->used_length) {
1205 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1206 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1207 __func__, start, len, ramblock->used_length);
1208 goto err;
1209 }
1210
1211 struct MigrationSrcPageRequest *new_entry =
1212 g_malloc0(sizeof(struct MigrationSrcPageRequest));
1213 new_entry->rb = ramblock;
1214 new_entry->offset = start;
1215 new_entry->len = len;
1216
1217 memory_region_ref(ramblock->mr);
1218 qemu_mutex_lock(&ms->src_page_req_mutex);
1219 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req);
1220 qemu_mutex_unlock(&ms->src_page_req_mutex);
1221 rcu_read_unlock();
1222
1223 return 0;
1224
1225 err:
1226 rcu_read_unlock();
1227 return -1;
1228 }
1229
1230 /**
1231 * ram_save_target_page: Save one target page
1232 *
1233 *
1234 * @f: QEMUFile where to send the data
1235 * @block: pointer to block that contains the page we want to send
1236 * @offset: offset inside the block for the page;
1237 * @last_stage: if we are at the completion stage
1238 * @bytes_transferred: increase it with the number of transferred bytes
1239 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1240 *
1241 * Returns: Number of pages written.
1242 */
1243 static int ram_save_target_page(MigrationState *ms, QEMUFile *f,
1244 PageSearchStatus *pss,
1245 bool last_stage,
1246 uint64_t *bytes_transferred,
1247 ram_addr_t dirty_ram_abs)
1248 {
1249 int res = 0;
1250
1251 /* Check the pages is dirty and if it is send it */
1252 if (migration_bitmap_clear_dirty(dirty_ram_abs)) {
1253 unsigned long *unsentmap;
1254 if (compression_switch && migrate_use_compression()) {
1255 res = ram_save_compressed_page(ms, f, pss,
1256 last_stage,
1257 bytes_transferred);
1258 } else {
1259 res = ram_save_page(ms, f, pss, last_stage,
1260 bytes_transferred);
1261 }
1262
1263 if (res < 0) {
1264 return res;
1265 }
1266 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1267 if (unsentmap) {
1268 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap);
1269 }
1270 /* Only update last_sent_block if a block was actually sent; xbzrle
1271 * might have decided the page was identical so didn't bother writing
1272 * to the stream.
1273 */
1274 if (res > 0) {
1275 last_sent_block = pss->block;
1276 }
1277 }
1278
1279 return res;
1280 }
1281
1282 /**
1283 * ram_save_host_page: Starting at *offset send pages up to the end
1284 * of the current host page. It's valid for the initial
1285 * offset to point into the middle of a host page
1286 * in which case the remainder of the hostpage is sent.
1287 * Only dirty target pages are sent.
1288 *
1289 * Returns: Number of pages written.
1290 *
1291 * @f: QEMUFile where to send the data
1292 * @block: pointer to block that contains the page we want to send
1293 * @offset: offset inside the block for the page; updated to last target page
1294 * sent
1295 * @last_stage: if we are at the completion stage
1296 * @bytes_transferred: increase it with the number of transferred bytes
1297 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1298 */
1299 static int ram_save_host_page(MigrationState *ms, QEMUFile *f,
1300 PageSearchStatus *pss,
1301 bool last_stage,
1302 uint64_t *bytes_transferred,
1303 ram_addr_t dirty_ram_abs)
1304 {
1305 int tmppages, pages = 0;
1306 do {
1307 tmppages = ram_save_target_page(ms, f, pss, last_stage,
1308 bytes_transferred, dirty_ram_abs);
1309 if (tmppages < 0) {
1310 return tmppages;
1311 }
1312
1313 pages += tmppages;
1314 pss->offset += TARGET_PAGE_SIZE;
1315 dirty_ram_abs += TARGET_PAGE_SIZE;
1316 } while (pss->offset & (qemu_host_page_size - 1));
1317
1318 /* The offset we leave with is the last one we looked at */
1319 pss->offset -= TARGET_PAGE_SIZE;
1320 return pages;
1321 }
1322
1323 /**
1324 * ram_find_and_save_block: Finds a dirty page and sends it to f
1325 *
1326 * Called within an RCU critical section.
1327 *
1328 * Returns: The number of pages written
1329 * 0 means no dirty pages
1330 *
1331 * @f: QEMUFile where to send the data
1332 * @last_stage: if we are at the completion stage
1333 * @bytes_transferred: increase it with the number of transferred bytes
1334 *
1335 * On systems where host-page-size > target-page-size it will send all the
1336 * pages in a host page that are dirty.
