]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
migration: Introduce postcopy channels on dest node
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration/register.h"
39 #include "migration/misc.h"
40 #include "qemu-file.h"
41 #include "postcopy-ram.h"
42 #include "page_cache.h"
43 #include "qemu/error-report.h"
44 #include "qapi/error.h"
45 #include "qapi/qapi-types-migration.h"
46 #include "qapi/qapi-events-migration.h"
47 #include "qapi/qmp/qerror.h"
48 #include "trace.h"
49 #include "exec/ram_addr.h"
50 #include "exec/target_page.h"
51 #include "qemu/rcu_queue.h"
52 #include "migration/colo.h"
53 #include "block.h"
54 #include "sysemu/cpu-throttle.h"
55 #include "savevm.h"
56 #include "qemu/iov.h"
57 #include "multifd.h"
58 #include "sysemu/runstate.h"
59
60 #include "hw/boards.h" /* for machine_dump_guest_core() */
61
62 #if defined(__linux__)
63 #include "qemu/userfaultfd.h"
64 #endif /* defined(__linux__) */
65
66 /***********************************************************/
67 /* ram save/restore */
68
69 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
70 * worked for pages that where filled with the same char. We switched
71 * it to only search for the zero value. And to avoid confusion with
72 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
73 */
74
75 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
76 #define RAM_SAVE_FLAG_ZERO 0x02
77 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
78 #define RAM_SAVE_FLAG_PAGE 0x08
79 #define RAM_SAVE_FLAG_EOS 0x10
80 #define RAM_SAVE_FLAG_CONTINUE 0x20
81 #define RAM_SAVE_FLAG_XBZRLE 0x40
82 /* 0x80 is reserved in migration.h start with 0x100 next */
83 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
84
85 XBZRLECacheStats xbzrle_counters;
86
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
102
103 static void XBZRLE_cache_lock(void)
104 {
105 if (migrate_use_xbzrle()) {
106 qemu_mutex_lock(&XBZRLE.lock);
107 }
108 }
109
110 static void XBZRLE_cache_unlock(void)
111 {
112 if (migrate_use_xbzrle()) {
113 qemu_mutex_unlock(&XBZRLE.lock);
114 }
115 }
116
117 /**
118 * xbzrle_cache_resize: resize the xbzrle cache
119 *
120 * This function is called from migrate_params_apply in main
121 * thread, possibly while a migration is in progress. A running
122 * migration may be using the cache and might finish during this call,
123 * hence changes to the cache are protected by XBZRLE.lock().
124 *
125 * Returns 0 for success or -1 for error
126 *
127 * @new_size: new cache size
128 * @errp: set *errp if the check failed, with reason
129 */
130 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
131 {
132 PageCache *new_cache;
133 int64_t ret = 0;
134
135 /* Check for truncation */
136 if (new_size != (size_t)new_size) {
137 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
138 "exceeding address space");
139 return -1;
140 }
141
142 if (new_size == migrate_xbzrle_cache_size()) {
143 /* nothing to do */
144 return 0;
145 }
146
147 XBZRLE_cache_lock();
148
149 if (XBZRLE.cache != NULL) {
150 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
151 if (!new_cache) {
152 ret = -1;
153 goto out;
154 }
155
156 cache_fini(XBZRLE.cache);
157 XBZRLE.cache = new_cache;
158 }
159 out:
160 XBZRLE_cache_unlock();
161 return ret;
162 }
163
164 bool ramblock_is_ignored(RAMBlock *block)
165 {
166 return !qemu_ram_is_migratable(block) ||
167 (migrate_ignore_shared() && qemu_ram_is_shared(block));
168 }
169
170 #undef RAMBLOCK_FOREACH
171
172 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
173 {
174 RAMBlock *block;
175 int ret = 0;
176
177 RCU_READ_LOCK_GUARD();
178
179 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
180 ret = func(block, opaque);
181 if (ret) {
182 break;
183 }
184 }
185 return ret;
186 }
187
188 static void ramblock_recv_map_init(void)
189 {
190 RAMBlock *rb;
191
192 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
193 assert(!rb->receivedmap);
194 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
195 }
196 }
197
198 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
199 {
200 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
201 rb->receivedmap);
202 }
203
204 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
205 {
206 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
207 }
208
209 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
210 {
211 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
212 }
213
214 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
215 size_t nr)
216 {
217 bitmap_set_atomic(rb->receivedmap,
218 ramblock_recv_bitmap_offset(host_addr, rb),
219 nr);
220 }
221
222 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
223
224 /*
225 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
226 *
227 * Returns >0 if success with sent bytes, or <0 if error.
228 */
229 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
230 const char *block_name)
231 {
232 RAMBlock *block = qemu_ram_block_by_name(block_name);
233 unsigned long *le_bitmap, nbits;
234 uint64_t size;
235
236 if (!block) {
237 error_report("%s: invalid block name: %s", __func__, block_name);
238 return -1;
239 }
240
241 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
242
243 /*
244 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
245 * machines we may need 4 more bytes for padding (see below
246 * comment). So extend it a bit before hand.
247 */
248 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
249
250 /*
251 * Always use little endian when sending the bitmap. This is
252 * required that when source and destination VMs are not using the
253 * same endianness. (Note: big endian won't work.)
254 */
255 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
256
257 /* Size of the bitmap, in bytes */
258 size = DIV_ROUND_UP(nbits, 8);
259
260 /*
261 * size is always aligned to 8 bytes for 64bit machines, but it
262 * may not be true for 32bit machines. We need this padding to
263 * make sure the migration can survive even between 32bit and
264 * 64bit machines.
265 */
266 size = ROUND_UP(size, 8);
267
268 qemu_put_be64(file, size);
269 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
270 /*
271 * Mark as an end, in case the middle part is screwed up due to
272 * some "mysterious" reason.
273 */
274 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
275 qemu_fflush(file);
276
277 g_free(le_bitmap);
278
279 if (qemu_file_get_error(file)) {
280 return qemu_file_get_error(file);
281 }
282
283 return size + sizeof(size);
284 }
285
286 /*
287 * An outstanding page request, on the source, having been received
288 * and queued
289 */
290 struct RAMSrcPageRequest {
291 RAMBlock *rb;
292 hwaddr offset;
293 hwaddr len;
294
295 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
296 };
297
298 /* State of RAM for migration */
299 struct RAMState {
300 /* QEMUFile used for this migration */
301 QEMUFile *f;
302 /* UFFD file descriptor, used in 'write-tracking' migration */
303 int uffdio_fd;
304 /* Last block that we have visited searching for dirty pages */
305 RAMBlock *last_seen_block;
306 /* Last block from where we have sent data */
307 RAMBlock *last_sent_block;
308 /* Last dirty target page we have sent */
309 ram_addr_t last_page;
310 /* last ram version we have seen */
311 uint32_t last_version;
312 /* How many times we have dirty too many pages */
313 int dirty_rate_high_cnt;
314 /* these variables are used for bitmap sync */
315 /* last time we did a full bitmap_sync */
316 int64_t time_last_bitmap_sync;
317 /* bytes transferred at start_time */
318 uint64_t bytes_xfer_prev;
319 /* number of dirty pages since start_time */
320 uint64_t num_dirty_pages_period;
321 /* xbzrle misses since the beginning of the period */
322 uint64_t xbzrle_cache_miss_prev;
323 /* Amount of xbzrle pages since the beginning of the period */
324 uint64_t xbzrle_pages_prev;
325 /* Amount of xbzrle encoded bytes since the beginning of the period */
326 uint64_t xbzrle_bytes_prev;
327 /* Start using XBZRLE (e.g., after the first round). */
328 bool xbzrle_enabled;
329 /* Are we on the last stage of migration */
330 bool last_stage;
331 /* compression statistics since the beginning of the period */
332 /* amount of count that no free thread to compress data */
333 uint64_t compress_thread_busy_prev;
334 /* amount bytes after compression */
335 uint64_t compressed_size_prev;
336 /* amount of compressed pages */
337 uint64_t compress_pages_prev;
338
339 /* total handled target pages at the beginning of period */
340 uint64_t target_page_count_prev;
341 /* total handled target pages since start */
342 uint64_t target_page_count;
343 /* number of dirty bits in the bitmap */
344 uint64_t migration_dirty_pages;
345 /* Protects modification of the bitmap and migration dirty pages */
346 QemuMutex bitmap_mutex;
347 /* The RAMBlock used in the last src_page_requests */
348 RAMBlock *last_req_rb;
349 /* Queue of outstanding page requests from the destination */
350 QemuMutex src_page_req_mutex;
351 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
352 };
353 typedef struct RAMState RAMState;
354
355 static RAMState *ram_state;
356
357 static NotifierWithReturnList precopy_notifier_list;
358
359 /* Whether postcopy has queued requests? */
360 static bool postcopy_has_request(RAMState *rs)
361 {
362 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
363 }
364
365 void precopy_infrastructure_init(void)
366 {
367 notifier_with_return_list_init(&precopy_notifier_list);
368 }
369
370 void precopy_add_notifier(NotifierWithReturn *n)
371 {
372 notifier_with_return_list_add(&precopy_notifier_list, n);
373 }
374
375 void precopy_remove_notifier(NotifierWithReturn *n)
376 {
377 notifier_with_return_remove(n);
378 }
379
380 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
381 {
382 PrecopyNotifyData pnd;
383 pnd.reason = reason;
384 pnd.errp = errp;
385
386 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
387 }
388
389 uint64_t ram_bytes_remaining(void)
390 {
391 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
392 0;
393 }
394
395 MigrationStats ram_counters;
396
397 static void ram_transferred_add(uint64_t bytes)
398 {
399 if (runstate_is_running()) {
400 ram_counters.precopy_bytes += bytes;
401 } else if (migration_in_postcopy()) {
402 ram_counters.postcopy_bytes += bytes;
403 } else {
404 ram_counters.downtime_bytes += bytes;
405 }
406 ram_counters.transferred += bytes;
407 }
408
409 /* used by the search for pages to send */
410 struct PageSearchStatus {
411 /* Current block being searched */
412 RAMBlock *block;
413 /* Current page to search from */
414 unsigned long page;
415 /* Set once we wrap around */
416 bool complete_round;
417 };
418 typedef struct PageSearchStatus PageSearchStatus;
419
420 CompressionStats compression_counters;
421
422 struct CompressParam {
423 bool done;
424 bool quit;
425 bool zero_page;
426 QEMUFile *file;
427 QemuMutex mutex;
428 QemuCond cond;
429 RAMBlock *block;
430 ram_addr_t offset;
431
432 /* internally used fields */
433 z_stream stream;
434 uint8_t *originbuf;
435 };
436 typedef struct CompressParam CompressParam;
437
438 struct DecompressParam {
439 bool done;
440 bool quit;
441 QemuMutex mutex;
442 QemuCond cond;
443 void *des;
444 uint8_t *compbuf;
445 int len;
446 z_stream stream;
447 };
448 typedef struct DecompressParam DecompressParam;
449
450 static CompressParam *comp_param;
451 static QemuThread *compress_threads;
452 /* comp_done_cond is used to wake up the migration thread when
453 * one of the compression threads has finished the compression.
454 * comp_done_lock is used to co-work with comp_done_cond.
455 */
456 static QemuMutex comp_done_lock;
457 static QemuCond comp_done_cond;
458 /* The empty QEMUFileOps will be used by file in CompressParam */
459 static const QEMUFileOps empty_ops = { };
460
461 static QEMUFile *decomp_file;
462 static DecompressParam *decomp_param;
463 static QemuThread *decompress_threads;
464 static QemuMutex decomp_done_lock;
465 static QemuCond decomp_done_cond;
466
467 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
468 ram_addr_t offset, uint8_t *source_buf);
469
470 static void *do_data_compress(void *opaque)
471 {
472 CompressParam *param = opaque;
473 RAMBlock *block;
474 ram_addr_t offset;
475 bool zero_page;
476
477 qemu_mutex_lock(&param->mutex);
478 while (!param->quit) {
479 if (param->block) {
480 block = param->block;
481 offset = param->offset;
482 param->block = NULL;
483 qemu_mutex_unlock(&param->mutex);
484
485 zero_page = do_compress_ram_page(param->file, &param->stream,
486 block, offset, param->originbuf);
487
488 qemu_mutex_lock(&comp_done_lock);
489 param->done = true;
490 param->zero_page = zero_page;
491 qemu_cond_signal(&comp_done_cond);
492 qemu_mutex_unlock(&comp_done_lock);
493
494 qemu_mutex_lock(&param->mutex);
495 } else {
496 qemu_cond_wait(&param->cond, &param->mutex);
497 }
498 }
499 qemu_mutex_unlock(&param->mutex);
500
501 return NULL;
502 }
503
504 static void compress_threads_save_cleanup(void)
505 {
506 int i, thread_count;
507
508 if (!migrate_use_compression() || !comp_param) {
509 return;
510 }
511
512 thread_count = migrate_compress_threads();
513 for (i = 0; i < thread_count; i++) {
514 /*
515 * we use it as a indicator which shows if the thread is
516 * properly init'd or not
517 */
518 if (!comp_param[i].file) {
519 break;
520 }
521
522 qemu_mutex_lock(&comp_param[i].mutex);
523 comp_param[i].quit = true;
524 qemu_cond_signal(&comp_param[i].cond);
525 qemu_mutex_unlock(&comp_param[i].mutex);
526
527 qemu_thread_join(compress_threads + i);
528 qemu_mutex_destroy(&comp_param[i].mutex);
529 qemu_cond_destroy(&comp_param[i].cond);
530 deflateEnd(&comp_param[i].stream);
531 g_free(comp_param[i].originbuf);
532 qemu_fclose(comp_param[i].file);
533 comp_param[i].file = NULL;
534 }
535 qemu_mutex_destroy(&comp_done_lock);
536 qemu_cond_destroy(&comp_done_cond);
537 g_free(compress_threads);
538 g_free(comp_param);
539 compress_threads = NULL;
540 comp_param = NULL;
541 }
542
543 static int compress_threads_save_setup(void)
544 {
545 int i, thread_count;
546
547 if (!migrate_use_compression()) {
548 return 0;
549 }
550 thread_count = migrate_compress_threads();
551 compress_threads = g_new0(QemuThread, thread_count);
552 comp_param = g_new0(CompressParam, thread_count);
553 qemu_cond_init(&comp_done_cond);
554 qemu_mutex_init(&comp_done_lock);
555 for (i = 0; i < thread_count; i++) {
556 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
557 if (!comp_param[i].originbuf) {
558 goto exit;
559 }
560
561 if (deflateInit(&comp_param[i].stream,
562 migrate_compress_level()) != Z_OK) {
563 g_free(comp_param[i].originbuf);
564 goto exit;
565 }
566
567 /* comp_param[i].file is just used as a dummy buffer to save data,
568 * set its ops to empty.
