]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
Merge tag 'hw-misc-20231020' of https://github.com/philmd/qemu into staging
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72
73 /***********************************************************/
74 /* ram save/restore */
75
76 /*
77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78 * worked for pages that were filled with the same char. We switched
79 * it to only search for the zero value. And to avoid confusion with
80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81 */
82 /*
83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84 */
85 #define RAM_SAVE_FLAG_FULL 0x01
86 #define RAM_SAVE_FLAG_ZERO 0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE 0x08
89 #define RAM_SAVE_FLAG_EOS 0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE 0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
95 /* We can't use any flag that is bigger than 0x200 */
96
97 XBZRLECacheStats xbzrle_counters;
98
99 /* used by the search for pages to send */
100 struct PageSearchStatus {
101 /* The migration channel used for a specific host page */
102 QEMUFile *pss_channel;
103 /* Last block from where we have sent data */
104 RAMBlock *last_sent_block;
105 /* Current block being searched */
106 RAMBlock *block;
107 /* Current page to search from */
108 unsigned long page;
109 /* Set once we wrap around */
110 bool complete_round;
111 /* Whether we're sending a host page */
112 bool host_page_sending;
113 /* The start/end of current host page. Invalid if host_page_sending==false */
114 unsigned long host_page_start;
115 unsigned long host_page_end;
116 };
117 typedef struct PageSearchStatus PageSearchStatus;
118
119 /* struct contains XBZRLE cache and a static page
120 used by the compression */
121 static struct {
122 /* buffer used for XBZRLE encoding */
123 uint8_t *encoded_buf;
124 /* buffer for storing page content */
125 uint8_t *current_buf;
126 /* Cache for XBZRLE, Protected by lock. */
127 PageCache *cache;
128 QemuMutex lock;
129 /* it will store a page full of zeros */
130 uint8_t *zero_target_page;
131 /* buffer used for XBZRLE decoding */
132 uint8_t *decoded_buf;
133 } XBZRLE;
134
135 static void XBZRLE_cache_lock(void)
136 {
137 if (migrate_xbzrle()) {
138 qemu_mutex_lock(&XBZRLE.lock);
139 }
140 }
141
142 static void XBZRLE_cache_unlock(void)
143 {
144 if (migrate_xbzrle()) {
145 qemu_mutex_unlock(&XBZRLE.lock);
146 }
147 }
148
149 /**
150 * xbzrle_cache_resize: resize the xbzrle cache
151 *
152 * This function is called from migrate_params_apply in main
153 * thread, possibly while a migration is in progress. A running
154 * migration may be using the cache and might finish during this call,
155 * hence changes to the cache are protected by XBZRLE.lock().
156 *
157 * Returns 0 for success or -1 for error
158 *
159 * @new_size: new cache size
160 * @errp: set *errp if the check failed, with reason
161 */
162 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
163 {
164 PageCache *new_cache;
165 int64_t ret = 0;
166
167 /* Check for truncation */
168 if (new_size != (size_t)new_size) {
169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
170 "exceeding address space");
171 return -1;
172 }
173
174 if (new_size == migrate_xbzrle_cache_size()) {
175 /* nothing to do */
176 return 0;
177 }
178
179 XBZRLE_cache_lock();
180
181 if (XBZRLE.cache != NULL) {
182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
183 if (!new_cache) {
184 ret = -1;
185 goto out;
186 }
187
188 cache_fini(XBZRLE.cache);
189 XBZRLE.cache = new_cache;
190 }
191 out:
192 XBZRLE_cache_unlock();
193 return ret;
194 }
195
196 static bool postcopy_preempt_active(void)
197 {
198 return migrate_postcopy_preempt() && migration_in_postcopy();
199 }
200
201 bool migrate_ram_is_ignored(RAMBlock *block)
202 {
203 return !qemu_ram_is_migratable(block) ||
204 (migrate_ignore_shared() && qemu_ram_is_shared(block)
205 && qemu_ram_is_named_file(block));
206 }
207
208 #undef RAMBLOCK_FOREACH
209
210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
211 {
212 RAMBlock *block;
213 int ret = 0;
214
215 RCU_READ_LOCK_GUARD();
216
217 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
218 ret = func(block, opaque);
219 if (ret) {
220 break;
221 }
222 }
223 return ret;
224 }
225
226 static void ramblock_recv_map_init(void)
227 {
228 RAMBlock *rb;
229
230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
231 assert(!rb->receivedmap);
232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
233 }
234 }
235
236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
237 {
238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
239 rb->receivedmap);
240 }
241
242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
243 {
244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
245 }
246
247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
248 {
249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
250 }
251
252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
253 size_t nr)
254 {
255 bitmap_set_atomic(rb->receivedmap,
256 ramblock_recv_bitmap_offset(host_addr, rb),
257 nr);
258 }
259
260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
261
262 /*
263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264 *
265 * Returns >0 if success with sent bytes, or <0 if error.
266 */
267 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
268 const char *block_name)
269 {
270 RAMBlock *block = qemu_ram_block_by_name(block_name);
271 unsigned long *le_bitmap, nbits;
272 uint64_t size;
273
274 if (!block) {
275 error_report("%s: invalid block name: %s", __func__, block_name);
276 return -1;
277 }
278
279 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
280
281 /*
282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
283 * machines we may need 4 more bytes for padding (see below
284 * comment). So extend it a bit before hand.
285 */
286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
287
288 /*
289 * Always use little endian when sending the bitmap. This is
290 * required that when source and destination VMs are not using the
291 * same endianness. (Note: big endian won't work.)
292 */
293 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
294
295 /* Size of the bitmap, in bytes */
296 size = DIV_ROUND_UP(nbits, 8);
297
298 /*
299 * size is always aligned to 8 bytes for 64bit machines, but it
300 * may not be true for 32bit machines. We need this padding to
301 * make sure the migration can survive even between 32bit and
302 * 64bit machines.
303 */
304 size = ROUND_UP(size, 8);
305
306 qemu_put_be64(file, size);
307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
308 /*
309 * Mark as an end, in case the middle part is screwed up due to
310 * some "mysterious" reason.
311 */
312 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
313 qemu_fflush(file);
314
315 g_free(le_bitmap);
316
317 if (qemu_file_get_error(file)) {
318 return qemu_file_get_error(file);
319 }
320
321 return size + sizeof(size);
322 }
323
324 /*
325 * An outstanding page request, on the source, having been received
326 * and queued
327 */
328 struct RAMSrcPageRequest {
329 RAMBlock *rb;
330 hwaddr offset;
331 hwaddr len;
332
333 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
334 };
335
336 /* State of RAM for migration */
337 struct RAMState {
338 /*
339 * PageSearchStatus structures for the channels when send pages.
340 * Protected by the bitmap_mutex.
341 */
342 PageSearchStatus pss[RAM_CHANNEL_MAX];
343 /* UFFD file descriptor, used in 'write-tracking' migration */
344 int uffdio_fd;
345 /* total ram size in bytes */
346 uint64_t ram_bytes_total;
347 /* Last block that we have visited searching for dirty pages */
348 RAMBlock *last_seen_block;
349 /* Last dirty target page we have sent */
350 ram_addr_t last_page;
351 /* last ram version we have seen */
352 uint32_t last_version;
353 /* How many times we have dirty too many pages */
354 int dirty_rate_high_cnt;
355 /* these variables are used for bitmap sync */
356 /* last time we did a full bitmap_sync */
357 int64_t time_last_bitmap_sync;
358 /* bytes transferred at start_time */
359 uint64_t bytes_xfer_prev;
360 /* number of dirty pages since start_time */
361 uint64_t num_dirty_pages_period;
362 /* xbzrle misses since the beginning of the period */
363 uint64_t xbzrle_cache_miss_prev;
364 /* Amount of xbzrle pages since the beginning of the period */
365 uint64_t xbzrle_pages_prev;
366 /* Amount of xbzrle encoded bytes since the beginning of the period */
367 uint64_t xbzrle_bytes_prev;
368 /* Are we really using XBZRLE (e.g., after the first round). */
369 bool xbzrle_started;
370 /* Are we on the last stage of migration */
371 bool last_stage;
372 /* compression statistics since the beginning of the period */
373 /* amount of count that no free thread to compress data */
374 uint64_t compress_thread_busy_prev;
375 /* amount bytes after compression */
376 uint64_t compressed_size_prev;
377 /* amount of compressed pages */
378 uint64_t compress_pages_prev;
379
380 /* total handled target pages at the beginning of period */
381 uint64_t target_page_count_prev;
382 /* total handled target pages since start */
383 uint64_t target_page_count;
384 /* number of dirty bits in the bitmap */
385 uint64_t migration_dirty_pages;
386 /*
387 * Protects:
388 * - dirty/clear bitmap
389 * - migration_dirty_pages
390 * - pss structures
391 */
392 QemuMutex bitmap_mutex;
393 /* The RAMBlock used in the last src_page_requests */
394 RAMBlock *last_req_rb;
395 /* Queue of outstanding page requests from the destination */
396 QemuMutex src_page_req_mutex;
397 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
398
399 /*
400 * This is only used when postcopy is in recovery phase, to communicate
401 * between the migration thread and the return path thread on dirty
402 * bitmap synchronizations. This field is unused in other stages of
403 * RAM migration.