1337 */
1338
1339 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1340 uint64_t *bytes_transferred)
1341 {
1342 PageSearchStatus pss;
1343 MigrationState *ms = migrate_get_current();
1344 int pages = 0;
1345 bool again, found;
1346 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in
1347 ram_addr_t space */
1348
1349 /* No dirty page as there is zero RAM */
1350 if (!ram_bytes_total()) {
1351 return pages;
1352 }
1353
1354 pss.block = last_seen_block;
1355 pss.offset = last_offset;
1356 pss.complete_round = false;
1357
1358 if (!pss.block) {
1359 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1360 }
1361
1362 do {
1363 again = true;
1364 found = get_queued_page(ms, &pss, &dirty_ram_abs);
1365
1366 if (!found) {
1367 /* priority queue empty, so just search for something dirty */
1368 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs);
1369 }
1370
1371 if (found) {
1372 pages = ram_save_host_page(ms, f, &pss,
1373 last_stage, bytes_transferred,
1374 dirty_ram_abs);
1375 }
1376 } while (!pages && again);
1377
1378 last_seen_block = pss.block;
1379 last_offset = pss.offset;
1380
1381 return pages;
1382 }
1383
1384 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1385 {
1386 uint64_t pages = size / TARGET_PAGE_SIZE;
1387 if (zero) {
1388 acct_info.dup_pages += pages;
1389 } else {
1390 acct_info.norm_pages += pages;
1391 bytes_transferred += size;
1392 qemu_update_position(f, size);
1393 }
1394 }
1395
1396 static ram_addr_t ram_save_remaining(void)
1397 {
1398 return migration_dirty_pages;
1399 }
1400
1401 uint64_t ram_bytes_remaining(void)
1402 {
1403 return ram_save_remaining() * TARGET_PAGE_SIZE;
1404 }
1405
1406 uint64_t ram_bytes_transferred(void)
1407 {
1408 return bytes_transferred;
1409 }
1410
1411 uint64_t ram_bytes_total(void)
1412 {
1413 RAMBlock *block;
1414 uint64_t total = 0;
1415
1416 rcu_read_lock();
1417 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1418 total += block->used_length;
1419 rcu_read_unlock();
1420 return total;
1421 }
1422
1423 void free_xbzrle_decoded_buf(void)
1424 {
1425 g_free(xbzrle_decoded_buf);
1426 xbzrle_decoded_buf = NULL;
1427 }
1428
1429 static void migration_bitmap_free(struct BitmapRcu *bmap)
1430 {
1431 g_free(bmap->bmap);
1432 g_free(bmap->unsentmap);
1433 g_free(bmap);
1434 }
1435
1436 static void ram_migration_cleanup(void *opaque)
1437 {
1438 /* caller have hold iothread lock or is in a bh, so there is
1439 * no writing race against this migration_bitmap
1440 */
1441 struct BitmapRcu *bitmap = migration_bitmap_rcu;
1442 atomic_rcu_set(&migration_bitmap_rcu, NULL);
1443 if (bitmap) {
1444 memory_global_dirty_log_stop();
1445 call_rcu(bitmap, migration_bitmap_free, rcu);
1446 }
1447
1448 XBZRLE_cache_lock();
1449 if (XBZRLE.cache) {
1450 cache_fini(XBZRLE.cache);
1451 g_free(XBZRLE.encoded_buf);
1452 g_free(XBZRLE.current_buf);
1453 g_free(ZERO_TARGET_PAGE);
1454 XBZRLE.cache = NULL;
1455 XBZRLE.encoded_buf = NULL;
1456 XBZRLE.current_buf = NULL;
1457 }
1458 XBZRLE_cache_unlock();
1459 }
1460
1461 static void reset_ram_globals(void)
1462 {
1463 last_seen_block = NULL;
1464 last_sent_block = NULL;
1465 last_offset = 0;
1466 last_version = ram_list.version;
1467 ram_bulk_stage = true;
1468 }
1469
1470 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1471
1472 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1473 {
1474 /* called in qemu main thread, so there is
1475 * no writing race against this migration_bitmap
1476 */
1477 if (migration_bitmap_rcu) {
1478 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap;
1479 bitmap = g_new(struct BitmapRcu, 1);
1480 bitmap->bmap = bitmap_new(new);
1481
1482 /* prevent migration_bitmap content from being set bit
1483 * by migration_bitmap_sync_range() at the same time.
1484 * it is safe to migration if migration_bitmap is cleared bit
1485 * at the same time.
1486 */
1487 qemu_mutex_lock(&migration_bitmap_mutex);
1488 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1489 bitmap_set(bitmap->bmap, old, new - old);
1490
1491 /* We don't have a way to safely extend the sentmap
1492 * with RCU; so mark it as missing, entry to postcopy
1493 * will fail.
1494 */
1495 bitmap->unsentmap = NULL;
1496
1497 atomic_rcu_set(&migration_bitmap_rcu, bitmap);
1498 qemu_mutex_unlock(&migration_bitmap_mutex);
1499 migration_dirty_pages += new - old;
1500 call_rcu(old_bitmap, migration_bitmap_free, rcu);
1501 }
1502 }
1503
1504 /*
1505 * 'expected' is the value you expect the bitmap mostly to be full
1506 * of; it won't bother printing lines that are all this value.
1507 * If 'todump' is null the migration bitmap is dumped.
1508 */
1509 void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1510 {
1511 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1512
1513 int64_t cur;
1514 int64_t linelen = 128;
1515 char linebuf[129];
1516
1517 if (!todump) {
1518 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1519 }
1520
1521 for (cur = 0; cur < ram_pages; cur += linelen) {
1522 int64_t curb;
1523 bool found = false;
1524 /*
1525 * Last line; catch the case where the line length
1526 * is longer than remaining ram
1527 */
1528 if (cur + linelen > ram_pages) {
1529 linelen = ram_pages - cur;
1530 }
1531 for (curb = 0; curb < linelen; curb++) {
1532 bool thisbit = test_bit(cur + curb, todump);
1533 linebuf[curb] = thisbit ? '1' : '.';
1534 found = found || (thisbit != expected);
1535 }
1536 if (found) {
1537 linebuf[curb] = '\0';
1538 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1539 }
1540 }
1541 }
1542
1543 /* **** functions for postcopy ***** */
1544
1545 void ram_postcopy_migrated_memory_release(MigrationState *ms)
1546 {
1547 struct RAMBlock *block;
1548 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1549
1550 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1551 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1552 unsigned long range = first + (block->used_length >> TARGET_PAGE_BITS);
1553 unsigned long run_start = find_next_zero_bit(bitmap, range, first);
1554
1555 while (run_start < range) {
1556 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1557 ram_discard_range(NULL, block->idstr, run_start << TARGET_PAGE_BITS,
1558 (run_end - run_start) << TARGET_PAGE_BITS);
1559 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1560 }
1561 }
1562 }
1563
1564 /*
1565 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1566 * Note: At this point the 'unsentmap' is the processed bitmap combined
1567 * with the dirtymap; so a '1' means it's either dirty or unsent.