569 */
570 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops, false);
571 comp_param[i].done = true;
572 comp_param[i].quit = false;
573 qemu_mutex_init(&comp_param[i].mutex);
574 qemu_cond_init(&comp_param[i].cond);
575 qemu_thread_create(compress_threads + i, "compress",
576 do_data_compress, comp_param + i,
577 QEMU_THREAD_JOINABLE);
578 }
579 return 0;
580
581 exit:
582 compress_threads_save_cleanup();
583 return -1;
584 }
585
586 /**
587 * save_page_header: write page header to wire
588 *
589 * If this is the 1st block, it also writes the block identification
590 *
591 * Returns the number of bytes written
592 *
593 * @f: QEMUFile where to send the data
594 * @block: block that contains the page we want to send
595 * @offset: offset inside the block for the page
596 * in the lower bits, it contains flags
597 */
598 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
599 ram_addr_t offset)
600 {
601 size_t size, len;
602
603 if (block == rs->last_sent_block) {
604 offset |= RAM_SAVE_FLAG_CONTINUE;
605 }
606 qemu_put_be64(f, offset);
607 size = 8;
608
609 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
610 len = strlen(block->idstr);
611 qemu_put_byte(f, len);
612 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
613 size += 1 + len;
614 rs->last_sent_block = block;
615 }
616 return size;
617 }
618
619 /**
620 * mig_throttle_guest_down: throttle down the guest
621 *
622 * Reduce amount of guest cpu execution to hopefully slow down memory
623 * writes. If guest dirty memory rate is reduced below the rate at
624 * which we can transfer pages to the destination then we should be
625 * able to complete migration. Some workloads dirty memory way too
626 * fast and will not effectively converge, even with auto-converge.
627 */
628 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
629 uint64_t bytes_dirty_threshold)
630 {
631 MigrationState *s = migrate_get_current();
632 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
633 uint64_t pct_increment = s->parameters.cpu_throttle_increment;
634 bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
635 int pct_max = s->parameters.max_cpu_throttle;
636
637 uint64_t throttle_now = cpu_throttle_get_percentage();
638 uint64_t cpu_now, cpu_ideal, throttle_inc;
639
640 /* We have not started throttling yet. Let's start it. */
641 if (!cpu_throttle_active()) {
642 cpu_throttle_set(pct_initial);
643 } else {
644 /* Throttling already on, just increase the rate */
645 if (!pct_tailslow) {
646 throttle_inc = pct_increment;
647 } else {
648 /* Compute the ideal CPU percentage used by Guest, which may
649 * make the dirty rate match the dirty rate threshold. */
650 cpu_now = 100 - throttle_now;
651 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
652 bytes_dirty_period);
653 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
654 }
655 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
656 }
657 }
658
659 void mig_throttle_counter_reset(void)
660 {
661 RAMState *rs = ram_state;
662
663 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
664 rs->num_dirty_pages_period = 0;
665 rs->bytes_xfer_prev = ram_counters.transferred;
666 }
667
668 /**
669 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
670 *
671 * @rs: current RAM state
672 * @current_addr: address for the zero page
673 *
674 * Update the xbzrle cache to reflect a page that's been sent as all 0.
675 * The important thing is that a stale (not-yet-0'd) page be replaced
676 * by the new data.
677 * As a bonus, if the page wasn't in the cache it gets added so that
678 * when a small write is made into the 0'd page it gets XBZRLE sent.
679 */
680 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
681 {
682 if (!rs->xbzrle_enabled) {
683 return;
684 }
685
686 /* We don't care if this fails to allocate a new cache page
687 * as long as it updated an old one */
688 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
689 ram_counters.dirty_sync_count);
690 }
691
692 #define ENCODING_FLAG_XBZRLE 0x1
693
694 /**
695 * save_xbzrle_page: compress and send current page
696 *
697 * Returns: 1 means that we wrote the page
698 * 0 means that page is identical to the one already sent
699 * -1 means that xbzrle would be longer than normal
700 *
701 * @rs: current RAM state
702 * @current_data: pointer to the address of the page contents
703 * @current_addr: addr of the page
704 * @block: block that contains the page we want to send
705 * @offset: offset inside the block for the page
706 */
707 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
708 ram_addr_t current_addr, RAMBlock *block,
709 ram_addr_t offset)
710 {
711 int encoded_len = 0, bytes_xbzrle;
712 uint8_t *prev_cached_page;
713
714 if (!cache_is_cached(XBZRLE.cache, current_addr,
715 ram_counters.dirty_sync_count)) {
716 xbzrle_counters.cache_miss++;
717 if (!rs->last_stage) {
718 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
719 ram_counters.dirty_sync_count) == -1) {
720 return -1;
721 } else {
722 /* update *current_data when the page has been
723 inserted into cache */
724 *current_data = get_cached_data(XBZRLE.cache, current_addr);
725 }
726 }
727 return -1;
728 }
729
730 /*
731 * Reaching here means the page has hit the xbzrle cache, no matter what
732 * encoding result it is (normal encoding, overflow or skipping the page),
733 * count the page as encoded. This is used to calculate the encoding rate.
734 *
735 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
736 * 2nd page turns out to be skipped (i.e. no new bytes written to the
737 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
738 * skipped page included. In this way, the encoding rate can tell if the
739 * guest page is good for xbzrle encoding.
740 */
741 xbzrle_counters.pages++;
742 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
743
744 /* save current buffer into memory */
745 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
746
747 /* XBZRLE encoding (if there is no overflow) */
748 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
749 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
750 TARGET_PAGE_SIZE);
751
752 /*
753 * Update the cache contents, so that it corresponds to the data
754 * sent, in all cases except where we skip the page.
755 */
756 if (!rs->last_stage && encoded_len != 0) {
757 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
758 /*
759 * In the case where we couldn't compress, ensure that the caller
760 * sends the data from the cache, since the guest might have
761 * changed the RAM since we copied it.
762 */
763 *current_data = prev_cached_page;
764 }
765
766 if (encoded_len == 0) {
767 trace_save_xbzrle_page_skipping();
768 return 0;
769 } else if (encoded_len == -1) {
770 trace_save_xbzrle_page_overflow();
771 xbzrle_counters.overflow++;
772 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
773 return -1;
774 }
775
776 /* Send XBZRLE based compressed page */
777 bytes_xbzrle = save_page_header(rs, rs->f, block,
778 offset | RAM_SAVE_FLAG_XBZRLE);
779 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
780 qemu_put_be16(rs->f, encoded_len);
781 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
782 bytes_xbzrle += encoded_len + 1 + 2;
783 /*
784 * Like compressed_size (please see update_compress_thread_counts),
785 * the xbzrle encoded bytes don't count the 8 byte header with
786 * RAM_SAVE_FLAG_CONTINUE.
787 */
788 xbzrle_counters.bytes += bytes_xbzrle - 8;
789 ram_transferred_add(bytes_xbzrle);
790
791 return 1;
792 }
793
794 /**
795 * migration_bitmap_find_dirty: find the next dirty page from start
796 *
797 * Returns the page offset within memory region of the start of a dirty page
798 *
799 * @rs: current RAM state
800 * @rb: RAMBlock where to search for dirty pages
801 * @start: page where we start the search
802 */
803 static inline
804 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
805 unsigned long start)
806 {
807 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
808 unsigned long *bitmap = rb->bmap;
809
810 if (ramblock_is_ignored(rb)) {
811 return size;
812 }
813
814 return find_next_bit(bitmap, size, start);
815 }
816
817 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
818 unsigned long page)
819 {
820 uint8_t shift;
821 hwaddr size, start;
822
823 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
824 return;
825 }
826
827 shift = rb->clear_bmap_shift;
828 /*
829 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
830 * can make things easier sometimes since then start address
831 * of the small chunk will always be 64 pages aligned so the
832 * bitmap will always be aligned to unsigned long. We should
833 * even be able to remove this restriction but I'm simply
834 * keeping it.
835 */
836 assert(shift >= 6);
837
838 size = 1ULL << (TARGET_PAGE_BITS + shift);
839 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
840 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
841 memory_region_clear_dirty_bitmap(rb->mr, start, size);
842 }
843
844 static void
845 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
846 unsigned long start,
847 unsigned long npages)
848 {
849 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
850 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
851 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
852
853 /*
854 * Clear pages from start to start + npages - 1, so the end boundary is
855 * exclusive.
856 */
857 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
858 migration_clear_memory_region_dirty_bitmap(rb, i);
859 }
860 }
861
862 /*
863 * colo_bitmap_find_diry:find contiguous dirty pages from start
864 *
865 * Returns the page offset within memory region of the start of the contiguout
866 * dirty page
867 *
868 * @rs: current RAM state
869 * @rb: RAMBlock where to search for dirty pages
870 * @start: page where we start the search
871 * @num: the number of contiguous dirty pages
872 */
873 static inline
874 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
875 unsigned long start, unsigned long *num)
876 {
877 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
878 unsigned long *bitmap = rb->bmap;
879 unsigned long first, next;
880
881 *num = 0;
882
883 if (ramblock_is_ignored(rb)) {
884 return size;
885 }
886
887 first = find_next_bit(bitmap, size, start);
888 if (first >= size) {
889 return first;
890 }
891 next = find_next_zero_bit(bitmap, size, first + 1);
892 assert(next >= first);
893 *num = next - first;
894 return first;
895 }
896
897 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
898 RAMBlock *rb,
899 unsigned long page)
900 {
901 bool ret;
902
903 /*
904 * Clear dirty bitmap if needed. This _must_ be called before we
905 * send any of the page in the chunk because we need to make sure
906 * we can capture further page content changes when we sync dirty
907 * log the next time. So as long as we are going to send any of
908 * the page in the chunk we clear the remote dirty bitmap for all.
909 * Clearing it earlier won't be a problem, but too late will.
910 */
911 migration_clear_memory_region_dirty_bitmap(rb, page);
912
913 ret = test_and_clear_bit(page, rb->bmap);
914 if (ret) {
915 rs->migration_dirty_pages--;
916 }
917
918 return ret;
919 }
920
921 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
922 void *opaque)
923 {
924 const hwaddr offset = section->offset_within_region;
925 const hwaddr size = int128_get64(section->size);
926 const unsigned long start = offset >> TARGET_PAGE_BITS;
927 const unsigned long npages = size >> TARGET_PAGE_BITS;
928 RAMBlock *rb = section->mr->ram_block;
929 uint64_t *cleared_bits = opaque;
930
931 /*
932 * We don't grab ram_state->bitmap_mutex because we expect to run
933 * only when starting migration or during postcopy recovery where
934 * we don't have concurrent access.
935 */
936 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
937 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
938 }
939 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
940 bitmap_clear(rb->bmap, start, npages);
941 }
942
943 /*
944 * Exclude all dirty pages from migration that fall into a discarded range as
945 * managed by a RamDiscardManager responsible for the mapped memory region of
946 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
947 *
948 * Discarded pages ("logically unplugged") have undefined content and must
949 * not get migrated, because even reading these pages for migration might
950 * result in undesired behavior.
951 *
952 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
953 *
954 * Note: The result is only stable while migrating (precopy/postcopy).
955 */
956 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
957 {
958 uint64_t cleared_bits = 0;
959
960 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
961 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
962 MemoryRegionSection section = {
963 .mr = rb->mr,
964 .offset_within_region = 0,
965 .size = int128_make64(qemu_ram_get_used_length(rb)),
966 };
967
968 ram_discard_manager_replay_discarded(rdm, &section,
969 dirty_bitmap_clear_section,
970 &cleared_bits);
971 }
972 return cleared_bits;
973 }
974
975 /*
976 * Check if a host-page aligned page falls into a discarded range as managed by
977 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
978 *
979 * Note: The result is only stable while migrating (precopy/postcopy).
980 */
981 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
982 {
983 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
984 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
985 MemoryRegionSection section = {
986 .mr = rb->mr,
987 .offset_within_region = start,
988 .size = int128_make64(qemu_ram_pagesize(rb)),
989 };
990
991 return !ram_discard_manager_is_populated(rdm, &section);
992 }
993 return false;
994 }
995
996 /* Called with RCU critical section */
997 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
998 {
999 uint64_t new_dirty_pages =
1000 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
1001
1002 rs->migration_dirty_pages += new_dirty_pages;
1003 rs->num_dirty_pages_period += new_dirty_pages;
1004 }
1005
1006 /**
1007 * ram_pagesize_summary: calculate all the pagesizes of a VM
1008 *
1009 * Returns a summary bitmap of the page sizes of all RAMBlocks
1010 *
1011 * For VMs with just normal pages this is equivalent to the host page
1012 * size. If it's got some huge pages then it's the OR of all the
1013 * different page sizes.
1014 */
1015 uint64_t ram_pagesize_summary(void)
1016 {
1017 RAMBlock *block;
1018 uint64_t summary = 0;
1019
1020 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1021 summary |= block->page_size;
1022 }
1023
1024 return summary;
1025 }
1026
1027 uint64_t ram_get_total_transferred_pages(void)
1028 {
1029 return ram_counters.normal + ram_counters.duplicate +
1030 compression_counters.pages + xbzrle_counters.pages;
1031 }
1032
1033 static void migration_update_rates(RAMState *rs, int64_t end_time)
1034 {
1035 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1036 double compressed_size;
1037
1038 /* calculate period counters */
1039 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1040 / (end_time - rs->time_last_bitmap_sync);
1041
1042 if (!page_count) {
1043 return;
1044 }
1045
1046 if (migrate_use_xbzrle()) {
1047 double encoded_size, unencoded_size;
1048
1049 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1050 rs->xbzrle_cache_miss_prev) / page_count;
1051 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1052 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
1053 TARGET_PAGE_SIZE;
1054 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
1055 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
1056 xbzrle_counters.encoding_rate = 0;
1057 } else {
1058 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
1059 }
1060 rs->xbzrle_pages_prev = xbzrle_counters.pages;
1061 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
1062 }
1063
1064 if (migrate_use_compression()) {
1065 compression_counters.busy_rate = (double)(compression_counters.busy -
1066 rs->compress_thread_busy_prev) / page_count;
1067 rs->compress_thread_busy_prev = compression_counters.busy;
1068
1069 compressed_size = compression_counters.compressed_size -
1070 rs->compressed_size_prev;
1071 if (compressed_size) {
1072 double uncompressed_size = (compression_counters.pages -
1073 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1074
1075 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1076 compression_counters.compression_rate =
1077 uncompressed_size / compressed_size;
1078
1079 rs->compress_pages_prev = compression_counters.pages;
1080 rs->compressed_size_prev = compression_counters.compressed_size;
1081 }
1082 }
1083 }
1084
1085 static void migration_trigger_throttle(RAMState *rs)
1086 {
1087 MigrationState *s = migrate_get_current();
1088 uint64_t threshold = s->parameters.throttle_trigger_threshold;
1089
1090 uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
1091 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1092 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1093
1094 /* During block migration the auto-converge logic incorrectly detects
1095 * that ram migration makes no progress. Avoid this by disabling the
1096 * throttling logic during the bulk phase of block migration. */
1097 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1098 /* The following detection logic can be refined later. For now:
1099 Check to see if the ratio between dirtied bytes and the approx.
1100 amount of bytes that just got transferred since the last time
1101 we were in this routine reaches the threshold. If that happens
1102 twice, start or increase throttling. */
1103
1104 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1105 (++rs->dirty_rate_high_cnt >= 2)) {
1106 trace_migration_throttle();
1107 rs->dirty_rate_high_cnt = 0;
1108 mig_throttle_guest_down(bytes_dirty_period,
1109 bytes_dirty_threshold);
1110 }
1111 }
1112 }
1113
1114 static void migration_bitmap_sync(RAMState *rs)
1115 {
1116 RAMBlock *block;
1117 int64_t end_time;
1118
1119 ram_counters.dirty_sync_count++;
1120
1121 if (!rs->time_last_bitmap_sync) {
1122 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1123 }
1124
1125 trace_migration_bitmap_sync_start();
1126 memory_global_dirty_log_sync();
1127
1128 qemu_mutex_lock(&rs->bitmap_mutex);
1129 WITH_RCU_READ_LOCK_GUARD() {
1130 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1131 ramblock_sync_dirty_bitmap(rs, block);
1132 }
1133 ram_counters.remaining = ram_bytes_remaining();
1134 }
1135 qemu_mutex_unlock(&rs->bitmap_mutex);
1136
1137 memory_global_after_dirty_log_sync();
1138 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1139
1140 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1141
1142 /* more than 1 second = 1000 millisecons */
1143 if (end_time > rs->time_last_bitmap_sync + 1000) {
1144 migration_trigger_throttle(rs);
1145
1146 migration_update_rates(rs, end_time);
1147
1148 rs->target_page_count_prev = rs->target_page_count;
1149
1150 /* reset period counters */
1151 rs->time_last_bitmap_sync = end_time;
1152 rs->num_dirty_pages_period = 0;
1153 rs->bytes_xfer_prev = ram_counters.transferred;
1154 }
1155 if (migrate_use_events()) {
1156 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1157 }
1158 }
1159
1160 static void migration_bitmap_sync_precopy(RAMState *rs)
1161 {
1162 Error *local_err = NULL;
1163
1164 /*
1165 * The current notifier usage is just an optimization to migration, so we
1166 * don't stop the normal migration process in the error case.