404 */
405 unsigned int postcopy_bmap_sync_requested;
406 };
407 typedef struct RAMState RAMState;
408
409 static RAMState *ram_state;
410
411 static NotifierWithReturnList precopy_notifier_list;
412
413 /* Whether postcopy has queued requests? */
414 static bool postcopy_has_request(RAMState *rs)
415 {
416 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
417 }
418
419 void precopy_infrastructure_init(void)
420 {
421 notifier_with_return_list_init(&precopy_notifier_list);
422 }
423
424 void precopy_add_notifier(NotifierWithReturn *n)
425 {
426 notifier_with_return_list_add(&precopy_notifier_list, n);
427 }
428
429 void precopy_remove_notifier(NotifierWithReturn *n)
430 {
431 notifier_with_return_remove(n);
432 }
433
434 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
435 {
436 PrecopyNotifyData pnd;
437 pnd.reason = reason;
438 pnd.errp = errp;
439
440 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
441 }
442
443 uint64_t ram_bytes_remaining(void)
444 {
445 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
446 0;
447 }
448
449 void ram_transferred_add(uint64_t bytes)
450 {
451 if (runstate_is_running()) {
452 stat64_add(&mig_stats.precopy_bytes, bytes);
453 } else if (migration_in_postcopy()) {
454 stat64_add(&mig_stats.postcopy_bytes, bytes);
455 } else {
456 stat64_add(&mig_stats.downtime_bytes, bytes);
457 }
458 stat64_add(&mig_stats.transferred, bytes);
459 }
460
461 struct MigrationOps {
462 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
463 };
464 typedef struct MigrationOps MigrationOps;
465
466 MigrationOps *migration_ops;
467
468 static int ram_save_host_page_urgent(PageSearchStatus *pss);
469
470 /* NOTE: page is the PFN not real ram_addr_t. */
471 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
472 {
473 pss->block = rb;
474 pss->page = page;
475 pss->complete_round = false;
476 }
477
478 /*
479 * Check whether two PSSs are actively sending the same page. Return true
480 * if it is, false otherwise.
481 */
482 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
483 {
484 return pss1->host_page_sending && pss2->host_page_sending &&
485 (pss1->host_page_start == pss2->host_page_start);
486 }
487
488 /**
489 * save_page_header: write page header to wire
490 *
491 * If this is the 1st block, it also writes the block identification
492 *
493 * Returns the number of bytes written
494 *
495 * @pss: current PSS channel status
496 * @block: block that contains the page we want to send
497 * @offset: offset inside the block for the page
498 * in the lower bits, it contains flags
499 */
500 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
501 RAMBlock *block, ram_addr_t offset)
502 {
503 size_t size, len;
504 bool same_block = (block == pss->last_sent_block);
505
506 if (same_block) {
507 offset |= RAM_SAVE_FLAG_CONTINUE;
508 }
509 qemu_put_be64(f, offset);
510 size = 8;
511
512 if (!same_block) {
513 len = strlen(block->idstr);
514 qemu_put_byte(f, len);
515 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
516 size += 1 + len;
517 pss->last_sent_block = block;
518 }
519 return size;
520 }
521
522 /**
523 * mig_throttle_guest_down: throttle down the guest
524 *
525 * Reduce amount of guest cpu execution to hopefully slow down memory
526 * writes. If guest dirty memory rate is reduced below the rate at
527 * which we can transfer pages to the destination then we should be
528 * able to complete migration. Some workloads dirty memory way too
529 * fast and will not effectively converge, even with auto-converge.
530 */
531 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
532 uint64_t bytes_dirty_threshold)
533 {
534 uint64_t pct_initial = migrate_cpu_throttle_initial();
535 uint64_t pct_increment = migrate_cpu_throttle_increment();
536 bool pct_tailslow = migrate_cpu_throttle_tailslow();
537 int pct_max = migrate_max_cpu_throttle();
538
539 uint64_t throttle_now = cpu_throttle_get_percentage();
540 uint64_t cpu_now, cpu_ideal, throttle_inc;
541
542 /* We have not started throttling yet. Let's start it. */
543 if (!cpu_throttle_active()) {
544 cpu_throttle_set(pct_initial);
545 } else {
546 /* Throttling already on, just increase the rate */
547 if (!pct_tailslow) {
548 throttle_inc = pct_increment;
549 } else {
550 /* Compute the ideal CPU percentage used by Guest, which may
551 * make the dirty rate match the dirty rate threshold. */
552 cpu_now = 100 - throttle_now;
553 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
554 bytes_dirty_period);
555 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
556 }
557 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
558 }
559 }
560
561 void mig_throttle_counter_reset(void)
562 {
563 RAMState *rs = ram_state;
564
565 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
566 rs->num_dirty_pages_period = 0;
567 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
568 }
569
570 /**
571 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
572 *
573 * @current_addr: address for the zero page
574 *
575 * Update the xbzrle cache to reflect a page that's been sent as all 0.
576 * The important thing is that a stale (not-yet-0'd) page be replaced
577 * by the new data.
578 * As a bonus, if the page wasn't in the cache it gets added so that
579 * when a small write is made into the 0'd page it gets XBZRLE sent.
580 */
581 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
582 {
583 /* We don't care if this fails to allocate a new cache page
584 * as long as it updated an old one */
585 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
586 stat64_get(&mig_stats.dirty_sync_count));
587 }
588
589 #define ENCODING_FLAG_XBZRLE 0x1
590
591 /**
592 * save_xbzrle_page: compress and send current page
593 *
594 * Returns: 1 means that we wrote the page
595 * 0 means that page is identical to the one already sent
596 * -1 means that xbzrle would be longer than normal
597 *
598 * @rs: current RAM state
599 * @pss: current PSS channel
600 * @current_data: pointer to the address of the page contents
601 * @current_addr: addr of the page
602 * @block: block that contains the page we want to send
603 * @offset: offset inside the block for the page
604 */
605 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
606 uint8_t **current_data, ram_addr_t current_addr,
607 RAMBlock *block, ram_addr_t offset)
608 {
609 int encoded_len = 0, bytes_xbzrle;
610 uint8_t *prev_cached_page;
611 QEMUFile *file = pss->pss_channel;
612 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
613
614 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
615 xbzrle_counters.cache_miss++;
616 if (!rs->last_stage) {
617 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
618 generation) == -1) {
619 return -1;
620 } else {
621 /* update *current_data when the page has been
622 inserted into cache */
623 *current_data = get_cached_data(XBZRLE.cache, current_addr);
624 }
625 }
626 return -1;
627 }
628
629 /*
630 * Reaching here means the page has hit the xbzrle cache, no matter what
631 * encoding result it is (normal encoding, overflow or skipping the page),
632 * count the page as encoded. This is used to calculate the encoding rate.