1568 * start,length: Indexes into the bitmap for the first bit
1569 * representing the named block and length in target-pages
1570 */
1571 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1572 PostcopyDiscardState *pds,
1573 unsigned long start,
1574 unsigned long length)
1575 {
1576 unsigned long end = start + length; /* one after the end */
1577 unsigned long current;
1578 unsigned long *unsentmap;
1579
1580 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1581 for (current = start; current < end; ) {
1582 unsigned long one = find_next_bit(unsentmap, end, current);
1583
1584 if (one <= end) {
1585 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1586 unsigned long discard_length;
1587
1588 if (zero >= end) {
1589 discard_length = end - one;
1590 } else {
1591 discard_length = zero - one;
1592 }
1593 if (discard_length) {
1594 postcopy_discard_send_range(ms, pds, one, discard_length);
1595 }
1596 current = one + discard_length;
1597 } else {
1598 current = one;
1599 }
1600 }
1601
1602 return 0;
1603 }
1604
1605 /*
1606 * Utility for the outgoing postcopy code.
1607 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1608 * passing it bitmap indexes and name.
1609 * Returns: 0 on success
1610 * (qemu_ram_foreach_block ends up passing unscaled lengths
1611 * which would mean postcopy code would have to deal with target page)
1612 */
1613 static int postcopy_each_ram_send_discard(MigrationState *ms)
1614 {
1615 struct RAMBlock *block;
1616 int ret;
1617
1618 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1619 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1620 PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1621 first,
1622 block->idstr);
1623
1624 /*
1625 * Postcopy sends chunks of bitmap over the wire, but it
1626 * just needs indexes at this point, avoids it having
1627 * target page specific code.
1628 */
1629 ret = postcopy_send_discard_bm_ram(ms, pds, first,
1630 block->used_length >> TARGET_PAGE_BITS);
1631 postcopy_discard_send_finish(ms, pds);
1632 if (ret) {
1633 return ret;
1634 }
1635 }
1636
1637 return 0;
1638 }
1639
1640 /*
1641 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1642 * the two bitmaps, that are similar, but one is inverted.
1643 *
1644 * We search for runs of target-pages that don't start or end on a
1645 * host page boundary;
1646 * unsent_pass=true: Cleans up partially unsent host pages by searching
1647 * the unsentmap
1648 * unsent_pass=false: Cleans up partially dirty host pages by searching
1649 * the main migration bitmap
1650 *
1651 */
1652 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1653 RAMBlock *block,
1654 PostcopyDiscardState *pds)
1655 {
1656 unsigned long *bitmap;
1657 unsigned long *unsentmap;
1658 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE;
1659 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1660 unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1661 unsigned long last = first + (len - 1);
1662 unsigned long run_start;
1663
1664 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1665 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1666
1667 if (unsent_pass) {
1668 /* Find a sent page */
1669 run_start = find_next_zero_bit(unsentmap, last + 1, first);
1670 } else {
1671 /* Find a dirty page */
1672 run_start = find_next_bit(bitmap, last + 1, first);
1673 }
1674
1675 while (run_start <= last) {
1676 bool do_fixup = false;
1677 unsigned long fixup_start_addr;
1678 unsigned long host_offset;
1679
1680 /*
1681 * If the start of this run of pages is in the middle of a host
1682 * page, then we need to fixup this host page.
1683 */
1684 host_offset = run_start % host_ratio;
1685 if (host_offset) {
1686 do_fixup = true;
1687 run_start -= host_offset;
1688 fixup_start_addr = run_start;
1689 /* For the next pass */
1690 run_start = run_start + host_ratio;
1691 } else {
1692 /* Find the end of this run */
1693 unsigned long run_end;
1694 if (unsent_pass) {
1695 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1696 } else {
1697 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1698 }
1699 /*
1700 * If the end isn't at the start of a host page, then the
1701 * run doesn't finish at the end of a host page
1702 * and we need to discard.
1703 */
1704 host_offset = run_end % host_ratio;
1705 if (host_offset) {
1706 do_fixup = true;
1707 fixup_start_addr = run_end - host_offset;
1708 /*
1709 * This host page has gone, the next loop iteration starts
1710 * from after the fixup
1711 */
1712 run_start = fixup_start_addr + host_ratio;
1713 } else {
1714 /*
1715 * No discards on this iteration, next loop starts from
1716 * next sent/dirty page
1717 */
1718 run_start = run_end + 1;
1719 }
1720 }
1721
1722 if (do_fixup) {
1723 unsigned long page;
1724
1725 /* Tell the destination to discard this page */
1726 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1727 /* For the unsent_pass we:
1728 * discard partially sent pages
1729 * For the !unsent_pass (dirty) we:
1730 * discard partially dirty pages that were sent
1731 * (any partially sent pages were already discarded
1732 * by the previous unsent_pass)
1733 */
1734 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1735 host_ratio);
1736 }
1737
1738 /* Clean up the bitmap */
1739 for (page = fixup_start_addr;
1740 page < fixup_start_addr + host_ratio; page++) {
1741 /* All pages in this host page are now not sent */
1742 set_bit(page, unsentmap);
1743
1744 /*
1745 * Remark them as dirty, updating the count for any pages
1746 * that weren't previously dirty.