1167 */
1168 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1169 error_report_err(local_err);
1170 local_err = NULL;
1171 }
1172
1173 migration_bitmap_sync(rs);
1174
1175 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1176 error_report_err(local_err);
1177 }
1178 }
1179
1180 static void ram_release_page(const char *rbname, uint64_t offset)
1181 {
1182 if (!migrate_release_ram() || !migration_in_postcopy()) {
1183 return;
1184 }
1185
1186 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1187 }
1188
1189 /**
1190 * save_zero_page_to_file: send the zero page to the file
1191 *
1192 * Returns the size of data written to the file, 0 means the page is not
1193 * a zero page
1194 *
1195 * @rs: current RAM state
1196 * @file: the file where the data is saved
1197 * @block: block that contains the page we want to send
1198 * @offset: offset inside the block for the page
1199 */
1200 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1201 RAMBlock *block, ram_addr_t offset)
1202 {
1203 uint8_t *p = block->host + offset;
1204 int len = 0;
1205
1206 if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1207 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1208 qemu_put_byte(file, 0);
1209 len += 1;
1210 ram_release_page(block->idstr, offset);
1211 }
1212 return len;
1213 }
1214
1215 /**
1216 * save_zero_page: send the zero page to the stream
1217 *
1218 * Returns the number of pages written.
1219 *
1220 * @rs: current RAM state
1221 * @block: block that contains the page we want to send
1222 * @offset: offset inside the block for the page
1223 */
1224 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1225 {
1226 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1227
1228 if (len) {
1229 ram_counters.duplicate++;
1230 ram_transferred_add(len);
1231 return 1;
1232 }
1233 return -1;
1234 }
1235
1236 /*
1237 * @pages: the number of pages written by the control path,
1238 * < 0 - error
1239 * > 0 - number of pages written
1240 *
1241 * Return true if the pages has been saved, otherwise false is returned.
1242 */
1243 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1244 int *pages)
1245 {
1246 uint64_t bytes_xmit = 0;
1247 int ret;
1248
1249 *pages = -1;
1250 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1251 &bytes_xmit);
1252 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1253 return false;
1254 }
1255
1256 if (bytes_xmit) {
1257 ram_transferred_add(bytes_xmit);
1258 *pages = 1;
1259 }
1260
1261 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1262 return true;
1263 }
1264
1265 if (bytes_xmit > 0) {
1266 ram_counters.normal++;
1267 } else if (bytes_xmit == 0) {
1268 ram_counters.duplicate++;
1269 }
1270
1271 return true;
1272 }
1273
1274 /*
1275 * directly send the page to the stream
1276 *
1277 * Returns the number of pages written.
1278 *
1279 * @rs: current RAM state
1280 * @block: block that contains the page we want to send
1281 * @offset: offset inside the block for the page
1282 * @buf: the page to be sent
1283 * @async: send to page asyncly
1284 */
1285 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1286 uint8_t *buf, bool async)
1287 {
1288 ram_transferred_add(save_page_header(rs, rs->f, block,
1289 offset | RAM_SAVE_FLAG_PAGE));
1290 if (async) {
1291 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1292 migrate_release_ram() &
1293 migration_in_postcopy());
1294 } else {
1295 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1296 }
1297 ram_transferred_add(TARGET_PAGE_SIZE);
1298 ram_counters.normal++;
1299 return 1;
1300 }
1301
1302 /**
1303 * ram_save_page: send the given page to the stream
1304 *
1305 * Returns the number of pages written.
1306 * < 0 - error
1307 * >=0 - Number of pages written - this might legally be 0
1308 * if xbzrle noticed the page was the same.
1309 *
1310 * @rs: current RAM state
1311 * @block: block that contains the page we want to send
1312 * @offset: offset inside the block for the page
1313 */
1314 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1315 {
1316 int pages = -1;
1317 uint8_t *p;
1318 bool send_async = true;
1319 RAMBlock *block = pss->block;
1320 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1321 ram_addr_t current_addr = block->offset + offset;
1322
1323 p = block->host + offset;
1324 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1325
1326 XBZRLE_cache_lock();
1327 if (rs->xbzrle_enabled && !migration_in_postcopy()) {
1328 pages = save_xbzrle_page(rs, &p, current_addr, block,
1329 offset);
1330 if (!rs->last_stage) {
1331 /* Can't send this cached data async, since the cache page
1332 * might get updated before it gets to the wire
1333 */
1334 send_async = false;
1335 }
1336 }
1337
1338 /* XBZRLE overflow or normal page */
1339 if (pages == -1) {
1340 pages = save_normal_page(rs, block, offset, p, send_async);
1341 }
1342
1343 XBZRLE_cache_unlock();
1344
1345 return pages;
1346 }
1347
1348 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1349 ram_addr_t offset)
1350 {
1351 if (multifd_queue_page(rs->f, block, offset) < 0) {
1352 return -1;
1353 }
1354 ram_counters.normal++;
1355
1356 return 1;
1357 }
1358
1359 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1360 ram_addr_t offset, uint8_t *source_buf)
1361 {
1362 RAMState *rs = ram_state;
1363 uint8_t *p = block->host + offset;
1364 int ret;
1365
1366 if (save_zero_page_to_file(rs, f, block, offset)) {
1367 return true;
1368 }
1369
1370 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1371
1372 /*
1373 * copy it to a internal buffer to avoid it being modified by VM
1374 * so that we can catch up the error during compression and
1375 * decompression
1376 */
1377 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1378 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1379 if (ret < 0) {
1380 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
1381 error_report("compressed data failed!");
1382 }
1383 return false;
1384 }
1385
1386 static void
1387 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1388 {
1389 ram_transferred_add(bytes_xmit);
1390
1391 if (param->zero_page) {
1392 ram_counters.duplicate++;
1393 return;
1394 }
1395
1396 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1397 compression_counters.compressed_size += bytes_xmit - 8;
1398 compression_counters.pages++;
1399 }
1400
1401 static bool save_page_use_compression(RAMState *rs);
1402
1403 static void flush_compressed_data(RAMState *rs)
1404 {
1405 int idx, len, thread_count;
1406
1407 if (!save_page_use_compression(rs)) {
1408 return;
1409 }
1410 thread_count = migrate_compress_threads();
1411
1412 qemu_mutex_lock(&comp_done_lock);
1413 for (idx = 0; idx < thread_count; idx++) {
1414 while (!comp_param[idx].done) {
1415 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1416 }
1417 }
1418 qemu_mutex_unlock(&comp_done_lock);
1419
1420 for (idx = 0; idx < thread_count; idx++) {
1421 qemu_mutex_lock(&comp_param[idx].mutex);
1422 if (!comp_param[idx].quit) {
1423 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1424 /*
1425 * it's safe to fetch zero_page without holding comp_done_lock
1426 * as there is no further request submitted to the thread,
1427 * i.e, the thread should be waiting for a request at this point.
1428 */
1429 update_compress_thread_counts(&comp_param[idx], len);
1430 }
1431 qemu_mutex_unlock(&comp_param[idx].mutex);
1432 }
1433 }
1434
1435 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1436 ram_addr_t offset)
1437 {
1438 param->block = block;
1439 param->offset = offset;
1440 }
1441
1442 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1443 ram_addr_t offset)
1444 {
1445 int idx, thread_count, bytes_xmit = -1, pages = -1;
1446 bool wait = migrate_compress_wait_thread();
1447
1448 thread_count = migrate_compress_threads();
1449 qemu_mutex_lock(&comp_done_lock);
1450 retry:
1451 for (idx = 0; idx < thread_count; idx++) {
1452 if (comp_param[idx].done) {
1453 comp_param[idx].done = false;
1454 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1455 qemu_mutex_lock(&comp_param[idx].mutex);
1456 set_compress_params(&comp_param[idx], block, offset);
1457 qemu_cond_signal(&comp_param[idx].cond);
1458 qemu_mutex_unlock(&comp_param[idx].mutex);
1459 pages = 1;
1460 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
1461 break;
1462 }
1463 }
1464
1465 /*
1466 * wait for the free thread if the user specifies 'compress-wait-thread',
1467 * otherwise we will post the page out in the main thread as normal page.
1468 */
1469 if (pages < 0 && wait) {
1470 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1471 goto retry;
1472 }
1473 qemu_mutex_unlock(&comp_done_lock);
1474
1475 return pages;
1476 }
1477
1478 /**
1479 * find_dirty_block: find the next dirty page and update any state
1480 * associated with the search process.
1481 *
1482 * Returns true if a page is found
1483 *
1484 * @rs: current RAM state
1485 * @pss: data about the state of the current dirty page scan
1486 * @again: set to false if the search has scanned the whole of RAM
1487 */
1488 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1489 {
1490 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1491 if (pss->complete_round && pss->block == rs->last_seen_block &&
1492 pss->page >= rs->last_page) {
1493 /*
1494 * We've been once around the RAM and haven't found anything.
1495 * Give up.
1496 */
1497 *again = false;
1498 return false;
1499 }
1500 if (!offset_in_ramblock(pss->block,
1501 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1502 /* Didn't find anything in this RAM Block */
1503 pss->page = 0;
1504 pss->block = QLIST_NEXT_RCU(pss->block, next);
1505 if (!pss->block) {
1506 /*
1507 * If memory migration starts over, we will meet a dirtied page
1508 * which may still exists in compression threads's ring, so we
1509 * should flush the compressed data to make sure the new page
1510 * is not overwritten by the old one in the destination.
1511 *
1512 * Also If xbzrle is on, stop using the data compression at this
1513 * point. In theory, xbzrle can do better than compression.
1514 */
1515 flush_compressed_data(rs);
1516
1517 /* Hit the end of the list */
1518 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1519 /* Flag that we've looped */
1520 pss->complete_round = true;
1521 /* After the first round, enable XBZRLE. */
1522 if (migrate_use_xbzrle()) {
1523 rs->xbzrle_enabled = true;
1524 }
1525 }
1526 /* Didn't find anything this time, but try again on the new block */
1527 *again = true;
1528 return false;
1529 } else {
1530 /* Can go around again, but... */
1531 *again = true;
1532 /* We've found something so probably don't need to */
1533 return true;
1534 }
1535 }
1536
1537 /**
1538 * unqueue_page: gets a page of the queue
1539 *
1540 * Helper for 'get_queued_page' - gets a page off the queue
1541 *
1542 * Returns the block of the page (or NULL if none available)
1543 *
1544 * @rs: current RAM state
1545 * @offset: used to return the offset within the RAMBlock
1546 */
1547 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1548 {
1549 struct RAMSrcPageRequest *entry;
1550 RAMBlock *block = NULL;
1551 size_t page_size;
1552
1553 if (!postcopy_has_request(rs)) {
1554 return NULL;
1555 }
1556
1557 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1558
1559 /*
1560 * This should _never_ change even after we take the lock, because no one
1561 * should be taking anything off the request list other than us.
1562 */
1563 assert(postcopy_has_request(rs));
1564
1565 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1566 block = entry->rb;
1567 *offset = entry->offset;
1568 page_size = qemu_ram_pagesize(block);
1569 /* Each page request should only be multiple page size of the ramblock */
1570 assert((entry->len % page_size) == 0);
1571
1572 if (entry->len > page_size) {
1573 entry->len -= page_size;
1574 entry->offset += page_size;
1575 } else {
1576 memory_region_unref(block->mr);
1577 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1578 g_free(entry);
1579 migration_consume_urgent_request();
1580 }
1581
1582 trace_unqueue_page(block->idstr, *offset,
1583 test_bit((*offset >> TARGET_PAGE_BITS), block->bmap));
1584
1585 return block;
1586 }
1587
1588 #if defined(__linux__)
1589 /**
1590 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1591 * is found, return RAM block pointer and page offset
1592 *
1593 * Returns pointer to the RAMBlock containing faulting page,
1594 * NULL if no write faults are pending
1595 *
1596 * @rs: current RAM state
1597 * @offset: page offset from the beginning of the block
1598 */
1599 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1600 {
1601 struct uffd_msg uffd_msg;
1602 void *page_address;
1603 RAMBlock *block;
1604 int res;
1605
1606 if (!migrate_background_snapshot()) {
1607 return NULL;
1608 }
1609
1610 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1611 if (res <= 0) {
1612 return NULL;
1613 }
1614
1615 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1616 block = qemu_ram_block_from_host(page_address, false, offset);
1617 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1618 return block;
1619 }
1620
1621 /**
1622 * ram_save_release_protection: release UFFD write protection after
1623 * a range of pages has been saved
1624 *
1625 * @rs: current RAM state
1626 * @pss: page-search-status structure
1627 * @start_page: index of the first page in the range relative to pss->block
1628 *
1629 * Returns 0 on success, negative value in case of an error
1630 */
1631 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1632 unsigned long start_page)
1633 {
1634 int res = 0;
1635
1636 /* Check if page is from UFFD-managed region. */
1637 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1638 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1639 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1640
1641 /* Flush async buffers before un-protect. */
1642 qemu_fflush(rs->f);
1643 /* Un-protect memory range. */
1644 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1645 false, false);
1646 }
1647
1648 return res;
1649 }
1650
1651 /* ram_write_tracking_available: check if kernel supports required UFFD features
1652 *
1653 * Returns true if supports, false otherwise
1654 */
1655 bool ram_write_tracking_available(void)
1656 {
1657 uint64_t uffd_features;
1658 int res;
1659
1660 res = uffd_query_features(&uffd_features);
1661 return (res == 0 &&
1662 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1663 }
1664
1665 /* ram_write_tracking_compatible: check if guest configuration is
1666 * compatible with 'write-tracking'
1667 *
1668 * Returns true if compatible, false otherwise
1669 */
1670 bool ram_write_tracking_compatible(void)
1671 {
1672 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1673 int uffd_fd;
1674 RAMBlock *block;
1675 bool ret = false;
1676
1677 /* Open UFFD file descriptor */
1678 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1679 if (uffd_fd < 0) {
1680 return false;
1681 }
1682
1683 RCU_READ_LOCK_GUARD();
1684
1685 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1686 uint64_t uffd_ioctls;
1687
1688 /* Nothing to do with read-only and MMIO-writable regions */
1689 if (block->mr->readonly || block->mr->rom_device) {
1690 continue;
1691 }
1692 /* Try to register block memory via UFFD-IO to track writes */
1693 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1694 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1695 goto out;
1696 }
1697 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1698 goto out;
1699 }
1700 }
1701 ret = true;
1702
1703 out:
1704 uffd_close_fd(uffd_fd);
1705 return ret;
1706 }
1707
1708 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1709 ram_addr_t size)
1710 {
1711 /*
1712 * We read one byte of each page; this will preallocate page tables if
1713 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1714 * where no page was populated yet. This might require adaption when
1715 * supporting other mappings, like shmem.