633 *
634 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
635 * 2nd page turns out to be skipped (i.e. no new bytes written to the
636 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
637 * skipped page included. In this way, the encoding rate can tell if the
638 * guest page is good for xbzrle encoding.
639 */
640 xbzrle_counters.pages++;
641 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
642
643 /* save current buffer into memory */
644 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
645
646 /* XBZRLE encoding (if there is no overflow) */
647 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
648 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
649 TARGET_PAGE_SIZE);
650
651 /*
652 * Update the cache contents, so that it corresponds to the data
653 * sent, in all cases except where we skip the page.
654 */
655 if (!rs->last_stage && encoded_len != 0) {
656 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
657 /*
658 * In the case where we couldn't compress, ensure that the caller
659 * sends the data from the cache, since the guest might have
660 * changed the RAM since we copied it.
661 */
662 *current_data = prev_cached_page;
663 }
664
665 if (encoded_len == 0) {
666 trace_save_xbzrle_page_skipping();
667 return 0;
668 } else if (encoded_len == -1) {
669 trace_save_xbzrle_page_overflow();
670 xbzrle_counters.overflow++;
671 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
672 return -1;
673 }
674
675 /* Send XBZRLE based compressed page */
676 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
677 offset | RAM_SAVE_FLAG_XBZRLE);
678 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
679 qemu_put_be16(file, encoded_len);
680 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
681 bytes_xbzrle += encoded_len + 1 + 2;
682 /*
683 * Like compressed_size (please see update_compress_thread_counts),
684 * the xbzrle encoded bytes don't count the 8 byte header with
685 * RAM_SAVE_FLAG_CONTINUE.
686 */
687 xbzrle_counters.bytes += bytes_xbzrle - 8;
688 ram_transferred_add(bytes_xbzrle);
689
690 return 1;
691 }
692
693 /**
694 * pss_find_next_dirty: find the next dirty page of current ramblock
695 *
696 * This function updates pss->page to point to the next dirty page index
697 * within the ramblock to migrate, or the end of ramblock when nothing
698 * found. Note that when pss->host_page_sending==true it means we're
699 * during sending a host page, so we won't look for dirty page that is
700 * outside the host page boundary.
701 *
702 * @pss: the current page search status
703 */
704 static void pss_find_next_dirty(PageSearchStatus *pss)
705 {
706 RAMBlock *rb = pss->block;
707 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
708 unsigned long *bitmap = rb->bmap;
709
710 if (migrate_ram_is_ignored(rb)) {
711 /* Points directly to the end, so we know no dirty page */
712 pss->page = size;
713 return;
714 }
715
716 /*
717 * If during sending a host page, only look for dirty pages within the
718 * current host page being send.
719 */
720 if (pss->host_page_sending) {
721 assert(pss->host_page_end);
722 size = MIN(size, pss->host_page_end);
723 }
724
725 pss->page = find_next_bit(bitmap, size, pss->page);
726 }
727
728 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
729 unsigned long page)
730 {
731 uint8_t shift;
732 hwaddr size, start;
733
734 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
735 return;
736 }
737
738 shift = rb->clear_bmap_shift;
739 /*
740 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
741 * can make things easier sometimes since then start address
742 * of the small chunk will always be 64 pages aligned so the
743 * bitmap will always be aligned to unsigned long. We should
744 * even be able to remove this restriction but I'm simply
745 * keeping it.
746 */
747 assert(shift >= 6);
748
749 size = 1ULL << (TARGET_PAGE_BITS + shift);
750 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
751 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
752 memory_region_clear_dirty_bitmap(rb->mr, start, size);
753 }
754
755 static void
756 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
757 unsigned long start,
758 unsigned long npages)
759 {
760 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
761 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
762 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
763
764 /*
765 * Clear pages from start to start + npages - 1, so the end boundary is
766 * exclusive.
767 */
768 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
769 migration_clear_memory_region_dirty_bitmap(rb, i);
770 }
771 }
772
773 /*
774 * colo_bitmap_find_diry:find contiguous dirty pages from start
775 *
776 * Returns the page offset within memory region of the start of the contiguout
777 * dirty page
778 *
779 * @rs: current RAM state
780 * @rb: RAMBlock where to search for dirty pages
781 * @start: page where we start the search
782 * @num: the number of contiguous dirty pages
783 */
784 static inline
785 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
786 unsigned long start, unsigned long *num)
787 {
788 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
789 unsigned long *bitmap = rb->bmap;
790 unsigned long first, next;
791
792 *num = 0;
793
794 if (migrate_ram_is_ignored(rb)) {
795 return size;
796 }
797
798 first = find_next_bit(bitmap, size, start);
799 if (first >= size) {
800 return first;
801 }
802 next = find_next_zero_bit(bitmap, size, first + 1);
803 assert(next >= first);
804 *num = next - first;
805 return first;
806 }
807
808 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
809 RAMBlock *rb,
810 unsigned long page)
811 {
812 bool ret;
813
814 /*
815 * Clear dirty bitmap if needed. This _must_ be called before we
816 * send any of the page in the chunk because we need to make sure
817 * we can capture further page content changes when we sync dirty
818 * log the next time. So as long as we are going to send any of
819 * the page in the chunk we clear the remote dirty bitmap for all.
820 * Clearing it earlier won't be a problem, but too late will.
821 */
822 migration_clear_memory_region_dirty_bitmap(rb, page);
823
824 ret = test_and_clear_bit(page, rb->bmap);
825 if (ret) {
826 rs->migration_dirty_pages--;
827 }
828
829 return ret;
830 }
831
832 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
833 void *opaque)
834 {
835 const hwaddr offset = section->offset_within_region;
836 const hwaddr size = int128_get64(section->size);
837 const unsigned long start = offset >> TARGET_PAGE_BITS;
838 const unsigned long npages = size >> TARGET_PAGE_BITS;
839 RAMBlock *rb = section->mr->ram_block;
840 uint64_t *cleared_bits = opaque;
841
842 /*
843 * We don't grab ram_state->bitmap_mutex because we expect to run
844 * only when starting migration or during postcopy recovery where
845 * we don't have concurrent access.
846 */
847 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
848 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
849 }
850 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
851 bitmap_clear(rb->bmap, start, npages);
852 }
853
854 /*
855 * Exclude all dirty pages from migration that fall into a discarded range as
856 * managed by a RamDiscardManager responsible for the mapped memory region of
857 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
858 *
859 * Discarded pages ("logically unplugged") have undefined content and must
860 * not get migrated, because even reading these pages for migration might
861 * result in undesired behavior.
862 *
863 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
864 *
865 * Note: The result is only stable while migrating (precopy/postcopy).
866 */
867 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
868 {
869 uint64_t cleared_bits = 0;
870
871 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
872 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
873 MemoryRegionSection section = {
874 .mr = rb->mr,
875 .offset_within_region = 0,
876 .size = int128_make64(qemu_ram_get_used_length(rb)),
877 };
878
879 ram_discard_manager_replay_discarded(rdm, &section,
880 dirty_bitmap_clear_section,
881 &cleared_bits);
882 }
883 return cleared_bits;
884 }
885
886 /*
887 * Check if a host-page aligned page falls into a discarded range as managed by
888 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
889 *
890 * Note: The result is only stable while migrating (precopy/postcopy).
891 */
892 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
893 {
894 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
895 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
896 MemoryRegionSection section = {
897 .mr = rb->mr,
898 .offset_within_region = start,
899 .size = int128_make64(qemu_ram_pagesize(rb)),
900 };
901
902 return !ram_discard_manager_is_populated(rdm, &section);
903 }
904 return false;
905 }
906
907 /* Called with RCU critical section */
908 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
909 {
910 uint64_t new_dirty_pages =
911 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
912
913 rs->migration_dirty_pages += new_dirty_pages;
914 rs->num_dirty_pages_period += new_dirty_pages;
915 }
916
917 /**
918 * ram_pagesize_summary: calculate all the pagesizes of a VM
919 *
920 * Returns a summary bitmap of the page sizes of all RAMBlocks
921 *
922 * For VMs with just normal pages this is equivalent to the host page
923 * size. If it's got some huge pages then it's the OR of all the
924 * different page sizes.