1747 */
1748 migration_dirty_pages += !test_and_set_bit(page, bitmap);
1749 }
1750 }
1751
1752 if (unsent_pass) {
1753 /* Find the next sent page for the next iteration */
1754 run_start = find_next_zero_bit(unsentmap, last + 1,
1755 run_start);
1756 } else {
1757 /* Find the next dirty page for the next iteration */
1758 run_start = find_next_bit(bitmap, last + 1, run_start);
1759 }
1760 }
1761 }
1762
1763 /*
1764 * Utility for the outgoing postcopy code.
1765 *
1766 * Discard any partially sent host-page size chunks, mark any partially
1767 * dirty host-page size chunks as all dirty.
1768 *
1769 * Returns: 0 on success
1770 */
1771 static int postcopy_chunk_hostpages(MigrationState *ms)
1772 {
1773 struct RAMBlock *block;
1774
1775 if (qemu_host_page_size == TARGET_PAGE_SIZE) {
1776 /* Easy case - TPS==HPS - nothing to be done */
1777 return 0;
1778 }
1779
1780 /* Easiest way to make sure we don't resume in the middle of a host-page */
1781 last_seen_block = NULL;
1782 last_sent_block = NULL;
1783 last_offset = 0;
1784
1785 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1786 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1787
1788 PostcopyDiscardState *pds =
1789 postcopy_discard_send_init(ms, first, block->idstr);
1790
1791 /* First pass: Discard all partially sent host pages */
1792 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1793 /*
1794 * Second pass: Ensure that all partially dirty host pages are made
1795 * fully dirty.
1796 */
1797 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1798
1799 postcopy_discard_send_finish(ms, pds);
1800 } /* ram_list loop */
1801
1802 return 0;
1803 }
1804
1805 /*
1806 * Transmit the set of pages to be discarded after precopy to the target
1807 * these are pages that:
1808 * a) Have been previously transmitted but are now dirty again
1809 * b) Pages that have never been transmitted, this ensures that
1810 * any pages on the destination that have been mapped by background
1811 * tasks get discarded (transparent huge pages is the specific concern)
1812 * Hopefully this is pretty sparse
1813 */
1814 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1815 {
1816 int ret;
1817 unsigned long *bitmap, *unsentmap;
1818
1819 rcu_read_lock();
1820
1821 /* This should be our last sync, the src is now paused */
1822 migration_bitmap_sync();
1823
1824 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1825 if (!unsentmap) {
1826 /* We don't have a safe way to resize the sentmap, so
1827 * if the bitmap was resized it will be NULL at this
1828 * point.
1829 */
1830 error_report("migration ram resized during precopy phase");
1831 rcu_read_unlock();
1832 return -EINVAL;
1833 }
1834
1835 /* Deal with TPS != HPS */
1836 ret = postcopy_chunk_hostpages(ms);
1837 if (ret) {
1838 rcu_read_unlock();
1839 return ret;
1840 }
1841
1842 /*
1843 * Update the unsentmap to be unsentmap = unsentmap | dirty
1844 */
1845 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1846 bitmap_or(unsentmap, unsentmap, bitmap,
1847 last_ram_offset() >> TARGET_PAGE_BITS);
1848
1849
1850 trace_ram_postcopy_send_discard_bitmap();
1851 #ifdef DEBUG_POSTCOPY
1852 ram_debug_dump_bitmap(unsentmap, true);
1853 #endif
1854
1855 ret = postcopy_each_ram_send_discard(ms);
1856 rcu_read_unlock();
1857
1858 return ret;
1859 }
1860
1861 /*
1862 * At the start of the postcopy phase of migration, any now-dirty
1863 * precopied pages are discarded.
1864 *
1865 * start, length describe a byte address range within the RAMBlock
1866 *
1867 * Returns 0 on success.