1716 */
1717 for (; offset < size; offset += block->page_size) {
1718 char tmp = *((char *)block->host + offset);
1719
1720 /* Don't optimize the read out */
1721 asm volatile("" : "+r" (tmp));
1722 }
1723 }
1724
1725 static inline int populate_read_section(MemoryRegionSection *section,
1726 void *opaque)
1727 {
1728 const hwaddr size = int128_get64(section->size);
1729 hwaddr offset = section->offset_within_region;
1730 RAMBlock *block = section->mr->ram_block;
1731
1732 populate_read_range(block, offset, size);
1733 return 0;
1734 }
1735
1736 /*
1737 * ram_block_populate_read: preallocate page tables and populate pages in the
1738 * RAM block by reading a byte of each page.
1739 *
1740 * Since it's solely used for userfault_fd WP feature, here we just
1741 * hardcode page size to qemu_real_host_page_size.
1742 *
1743 * @block: RAM block to populate
1744 */
1745 static void ram_block_populate_read(RAMBlock *rb)
1746 {
1747 /*
1748 * Skip populating all pages that fall into a discarded range as managed by
1749 * a RamDiscardManager responsible for the mapped memory region of the
1750 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1751 * must not get populated automatically. We don't have to track
1752 * modifications via userfaultfd WP reliably, because these pages will
1753 * not be part of the migration stream either way -- see
1754 * ramblock_dirty_bitmap_exclude_discarded_pages().
1755 *
1756 * Note: The result is only stable while migrating (precopy/postcopy).
1757 */
1758 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1759 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1760 MemoryRegionSection section = {
1761 .mr = rb->mr,
1762 .offset_within_region = 0,
1763 .size = rb->mr->size,
1764 };
1765
1766 ram_discard_manager_replay_populated(rdm, &section,
1767 populate_read_section, NULL);
1768 } else {
1769 populate_read_range(rb, 0, rb->used_length);
1770 }
1771 }
1772
1773 /*
1774 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1775 */
1776 void ram_write_tracking_prepare(void)
1777 {
1778 RAMBlock *block;
1779
1780 RCU_READ_LOCK_GUARD();
1781
1782 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1783 /* Nothing to do with read-only and MMIO-writable regions */
1784 if (block->mr->readonly || block->mr->rom_device) {
1785 continue;
1786 }
1787
1788 /*
1789 * Populate pages of the RAM block before enabling userfault_fd
1790 * write protection.
1791 *
1792 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1793 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1794 * pages with pte_none() entries in page table.
1795 */
1796 ram_block_populate_read(block);
1797 }
1798 }
1799
1800 /*
1801 * ram_write_tracking_start: start UFFD-WP memory tracking
1802 *
1803 * Returns 0 for success or negative value in case of error
1804 */
1805 int ram_write_tracking_start(void)
1806 {
1807 int uffd_fd;
1808 RAMState *rs = ram_state;
1809 RAMBlock *block;
1810
1811 /* Open UFFD file descriptor */
1812 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1813 if (uffd_fd < 0) {
1814 return uffd_fd;
1815 }
1816 rs->uffdio_fd = uffd_fd;
1817
1818 RCU_READ_LOCK_GUARD();
1819
1820 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1821 /* Nothing to do with read-only and MMIO-writable regions */
1822 if (block->mr->readonly || block->mr->rom_device) {
1823 continue;
1824 }
1825
1826 /* Register block memory with UFFD to track writes */
1827 if (uffd_register_memory(rs->uffdio_fd, block->host,
1828 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1829 goto fail;
1830 }
1831 /* Apply UFFD write protection to the block memory range */
1832 if (uffd_change_protection(rs->uffdio_fd, block->host,
1833 block->max_length, true, false)) {
1834 goto fail;
1835 }
1836 block->flags |= RAM_UF_WRITEPROTECT;
1837 memory_region_ref(block->mr);
1838
1839 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1840 block->host, block->max_length);
1841 }
1842
1843 return 0;
1844
1845 fail:
1846 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1847
1848 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1849 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1850 continue;
1851 }
1852 /*
1853 * In case some memory block failed to be write-protected
1854 * remove protection and unregister all succeeded RAM blocks
1855 */
1856 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1857 false, false);
1858 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1859 /* Cleanup flags and remove reference */
1860 block->flags &= ~RAM_UF_WRITEPROTECT;
1861 memory_region_unref(block->mr);
1862 }
1863
1864 uffd_close_fd(uffd_fd);
1865 rs->uffdio_fd = -1;
1866 return -1;
1867 }
1868
1869 /**
1870 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1871 */
1872 void ram_write_tracking_stop(void)
1873 {
1874 RAMState *rs = ram_state;
1875 RAMBlock *block;
1876
1877 RCU_READ_LOCK_GUARD();
1878
1879 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1880 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1881 continue;
1882 }
1883 /* Remove protection and unregister all affected RAM blocks */
1884 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1885 false, false);
1886 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1887
1888 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1889 block->host, block->max_length);
1890
1891 /* Cleanup flags and remove reference */
1892 block->flags &= ~RAM_UF_WRITEPROTECT;
1893 memory_region_unref(block->mr);
1894 }
1895
1896 /* Finally close UFFD file descriptor */
1897 uffd_close_fd(rs->uffdio_fd);
1898 rs->uffdio_fd = -1;
1899 }
1900
1901 #else
1902 /* No target OS support, stubs just fail or ignore */
1903
1904 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1905 {
1906 (void) rs;
1907 (void) offset;
1908
1909 return NULL;
1910 }
1911
1912 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1913 unsigned long start_page)
1914 {
1915 (void) rs;
1916 (void) pss;
1917 (void) start_page;
1918
1919 return 0;
1920 }
1921
1922 bool ram_write_tracking_available(void)
1923 {
1924 return false;
1925 }
1926
1927 bool ram_write_tracking_compatible(void)
1928 {
1929 assert(0);
1930 return false;
1931 }
1932
1933 int ram_write_tracking_start(void)
1934 {
1935 assert(0);
1936 return -1;
1937 }
1938
1939 void ram_write_tracking_stop(void)
1940 {
1941 assert(0);
1942 }
1943 #endif /* defined(__linux__) */
1944
1945 /**
1946 * get_queued_page: unqueue a page from the postcopy requests
1947 *
1948 * Skips pages that are already sent (!dirty)
1949 *
1950 * Returns true if a queued page is found
1951 *
1952 * @rs: current RAM state
1953 * @pss: data about the state of the current dirty page scan
1954 */
1955 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1956 {
1957 RAMBlock *block;
1958 ram_addr_t offset;
1959
1960 block = unqueue_page(rs, &offset);
1961
1962 if (!block) {
1963 /*
1964 * Poll write faults too if background snapshot is enabled; that's
1965 * when we have vcpus got blocked by the write protected pages.
1966 */
1967 block = poll_fault_page(rs, &offset);
1968 }
1969
1970 if (block) {
1971 /*
1972 * We want the background search to continue from the queued page
1973 * since the guest is likely to want other pages near to the page
1974 * it just requested.
1975 */
1976 pss->block = block;
1977 pss->page = offset >> TARGET_PAGE_BITS;
1978
1979 /*
1980 * This unqueued page would break the "one round" check, even is
1981 * really rare.
1982 */
1983 pss->complete_round = false;
1984 }
1985
1986 return !!block;
1987 }
1988
1989 /**
1990 * migration_page_queue_free: drop any remaining pages in the ram
1991 * request queue
1992 *
1993 * It should be empty at the end anyway, but in error cases there may
1994 * be some left. in case that there is any page left, we drop it.
1995 *
1996 */
1997 static void migration_page_queue_free(RAMState *rs)
1998 {
1999 struct RAMSrcPageRequest *mspr, *next_mspr;
2000 /* This queue generally should be empty - but in the case of a failed
2001 * migration might have some droppings in.
2002 */
2003 RCU_READ_LOCK_GUARD();
2004 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2005 memory_region_unref(mspr->rb->mr);
2006 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2007 g_free(mspr);
2008 }
2009 }
2010
2011 /**
2012 * ram_save_queue_pages: queue the page for transmission
2013 *
2014 * A request from postcopy destination for example.
2015 *
2016 * Returns zero on success or negative on error
2017 *
2018 * @rbname: Name of the RAMBLock of the request. NULL means the
2019 * same that last one.
2020 * @start: starting address from the start of the RAMBlock
2021 * @len: length (in bytes) to send
2022 */
2023 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2024 {
2025 RAMBlock *ramblock;
2026 RAMState *rs = ram_state;
2027
2028 ram_counters.postcopy_requests++;
2029 RCU_READ_LOCK_GUARD();
2030
2031 if (!rbname) {
2032 /* Reuse last RAMBlock */
2033 ramblock = rs->last_req_rb;
2034
2035 if (!ramblock) {
2036 /*
2037 * Shouldn't happen, we can't reuse the last RAMBlock if
2038 * it's the 1st request.
2039 */
2040 error_report("ram_save_queue_pages no previous block");
2041 return -1;
2042 }
2043 } else {
2044 ramblock = qemu_ram_block_by_name(rbname);
2045
2046 if (!ramblock) {
2047 /* We shouldn't be asked for a non-existent RAMBlock */
2048 error_report("ram_save_queue_pages no block '%s'", rbname);
2049 return -1;
2050 }
2051 rs->last_req_rb = ramblock;
2052 }
2053 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2054 if (!offset_in_ramblock(ramblock, start + len - 1)) {
2055 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2056 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2057 __func__, start, len, ramblock->used_length);
2058 return -1;
2059 }
2060
2061 struct RAMSrcPageRequest *new_entry =
2062 g_malloc0(sizeof(struct RAMSrcPageRequest));
2063 new_entry->rb = ramblock;
2064 new_entry->offset = start;
2065 new_entry->len = len;
2066
2067 memory_region_ref(ramblock->mr);
2068 qemu_mutex_lock(&rs->src_page_req_mutex);
2069 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2070 migration_make_urgent_request();
2071 qemu_mutex_unlock(&rs->src_page_req_mutex);
2072
2073 return 0;
2074 }
2075
2076 static bool save_page_use_compression(RAMState *rs)
2077 {
2078 if (!migrate_use_compression()) {
2079 return false;
2080 }
2081
2082 /*
2083 * If xbzrle is enabled (e.g., after first round of migration), stop
2084 * using the data compression. In theory, xbzrle can do better than
2085 * compression.
2086 */
2087 if (rs->xbzrle_enabled) {
2088 return false;
2089 }
2090
2091 return true;
2092 }
2093
2094 /*
2095 * try to compress the page before posting it out, return true if the page
2096 * has been properly handled by compression, otherwise needs other
2097 * paths to handle it
2098 */
2099 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2100 {
2101 if (!save_page_use_compression(rs)) {
2102 return false;
2103 }
2104
2105 /*
2106 * When starting the process of a new block, the first page of
2107 * the block should be sent out before other pages in the same
2108 * block, and all the pages in last block should have been sent
2109 * out, keeping this order is important, because the 'cont' flag
2110 * is used to avoid resending the block name.
2111 *
2112 * We post the fist page as normal page as compression will take
2113 * much CPU resource.
2114 */
2115 if (block != rs->last_sent_block) {
2116 flush_compressed_data(rs);
2117 return false;
2118 }
2119
2120 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2121 return true;
2122 }
2123
2124 compression_counters.busy++;
2125 return false;
2126 }
2127
2128 /**
2129 * ram_save_target_page: save one target page
2130 *
2131 * Returns the number of pages written
2132 *
2133 * @rs: current RAM state
2134 * @pss: data about the page we want to send
2135 */
2136 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
2137 {
2138 RAMBlock *block = pss->block;
2139 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2140 int res;
2141
2142 if (control_save_page(rs, block, offset, &res)) {
2143 return res;
2144 }
2145
2146 if (save_compress_page(rs, block, offset)) {
2147 return 1;
2148 }
2149
2150 res = save_zero_page(rs, block, offset);
2151 if (res > 0) {
2152 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2153 * page would be stale
2154 */
2155 if (!save_page_use_compression(rs)) {
2156 XBZRLE_cache_lock();
2157 xbzrle_cache_zero_page(rs, block->offset + offset);
2158 XBZRLE_cache_unlock();
2159 }
2160 return res;
2161 }
2162
2163 /*
2164 * Do not use multifd for:
2165 * 1. Compression as the first page in the new block should be posted out
2166 * before sending the compressed page
2167 * 2. In postcopy as one whole host page should be placed
2168 */
2169 if (!save_page_use_compression(rs) && migrate_use_multifd()
2170 && !migration_in_postcopy()) {
2171 return ram_save_multifd_page(rs, block, offset);
2172 }
2173
2174 return ram_save_page(rs, pss);
2175 }
2176
2177 /**
2178 * ram_save_host_page: save a whole host page
2179 *
2180 * Starting at *offset send pages up to the end of the current host
2181 * page. It's valid for the initial offset to point into the middle of
2182 * a host page in which case the remainder of the hostpage is sent.
2183 * Only dirty target pages are sent. Note that the host page size may
2184 * be a huge page for this block.
2185 * The saving stops at the boundary of the used_length of the block
2186 * if the RAMBlock isn't a multiple of the host page size.
2187 *
2188 * Returns the number of pages written or negative on error
2189 *
2190 * @rs: current RAM state
2191 * @pss: data about the page we want to send
2192 */
2193 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2194 {
2195 int tmppages, pages = 0;
2196 size_t pagesize_bits =
2197 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2198 unsigned long hostpage_boundary =
2199 QEMU_ALIGN_UP(pss->page + 1, pagesize_bits);
2200 unsigned long start_page = pss->page;
2201 int res;
2202
2203 if (ramblock_is_ignored(pss->block)) {
2204 error_report("block %s should not be migrated !", pss->block->idstr);
2205 return 0;
2206 }
2207
2208 do {
2209 /* Check the pages is dirty and if it is send it */
2210 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2211 tmppages = ram_save_target_page(rs, pss);
2212 if (tmppages < 0) {
2213 return tmppages;
2214 }
2215
2216 pages += tmppages;
2217 /*
2218 * Allow rate limiting to happen in the middle of huge pages if
2219 * something is sent in the current iteration.
2220 */
2221 if (pagesize_bits > 1 && tmppages > 0) {
2222 migration_rate_limit();
2223 }
2224 }
2225 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2226 } while ((pss->page < hostpage_boundary) &&
2227 offset_in_ramblock(pss->block,
2228 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
2229 /* The offset we leave with is the min boundary of host page and block */
2230 pss->page = MIN(pss->page, hostpage_boundary);
2231
2232 res = ram_save_release_protection(rs, pss, start_page);
2233 return (res < 0 ? res : pages);
2234 }
2235
2236 /**
2237 * ram_find_and_save_block: finds a dirty page and sends it to f
2238 *
2239 * Called within an RCU critical section.