925 */
926 uint64_t ram_pagesize_summary(void)
927 {
928 RAMBlock *block;
929 uint64_t summary = 0;
930
931 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
932 summary |= block->page_size;
933 }
934
935 return summary;
936 }
937
938 uint64_t ram_get_total_transferred_pages(void)
939 {
940 return stat64_get(&mig_stats.normal_pages) +
941 stat64_get(&mig_stats.zero_pages) +
942 ram_compressed_pages() + xbzrle_counters.pages;
943 }
944
945 static void migration_update_rates(RAMState *rs, int64_t end_time)
946 {
947 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
948 double compressed_size;
949
950 /* calculate period counters */
951 stat64_set(&mig_stats.dirty_pages_rate,
952 rs->num_dirty_pages_period * 1000 /
953 (end_time - rs->time_last_bitmap_sync));
954
955 if (!page_count) {
956 return;
957 }
958
959 if (migrate_xbzrle()) {
960 double encoded_size, unencoded_size;
961
962 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
963 rs->xbzrle_cache_miss_prev) / page_count;
964 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
965 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
966 TARGET_PAGE_SIZE;
967 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
968 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
969 xbzrle_counters.encoding_rate = 0;
970 } else {
971 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
972 }
973 rs->xbzrle_pages_prev = xbzrle_counters.pages;
974 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
975 }
976
977 if (migrate_compress()) {
978 compression_counters.busy_rate = (double)(compression_counters.busy -
979 rs->compress_thread_busy_prev) / page_count;
980 rs->compress_thread_busy_prev = compression_counters.busy;
981
982 compressed_size = compression_counters.compressed_size -
983 rs->compressed_size_prev;
984 if (compressed_size) {
985 double uncompressed_size = (compression_counters.pages -
986 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
987
988 /* Compression-Ratio = Uncompressed-size / Compressed-size */
989 compression_counters.compression_rate =
990 uncompressed_size / compressed_size;
991
992 rs->compress_pages_prev = compression_counters.pages;
993 rs->compressed_size_prev = compression_counters.compressed_size;
994 }
995 }
996 }
997
998 /*
999 * Enable dirty-limit to throttle down the guest
1000 */
1001 static void migration_dirty_limit_guest(void)
1002 {
1003 /*
1004 * dirty page rate quota for all vCPUs fetched from
1005 * migration parameter 'vcpu_dirty_limit'
1006 */
1007 static int64_t quota_dirtyrate;
1008 MigrationState *s = migrate_get_current();
1009
1010 /*
1011 * If dirty limit already enabled and migration parameter
1012 * vcpu-dirty-limit untouched.
1013 */
1014 if (dirtylimit_in_service() &&
1015 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1016 return;
1017 }
1018
1019 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1020
1021 /*
1022 * Set all vCPU a quota dirtyrate, note that the second
1023 * parameter will be ignored if setting all vCPU for the vm
1024 */
1025 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1026 trace_migration_dirty_limit_guest(quota_dirtyrate);
1027 }
1028
1029 static void migration_trigger_throttle(RAMState *rs)
1030 {
1031 uint64_t threshold = migrate_throttle_trigger_threshold();
1032 uint64_t bytes_xfer_period =
1033 stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev;
1034 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1035 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1036
1037 /* During block migration the auto-converge logic incorrectly detects
1038 * that ram migration makes no progress. Avoid this by disabling the
1039 * throttling logic during the bulk phase of block migration. */
1040 if (blk_mig_bulk_active()) {
1041 return;
1042 }
1043
1044 /*
1045 * The following detection logic can be refined later. For now:
1046 * Check to see if the ratio between dirtied bytes and the approx.
1047 * amount of bytes that just got transferred since the last time
1048 * we were in this routine reaches the threshold. If that happens
1049 * twice, start or increase throttling.
1050 */
1051 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1052 (++rs->dirty_rate_high_cnt >= 2)) {
1053 rs->dirty_rate_high_cnt = 0;
1054 if (migrate_auto_converge()) {
1055 trace_migration_throttle();
1056 mig_throttle_guest_down(bytes_dirty_period,
1057 bytes_dirty_threshold);
1058 } else if (migrate_dirty_limit()) {
1059 migration_dirty_limit_guest();
1060 }
1061 }
1062 }
1063
1064 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1065 {
1066 RAMBlock *block;
1067 int64_t end_time;
1068
1069 stat64_add(&mig_stats.dirty_sync_count, 1);
1070
1071 if (!rs->time_last_bitmap_sync) {
1072 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1073 }
1074
1075 trace_migration_bitmap_sync_start();
1076 memory_global_dirty_log_sync(last_stage);
1077
1078 qemu_mutex_lock(&rs->bitmap_mutex);
1079 WITH_RCU_READ_LOCK_GUARD() {
1080 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1081 ramblock_sync_dirty_bitmap(rs, block);
1082 }
1083 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1084 }
1085 qemu_mutex_unlock(&rs->bitmap_mutex);
1086
1087 memory_global_after_dirty_log_sync();
1088 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1089
1090 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1091
1092 /* more than 1 second = 1000 millisecons */
1093 if (end_time > rs->time_last_bitmap_sync + 1000) {
1094 migration_trigger_throttle(rs);
1095
1096 migration_update_rates(rs, end_time);
1097
1098 rs->target_page_count_prev = rs->target_page_count;
1099
1100 /* reset period counters */
1101 rs->time_last_bitmap_sync = end_time;
1102 rs->num_dirty_pages_period = 0;
1103 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
1104 }
1105 if (migrate_events()) {
1106 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1107 qapi_event_send_migration_pass(generation);
1108 }
1109 }
1110
1111 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1112 {
1113 Error *local_err = NULL;
1114
1115 /*
1116 * The current notifier usage is just an optimization to migration, so we
1117 * don't stop the normal migration process in the error case.
1118 */
1119 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1120 error_report_err(local_err);
1121 local_err = NULL;
1122 }
1123
1124 migration_bitmap_sync(rs, last_stage);
1125
1126 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1127 error_report_err(local_err);
1128 }
1129 }
1130
1131 void ram_release_page(const char *rbname, uint64_t offset)
1132 {
1133 if (!migrate_release_ram() || !migration_in_postcopy()) {
1134 return;
1135 }
1136
1137 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1138 }
1139
1140 /**
1141 * save_zero_page: send the zero page to the stream
1142 *
1143 * Returns the number of pages written.
1144 *
1145 * @rs: current RAM state
1146 * @pss: current PSS channel
1147 * @offset: offset inside the block for the page
1148 */
1149 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1150 ram_addr_t offset)
1151 {
1152 uint8_t *p = pss->block->host + offset;
1153 QEMUFile *file = pss->pss_channel;
1154 int len = 0;
1155
1156 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1157 return 0;
1158 }
1159
1160 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1161 qemu_put_byte(file, 0);
1162 len += 1;
1163 ram_release_page(pss->block->idstr, offset);
1164
1165 stat64_add(&mig_stats.zero_pages, 1);
1166 ram_transferred_add(len);
1167
1168 /*
1169 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1170 * page would be stale.
1171 */
1172 if (rs->xbzrle_started) {
1173 XBZRLE_cache_lock();
1174 xbzrle_cache_zero_page(pss->block->offset + offset);
1175 XBZRLE_cache_unlock();
1176 }
1177
1178 return len;
1179 }
1180
1181 /*
1182 * @pages: the number of pages written by the control path,
1183 * < 0 - error
1184 * > 0 - number of pages written
1185 *
1186 * Return true if the pages has been saved, otherwise false is returned.
1187 */
1188 static bool control_save_page(PageSearchStatus *pss,
1189 ram_addr_t offset, int *pages)
1190 {
1191 int ret;
1192
1193 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1194 TARGET_PAGE_SIZE);
1195 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1196 return false;
1197 }
1198
1199 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1200 *pages = 1;
1201 return true;
1202 }
1203 *pages = ret;
1204 return true;
1205 }
1206
1207 /*
1208 * directly send the page to the stream
1209 *
1210 * Returns the number of pages written.