1868 */
1869 int ram_discard_range(MigrationIncomingState *mis,
1870 const char *block_name,
1871 uint64_t start, size_t length)
1872 {
1873 int ret = -1;
1874
1875 rcu_read_lock();
1876 RAMBlock *rb = qemu_ram_block_by_name(block_name);
1877
1878 if (!rb) {
1879 error_report("ram_discard_range: Failed to find block '%s'",
1880 block_name);
1881 goto err;
1882 }
1883
1884 uint8_t *host_startaddr = rb->host + start;
1885
1886 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) {
1887 error_report("ram_discard_range: Unaligned start address: %p",
1888 host_startaddr);
1889 goto err;
1890 }
1891
1892 if ((start + length) <= rb->used_length) {
1893 uint8_t *host_endaddr = host_startaddr + length;
1894 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) {
1895 error_report("ram_discard_range: Unaligned end address: %p",
1896 host_endaddr);
1897 goto err;
1898 }
1899 ret = postcopy_ram_discard_range(mis, host_startaddr, length);
1900 } else {
1901 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64
1902 "/%zx/" RAM_ADDR_FMT")",
1903 block_name, start, length, rb->used_length);
1904 }
1905
1906 err:
1907 rcu_read_unlock();
1908
1909 return ret;
1910 }
1911
1912 static int ram_save_init_globals(void)
1913 {
1914 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1915
1916 dirty_rate_high_cnt = 0;
1917 bitmap_sync_count = 0;
1918 migration_bitmap_sync_init();
1919 qemu_mutex_init(&migration_bitmap_mutex);
1920
1921 if (migrate_use_xbzrle()) {
1922 XBZRLE_cache_lock();
1923 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
1924 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1925 TARGET_PAGE_SIZE,
1926 TARGET_PAGE_SIZE);
1927 if (!XBZRLE.cache) {
1928 XBZRLE_cache_unlock();
1929 error_report("Error creating cache");
1930 return -1;
1931 }
1932 XBZRLE_cache_unlock();
1933
1934 /* We prefer not to abort if there is no memory */
1935 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1936 if (!XBZRLE.encoded_buf) {
1937 error_report("Error allocating encoded_buf");
1938 return -1;
1939 }
1940
1941 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1942 if (!XBZRLE.current_buf) {
1943 error_report("Error allocating current_buf");
1944 g_free(XBZRLE.encoded_buf);
1945 XBZRLE.encoded_buf = NULL;
1946 return -1;
1947 }
1948
1949 acct_clear();
1950 }
1951
1952 /* For memory_global_dirty_log_start below. */
1953 qemu_mutex_lock_iothread();
1954
1955 qemu_mutex_lock_ramlist();
1956 rcu_read_lock();
1957 bytes_transferred = 0;
1958 reset_ram_globals();
1959
1960 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1);
1961 /* Skip setting bitmap if there is no RAM */
1962 if (ram_bytes_total()) {
1963 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1964 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages);
1965 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages);
1966
1967 if (migrate_postcopy_ram()) {
1968 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages);
1969 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages);
1970 }
1971 }
1972
1973 /*
1974 * Count the total number of pages used by ram blocks not including any
1975 * gaps due to alignment or unplugs.
1976 */
1977 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1978
1979 memory_global_dirty_log_start();
1980 migration_bitmap_sync();
1981 qemu_mutex_unlock_ramlist();
1982 qemu_mutex_unlock_iothread();
1983 rcu_read_unlock();
1984
1985 return 0;
1986 }
1987
1988 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1989 * long-running RCU critical section. When rcu-reclaims in the code
1990 * start to become numerous it will be necessary to reduce the
1991 * granularity of these critical sections.
1992 */
1993
1994 static int ram_save_setup(QEMUFile *f, void *opaque)
1995 {
1996 RAMBlock *block;
1997
1998 /* migration has already setup the bitmap, reuse it. */
1999 if (!migration_in_colo_state()) {
2000 if (ram_save_init_globals() < 0) {
2001 return -1;
2002 }
2003 }
2004
2005 rcu_read_lock();
2006
2007 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2008
2009 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2010 qemu_put_byte(f, strlen(block->idstr));
2011 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2012 qemu_put_be64(f, block->used_length);
2013 }
2014
2015 rcu_read_unlock();
2016
2017 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2018 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2019
2020 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2021
2022 return 0;
2023 }
2024
2025 static int ram_save_iterate(QEMUFile *f, void *opaque)
2026 {
2027 int ret;
2028 int i;
2029 int64_t t0;
2030 int done = 0;
2031
2032 rcu_read_lock();
2033 if (ram_list.version != last_version) {
2034 reset_ram_globals();
2035 }
2036
2037 /* Read version before ram_list.blocks */
2038 smp_rmb();
2039
2040 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2041
2042 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2043 i = 0;
2044 while ((ret = qemu_file_rate_limit(f)) == 0) {
2045 int pages;
2046
2047 pages = ram_find_and_save_block(f, false, &bytes_transferred);
2048 /* no more pages to sent */
2049 if (pages == 0) {
2050 done = 1;
2051 break;
2052 }
2053 acct_info.iterations++;
2054
2055 /* we want to check in the 1st loop, just in case it was the 1st time
2056 and we had to sync the dirty bitmap.
2057 qemu_get_clock_ns() is a bit expensive, so we only check each some
2058 iterations
2059 */
2060 if ((i & 63) == 0) {
2061 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2062 if (t1 > MAX_WAIT) {
2063 trace_ram_save_iterate_big_wait(t1, i);
2064 break;
2065 }
2066 }
2067 i++;
2068 }
2069 flush_compressed_data(f);
2070 rcu_read_unlock();
2071
2072 /*
2073 * Must occur before EOS (or any QEMUFile operation)
2074 * because of RDMA protocol.