2240 *
2241 * Returns the number of pages written where zero means no dirty pages,
2242 * or negative on error
2243 *
2244 * @rs: current RAM state
2245 *
2246 * On systems where host-page-size > target-page-size it will send all the
2247 * pages in a host page that are dirty.
2248 */
2249 static int ram_find_and_save_block(RAMState *rs)
2250 {
2251 PageSearchStatus pss;
2252 int pages = 0;
2253 bool again, found;
2254
2255 /* No dirty page as there is zero RAM */
2256 if (!ram_bytes_total()) {
2257 return pages;
2258 }
2259
2260 pss.block = rs->last_seen_block;
2261 pss.page = rs->last_page;
2262 pss.complete_round = false;
2263
2264 if (!pss.block) {
2265 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2266 }
2267
2268 do {
2269 again = true;
2270 found = get_queued_page(rs, &pss);
2271
2272 if (!found) {
2273 /* priority queue empty, so just search for something dirty */
2274 found = find_dirty_block(rs, &pss, &again);
2275 }
2276
2277 if (found) {
2278 pages = ram_save_host_page(rs, &pss);
2279 }
2280 } while (!pages && again);
2281
2282 rs->last_seen_block = pss.block;
2283 rs->last_page = pss.page;
2284
2285 return pages;
2286 }
2287
2288 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2289 {
2290 uint64_t pages = size / TARGET_PAGE_SIZE;
2291
2292 if (zero) {
2293 ram_counters.duplicate += pages;
2294 } else {
2295 ram_counters.normal += pages;
2296 ram_transferred_add(size);
2297 qemu_update_position(f, size);
2298 }
2299 }
2300
2301 static uint64_t ram_bytes_total_common(bool count_ignored)
2302 {
2303 RAMBlock *block;
2304 uint64_t total = 0;
2305
2306 RCU_READ_LOCK_GUARD();
2307
2308 if (count_ignored) {
2309 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2310 total += block->used_length;
2311 }
2312 } else {
2313 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2314 total += block->used_length;
2315 }
2316 }
2317 return total;
2318 }
2319
2320 uint64_t ram_bytes_total(void)
2321 {
2322 return ram_bytes_total_common(false);
2323 }
2324
2325 static void xbzrle_load_setup(void)
2326 {
2327 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2328 }
2329
2330 static void xbzrle_load_cleanup(void)
2331 {
2332 g_free(XBZRLE.decoded_buf);
2333 XBZRLE.decoded_buf = NULL;
2334 }
2335
2336 static void ram_state_cleanup(RAMState **rsp)
2337 {
2338 if (*rsp) {
2339 migration_page_queue_free(*rsp);
2340 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2341 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2342 g_free(*rsp);
2343 *rsp = NULL;
2344 }
2345 }
2346
2347 static void xbzrle_cleanup(void)
2348 {
2349 XBZRLE_cache_lock();
2350 if (XBZRLE.cache) {
2351 cache_fini(XBZRLE.cache);
2352 g_free(XBZRLE.encoded_buf);
2353 g_free(XBZRLE.current_buf);
2354 g_free(XBZRLE.zero_target_page);
2355 XBZRLE.cache = NULL;
2356 XBZRLE.encoded_buf = NULL;
2357 XBZRLE.current_buf = NULL;
2358 XBZRLE.zero_target_page = NULL;
2359 }
2360 XBZRLE_cache_unlock();
2361 }
2362
2363 static void ram_save_cleanup(void *opaque)
2364 {
2365 RAMState **rsp = opaque;
2366 RAMBlock *block;
2367
2368 /* We don't use dirty log with background snapshots */
2369 if (!migrate_background_snapshot()) {
2370 /* caller have hold iothread lock or is in a bh, so there is
2371 * no writing race against the migration bitmap
2372 */
2373 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2374 /*
2375 * do not stop dirty log without starting it, since
2376 * memory_global_dirty_log_stop will assert that
2377 * memory_global_dirty_log_start/stop used in pairs
2378 */
2379 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2380 }
2381 }
2382
2383 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2384 g_free(block->clear_bmap);
2385 block->clear_bmap = NULL;
2386 g_free(block->bmap);
2387 block->bmap = NULL;
2388 }
2389
2390 xbzrle_cleanup();
2391 compress_threads_save_cleanup();
2392 ram_state_cleanup(rsp);
2393 }
2394
2395 static void ram_state_reset(RAMState *rs)
2396 {
2397 rs->last_seen_block = NULL;
2398 rs->last_sent_block = NULL;
2399 rs->last_page = 0;
2400 rs->last_version = ram_list.version;
2401 rs->xbzrle_enabled = false;
2402 }
2403
2404 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2405
2406 /* **** functions for postcopy ***** */
2407
2408 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2409 {
2410 struct RAMBlock *block;
2411
2412 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2413 unsigned long *bitmap = block->bmap;
2414 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2415 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2416
2417 while (run_start < range) {
2418 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2419 ram_discard_range(block->idstr,
2420 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2421 ((ram_addr_t)(run_end - run_start))
2422 << TARGET_PAGE_BITS);
2423 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2424 }
2425 }
2426 }
2427
2428 /**
2429 * postcopy_send_discard_bm_ram: discard a RAMBlock
2430 *
2431 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2432 *
2433 * @ms: current migration state
2434 * @block: RAMBlock to discard
2435 */
2436 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2437 {
2438 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2439 unsigned long current;
2440 unsigned long *bitmap = block->bmap;
2441
2442 for (current = 0; current < end; ) {
2443 unsigned long one = find_next_bit(bitmap, end, current);
2444 unsigned long zero, discard_length;
2445
2446 if (one >= end) {
2447 break;
2448 }
2449
2450 zero = find_next_zero_bit(bitmap, end, one + 1);
2451
2452 if (zero >= end) {
2453 discard_length = end - one;
2454 } else {
2455 discard_length = zero - one;
2456 }
2457 postcopy_discard_send_range(ms, one, discard_length);
2458 current = one + discard_length;
2459 }
2460 }
2461
2462 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2463
2464 /**
2465 * postcopy_each_ram_send_discard: discard all RAMBlocks
2466 *
2467 * Utility for the outgoing postcopy code.
2468 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2469 * passing it bitmap indexes and name.
2470 * (qemu_ram_foreach_block ends up passing unscaled lengths
2471 * which would mean postcopy code would have to deal with target page)
2472 *
2473 * @ms: current migration state
2474 */
2475 static void postcopy_each_ram_send_discard(MigrationState *ms)
2476 {
2477 struct RAMBlock *block;
2478
2479 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2480 postcopy_discard_send_init(ms, block->idstr);
2481
2482 /*
2483 * Deal with TPS != HPS and huge pages. It discard any partially sent
2484 * host-page size chunks, mark any partially dirty host-page size
2485 * chunks as all dirty. In this case the host-page is the host-page
2486 * for the particular RAMBlock, i.e. it might be a huge page.
2487 */
2488 postcopy_chunk_hostpages_pass(ms, block);
2489
2490 /*
2491 * Postcopy sends chunks of bitmap over the wire, but it
2492 * just needs indexes at this point, avoids it having
2493 * target page specific code.
2494 */
2495 postcopy_send_discard_bm_ram(ms, block);
2496 postcopy_discard_send_finish(ms);
2497 }
2498 }
2499
2500 /**
2501 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2502 *
2503 * Helper for postcopy_chunk_hostpages; it's called twice to
2504 * canonicalize the two bitmaps, that are similar, but one is
2505 * inverted.
2506 *
2507 * Postcopy requires that all target pages in a hostpage are dirty or
2508 * clean, not a mix. This function canonicalizes the bitmaps.
2509 *
2510 * @ms: current migration state
2511 * @block: block that contains the page we want to canonicalize
2512 */
2513 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2514 {
2515 RAMState *rs = ram_state;
2516 unsigned long *bitmap = block->bmap;
2517 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2518 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2519 unsigned long run_start;
2520
2521 if (block->page_size == TARGET_PAGE_SIZE) {
2522 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2523 return;
2524 }
2525
2526 /* Find a dirty page */
2527 run_start = find_next_bit(bitmap, pages, 0);
2528
2529 while (run_start < pages) {
2530
2531 /*
2532 * If the start of this run of pages is in the middle of a host
2533 * page, then we need to fixup this host page.
2534 */
2535 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2536 /* Find the end of this run */
2537 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2538 /*
2539 * If the end isn't at the start of a host page, then the
2540 * run doesn't finish at the end of a host page
2541 * and we need to discard.
2542 */
2543 }
2544
2545 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2546 unsigned long page;
2547 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2548 host_ratio);
2549 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2550
2551 /* Clean up the bitmap */
2552 for (page = fixup_start_addr;
2553 page < fixup_start_addr + host_ratio; page++) {
2554 /*
2555 * Remark them as dirty, updating the count for any pages
2556 * that weren't previously dirty.
2557 */
2558 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2559 }
2560 }
2561
2562 /* Find the next dirty page for the next iteration */
2563 run_start = find_next_bit(bitmap, pages, run_start);
2564 }
2565 }
2566
2567 /**
2568 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2569 *
2570 * Transmit the set of pages to be discarded after precopy to the target
2571 * these are pages that:
2572 * a) Have been previously transmitted but are now dirty again
2573 * b) Pages that have never been transmitted, this ensures that
2574 * any pages on the destination that have been mapped by background
2575 * tasks get discarded (transparent huge pages is the specific concern)
2576 * Hopefully this is pretty sparse
2577 *
2578 * @ms: current migration state
2579 */
2580 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2581 {
2582 RAMState *rs = ram_state;
2583
2584 RCU_READ_LOCK_GUARD();
2585
2586 /* This should be our last sync, the src is now paused */
2587 migration_bitmap_sync(rs);
2588
2589 /* Easiest way to make sure we don't resume in the middle of a host-page */
2590 rs->last_seen_block = NULL;
2591 rs->last_sent_block = NULL;
2592 rs->last_page = 0;
2593
2594 postcopy_each_ram_send_discard(ms);
2595
2596 trace_ram_postcopy_send_discard_bitmap();
2597 }
2598
2599 /**
2600 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2601 *
2602 * Returns zero on success
2603 *
2604 * @rbname: name of the RAMBlock of the request. NULL means the
2605 * same that last one.
2606 * @start: RAMBlock starting page
2607 * @length: RAMBlock size
2608 */
2609 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2610 {
2611 trace_ram_discard_range(rbname, start, length);
2612
2613 RCU_READ_LOCK_GUARD();
2614 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2615
2616 if (!rb) {
2617 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2618 return -1;
2619 }
2620
2621 /*
2622 * On source VM, we don't need to update the received bitmap since
2623 * we don't even have one.
2624 */
2625 if (rb->receivedmap) {
2626 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2627 length >> qemu_target_page_bits());
2628 }
2629
2630 return ram_block_discard_range(rb, start, length);
2631 }
2632
2633 /*
2634 * For every allocation, we will try not to crash the VM if the
2635 * allocation failed.
2636 */
2637 static int xbzrle_init(void)
2638 {
2639 Error *local_err = NULL;
2640
2641 if (!migrate_use_xbzrle()) {
2642 return 0;
2643 }
2644
2645 XBZRLE_cache_lock();
2646
2647 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2648 if (!XBZRLE.zero_target_page) {
2649 error_report("%s: Error allocating zero page", __func__);
2650 goto err_out;
2651 }
2652
2653 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2654 TARGET_PAGE_SIZE, &local_err);
2655 if (!XBZRLE.cache) {
2656 error_report_err(local_err);
2657 goto free_zero_page;
2658 }
2659
2660 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2661 if (!XBZRLE.encoded_buf) {
2662 error_report("%s: Error allocating encoded_buf", __func__);
2663 goto free_cache;
2664 }
2665
2666 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2667 if (!XBZRLE.current_buf) {
2668 error_report("%s: Error allocating current_buf", __func__);
2669 goto free_encoded_buf;
2670 }
2671
2672 /* We are all good */
2673 XBZRLE_cache_unlock();
2674 return 0;
2675
2676 free_encoded_buf:
2677 g_free(XBZRLE.encoded_buf);
2678 XBZRLE.encoded_buf = NULL;
2679 free_cache:
2680 cache_fini(XBZRLE.cache);
2681 XBZRLE.cache = NULL;
2682 free_zero_page:
2683 g_free(XBZRLE.zero_target_page);
2684 XBZRLE.zero_target_page = NULL;
2685 err_out:
2686 XBZRLE_cache_unlock();
2687 return -ENOMEM;
2688 }
2689
2690 static int ram_state_init(RAMState **rsp)
2691 {
2692 *rsp = g_try_new0(RAMState, 1);
2693
2694 if (!*rsp) {
2695 error_report("%s: Init ramstate fail", __func__);
2696 return -1;
2697 }
2698
2699 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2700 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2701 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2702
2703 /*
2704 * Count the total number of pages used by ram blocks not including any
2705 * gaps due to alignment or unplugs.
2706 * This must match with the initial values of dirty bitmap.
2707 */
2708 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2709 ram_state_reset(*rsp);
2710
2711 return 0;
2712 }
2713
2714 static void ram_list_init_bitmaps(void)
2715 {
2716 MigrationState *ms = migrate_get_current();
2717 RAMBlock *block;
2718 unsigned long pages;
2719 uint8_t shift;
2720
2721 /* Skip setting bitmap if there is no RAM */
2722 if (ram_bytes_total()) {
2723 shift = ms->clear_bitmap_shift;
2724 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2725 error_report("clear_bitmap_shift (%u) too big, using "
2726 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2727 shift = CLEAR_BITMAP_SHIFT_MAX;
2728 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2729 error_report("clear_bitmap_shift (%u) too small, using "
2730 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2731 shift = CLEAR_BITMAP_SHIFT_MIN;
2732 }
2733
2734 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2735 pages = block->max_length >> TARGET_PAGE_BITS;
2736 /*
2737 * The initial dirty bitmap for migration must be set with all
2738 * ones to make sure we'll migrate every guest RAM page to
2739 * destination.
2740 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2741 * new migration after a failed migration, ram_list.
2742 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2743 * guest memory.
2744 */
2745 block->bmap = bitmap_new(pages);
2746 bitmap_set(block->bmap, 0, pages);
2747 block->clear_bmap_shift = shift;
2748 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2749 }
2750 }
2751 }
2752
2753 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2754 {
2755 unsigned long pages;
2756 RAMBlock *rb;
2757
2758 RCU_READ_LOCK_GUARD();
2759
2760 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2761 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2762 rs->migration_dirty_pages -= pages;
2763 }
2764 }
2765
2766 static void ram_init_bitmaps(RAMState *rs)
2767 {
2768 /* For memory_global_dirty_log_start below. */
2769 qemu_mutex_lock_iothread();
2770 qemu_mutex_lock_ramlist();
2771
2772 WITH_RCU_READ_LOCK_GUARD() {
2773 ram_list_init_bitmaps();
2774 /* We don't use dirty log with background snapshots */
2775 if (!migrate_background_snapshot()) {
2776 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2777 migration_bitmap_sync_precopy(rs);
2778 }
2779 }
2780 qemu_mutex_unlock_ramlist();
2781 qemu_mutex_unlock_iothread();
2782
2783 /*
2784 * After an eventual first bitmap sync, fixup the initial bitmap
2785 * containing all 1s to exclude any discarded pages from migration.