1211 *
1212 * @pss: current PSS channel
1213 * @block: block that contains the page we want to send
1214 * @offset: offset inside the block for the page
1215 * @buf: the page to be sent
1216 * @async: send to page asyncly
1217 */
1218 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1219 ram_addr_t offset, uint8_t *buf, bool async)
1220 {
1221 QEMUFile *file = pss->pss_channel;
1222
1223 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1224 offset | RAM_SAVE_FLAG_PAGE));
1225 if (async) {
1226 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1227 migrate_release_ram() &&
1228 migration_in_postcopy());
1229 } else {
1230 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1231 }
1232 ram_transferred_add(TARGET_PAGE_SIZE);
1233 stat64_add(&mig_stats.normal_pages, 1);
1234 return 1;
1235 }
1236
1237 /**
1238 * ram_save_page: send the given page to the stream
1239 *
1240 * Returns the number of pages written.
1241 * < 0 - error
1242 * >=0 - Number of pages written - this might legally be 0
1243 * if xbzrle noticed the page was the same.
1244 *
1245 * @rs: current RAM state
1246 * @block: block that contains the page we want to send
1247 * @offset: offset inside the block for the page
1248 */
1249 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1250 {
1251 int pages = -1;
1252 uint8_t *p;
1253 bool send_async = true;
1254 RAMBlock *block = pss->block;
1255 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1256 ram_addr_t current_addr = block->offset + offset;
1257
1258 p = block->host + offset;
1259 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1260
1261 XBZRLE_cache_lock();
1262 if (rs->xbzrle_started && !migration_in_postcopy()) {
1263 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1264 block, offset);
1265 if (!rs->last_stage) {
1266 /* Can't send this cached data async, since the cache page
1267 * might get updated before it gets to the wire
1268 */
1269 send_async = false;
1270 }
1271 }
1272
1273 /* XBZRLE overflow or normal page */
1274 if (pages == -1) {
1275 pages = save_normal_page(pss, block, offset, p, send_async);
1276 }
1277
1278 XBZRLE_cache_unlock();
1279
1280 return pages;
1281 }
1282
1283 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1284 ram_addr_t offset)
1285 {
1286 if (multifd_queue_page(file, block, offset) < 0) {
1287 return -1;
1288 }
1289 stat64_add(&mig_stats.normal_pages, 1);
1290
1291 return 1;
1292 }
1293
1294 static bool save_page_use_compression(RAMState *rs);
1295
1296 static int send_queued_data(CompressParam *param)
1297 {
1298 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1299 MigrationState *ms = migrate_get_current();
1300 QEMUFile *file = ms->to_dst_file;
1301 int len = 0;
1302
1303 RAMBlock *block = param->block;
1304 ram_addr_t offset = param->offset;
1305
1306 if (param->result == RES_NONE) {
1307 return 0;
1308 }
1309
1310 assert(block == pss->last_sent_block);
1311
1312 if (param->result == RES_ZEROPAGE) {
1313 assert(qemu_file_buffer_empty(param->file));
1314 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1315 qemu_put_byte(file, 0);
1316 len += 1;
1317 ram_release_page(block->idstr, offset);
1318 } else if (param->result == RES_COMPRESS) {
1319 assert(!qemu_file_buffer_empty(param->file));
1320 len += save_page_header(pss, file, block,
1321 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1322 len += qemu_put_qemu_file(file, param->file);
1323 } else {
1324 abort();
1325 }
1326
1327 update_compress_thread_counts(param, len);
1328
1329 return len;
1330 }
1331
1332 static void ram_flush_compressed_data(RAMState *rs)
1333 {
1334 if (!save_page_use_compression(rs)) {
1335 return;
1336 }
1337
1338 flush_compressed_data(send_queued_data);
1339 }
1340
1341 #define PAGE_ALL_CLEAN 0
1342 #define PAGE_TRY_AGAIN 1
1343 #define PAGE_DIRTY_FOUND 2
1344 /**
1345 * find_dirty_block: find the next dirty page and update any state
1346 * associated with the search process.
1347 *
1348 * Returns:
1349 * <0: An error happened
1350 * PAGE_ALL_CLEAN: no dirty page found, give up
1351 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1352 * PAGE_DIRTY_FOUND: dirty page found
1353 *
1354 * @rs: current RAM state
1355 * @pss: data about the state of the current dirty page scan
1356 * @again: set to false if the search has scanned the whole of RAM
1357 */
1358 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1359 {
1360 /* Update pss->page for the next dirty bit in ramblock */
1361 pss_find_next_dirty(pss);
1362
1363 if (pss->complete_round && pss->block == rs->last_seen_block &&
1364 pss->page >= rs->last_page) {
1365 /*
1366 * We've been once around the RAM and haven't found anything.
1367 * Give up.
1368 */
1369 return PAGE_ALL_CLEAN;
1370 }
1371 if (!offset_in_ramblock(pss->block,
1372 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1373 /* Didn't find anything in this RAM Block */
1374 pss->page = 0;
1375 pss->block = QLIST_NEXT_RCU(pss->block, next);
1376 if (!pss->block) {
1377 if (migrate_multifd() &&
1378 !migrate_multifd_flush_after_each_section()) {
1379 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1380 int ret = multifd_send_sync_main(f);
1381 if (ret < 0) {
1382 return ret;
1383 }
1384 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1385 qemu_fflush(f);
1386 }
1387 /*
1388 * If memory migration starts over, we will meet a dirtied page
1389 * which may still exists in compression threads's ring, so we
1390 * should flush the compressed data to make sure the new page
1391 * is not overwritten by the old one in the destination.
1392 *
1393 * Also If xbzrle is on, stop using the data compression at this
1394 * point. In theory, xbzrle can do better than compression.
1395 */
1396 ram_flush_compressed_data(rs);
1397
1398 /* Hit the end of the list */
1399 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1400 /* Flag that we've looped */
1401 pss->complete_round = true;
1402 /* After the first round, enable XBZRLE. */
1403 if (migrate_xbzrle()) {
1404 rs->xbzrle_started = true;
1405 }
1406 }
1407 /* Didn't find anything this time, but try again on the new block */
1408 return PAGE_TRY_AGAIN;
1409 } else {
1410 /* We've found something */
1411 return PAGE_DIRTY_FOUND;
1412 }
1413 }
1414
1415 /**
1416 * unqueue_page: gets a page of the queue
1417 *
1418 * Helper for 'get_queued_page' - gets a page off the queue
1419 *
1420 * Returns the block of the page (or NULL if none available)
1421 *
1422 * @rs: current RAM state
1423 * @offset: used to return the offset within the RAMBlock
1424 */
1425 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1426 {
1427 struct RAMSrcPageRequest *entry;
1428 RAMBlock *block = NULL;
1429
1430 if (!postcopy_has_request(rs)) {
1431 return NULL;
1432 }
1433
1434 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1435
1436 /*
1437 * This should _never_ change even after we take the lock, because no one
1438 * should be taking anything off the request list other than us.