2075 */
2076 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2077
2078 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2079 bytes_transferred += 8;
2080
2081 ret = qemu_file_get_error(f);
2082 if (ret < 0) {
2083 return ret;
2084 }
2085
2086 return done;
2087 }
2088
2089 /* Called with iothread lock */
2090 static int ram_save_complete(QEMUFile *f, void *opaque)
2091 {
2092 rcu_read_lock();
2093
2094 if (!migration_in_postcopy(migrate_get_current())) {
2095 migration_bitmap_sync();
2096 }
2097
2098 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2099
2100 /* try transferring iterative blocks of memory */
2101
2102 /* flush all remaining blocks regardless of rate limiting */
2103 while (true) {
2104 int pages;
2105
2106 pages = ram_find_and_save_block(f, !migration_in_colo_state(),
2107 &bytes_transferred);
2108 /* no more blocks to sent */
2109 if (pages == 0) {
2110 break;
2111 }
2112 }
2113
2114 flush_compressed_data(f);
2115 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2116
2117 rcu_read_unlock();
2118
2119 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2120
2121 return 0;
2122 }
2123
2124 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2125 uint64_t *non_postcopiable_pending,
2126 uint64_t *postcopiable_pending)
2127 {
2128 uint64_t remaining_size;
2129
2130 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2131
2132 if (!migration_in_postcopy(migrate_get_current()) &&
2133 remaining_size < max_size) {
2134 qemu_mutex_lock_iothread();
2135 rcu_read_lock();
2136 migration_bitmap_sync();
2137 rcu_read_unlock();
2138 qemu_mutex_unlock_iothread();
2139 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2140 }
2141
2142 /* We can do postcopy, and all the data is postcopiable */
2143 *postcopiable_pending += remaining_size;
2144 }
2145
2146 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2147 {
2148 unsigned int xh_len;
2149 int xh_flags;
2150 uint8_t *loaded_data;
2151
2152 if (!xbzrle_decoded_buf) {
2153 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2154 }
2155 loaded_data = xbzrle_decoded_buf;
2156
2157 /* extract RLE header */
2158 xh_flags = qemu_get_byte(f);
2159 xh_len = qemu_get_be16(f);
2160
2161 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2162 error_report("Failed to load XBZRLE page - wrong compression!");
2163 return -1;
2164 }
2165
2166 if (xh_len > TARGET_PAGE_SIZE) {
2167 error_report("Failed to load XBZRLE page - len overflow!");
2168 return -1;
2169 }
2170 /* load data and decode */
2171 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2172
2173 /* decode RLE */
2174 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2175 TARGET_PAGE_SIZE) == -1) {
2176 error_report("Failed to load XBZRLE page - decode error!");
2177 return -1;
2178 }
2179
2180 return 0;
2181 }
2182
2183 /* Must be called from within a rcu critical section.
2184 * Returns a pointer from within the RCU-protected ram_list.
2185 */
2186 /*
2187 * Read a RAMBlock ID from the stream f.
2188 *
2189 * f: Stream to read from
2190 * flags: Page flags (mostly to see if it's a continuation of previous block)
2191 */
2192 static inline RAMBlock *ram_block_from_stream(QEMUFile *f,
2193 int flags)
2194 {
2195 static RAMBlock *block = NULL;
2196 char id[256];
2197 uint8_t len;
2198
2199 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2200 if (!block) {
2201 error_report("Ack, bad migration stream!");
2202 return NULL;
2203 }
2204 return block;
2205 }
2206
2207 len = qemu_get_byte(f);
2208 qemu_get_buffer(f, (uint8_t *)id, len);
2209 id[len] = 0;
2210
2211 block = qemu_ram_block_by_name(id);
2212 if (!block) {
2213 error_report("Can't find block %s", id);
2214 return NULL;
2215 }
2216
2217 return block;
2218 }
2219
2220 static inline void *host_from_ram_block_offset(RAMBlock *block,
2221 ram_addr_t offset)
2222 {
2223 if (!offset_in_ramblock(block, offset)) {
2224 return NULL;
2225 }
2226
2227 return block->host + offset;
2228 }
2229
2230 /*
2231 * If a page (or a whole RDMA chunk) has been
2232 * determined to be zero, then zap it.
2233 */
2234 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2235 {
2236 if (ch != 0 || !is_zero_range(host, size)) {
2237 memset(host, ch, size);
2238 }
2239 }
2240
2241 static void *do_data_decompress(void *opaque)
2242 {
2243 DecompressParam *param = opaque;
2244 unsigned long pagesize;
2245 uint8_t *des;
2246 int len;
2247
2248 qemu_mutex_lock(&param->mutex);
2249 while (!param->quit) {
2250 if (param->des) {
2251 des = param->des;
2252 len = param->len;
2253 param->des = 0;
2254 qemu_mutex_unlock(&param->mutex);
2255
2256 pagesize = TARGET_PAGE_SIZE;
2257 /* uncompress() will return failed in some case, especially
2258 * when the page is dirted when doing the compression, it's
2259 * not a problem because the dirty page will be retransferred
2260 * and uncompress() won't break the data in other pages.