2786 */
2787 migration_bitmap_clear_discarded_pages(rs);
2788 }
2789
2790 static int ram_init_all(RAMState **rsp)
2791 {
2792 if (ram_state_init(rsp)) {
2793 return -1;
2794 }
2795
2796 if (xbzrle_init()) {
2797 ram_state_cleanup(rsp);
2798 return -1;
2799 }
2800
2801 ram_init_bitmaps(*rsp);
2802
2803 return 0;
2804 }
2805
2806 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2807 {
2808 RAMBlock *block;
2809 uint64_t pages = 0;
2810
2811 /*
2812 * Postcopy is not using xbzrle/compression, so no need for that.
2813 * Also, since source are already halted, we don't need to care
2814 * about dirty page logging as well.
2815 */
2816
2817 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2818 pages += bitmap_count_one(block->bmap,
2819 block->used_length >> TARGET_PAGE_BITS);
2820 }
2821
2822 /* This may not be aligned with current bitmaps. Recalculate. */
2823 rs->migration_dirty_pages = pages;
2824
2825 ram_state_reset(rs);
2826
2827 /* Update RAMState cache of output QEMUFile */
2828 rs->f = out;
2829
2830 trace_ram_state_resume_prepare(pages);
2831 }
2832
2833 /*
2834 * This function clears bits of the free pages reported by the caller from the
2835 * migration dirty bitmap. @addr is the host address corresponding to the
2836 * start of the continuous guest free pages, and @len is the total bytes of
2837 * those pages.
2838 */
2839 void qemu_guest_free_page_hint(void *addr, size_t len)
2840 {
2841 RAMBlock *block;
2842 ram_addr_t offset;
2843 size_t used_len, start, npages;
2844 MigrationState *s = migrate_get_current();
2845
2846 /* This function is currently expected to be used during live migration */
2847 if (!migration_is_setup_or_active(s->state)) {
2848 return;
2849 }
2850
2851 for (; len > 0; len -= used_len, addr += used_len) {
2852 block = qemu_ram_block_from_host(addr, false, &offset);
2853 if (unlikely(!block || offset >= block->used_length)) {
2854 /*
2855 * The implementation might not support RAMBlock resize during
2856 * live migration, but it could happen in theory with future
2857 * updates. So we add a check here to capture that case.
2858 */
2859 error_report_once("%s unexpected error", __func__);
2860 return;
2861 }
2862
2863 if (len <= block->used_length - offset) {
2864 used_len = len;
2865 } else {
2866 used_len = block->used_length - offset;
2867 }
2868
2869 start = offset >> TARGET_PAGE_BITS;
2870 npages = used_len >> TARGET_PAGE_BITS;
2871
2872 qemu_mutex_lock(&ram_state->bitmap_mutex);
2873 /*
2874 * The skipped free pages are equavalent to be sent from clear_bmap's
2875 * perspective, so clear the bits from the memory region bitmap which
2876 * are initially set. Otherwise those skipped pages will be sent in
2877 * the next round after syncing from the memory region bitmap.
2878 */
2879 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2880 ram_state->migration_dirty_pages -=
2881 bitmap_count_one_with_offset(block->bmap, start, npages);
2882 bitmap_clear(block->bmap, start, npages);
2883 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2884 }
2885 }
2886
2887 /*
2888 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2889 * long-running RCU critical section. When rcu-reclaims in the code
2890 * start to become numerous it will be necessary to reduce the
2891 * granularity of these critical sections.
2892 */
2893
2894 /**
2895 * ram_save_setup: Setup RAM for migration
2896 *
2897 * Returns zero to indicate success and negative for error
2898 *
2899 * @f: QEMUFile where to send the data
2900 * @opaque: RAMState pointer
2901 */
2902 static int ram_save_setup(QEMUFile *f, void *opaque)
2903 {
2904 RAMState **rsp = opaque;
2905 RAMBlock *block;
2906
2907 if (compress_threads_save_setup()) {
2908 return -1;
2909 }
2910
2911 /* migration has already setup the bitmap, reuse it. */
2912 if (!migration_in_colo_state()) {
2913 if (ram_init_all(rsp) != 0) {
2914 compress_threads_save_cleanup();
2915 return -1;
2916 }
2917 }
2918 (*rsp)->f = f;
2919
2920 WITH_RCU_READ_LOCK_GUARD() {
2921 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
2922
2923 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2924 qemu_put_byte(f, strlen(block->idstr));
2925 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2926 qemu_put_be64(f, block->used_length);
2927 if (migrate_postcopy_ram() && block->page_size !=
2928 qemu_host_page_size) {
2929 qemu_put_be64(f, block->page_size);
2930 }
2931 if (migrate_ignore_shared()) {
2932 qemu_put_be64(f, block->mr->addr);
2933 }
2934 }
2935 }
2936
2937 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2938 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2939
2940 multifd_send_sync_main(f);
2941 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2942 qemu_fflush(f);
2943
2944 return 0;
2945 }
2946
2947 /**
2948 * ram_save_iterate: iterative stage for migration
2949 *
2950 * Returns zero to indicate success and negative for error
2951 *
2952 * @f: QEMUFile where to send the data
2953 * @opaque: RAMState pointer
2954 */
2955 static int ram_save_iterate(QEMUFile *f, void *opaque)
2956 {
2957 RAMState **temp = opaque;
2958 RAMState *rs = *temp;
2959 int ret = 0;
2960 int i;
2961 int64_t t0;
2962 int done = 0;
2963
2964 if (blk_mig_bulk_active()) {
2965 /* Avoid transferring ram during bulk phase of block migration as
2966 * the bulk phase will usually take a long time and transferring
2967 * ram updates during that time is pointless. */
2968 goto out;
2969 }
2970
2971 /*
2972 * We'll take this lock a little bit long, but it's okay for two reasons.
2973 * Firstly, the only possible other thread to take it is who calls
2974 * qemu_guest_free_page_hint(), which should be rare; secondly, see
2975 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
2976 * guarantees that we'll at least released it in a regular basis.
2977 */
2978 qemu_mutex_lock(&rs->bitmap_mutex);
2979 WITH_RCU_READ_LOCK_GUARD() {
2980 if (ram_list.version != rs->last_version) {
2981 ram_state_reset(rs);
2982 }
2983
2984 /* Read version before ram_list.blocks */
2985 smp_rmb();
2986
2987 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2988
2989 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2990 i = 0;
2991 while ((ret = qemu_file_rate_limit(f)) == 0 ||
2992 postcopy_has_request(rs)) {
2993 int pages;
2994
2995 if (qemu_file_get_error(f)) {
2996 break;
2997 }
2998
2999 pages = ram_find_and_save_block(rs);
3000 /* no more pages to sent */
3001 if (pages == 0) {
3002 done = 1;
3003 break;
3004 }
3005
3006 if (pages < 0) {
3007 qemu_file_set_error(f, pages);
3008 break;
3009 }
3010
3011 rs->target_page_count += pages;
3012
3013 /*
3014 * During postcopy, it is necessary to make sure one whole host
3015 * page is sent in one chunk.
3016 */
3017 if (migrate_postcopy_ram()) {
3018 flush_compressed_data(rs);
3019 }
3020
3021 /*
3022 * we want to check in the 1st loop, just in case it was the 1st
3023 * time and we had to sync the dirty bitmap.
3024 * qemu_clock_get_ns() is a bit expensive, so we only check each
3025 * some iterations
3026 */
3027 if ((i & 63) == 0) {
3028 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3029 1000000;
3030 if (t1 > MAX_WAIT) {
3031 trace_ram_save_iterate_big_wait(t1, i);
3032 break;
3033 }
3034 }
3035 i++;
3036 }
3037 }
3038 qemu_mutex_unlock(&rs->bitmap_mutex);
3039
3040 /*
3041 * Must occur before EOS (or any QEMUFile operation)
3042 * because of RDMA protocol.
3043 */
3044 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3045
3046 out:
3047 if (ret >= 0
3048 && migration_is_setup_or_active(migrate_get_current()->state)) {
3049 multifd_send_sync_main(rs->f);
3050 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3051 qemu_fflush(f);
3052 ram_transferred_add(8);
3053
3054 ret = qemu_file_get_error(f);
3055 }
3056 if (ret < 0) {
3057 return ret;
3058 }
3059
3060 return done;
3061 }
3062
3063 /**
3064 * ram_save_complete: function called to send the remaining amount of ram
3065 *
3066 * Returns zero to indicate success or negative on error
3067 *
3068 * Called with iothread lock
3069 *
3070 * @f: QEMUFile where to send the data
3071 * @opaque: RAMState pointer
3072 */
3073 static int ram_save_complete(QEMUFile *f, void *opaque)
3074 {
3075 RAMState **temp = opaque;
3076 RAMState *rs = *temp;
3077 int ret = 0;
3078
3079 rs->last_stage = !migration_in_colo_state();
3080
3081 WITH_RCU_READ_LOCK_GUARD() {
3082 if (!migration_in_postcopy()) {
3083 migration_bitmap_sync_precopy(rs);
3084 }
3085
3086 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3087
3088 /* try transferring iterative blocks of memory */
3089
3090 /* flush all remaining blocks regardless of rate limiting */
3091 while (true) {
3092 int pages;
3093
3094 pages = ram_find_and_save_block(rs);
3095 /* no more blocks to sent */
3096 if (pages == 0) {
3097 break;
3098 }
3099 if (pages < 0) {
3100 ret = pages;
3101 break;
3102 }
3103 }
3104
3105 flush_compressed_data(rs);
3106 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3107 }
3108
3109 if (ret >= 0) {
3110 multifd_send_sync_main(rs->f);
3111 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3112 qemu_fflush(f);
3113 }
3114
3115 return ret;
3116 }
3117
3118 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3119 uint64_t *res_precopy_only,
3120 uint64_t *res_compatible,
3121 uint64_t *res_postcopy_only)
3122 {
3123 RAMState **temp = opaque;
3124 RAMState *rs = *temp;
3125 uint64_t remaining_size;
3126
3127 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3128
3129 if (!migration_in_postcopy() &&
3130 remaining_size < max_size) {
3131 qemu_mutex_lock_iothread();
3132 WITH_RCU_READ_LOCK_GUARD() {
3133 migration_bitmap_sync_precopy(rs);
3134 }
3135 qemu_mutex_unlock_iothread();
3136 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3137 }
3138
3139 if (migrate_postcopy_ram()) {
3140 /* We can do postcopy, and all the data is postcopiable */
3141 *res_compatible += remaining_size;
3142 } else {
3143 *res_precopy_only += remaining_size;
3144 }
3145 }
3146
3147 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3148 {
3149 unsigned int xh_len;
3150 int xh_flags;
3151 uint8_t *loaded_data;
3152
3153 /* extract RLE header */
3154 xh_flags = qemu_get_byte(f);
3155 xh_len = qemu_get_be16(f);
3156
3157 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3158 error_report("Failed to load XBZRLE page - wrong compression!");
3159 return -1;
3160 }
3161
3162 if (xh_len > TARGET_PAGE_SIZE) {
3163 error_report("Failed to load XBZRLE page - len overflow!");
3164 return -1;
3165 }
3166 loaded_data = XBZRLE.decoded_buf;
3167 /* load data and decode */
3168 /* it can change loaded_data to point to an internal buffer */
3169 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3170
3171 /* decode RLE */
3172 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3173 TARGET_PAGE_SIZE) == -1) {
3174 error_report("Failed to load XBZRLE page - decode error!");
3175 return -1;
3176 }
3177
3178 return 0;
3179 }
3180
3181 /**
3182 * ram_block_from_stream: read a RAMBlock id from the migration stream
3183 *
3184 * Must be called from within a rcu critical section.
3185 *
3186 * Returns a pointer from within the RCU-protected ram_list.
3187 *
3188 * @f: QEMUFile where to read the data from
3189 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3190 */
3191 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3192 {
3193 static RAMBlock *block;
3194 char id[256];
3195 uint8_t len;
3196
3197 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3198 if (!block) {
3199 error_report("Ack, bad migration stream!");
3200 return NULL;
3201 }
3202 return block;
3203 }
3204
3205 len = qemu_get_byte(f);
3206 qemu_get_buffer(f, (uint8_t *)id, len);
3207 id[len] = 0;
3208
3209 block = qemu_ram_block_by_name(id);
3210 if (!block) {
3211 error_report("Can't find block %s", id);
3212 return NULL;
3213 }
3214
3215 if (ramblock_is_ignored(block)) {
3216 error_report("block %s should not be migrated !", id);
3217 return NULL;
3218 }
3219
3220 return block;
3221 }
3222
3223 static inline void *host_from_ram_block_offset(RAMBlock *block,
3224 ram_addr_t offset)
3225 {
3226 if (!offset_in_ramblock(block, offset)) {
3227 return NULL;
3228 }
3229
3230 return block->host + offset;
3231 }
3232
3233 static void *host_page_from_ram_block_offset(RAMBlock *block,
3234 ram_addr_t offset)
3235 {
3236 /* Note: Explicitly no check against offset_in_ramblock(). */
3237 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3238 block->page_size);
3239 }
3240
3241 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3242 ram_addr_t offset)
3243 {
3244 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3245 }
3246
3247 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3248 ram_addr_t offset, bool record_bitmap)
3249 {
3250 if (!offset_in_ramblock(block, offset)) {
3251 return NULL;
3252 }
3253 if (!block->colo_cache) {
3254 error_report("%s: colo_cache is NULL in block :%s",
3255 __func__, block->idstr);
3256 return NULL;
3257 }
3258
3259 /*
3260 * During colo checkpoint, we need bitmap of these migrated pages.
3261 * It help us to decide which pages in ram cache should be flushed
3262 * into VM's RAM later.
3263 */
3264 if (record_bitmap &&
3265 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3266 ram_state->migration_dirty_pages++;
3267 }
3268 return block->colo_cache + offset;
3269 }
3270
3271 /**
3272 * ram_handle_compressed: handle the zero page case
3273 *
3274 * If a page (or a whole RDMA chunk) has been
3275 * determined to be zero, then zap it.