1439 */
1440 assert(postcopy_has_request(rs));
1441
1442 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1443 block = entry->rb;
1444 *offset = entry->offset;
1445
1446 if (entry->len > TARGET_PAGE_SIZE) {
1447 entry->len -= TARGET_PAGE_SIZE;
1448 entry->offset += TARGET_PAGE_SIZE;
1449 } else {
1450 memory_region_unref(block->mr);
1451 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1452 g_free(entry);
1453 migration_consume_urgent_request();
1454 }
1455
1456 return block;
1457 }
1458
1459 #if defined(__linux__)
1460 /**
1461 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1462 * is found, return RAM block pointer and page offset
1463 *
1464 * Returns pointer to the RAMBlock containing faulting page,
1465 * NULL if no write faults are pending
1466 *
1467 * @rs: current RAM state
1468 * @offset: page offset from the beginning of the block
1469 */
1470 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1471 {
1472 struct uffd_msg uffd_msg;
1473 void *page_address;
1474 RAMBlock *block;
1475 int res;
1476
1477 if (!migrate_background_snapshot()) {
1478 return NULL;
1479 }
1480
1481 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1482 if (res <= 0) {
1483 return NULL;
1484 }
1485
1486 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1487 block = qemu_ram_block_from_host(page_address, false, offset);
1488 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1489 return block;
1490 }
1491
1492 /**
1493 * ram_save_release_protection: release UFFD write protection after
1494 * a range of pages has been saved
1495 *
1496 * @rs: current RAM state
1497 * @pss: page-search-status structure
1498 * @start_page: index of the first page in the range relative to pss->block
1499 *
1500 * Returns 0 on success, negative value in case of an error
1501 */
1502 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1503 unsigned long start_page)
1504 {
1505 int res = 0;
1506
1507 /* Check if page is from UFFD-managed region. */
1508 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1509 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1510 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1511
1512 /* Flush async buffers before un-protect. */
1513 qemu_fflush(pss->pss_channel);
1514 /* Un-protect memory range. */
1515 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1516 false, false);
1517 }
1518
1519 return res;
1520 }
1521
1522 /* ram_write_tracking_available: check if kernel supports required UFFD features
1523 *
1524 * Returns true if supports, false otherwise
1525 */
1526 bool ram_write_tracking_available(void)
1527 {
1528 uint64_t uffd_features;
1529 int res;
1530
1531 res = uffd_query_features(&uffd_features);
1532 return (res == 0 &&
1533 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1534 }
1535
1536 /* ram_write_tracking_compatible: check if guest configuration is
1537 * compatible with 'write-tracking'
1538 *
1539 * Returns true if compatible, false otherwise
1540 */
1541 bool ram_write_tracking_compatible(void)
1542 {
1543 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1544 int uffd_fd;
1545 RAMBlock *block;
1546 bool ret = false;
1547
1548 /* Open UFFD file descriptor */
1549 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1550 if (uffd_fd < 0) {
1551 return false;
1552 }
1553
1554 RCU_READ_LOCK_GUARD();
1555
1556 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1557 uint64_t uffd_ioctls;
1558
1559 /* Nothing to do with read-only and MMIO-writable regions */
1560 if (block->mr->readonly || block->mr->rom_device) {
1561 continue;
1562 }
1563 /* Try to register block memory via UFFD-IO to track writes */
1564 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1565 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1566 goto out;
1567 }
1568 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1569 goto out;
1570 }
1571 }
1572 ret = true;
1573
1574 out:
1575 uffd_close_fd(uffd_fd);
1576 return ret;
1577 }
1578
1579 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1580 ram_addr_t size)
1581 {
1582 const ram_addr_t end = offset + size;
1583
1584 /*
1585 * We read one byte of each page; this will preallocate page tables if
1586 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1587 * where no page was populated yet. This might require adaption when
1588 * supporting other mappings, like shmem.
1589 */
1590 for (; offset < end; offset += block->page_size) {
1591 char tmp = *((char *)block->host + offset);
1592
1593 /* Don't optimize the read out */
1594 asm volatile("" : "+r" (tmp));
1595 }
1596 }
1597
1598 static inline int populate_read_section(MemoryRegionSection *section,
1599 void *opaque)
1600 {
1601 const hwaddr size = int128_get64(section->size);
1602 hwaddr offset = section->offset_within_region;
1603 RAMBlock *block = section->mr->ram_block;
1604
1605 populate_read_range(block, offset, size);
1606 return 0;
1607 }
1608
1609 /*
1610 * ram_block_populate_read: preallocate page tables and populate pages in the
1611 * RAM block by reading a byte of each page.
1612 *
1613 * Since it's solely used for userfault_fd WP feature, here we just
1614 * hardcode page size to qemu_real_host_page_size.
1615 *
1616 * @block: RAM block to populate
1617 */
1618 static void ram_block_populate_read(RAMBlock *rb)
1619 {
1620 /*
1621 * Skip populating all pages that fall into a discarded range as managed by
1622 * a RamDiscardManager responsible for the mapped memory region of the
1623 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1624 * must not get populated automatically. We don't have to track
1625 * modifications via userfaultfd WP reliably, because these pages will
1626 * not be part of the migration stream either way -- see
1627 * ramblock_dirty_bitmap_exclude_discarded_pages().
1628 *
1629 * Note: The result is only stable while migrating (precopy/postcopy).
1630 */
1631 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1632 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1633 MemoryRegionSection section = {
1634 .mr = rb->mr,
1635 .offset_within_region = 0,
1636 .size = rb->mr->size,
1637 };
1638
1639 ram_discard_manager_replay_populated(rdm, &section,
1640 populate_read_section, NULL);
1641 } else {
1642 populate_read_range(rb, 0, rb->used_length);
1643 }
1644 }
1645
1646 /*
1647 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1648 */
1649 void ram_write_tracking_prepare(void)
1650 {
1651 RAMBlock *block;
1652
1653 RCU_READ_LOCK_GUARD();
1654
1655 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1656 /* Nothing to do with read-only and MMIO-writable regions */
1657 if (block->mr->readonly || block->mr->rom_device) {
1658 continue;
1659 }
1660
1661 /*
1662 * Populate pages of the RAM block before enabling userfault_fd
1663 * write protection.
1664 *
1665 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1666 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1667 * pages with pte_none() entries in page table.
1668 */
1669 ram_block_populate_read(block);
1670 }
1671 }
1672
1673 static inline int uffd_protect_section(MemoryRegionSection *section,
1674 void *opaque)
1675 {
1676 const hwaddr size = int128_get64(section->size);
1677 const hwaddr offset = section->offset_within_region;
1678 RAMBlock *rb = section->mr->ram_block;
1679 int uffd_fd = (uintptr_t)opaque;
1680
1681 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1682 false);
1683 }
1684
1685 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1686 {
1687 assert(rb->flags & RAM_UF_WRITEPROTECT);
1688
1689 /* See ram_block_populate_read() */
1690 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1691 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1692 MemoryRegionSection section = {
1693 .mr = rb->mr,
1694 .offset_within_region = 0,
1695 .size = rb->mr->size,
1696 };
1697
1698 return ram_discard_manager_replay_populated(rdm, &section,
1699 uffd_protect_section,
1700 (void *)(uintptr_t)uffd_fd);
1701 }
1702 return uffd_change_protection(uffd_fd, rb->host,
1703 rb->used_length, true, false);
1704 }
1705
1706 /*
1707 * ram_write_tracking_start: start UFFD-WP memory tracking
1708 *
1709 * Returns 0 for success or negative value in case of error
1710 */
1711 int ram_write_tracking_start(void)
1712 {
1713 int uffd_fd;
1714 RAMState *rs = ram_state;
1715 RAMBlock *block;
1716
1717 /* Open UFFD file descriptor */
1718 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1719 if (uffd_fd < 0) {
1720 return uffd_fd;
1721 }
1722 rs->uffdio_fd = uffd_fd;
1723
1724 RCU_READ_LOCK_GUARD();
1725
1726 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1727 /* Nothing to do with read-only and MMIO-writable regions */
1728 if (block->mr->readonly || block->mr->rom_device) {
1729 continue;
1730 }
1731
1732 /* Register block memory with UFFD to track writes */
1733 if (uffd_register_memory(rs->uffdio_fd, block->host,
1734 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1735 goto fail;
1736 }
1737 block->flags |= RAM_UF_WRITEPROTECT;
1738 memory_region_ref(block->mr);
1739
1740 /* Apply UFFD write protection to the block memory range */
1741 if (ram_block_uffd_protect(block, uffd_fd)) {
1742 goto fail;
1743 }
1744
1745 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1746 block->host, block->max_length);
1747 }
1748
1749 return 0;
1750
1751 fail:
1752 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1753
1754 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1755 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1756 continue;
1757 }
1758 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1759 /* Cleanup flags and remove reference */
1760 block->flags &= ~RAM_UF_WRITEPROTECT;
1761 memory_region_unref(block->mr);
1762 }
1763
1764 uffd_close_fd(uffd_fd);
1765 rs->uffdio_fd = -1;
1766 return -1;
1767 }
1768
1769 /**
1770 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1771 */
1772 void ram_write_tracking_stop(void)
1773 {
1774 RAMState *rs = ram_state;
1775 RAMBlock *block;
1776
1777 RCU_READ_LOCK_GUARD();
1778
1779 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1780 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1781 continue;
1782 }
1783 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1784
1785 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1786 block->host, block->max_length);
1787
1788 /* Cleanup flags and remove reference */
1789 block->flags &= ~RAM_UF_WRITEPROTECT;
1790 memory_region_unref(block->mr);
1791 }
1792
1793 /* Finally close UFFD file descriptor */
1794 uffd_close_fd(rs->uffdio_fd);
1795 rs->uffdio_fd = -1;
1796 }
1797
1798 #else
1799 /* No target OS support, stubs just fail or ignore */
1800
1801 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1802 {
1803 (void) rs;
1804 (void) offset;
1805
1806 return NULL;
1807 }
1808
1809 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1810 unsigned long start_page)
1811 {
1812 (void) rs;
1813 (void) pss;
1814 (void) start_page;
1815
1816 return 0;
1817 }
1818
1819 bool ram_write_tracking_available(void)
1820 {
1821 return false;
1822 }
1823
1824 bool ram_write_tracking_compatible(void)
1825 {
1826 assert(0);
1827 return false;
1828 }
1829
1830 int ram_write_tracking_start(void)
1831 {
1832 assert(0);
1833 return -1;
1834 }
1835
1836 void ram_write_tracking_stop(void)
1837 {
1838 assert(0);
1839 }
1840 #endif /* defined(__linux__) */
1841
1842 /**
1843 * get_queued_page: unqueue a page from the postcopy requests
1844 *
1845 * Skips pages that are already sent (!dirty)
1846 *
1847 * Returns true if a queued page is found
1848 *
1849 * @rs: current RAM state
1850 * @pss: data about the state of the current dirty page scan
1851 */
1852 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1853 {
1854 RAMBlock *block;
1855 ram_addr_t offset;
1856 bool dirty;
1857
1858 do {
1859 block = unqueue_page(rs, &offset);
1860 /*
1861 * We're sending this page, and since it's postcopy nothing else
1862 * will dirty it, and we must make sure it doesn't get sent again
1863 * even if this queue request was received after the background
1864 * search already sent it.