2261 */
2262 uncompress((Bytef *)des, &pagesize,
2263 (const Bytef *)param->compbuf, len);
2264
2265 qemu_mutex_lock(&decomp_done_lock);
2266 param->done = true;
2267 qemu_cond_signal(&decomp_done_cond);
2268 qemu_mutex_unlock(&decomp_done_lock);
2269
2270 qemu_mutex_lock(&param->mutex);
2271 } else {
2272 qemu_cond_wait(&param->cond, &param->mutex);
2273 }
2274 }
2275 qemu_mutex_unlock(&param->mutex);
2276
2277 return NULL;
2278 }
2279
2280 static void wait_for_decompress_done(void)
2281 {
2282 int idx, thread_count;
2283
2284 if (!migrate_use_compression()) {
2285 return;
2286 }
2287
2288 thread_count = migrate_decompress_threads();
2289 qemu_mutex_lock(&decomp_done_lock);
2290 for (idx = 0; idx < thread_count; idx++) {
2291 while (!decomp_param[idx].done) {
2292 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2293 }
2294 }
2295 qemu_mutex_unlock(&decomp_done_lock);
2296 }
2297
2298 void migrate_decompress_threads_create(void)
2299 {
2300 int i, thread_count;
2301
2302 thread_count = migrate_decompress_threads();
2303 decompress_threads = g_new0(QemuThread, thread_count);
2304 decomp_param = g_new0(DecompressParam, thread_count);
2305 qemu_mutex_init(&decomp_done_lock);
2306 qemu_cond_init(&decomp_done_cond);
2307 for (i = 0; i < thread_count; i++) {
2308 qemu_mutex_init(&decomp_param[i].mutex);
2309 qemu_cond_init(&decomp_param[i].cond);
2310 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2311 decomp_param[i].done = true;
2312 decomp_param[i].quit = false;
2313 qemu_thread_create(decompress_threads + i, "decompress",
2314 do_data_decompress, decomp_param + i,
2315 QEMU_THREAD_JOINABLE);
2316 }
2317 }
2318
2319 void migrate_decompress_threads_join(void)
2320 {
2321 int i, thread_count;
2322
2323 thread_count = migrate_decompress_threads();
2324 for (i = 0; i < thread_count; i++) {
2325 qemu_mutex_lock(&decomp_param[i].mutex);
2326 decomp_param[i].quit = true;
2327 qemu_cond_signal(&decomp_param[i].cond);
2328 qemu_mutex_unlock(&decomp_param[i].mutex);
2329 }
2330 for (i = 0; i < thread_count; i++) {
2331 qemu_thread_join(decompress_threads + i);
2332 qemu_mutex_destroy(&decomp_param[i].mutex);
2333 qemu_cond_destroy(&decomp_param[i].cond);
2334 g_free(decomp_param[i].compbuf);
2335 }
2336 g_free(decompress_threads);
2337 g_free(decomp_param);
2338 decompress_threads = NULL;
2339 decomp_param = NULL;
2340 }
2341
2342 static void decompress_data_with_multi_threads(QEMUFile *f,
2343 void *host, int len)
2344 {
2345 int idx, thread_count;
2346
2347 thread_count = migrate_decompress_threads();
2348 qemu_mutex_lock(&decomp_done_lock);
2349 while (true) {
2350 for (idx = 0; idx < thread_count; idx++) {
2351 if (decomp_param[idx].done) {
2352 decomp_param[idx].done = false;
2353 qemu_mutex_lock(&decomp_param[idx].mutex);
2354 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2355 decomp_param[idx].des = host;
2356 decomp_param[idx].len = len;
2357 qemu_cond_signal(&decomp_param[idx].cond);
2358 qemu_mutex_unlock(&decomp_param[idx].mutex);
2359 break;
2360 }
2361 }
2362 if (idx < thread_count) {
2363 break;
2364 } else {
2365 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2366 }
2367 }
2368 qemu_mutex_unlock(&decomp_done_lock);
2369 }
2370
2371 /*
2372 * Allocate data structures etc needed by incoming migration with postcopy-ram
2373 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2374 */
2375 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2376 {
2377 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2378
2379 return postcopy_ram_incoming_init(mis, ram_pages);
2380 }
2381
2382 /*
2383 * Called in postcopy mode by ram_load().
2384 * rcu_read_lock is taken prior to this being called.
2385 */
2386 static int ram_load_postcopy(QEMUFile *f)
2387 {
2388 int flags = 0, ret = 0;
2389 bool place_needed = false;
2390 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE;
2391 MigrationIncomingState *mis = migration_incoming_get_current();
2392 /* Temporary page that is later 'placed' */
2393 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2394 void *last_host = NULL;
2395 bool all_zero = false;
2396
2397 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2398 ram_addr_t addr;
2399 void *host = NULL;
2400 void *page_buffer = NULL;
2401 void *place_source = NULL;
2402 uint8_t ch;
2403
2404 addr = qemu_get_be64(f);
2405 flags = addr & ~TARGET_PAGE_MASK;
2406 addr &= TARGET_PAGE_MASK;
2407
2408 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2409 place_needed = false;
2410 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
2411 RAMBlock *block = ram_block_from_stream(f, flags);
2412
2413 host = host_from_ram_block_offset(block, addr);
2414 if (!host) {
2415 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2416 ret = -EINVAL;
2417 break;
2418 }
2419 /*
2420 * Postcopy requires that we place whole host pages atomically.
2421 * To make it atomic, the data is read into a temporary page
2422 * that's moved into place later.
2423 * The migration protocol uses, possibly smaller, target-pages
2424 * however the source ensures it always sends all the components
2425 * of a host page in order.