3276 *
3277 * @host: host address for the zero page
3278 * @ch: what the page is filled from. We only support zero
3279 * @size: size of the zero page
3280 */
3281 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3282 {
3283 if (ch != 0 || !buffer_is_zero(host, size)) {
3284 memset(host, ch, size);
3285 }
3286 }
3287
3288 /* return the size after decompression, or negative value on error */
3289 static int
3290 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3291 const uint8_t *source, size_t source_len)
3292 {
3293 int err;
3294
3295 err = inflateReset(stream);
3296 if (err != Z_OK) {
3297 return -1;
3298 }
3299
3300 stream->avail_in = source_len;
3301 stream->next_in = (uint8_t *)source;
3302 stream->avail_out = dest_len;
3303 stream->next_out = dest;
3304
3305 err = inflate(stream, Z_NO_FLUSH);
3306 if (err != Z_STREAM_END) {
3307 return -1;
3308 }
3309
3310 return stream->total_out;
3311 }
3312
3313 static void *do_data_decompress(void *opaque)
3314 {
3315 DecompressParam *param = opaque;
3316 unsigned long pagesize;
3317 uint8_t *des;
3318 int len, ret;
3319
3320 qemu_mutex_lock(&param->mutex);
3321 while (!param->quit) {
3322 if (param->des) {
3323 des = param->des;
3324 len = param->len;
3325 param->des = 0;
3326 qemu_mutex_unlock(&param->mutex);
3327
3328 pagesize = TARGET_PAGE_SIZE;
3329
3330 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3331 param->compbuf, len);
3332 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3333 error_report("decompress data failed");
3334 qemu_file_set_error(decomp_file, ret);
3335 }
3336
3337 qemu_mutex_lock(&decomp_done_lock);
3338 param->done = true;
3339 qemu_cond_signal(&decomp_done_cond);
3340 qemu_mutex_unlock(&decomp_done_lock);
3341
3342 qemu_mutex_lock(&param->mutex);
3343 } else {
3344 qemu_cond_wait(&param->cond, &param->mutex);
3345 }
3346 }
3347 qemu_mutex_unlock(&param->mutex);
3348
3349 return NULL;
3350 }
3351
3352 static int wait_for_decompress_done(void)
3353 {
3354 int idx, thread_count;
3355
3356 if (!migrate_use_compression()) {
3357 return 0;
3358 }
3359
3360 thread_count = migrate_decompress_threads();
3361 qemu_mutex_lock(&decomp_done_lock);
3362 for (idx = 0; idx < thread_count; idx++) {
3363 while (!decomp_param[idx].done) {
3364 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3365 }
3366 }
3367 qemu_mutex_unlock(&decomp_done_lock);
3368 return qemu_file_get_error(decomp_file);
3369 }
3370
3371 static void compress_threads_load_cleanup(void)
3372 {
3373 int i, thread_count;
3374
3375 if (!migrate_use_compression()) {
3376 return;
3377 }
3378 thread_count = migrate_decompress_threads();
3379 for (i = 0; i < thread_count; i++) {
3380 /*
3381 * we use it as a indicator which shows if the thread is
3382 * properly init'd or not
3383 */
3384 if (!decomp_param[i].compbuf) {
3385 break;
3386 }
3387
3388 qemu_mutex_lock(&decomp_param[i].mutex);
3389 decomp_param[i].quit = true;
3390 qemu_cond_signal(&decomp_param[i].cond);
3391 qemu_mutex_unlock(&decomp_param[i].mutex);
3392 }
3393 for (i = 0; i < thread_count; i++) {
3394 if (!decomp_param[i].compbuf) {
3395 break;
3396 }
3397
3398 qemu_thread_join(decompress_threads + i);
3399 qemu_mutex_destroy(&decomp_param[i].mutex);
3400 qemu_cond_destroy(&decomp_param[i].cond);
3401 inflateEnd(&decomp_param[i].stream);
3402 g_free(decomp_param[i].compbuf);
3403 decomp_param[i].compbuf = NULL;
3404 }
3405 g_free(decompress_threads);
3406 g_free(decomp_param);
3407 decompress_threads = NULL;
3408 decomp_param = NULL;
3409 decomp_file = NULL;
3410 }
3411
3412 static int compress_threads_load_setup(QEMUFile *f)
3413 {
3414 int i, thread_count;
3415
3416 if (!migrate_use_compression()) {
3417 return 0;
3418 }
3419
3420 thread_count = migrate_decompress_threads();
3421 decompress_threads = g_new0(QemuThread, thread_count);
3422 decomp_param = g_new0(DecompressParam, thread_count);
3423 qemu_mutex_init(&decomp_done_lock);
3424 qemu_cond_init(&decomp_done_cond);
3425 decomp_file = f;
3426 for (i = 0; i < thread_count; i++) {
3427 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3428 goto exit;
3429 }
3430
3431 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3432 qemu_mutex_init(&decomp_param[i].mutex);
3433 qemu_cond_init(&decomp_param[i].cond);
3434 decomp_param[i].done = true;
3435 decomp_param[i].quit = false;
3436 qemu_thread_create(decompress_threads + i, "decompress",
3437 do_data_decompress, decomp_param + i,
3438 QEMU_THREAD_JOINABLE);
3439 }
3440 return 0;
3441 exit:
3442 compress_threads_load_cleanup();
3443 return -1;
3444 }
3445
3446 static void decompress_data_with_multi_threads(QEMUFile *f,
3447 void *host, int len)
3448 {
3449 int idx, thread_count;
3450
3451 thread_count = migrate_decompress_threads();
3452 QEMU_LOCK_GUARD(&decomp_done_lock);
3453 while (true) {
3454 for (idx = 0; idx < thread_count; idx++) {
3455 if (decomp_param[idx].done) {
3456 decomp_param[idx].done = false;
3457 qemu_mutex_lock(&decomp_param[idx].mutex);
3458 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3459 decomp_param[idx].des = host;
3460 decomp_param[idx].len = len;
3461 qemu_cond_signal(&decomp_param[idx].cond);
3462 qemu_mutex_unlock(&decomp_param[idx].mutex);
3463 break;
3464 }
3465 }
3466 if (idx < thread_count) {
3467 break;
3468 } else {
3469 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3470 }
3471 }
3472 }
3473
3474 static void colo_init_ram_state(void)
3475 {
3476 ram_state_init(&ram_state);
3477 }
3478
3479 /*
3480 * colo cache: this is for secondary VM, we cache the whole
3481 * memory of the secondary VM, it is need to hold the global lock
3482 * to call this helper.
3483 */
3484 int colo_init_ram_cache(void)
3485 {
3486 RAMBlock *block;
3487
3488 WITH_RCU_READ_LOCK_GUARD() {
3489 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3490 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3491 NULL, false, false);
3492 if (!block->colo_cache) {
3493 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3494 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3495 block->used_length);
3496 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3497 if (block->colo_cache) {
3498 qemu_anon_ram_free(block->colo_cache, block->used_length);
3499 block->colo_cache = NULL;
3500 }
3501 }
3502 return -errno;
3503 }
3504 if (!machine_dump_guest_core(current_machine)) {
3505 qemu_madvise(block->colo_cache, block->used_length,
3506 QEMU_MADV_DONTDUMP);
3507 }
3508 }
3509 }
3510
3511 /*
3512 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3513 * with to decide which page in cache should be flushed into SVM's RAM. Here
3514 * we use the same name 'ram_bitmap' as for migration.
3515 */
3516 if (ram_bytes_total()) {
3517 RAMBlock *block;
3518
3519 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3520 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3521 block->bmap = bitmap_new(pages);
3522 }
3523 }
3524
3525 colo_init_ram_state();
3526 return 0;
3527 }
3528
3529 /* TODO: duplicated with ram_init_bitmaps */
3530 void colo_incoming_start_dirty_log(void)
3531 {
3532 RAMBlock *block = NULL;
3533 /* For memory_global_dirty_log_start below. */
3534 qemu_mutex_lock_iothread();
3535 qemu_mutex_lock_ramlist();
3536
3537 memory_global_dirty_log_sync();
3538 WITH_RCU_READ_LOCK_GUARD() {
3539 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3540 ramblock_sync_dirty_bitmap(ram_state, block);
3541 /* Discard this dirty bitmap record */
3542 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3543 }
3544 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3545 }
3546 ram_state->migration_dirty_pages = 0;
3547 qemu_mutex_unlock_ramlist();
3548 qemu_mutex_unlock_iothread();
3549 }
3550
3551 /* It is need to hold the global lock to call this helper */
3552 void colo_release_ram_cache(void)
3553 {
3554 RAMBlock *block;
3555
3556 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3557 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3558 g_free(block->bmap);
3559 block->bmap = NULL;
3560 }
3561
3562 WITH_RCU_READ_LOCK_GUARD() {
3563 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3564 if (block->colo_cache) {
3565 qemu_anon_ram_free(block->colo_cache, block->used_length);
3566 block->colo_cache = NULL;
3567 }
3568 }
3569 }
3570 ram_state_cleanup(&ram_state);
3571 }
3572
3573 /**
3574 * ram_load_setup: Setup RAM for migration incoming side
3575 *
3576 * Returns zero to indicate success and negative for error
3577 *
3578 * @f: QEMUFile where to receive the data
3579 * @opaque: RAMState pointer
3580 */
3581 static int ram_load_setup(QEMUFile *f, void *opaque)
3582 {
3583 if (compress_threads_load_setup(f)) {
3584 return -1;
3585 }
3586
3587 xbzrle_load_setup();
3588 ramblock_recv_map_init();
3589
3590 return 0;
3591 }
3592
3593 static int ram_load_cleanup(void *opaque)
3594 {
3595 RAMBlock *rb;
3596
3597 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3598 qemu_ram_block_writeback(rb);
3599 }
3600
3601 xbzrle_load_cleanup();
3602 compress_threads_load_cleanup();
3603
3604 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3605 g_free(rb->receivedmap);
3606 rb->receivedmap = NULL;
3607 }
3608
3609 return 0;
3610 }
3611
3612 /**
3613 * ram_postcopy_incoming_init: allocate postcopy data structures
3614 *
3615 * Returns 0 for success and negative if there was one error
3616 *
3617 * @mis: current migration incoming state
3618 *
3619 * Allocate data structures etc needed by incoming migration with
3620 * postcopy-ram. postcopy-ram's similarly names
3621 * postcopy_ram_incoming_init does the work.
3622 */
3623 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3624 {
3625 return postcopy_ram_incoming_init(mis);
3626 }
3627
3628 /**
3629 * ram_load_postcopy: load a page in postcopy case
3630 *
3631 * Returns 0 for success or -errno in case of error
3632 *
3633 * Called in postcopy mode by ram_load().
3634 * rcu_read_lock is taken prior to this being called.
3635 *
3636 * @f: QEMUFile where to send the data
3637 */
3638 static int ram_load_postcopy(QEMUFile *f)
3639 {
3640 int flags = 0, ret = 0;
3641 bool place_needed = false;
3642 bool matches_target_page_size = false;
3643 MigrationIncomingState *mis = migration_incoming_get_current();
3644 /* Currently we only use channel 0. TODO: use all the channels */
3645 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[0];
3646
3647 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3648 ram_addr_t addr;
3649 void *page_buffer = NULL;
3650 void *place_source = NULL;
3651 RAMBlock *block = NULL;
3652 uint8_t ch;
3653 int len;
3654
3655 addr = qemu_get_be64(f);
3656
3657 /*
3658 * If qemu file error, we should stop here, and then "addr"
3659 * may be invalid
3660 */
3661 ret = qemu_file_get_error(f);
3662 if (ret) {
3663 break;
3664 }
3665
3666 flags = addr & ~TARGET_PAGE_MASK;
3667 addr &= TARGET_PAGE_MASK;
3668
3669 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3670 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3671 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3672 block = ram_block_from_stream(f, flags);
3673 if (!block) {
3674 ret = -EINVAL;
3675 break;
3676 }
3677
3678 /*
3679 * Relying on used_length is racy and can result in false positives.
3680 * We might place pages beyond used_length in case RAM was shrunk
3681 * while in postcopy, which is fine - trying to place via
3682 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3683 */
3684 if (!block->host || addr >= block->postcopy_length) {
3685 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3686 ret = -EINVAL;
3687 break;
3688 }
3689 tmp_page->target_pages++;
3690 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3691 /*
3692 * Postcopy requires that we place whole host pages atomically;
3693 * these may be huge pages for RAMBlocks that are backed by
3694 * hugetlbfs.
3695 * To make it atomic, the data is read into a temporary page
3696 * that's moved into place later.
3697 * The migration protocol uses, possibly smaller, target-pages
3698 * however the source ensures it always sends all the components
3699 * of a host page in one chunk.
3700 */
3701 page_buffer = tmp_page->tmp_huge_page +
3702 host_page_offset_from_ram_block_offset(block, addr);
3703 /* If all TP are zero then we can optimise the place */
3704 if (tmp_page->target_pages == 1) {
3705 tmp_page->host_addr =
3706 host_page_from_ram_block_offset(block, addr);
3707 } else if (tmp_page->host_addr !=
3708 host_page_from_ram_block_offset(block, addr)) {
3709 /* not the 1st TP within the HP */
3710 error_report("Non-same host page %p/%p", tmp_page->host_addr,
3711 host_page_from_ram_block_offset(block, addr));
3712 ret = -EINVAL;
3713 break;
3714 }
3715
3716 /*
3717 * If it's the last part of a host page then we place the host
3718 * page
3719 */
3720 if (tmp_page->target_pages ==
3721 (block->page_size / TARGET_PAGE_SIZE)) {
3722 place_needed = true;
3723 }
3724 place_source = tmp_page->tmp_huge_page;
3725 }
3726
3727 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3728 case RAM_SAVE_FLAG_ZERO:
3729 ch = qemu_get_byte(f);
3730 /*
3731 * Can skip to set page_buffer when
3732 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3733 */
3734 if (ch || !matches_target_page_size) {
3735 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3736 }
3737 if (ch) {
3738 tmp_page->all_zero = false;
3739 }
3740 break;
3741
3742 case RAM_SAVE_FLAG_PAGE:
3743 tmp_page->all_zero = false;
3744 if (!matches_target_page_size) {
3745 /* For huge pages, we always use temporary buffer */
3746 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3747 } else {
3748 /*
3749 * For small pages that matches target page size, we
3750 * avoid the qemu_file copy. Instead we directly use
3751 * the buffer of QEMUFile to place the page. Note: we
3752 * cannot do any QEMUFile operation before using that
3753 * buffer to make sure the buffer is valid when
3754 * placing the page.
3755 */
3756 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3757 TARGET_PAGE_SIZE);
3758 }
3759 break;
3760 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3761 tmp_page->all_zero = false;
3762 len = qemu_get_be32(f);
3763 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3764 error_report("Invalid compressed data length: %d", len);
3765 ret = -EINVAL;
3766 break;
3767 }
3768 decompress_data_with_multi_threads(f, page_buffer, len);
3769 break;
3770
3771 case RAM_SAVE_FLAG_EOS:
3772 /* normal exit */
3773 multifd_recv_sync_main();
3774 break;
3775 default:
3776 error_report("Unknown combination of migration flags: 0x%x"
3777 " (postcopy mode)", flags);
3778 ret = -EINVAL;
3779 break;
3780 }
3781
3782 /* Got the whole host page, wait for decompress before placing. */
3783 if (place_needed) {
3784 ret |= wait_for_decompress_done();
3785 }
3786
3787 /* Detect for any possible file errors */
3788 if (!ret && qemu_file_get_error(f)) {
3789 ret = qemu_file_get_error(f);
3790 }
3791
3792 if (!ret && place_needed) {
3793 if (tmp_page->all_zero) {
3794 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3795 } else {
3796 ret = postcopy_place_page(mis, tmp_page->host_addr,
3797 place_source, block);
3798 }
3799 place_needed = false;
3800 postcopy_temp_page_reset(tmp_page);
3801 }
3802 }
3803
3804 return ret;
3805 }
3806
3807 static bool postcopy_is_advised(void)
3808 {
3809 PostcopyState ps = postcopy_state_get();
3810 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3811 }
3812
3813 static bool postcopy_is_running(void)
3814 {
3815 PostcopyState ps = postcopy_state_get();
3816 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3817 }
3818
3819 /*
3820 * Flush content of RAM cache into SVM's memory.
3821 * Only flush the pages that be dirtied by PVM or SVM or both.