1865 */
1866 if (block) {
1867 unsigned long page;
1868
1869 page = offset >> TARGET_PAGE_BITS;
1870 dirty = test_bit(page, block->bmap);
1871 if (!dirty) {
1872 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1873 page);
1874 } else {
1875 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1876 }
1877 }
1878
1879 } while (block && !dirty);
1880
1881 if (!block) {
1882 /*
1883 * Poll write faults too if background snapshot is enabled; that's
1884 * when we have vcpus got blocked by the write protected pages.
1885 */
1886 block = poll_fault_page(rs, &offset);
1887 }
1888
1889 if (block) {
1890 /*
1891 * We want the background search to continue from the queued page
1892 * since the guest is likely to want other pages near to the page
1893 * it just requested.
1894 */
1895 pss->block = block;
1896 pss->page = offset >> TARGET_PAGE_BITS;
1897
1898 /*
1899 * This unqueued page would break the "one round" check, even is
1900 * really rare.
1901 */
1902 pss->complete_round = false;
1903 }
1904
1905 return !!block;
1906 }
1907
1908 /**
1909 * migration_page_queue_free: drop any remaining pages in the ram
1910 * request queue
1911 *
1912 * It should be empty at the end anyway, but in error cases there may
1913 * be some left. in case that there is any page left, we drop it.
1914 *
1915 */
1916 static void migration_page_queue_free(RAMState *rs)
1917 {
1918 struct RAMSrcPageRequest *mspr, *next_mspr;
1919 /* This queue generally should be empty - but in the case of a failed
1920 * migration might have some droppings in.
1921 */
1922 RCU_READ_LOCK_GUARD();
1923 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1924 memory_region_unref(mspr->rb->mr);
1925 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1926 g_free(mspr);
1927 }
1928 }
1929
1930 /**
1931 * ram_save_queue_pages: queue the page for transmission
1932 *
1933 * A request from postcopy destination for example.
1934 *
1935 * Returns zero on success or negative on error
1936 *
1937 * @rbname: Name of the RAMBLock of the request. NULL means the
1938 * same that last one.
1939 * @start: starting address from the start of the RAMBlock
1940 * @len: length (in bytes) to send
1941 */
1942 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1943 {
1944 RAMBlock *ramblock;
1945 RAMState *rs = ram_state;
1946
1947 stat64_add(&mig_stats.postcopy_requests, 1);
1948 RCU_READ_LOCK_GUARD();
1949
1950 if (!rbname) {
1951 /* Reuse last RAMBlock */
1952 ramblock = rs->last_req_rb;
1953
1954 if (!ramblock) {
1955 /*
1956 * Shouldn't happen, we can't reuse the last RAMBlock if
1957 * it's the 1st request.
1958 */
1959 error_report("ram_save_queue_pages no previous block");
1960 return -1;
1961 }
1962 } else {
1963 ramblock = qemu_ram_block_by_name(rbname);
1964
1965 if (!ramblock) {
1966 /* We shouldn't be asked for a non-existent RAMBlock */
1967 error_report("ram_save_queue_pages no block '%s'", rbname);
1968 return -1;
1969 }
1970 rs->last_req_rb = ramblock;
1971 }
1972 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1973 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1974 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1975 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1976 __func__, start, len, ramblock->used_length);
1977 return -1;
1978 }
1979
1980 /*
1981 * When with postcopy preempt, we send back the page directly in the
1982 * rp-return thread.
1983 */
1984 if (postcopy_preempt_active()) {
1985 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1986 size_t page_size = qemu_ram_pagesize(ramblock);
1987 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1988 int ret = 0;
1989
1990 qemu_mutex_lock(&rs->bitmap_mutex);
1991
1992 pss_init(pss, ramblock, page_start);
1993 /*
1994 * Always use the preempt channel, and make sure it's there. It's
1995 * safe to access without lock, because when rp-thread is running
1996 * we should be the only one who operates on the qemufile
1997 */
1998 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1999 assert(pss->pss_channel);
2000
2001 /*
2002 * It must be either one or multiple of host page size. Just
2003 * assert; if something wrong we're mostly split brain anyway.
2004 */
2005 assert(len % page_size == 0);
2006 while (len) {
2007 if (ram_save_host_page_urgent(pss)) {
2008 error_report("%s: ram_save_host_page_urgent() failed: "
2009 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2010 __func__, ramblock->idstr, start);
2011 ret = -1;
2012 break;
2013 }
2014 /*
2015 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2016 * will automatically be moved and point to the next host page
2017 * we're going to send, so no need to update here.
2018 *
2019 * Normally QEMU never sends >1 host page in requests, so
2020 * logically we don't even need that as the loop should only
2021 * run once, but just to be consistent.
2022 */
2023 len -= page_size;
2024 };
2025 qemu_mutex_unlock(&rs->bitmap_mutex);
2026
2027 return ret;
2028 }
2029
2030 struct RAMSrcPageRequest *new_entry =
2031 g_new0(struct RAMSrcPageRequest, 1);
2032 new_entry->rb = ramblock;
2033 new_entry->offset = start;
2034 new_entry->len = len;
2035
2036 memory_region_ref(ramblock->mr);
2037 qemu_mutex_lock(&rs->src_page_req_mutex);
2038 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2039 migration_make_urgent_request();
2040 qemu_mutex_unlock(&rs->src_page_req_mutex);
2041
2042 return 0;
2043 }
2044
2045 static bool save_page_use_compression(RAMState *rs)
2046 {
2047 if (!migrate_compress()) {
2048 return false;
2049 }
2050
2051 /*
2052 * If xbzrle is enabled (e.g., after first round of migration), stop
2053 * using the data compression. In theory, xbzrle can do better than
2054 * compression.