2426 */
2427 page_buffer = postcopy_host_page +
2428 ((uintptr_t)host & ~qemu_host_page_mask);
2429 /* If all TP are zero then we can optimise the place */
2430 if (!((uintptr_t)host & ~qemu_host_page_mask)) {
2431 all_zero = true;
2432 } else {
2433 /* not the 1st TP within the HP */
2434 if (host != (last_host + TARGET_PAGE_SIZE)) {
2435 error_report("Non-sequential target page %p/%p",
2436 host, last_host);
2437 ret = -EINVAL;
2438 break;
2439 }
2440 }
2441
2442
2443 /*
2444 * If it's the last part of a host page then we place the host
2445 * page
2446 */
2447 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2448 ~qemu_host_page_mask) == 0;
2449 place_source = postcopy_host_page;
2450 }
2451 last_host = host;
2452
2453 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2454 case RAM_SAVE_FLAG_COMPRESS:
2455 ch = qemu_get_byte(f);
2456 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2457 if (ch) {
2458 all_zero = false;
2459 }
2460 break;
2461
2462 case RAM_SAVE_FLAG_PAGE:
2463 all_zero = false;
2464 if (!place_needed || !matching_page_sizes) {
2465 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2466 } else {
2467 /* Avoids the qemu_file copy during postcopy, which is
2468 * going to do a copy later; can only do it when we
2469 * do this read in one go (matching page sizes)
2470 */
2471 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2472 TARGET_PAGE_SIZE);
2473 }
2474 break;
2475 case RAM_SAVE_FLAG_EOS:
2476 /* normal exit */
2477 break;
2478 default:
2479 error_report("Unknown combination of migration flags: %#x"
2480 " (postcopy mode)", flags);
2481 ret = -EINVAL;
2482 }
2483
2484 if (place_needed) {
2485 /* This gets called at the last target page in the host page */
2486 if (all_zero) {
2487 ret = postcopy_place_page_zero(mis,
2488 host + TARGET_PAGE_SIZE -
2489 qemu_host_page_size);
2490 } else {
2491 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE -
2492 qemu_host_page_size,
2493 place_source);
2494 }
2495 }
2496 if (!ret) {
2497 ret = qemu_file_get_error(f);
2498 }
2499 }
2500
2501 return ret;
2502 }
2503
2504 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2505 {
2506 int flags = 0, ret = 0;
2507 static uint64_t seq_iter;
2508 int len = 0;
2509 /*
2510 * If system is running in postcopy mode, page inserts to host memory must
2511 * be atomic
2512 */
2513 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2514
2515 seq_iter++;
2516
2517 if (version_id != 4) {
2518 ret = -EINVAL;
2519 }
2520
2521 /* This RCU critical section can be very long running.
2522 * When RCU reclaims in the code start to become numerous,
2523 * it will be necessary to reduce the granularity of this
2524 * critical section.
2525 */
2526 rcu_read_lock();
2527
2528 if (postcopy_running) {
2529 ret = ram_load_postcopy(f);
2530 }
2531
2532 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2533 ram_addr_t addr, total_ram_bytes;
2534 void *host = NULL;
2535 uint8_t ch;
2536
2537 addr = qemu_get_be64(f);
2538 flags = addr & ~TARGET_PAGE_MASK;
2539 addr &= TARGET_PAGE_MASK;
2540
2541 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2542 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2543 RAMBlock *block = ram_block_from_stream(f, flags);
2544
2545 host = host_from_ram_block_offset(block, addr);
2546 if (!host) {
2547 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2548 ret = -EINVAL;
2549 break;
2550 }
2551 }
2552
2553 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2554 case RAM_SAVE_FLAG_MEM_SIZE:
2555 /* Synchronize RAM block list */
2556 total_ram_bytes = addr;
2557 while (!ret && total_ram_bytes) {
2558 RAMBlock *block;
2559 char id[256];
2560 ram_addr_t length;
2561
2562 len = qemu_get_byte(f);
2563 qemu_get_buffer(f, (uint8_t *)id, len);
2564 id[len] = 0;
2565 length = qemu_get_be64(f);
2566
2567 block = qemu_ram_block_by_name(id);
2568 if (block) {
2569 if (length != block->used_length) {
2570 Error *local_err = NULL;
2571
2572 ret = qemu_ram_resize(block, length,
2573 &local_err);
2574 if (local_err) {
2575 error_report_err(local_err);
2576 }
2577 }
2578 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2579 block->idstr);
2580 } else {
2581 error_report("Unknown ramblock \"%s\", cannot "
2582 "accept migration", id);
2583 ret = -EINVAL;
2584 }
2585
2586 total_ram_bytes -= length;
2587 }
2588 break;
2589
2590 case RAM_SAVE_FLAG_COMPRESS:
2591 ch = qemu_get_byte(f);
2592 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2593 break;
2594
2595 case RAM_SAVE_FLAG_PAGE:
2596 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2597 break;
2598
2599 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2600 len = qemu_get_be32(f);
2601 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2602 error_report("Invalid compressed data length: %d", len);
2603 ret = -EINVAL;
2604 break;
2605 }
2606 decompress_data_with_multi_threads(f, host, len);
2607 break;
2608
2609 case RAM_SAVE_FLAG_XBZRLE:
2610 if (load_xbzrle(f, addr, host) < 0) {
2611 error_report("Failed to decompress XBZRLE page at "
2612 RAM_ADDR_FMT, addr);
2613 ret = -EINVAL;
2614 break;
2615 }
2616 break;
2617 case RAM_SAVE_FLAG_EOS:
2618 /* normal exit */
2619 break;
2620 default:
2621 if (flags & RAM_SAVE_FLAG_HOOK) {
2622 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2623 } else {
2624 error_report("Unknown combination of migration flags: %#x",
2625 flags);
2626 ret = -EINVAL;
2627 }
2628 }
2629 if (!ret) {
2630 ret = qemu_file_get_error(f);
2631 }
2632 }
2633
2634 wait_for_decompress_done();
2635 rcu_read_unlock();
2636 trace_ram_load_complete(ret, seq_iter);
2637 return ret;
2638 }
2639
2640 static SaveVMHandlers savevm_ram_handlers = {
2641 .save_live_setup = ram_save_setup,
2642 .save_live_iterate = ram_save_iterate,
2643 .save_live_complete_postcopy = ram_save_complete,
2644 .save_live_complete_precopy = ram_save_complete,
2645 .save_live_pending = ram_save_pending,
2646 .load_state = ram_load,
2647 .cleanup = ram_migration_cleanup,
2648 };
2649
2650 void ram_mig_init(void)
2651 {
2652 qemu_mutex_init(&XBZRLE.lock);
2653 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
2654 }