3822 */
3823 void colo_flush_ram_cache(void)
3824 {
3825 RAMBlock *block = NULL;
3826 void *dst_host;
3827 void *src_host;
3828 unsigned long offset = 0;
3829
3830 memory_global_dirty_log_sync();
3831 WITH_RCU_READ_LOCK_GUARD() {
3832 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3833 ramblock_sync_dirty_bitmap(ram_state, block);
3834 }
3835 }
3836
3837 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3838 WITH_RCU_READ_LOCK_GUARD() {
3839 block = QLIST_FIRST_RCU(&ram_list.blocks);
3840
3841 while (block) {
3842 unsigned long num = 0;
3843
3844 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3845 if (!offset_in_ramblock(block,
3846 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3847 offset = 0;
3848 num = 0;
3849 block = QLIST_NEXT_RCU(block, next);
3850 } else {
3851 unsigned long i = 0;
3852
3853 for (i = 0; i < num; i++) {
3854 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3855 }
3856 dst_host = block->host
3857 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3858 src_host = block->colo_cache
3859 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3860 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3861 offset += num;
3862 }
3863 }
3864 }
3865 trace_colo_flush_ram_cache_end();
3866 }
3867
3868 /**
3869 * ram_load_precopy: load pages in precopy case
3870 *
3871 * Returns 0 for success or -errno in case of error
3872 *
3873 * Called in precopy mode by ram_load().
3874 * rcu_read_lock is taken prior to this being called.
3875 *
3876 * @f: QEMUFile where to send the data
3877 */
3878 static int ram_load_precopy(QEMUFile *f)
3879 {
3880 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3881 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3882 bool postcopy_advised = postcopy_is_advised();
3883 if (!migrate_use_compression()) {
3884 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3885 }
3886
3887 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3888 ram_addr_t addr, total_ram_bytes;
3889 void *host = NULL, *host_bak = NULL;
3890 uint8_t ch;
3891
3892 /*
3893 * Yield periodically to let main loop run, but an iteration of
3894 * the main loop is expensive, so do it each some iterations
3895 */
3896 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3897 aio_co_schedule(qemu_get_current_aio_context(),
3898 qemu_coroutine_self());
3899 qemu_coroutine_yield();
3900 }
3901 i++;
3902
3903 addr = qemu_get_be64(f);
3904 flags = addr & ~TARGET_PAGE_MASK;
3905 addr &= TARGET_PAGE_MASK;
3906
3907 if (flags & invalid_flags) {
3908 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3909 error_report("Received an unexpected compressed page");
3910 }
3911
3912 ret = -EINVAL;
3913 break;
3914 }
3915
3916 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3917 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3918 RAMBlock *block = ram_block_from_stream(f, flags);
3919
3920 host = host_from_ram_block_offset(block, addr);
3921 /*
3922 * After going into COLO stage, we should not load the page
3923 * into SVM's memory directly, we put them into colo_cache firstly.
3924 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3925 * Previously, we copied all these memory in preparing stage of COLO
3926 * while we need to stop VM, which is a time-consuming process.
3927 * Here we optimize it by a trick, back-up every page while in
3928 * migration process while COLO is enabled, though it affects the
3929 * speed of the migration, but it obviously reduce the downtime of
3930 * back-up all SVM'S memory in COLO preparing stage.
3931 */
3932 if (migration_incoming_colo_enabled()) {
3933 if (migration_incoming_in_colo_state()) {
3934 /* In COLO stage, put all pages into cache temporarily */
3935 host = colo_cache_from_block_offset(block, addr, true);
3936 } else {
3937 /*
3938 * In migration stage but before COLO stage,
3939 * Put all pages into both cache and SVM's memory.
3940 */
3941 host_bak = colo_cache_from_block_offset(block, addr, false);
3942 }
3943 }
3944 if (!host) {
3945 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3946 ret = -EINVAL;
3947 break;
3948 }
3949 if (!migration_incoming_in_colo_state()) {
3950 ramblock_recv_bitmap_set(block, host);
3951 }
3952
3953 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3954 }
3955
3956 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3957 case RAM_SAVE_FLAG_MEM_SIZE:
3958 /* Synchronize RAM block list */
3959 total_ram_bytes = addr;
3960 while (!ret && total_ram_bytes) {
3961 RAMBlock *block;
3962 char id[256];
3963 ram_addr_t length;
3964
3965 len = qemu_get_byte(f);
3966 qemu_get_buffer(f, (uint8_t *)id, len);
3967 id[len] = 0;
3968 length = qemu_get_be64(f);
3969
3970 block = qemu_ram_block_by_name(id);
3971 if (block && !qemu_ram_is_migratable(block)) {
3972 error_report("block %s should not be migrated !", id);
3973 ret = -EINVAL;
3974 } else if (block) {
3975 if (length != block->used_length) {
3976 Error *local_err = NULL;
3977
3978 ret = qemu_ram_resize(block, length,
3979 &local_err);
3980 if (local_err) {
3981 error_report_err(local_err);
3982 }
3983 }
3984 /* For postcopy we need to check hugepage sizes match */
3985 if (postcopy_advised && migrate_postcopy_ram() &&
3986 block->page_size != qemu_host_page_size) {
3987 uint64_t remote_page_size = qemu_get_be64(f);
3988 if (remote_page_size != block->page_size) {
3989 error_report("Mismatched RAM page size %s "
3990 "(local) %zd != %" PRId64,
3991 id, block->page_size,
3992 remote_page_size);
3993 ret = -EINVAL;
3994 }
3995 }
3996 if (migrate_ignore_shared()) {
3997 hwaddr addr = qemu_get_be64(f);
3998 if (ramblock_is_ignored(block) &&
3999 block->mr->addr != addr) {
4000 error_report("Mismatched GPAs for block %s "
4001 "%" PRId64 "!= %" PRId64,
4002 id, (uint64_t)addr,
4003 (uint64_t)block->mr->addr);
4004 ret = -EINVAL;
4005 }
4006 }
4007 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4008 block->idstr);
4009 } else {
4010 error_report("Unknown ramblock \"%s\", cannot "
4011 "accept migration", id);
4012 ret = -EINVAL;
4013 }
4014
4015 total_ram_bytes -= length;
4016 }
4017 break;
4018
4019 case RAM_SAVE_FLAG_ZERO:
4020 ch = qemu_get_byte(f);
4021 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4022 break;
4023
4024 case RAM_SAVE_FLAG_PAGE:
4025 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4026 break;
4027
4028 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4029 len = qemu_get_be32(f);
4030 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4031 error_report("Invalid compressed data length: %d", len);
4032 ret = -EINVAL;
4033 break;
4034 }
4035 decompress_data_with_multi_threads(f, host, len);
4036 break;
4037
4038 case RAM_SAVE_FLAG_XBZRLE:
4039 if (load_xbzrle(f, addr, host) < 0) {
4040 error_report("Failed to decompress XBZRLE page at "
4041 RAM_ADDR_FMT, addr);
4042 ret = -EINVAL;
4043 break;
4044 }
4045 break;
4046 case RAM_SAVE_FLAG_EOS:
4047 /* normal exit */
4048 multifd_recv_sync_main();
4049 break;
4050 default:
4051 if (flags & RAM_SAVE_FLAG_HOOK) {
4052 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4053 } else {
4054 error_report("Unknown combination of migration flags: 0x%x",
4055 flags);
4056 ret = -EINVAL;
4057 }
4058 }
4059 if (!ret) {
4060 ret = qemu_file_get_error(f);
4061 }
4062 if (!ret && host_bak) {
4063 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4064 }
4065 }
4066
4067 ret |= wait_for_decompress_done();
4068 return ret;
4069 }
4070
4071 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4072 {
4073 int ret = 0;
4074 static uint64_t seq_iter;
4075 /*
4076 * If system is running in postcopy mode, page inserts to host memory must
4077 * be atomic
4078 */
4079 bool postcopy_running = postcopy_is_running();
4080
4081 seq_iter++;
4082
4083 if (version_id != 4) {
4084 return -EINVAL;
4085 }
4086
4087 /*
4088 * This RCU critical section can be very long running.
4089 * When RCU reclaims in the code start to become numerous,
4090 * it will be necessary to reduce the granularity of this
4091 * critical section.
4092 */
4093 WITH_RCU_READ_LOCK_GUARD() {
4094 if (postcopy_running) {
4095 ret = ram_load_postcopy(f);
4096 } else {
4097 ret = ram_load_precopy(f);
4098 }
4099 }
4100 trace_ram_load_complete(ret, seq_iter);
4101
4102 return ret;
4103 }
4104
4105 static bool ram_has_postcopy(void *opaque)
4106 {
4107 RAMBlock *rb;
4108 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4109 if (ramblock_is_pmem(rb)) {
4110 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4111 "is not supported now!", rb->idstr, rb->host);
4112 return false;
4113 }
4114 }
4115
4116 return migrate_postcopy_ram();
4117 }
4118
4119 /* Sync all the dirty bitmap with destination VM. */
4120 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4121 {
4122 RAMBlock *block;
4123 QEMUFile *file = s->to_dst_file;
4124 int ramblock_count = 0;
4125
4126 trace_ram_dirty_bitmap_sync_start();
4127
4128 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4129 qemu_savevm_send_recv_bitmap(file, block->idstr);
4130 trace_ram_dirty_bitmap_request(block->idstr);
4131 ramblock_count++;
4132 }
4133
4134 trace_ram_dirty_bitmap_sync_wait();
4135
4136 /* Wait until all the ramblocks' dirty bitmap synced */
4137 while (ramblock_count--) {
4138 qemu_sem_wait(&s->rp_state.rp_sem);
4139 }
4140
4141 trace_ram_dirty_bitmap_sync_complete();
4142
4143 return 0;
4144 }
4145
4146 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4147 {
4148 qemu_sem_post(&s->rp_state.rp_sem);
4149 }
4150
4151 /*
4152 * Read the received bitmap, revert it as the initial dirty bitmap.
4153 * This is only used when the postcopy migration is paused but wants
4154 * to resume from a middle point.
4155 */
4156 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4157 {
4158 int ret = -EINVAL;
4159 /* from_dst_file is always valid because we're within rp_thread */
4160 QEMUFile *file = s->rp_state.from_dst_file;
4161 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4162 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4163 uint64_t size, end_mark;
4164
4165 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4166
4167 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4168 error_report("%s: incorrect state %s", __func__,
4169 MigrationStatus_str(s->state));
4170 return -EINVAL;
4171 }
4172
4173 /*
4174 * Note: see comments in ramblock_recv_bitmap_send() on why we
4175 * need the endianness conversion, and the paddings.
4176 */
4177 local_size = ROUND_UP(local_size, 8);
4178
4179 /* Add paddings */
4180 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4181
4182 size = qemu_get_be64(file);
4183
4184 /* The size of the bitmap should match with our ramblock */
4185 if (size != local_size) {
4186 error_report("%s: ramblock '%s' bitmap size mismatch "
4187 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4188 block->idstr, size, local_size);
4189 ret = -EINVAL;
4190 goto out;
4191 }
4192
4193 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4194 end_mark = qemu_get_be64(file);
4195
4196 ret = qemu_file_get_error(file);
4197 if (ret || size != local_size) {
4198 error_report("%s: read bitmap failed for ramblock '%s': %d"
4199 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4200 __func__, block->idstr, ret, local_size, size);
4201 ret = -EIO;
4202 goto out;
4203 }
4204
4205 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4206 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4207 __func__, block->idstr, end_mark);
4208 ret = -EINVAL;
4209 goto out;
4210 }
4211
4212 /*
4213 * Endianness conversion. We are during postcopy (though paused).
4214 * The dirty bitmap won't change. We can directly modify it.
4215 */
4216 bitmap_from_le(block->bmap, le_bitmap, nbits);
4217
4218 /*
4219 * What we received is "received bitmap". Revert it as the initial
4220 * dirty bitmap for this ramblock.
4221 */
4222 bitmap_complement(block->bmap, block->bmap, nbits);
4223
4224 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4225 ramblock_dirty_bitmap_clear_discarded_pages(block);
4226
4227 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4228 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4229
4230 /*
4231 * We succeeded to sync bitmap for current ramblock. If this is
4232 * the last one to sync, we need to notify the main send thread.
4233 */
4234 ram_dirty_bitmap_reload_notify(s);
4235
4236 ret = 0;
4237 out:
4238 g_free(le_bitmap);
4239 return ret;
4240 }
4241
4242 static int ram_resume_prepare(MigrationState *s, void *opaque)
4243 {
4244 RAMState *rs = *(RAMState **)opaque;
4245 int ret;
4246
4247 ret = ram_dirty_bitmap_sync_all(s, rs);
4248 if (ret) {
4249 return ret;
4250 }
4251
4252 ram_state_resume_prepare(rs, s->to_dst_file);
4253
4254 return 0;
4255 }
4256
4257 static SaveVMHandlers savevm_ram_handlers = {
4258 .save_setup = ram_save_setup,
4259 .save_live_iterate = ram_save_iterate,
4260 .save_live_complete_postcopy = ram_save_complete,
4261 .save_live_complete_precopy = ram_save_complete,
4262 .has_postcopy = ram_has_postcopy,
4263 .save_live_pending = ram_save_pending,
4264 .load_state = ram_load,
4265 .save_cleanup = ram_save_cleanup,
4266 .load_setup = ram_load_setup,
4267 .load_cleanup = ram_load_cleanup,
4268 .resume_prepare = ram_resume_prepare,
4269 };
4270
4271 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4272 size_t old_size, size_t new_size)
4273 {
4274 PostcopyState ps = postcopy_state_get();
4275 ram_addr_t offset;
4276 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4277 Error *err = NULL;
4278
4279 if (ramblock_is_ignored(rb)) {
4280 return;
4281 }
4282
4283 if (!migration_is_idle()) {
4284 /*
4285 * Precopy code on the source cannot deal with the size of RAM blocks
4286 * changing at random points in time - especially after sending the
4287 * RAM block sizes in the migration stream, they must no longer change.
4288 * Abort and indicate a proper reason.
4289 */
4290 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4291 migration_cancel(err);
4292 error_free(err);
4293 }
4294
4295 switch (ps) {
4296 case POSTCOPY_INCOMING_ADVISE:
4297 /*
4298 * Update what ram_postcopy_incoming_init()->init_range() does at the
4299 * time postcopy was advised. Syncing RAM blocks with the source will
4300 * result in RAM resizes.
4301 */
4302 if (old_size < new_size) {
4303 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4304 error_report("RAM block '%s' discard of resized RAM failed",
4305 rb->idstr);
4306 }
4307 }
4308 rb->postcopy_length = new_size;
4309 break;
4310 case POSTCOPY_INCOMING_NONE:
4311 case POSTCOPY_INCOMING_RUNNING:
4312 case POSTCOPY_INCOMING_END:
4313 /*
4314 * Once our guest is running, postcopy does no longer care about
4315 * resizes. When growing, the new memory was not available on the
4316 * source, no handler needed.
4317 */
4318 break;
4319 default:
4320 error_report("RAM block '%s' resized during postcopy state: %d",
4321 rb->idstr, ps);
4322 exit(-1);
4323 }
4324 }
4325
4326 static RAMBlockNotifier ram_mig_ram_notifier = {
4327 .ram_block_resized = ram_mig_ram_block_resized,
4328 };
4329
4330 void ram_mig_init(void)
4331 {
4332 qemu_mutex_init(&XBZRLE.lock);
4333 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4334 ram_block_notifier_add(&ram_mig_ram_notifier);
4335 }