2055 */
2056 if (rs->xbzrle_started) {
2057 return false;
2058 }
2059
2060 return true;
2061 }
2062
2063 /*
2064 * try to compress the page before posting it out, return true if the page
2065 * has been properly handled by compression, otherwise needs other
2066 * paths to handle it
2067 */
2068 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2069 ram_addr_t offset)
2070 {
2071 if (!save_page_use_compression(rs)) {
2072 return false;
2073 }
2074
2075 /*
2076 * When starting the process of a new block, the first page of
2077 * the block should be sent out before other pages in the same
2078 * block, and all the pages in last block should have been sent
2079 * out, keeping this order is important, because the 'cont' flag
2080 * is used to avoid resending the block name.
2081 *
2082 * We post the fist page as normal page as compression will take
2083 * much CPU resource.
2084 */
2085 if (pss->block != pss->last_sent_block) {
2086 ram_flush_compressed_data(rs);
2087 return false;
2088 }
2089
2090 if (compress_page_with_multi_thread(pss->block, offset,
2091 send_queued_data) > 0) {
2092 return true;
2093 }
2094
2095 compression_counters.busy++;
2096 return false;
2097 }
2098
2099 /**
2100 * ram_save_target_page_legacy: save one target page
2101 *
2102 * Returns the number of pages written
2103 *
2104 * @rs: current RAM state
2105 * @pss: data about the page we want to send
2106 */
2107 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2108 {
2109 RAMBlock *block = pss->block;
2110 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2111 int res;
2112
2113 if (control_save_page(pss, offset, &res)) {
2114 return res;
2115 }
2116
2117 if (save_compress_page(rs, pss, offset)) {
2118 return 1;
2119 }
2120
2121 if (save_zero_page(rs, pss, offset)) {
2122 return 1;
2123 }
2124
2125 /*
2126 * Do not use multifd in postcopy as one whole host page should be
2127 * placed. Meanwhile postcopy requires atomic update of pages, so even
2128 * if host page size == guest page size the dest guest during run may
2129 * still see partially copied pages which is data corruption.
2130 */
2131 if (migrate_multifd() && !migration_in_postcopy()) {
2132 return ram_save_multifd_page(pss->pss_channel, block, offset);
2133 }
2134
2135 return ram_save_page(rs, pss);
2136 }
2137
2138 /* Should be called before sending a host page */
2139 static void pss_host_page_prepare(PageSearchStatus *pss)
2140 {
2141 /* How many guest pages are there in one host page? */
2142 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2143
2144 pss->host_page_sending = true;
2145 if (guest_pfns <= 1) {
2146 /*
2147 * This covers both when guest psize == host psize, or when guest
2148 * has larger psize than the host (guest_pfns==0).
2149 *
2150 * For the latter, we always send one whole guest page per
2151 * iteration of the host page (example: an Alpha VM on x86 host
2152 * will have guest psize 8K while host psize 4K).
2153 */
2154 pss->host_page_start = pss->page;
2155 pss->host_page_end = pss->page + 1;
2156 } else {
2157 /*
2158 * The host page spans over multiple guest pages, we send them
2159 * within the same host page iteration.
2160 */
2161 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2162 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2163 }
2164 }
2165
2166 /*
2167 * Whether the page pointed by PSS is within the host page being sent.
2168 * Must be called after a previous pss_host_page_prepare().
2169 */
2170 static bool pss_within_range(PageSearchStatus *pss)
2171 {
2172 ram_addr_t ram_addr;
2173
2174 assert(pss->host_page_sending);
2175
2176 /* Over host-page boundary? */
2177 if (pss->page >= pss->host_page_end) {
2178 return false;
2179 }
2180
2181 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2182
2183 return offset_in_ramblock(pss->block, ram_addr);
2184 }
2185
2186 static void pss_host_page_finish(PageSearchStatus *pss)
2187 {
2188 pss->host_page_sending = false;
2189 /* This is not needed, but just to reset it */
2190 pss->host_page_start = pss->host_page_end = 0;
2191 }
2192
2193 /*
2194 * Send an urgent host page specified by `pss'. Need to be called with
2195 * bitmap_mutex held.
2196 *
2197 * Returns 0 if save host page succeeded, false otherwise.
2198 */
2199 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2200 {
2201 bool page_dirty, sent = false;
2202 RAMState *rs = ram_state;
2203 int ret = 0;
2204
2205 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2206 pss_host_page_prepare(pss);
2207
2208 /*
2209 * If precopy is sending the same page, let it be done in precopy, or
2210 * we could send the same page in two channels and none of them will
2211 * receive the whole page.
2212 */
2213 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2214 trace_postcopy_preempt_hit(pss->block->idstr,
2215 pss->page << TARGET_PAGE_BITS);
2216 return 0;
2217 }
2218
2219 do {
2220 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2221
2222 if (page_dirty) {
2223 /* Be strict to return code; it must be 1, or what else? */
2224 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2225 error_report_once("%s: ram_save_target_page failed", __func__);
2226 ret = -1;
2227 goto out;
2228 }
2229 sent = true;
2230 }
2231 pss_find_next_dirty(pss);
2232 } while (pss_within_range(pss));
2233 out:
2234 pss_host_page_finish(pss);
2235 /* For urgent requests, flush immediately if sent */
2236 if (sent) {
2237 qemu_fflush(pss->pss_channel);
2238 }
2239 return ret;
2240 }
2241
2242 /**
2243 * ram_save_host_page: save a whole host page
2244 *
2245 * Starting at *offset send pages up to the end of the current host
2246 * page. It's valid for the initial offset to point into the middle of
2247 * a host page in which case the remainder of the hostpage is sent.
2248 * Only dirty target pages are sent. Note that the host page size may
2249 * be a huge page for this block.
2250 *
2251 * The saving stops at the boundary of the used_length of the block
2252 * if the RAMBlock isn't a multiple of the host page size.
2253 *
2254 * The caller must be with ram_state.bitmap_mutex held to call this
2255 * function. Note that this function can temporarily release the lock, but
2256 * when the function is returned it'll make sure the lock is still held.
2257 *
2258 * Returns the number of pages written or negative on error
2259 *
2260 * @rs: current RAM state
2261 * @pss: data about the page we want to send
2262 */
2263 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2264 {
2265 bool page_dirty, preempt_active = postcopy_preempt_active();
2266 int tmppages, pages = 0;
2267 size_t pagesize_bits =
2268 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2269 unsigned long start_page = pss->page;
2270 int res;
2271
2272 if (migrate_ram_is_ignored(pss->block)) {
2273 error_report("block %s should not be migrated !", pss->block->idstr);
2274 return 0;
2275 }
2276
2277 /* Update host page boundary information */
2278 pss_host_page_prepare(pss);
2279
2280 do {
2281 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2282
2283 /* Check the pages is dirty and if it is send it */
2284 if (page_dirty) {
2285 /*
2286 * Properly yield the lock only in postcopy preempt mode
2287 * because both migration thread and rp-return thread can
2288 * operate on the bitmaps.
2289 */
2290 if (preempt_active) {
2291 qemu_mutex_unlock(&rs->bitmap_mutex);
2292 }
2293 tmppages = migration_ops->ram_save_target_page(rs, pss);
2294 if (tmppages >= 0) {
2295 pages += tmppages;
2296 /*
2297 * Allow rate limiting to happen in the middle of huge pages if
2298 * something is sent in the current iteration.
2299 */
2300 if (pagesize_bits > 1 && tmppages > 0) {
2301 migration_rate_limit();
2302 }
2303 }
2304 if (preempt_active) {
2305 qemu_mutex_lock(&rs->bitmap_mutex);
2306 }
2307 } else {
2308 tmppages = 0;
2309 }
2310
2311 if (tmppages < 0) {
2312 pss_host_page_finish(pss);
2313 return tmppages;
2314 }
2315
2316 pss_find_next_dirty(pss);
2317 } while (pss_within_range(pss));
2318
2319 pss_host_page_finish(pss);
2320
2321 res = ram_save_release_protection(rs, pss, start_page);
2322 return (res < 0 ? res : pages);
2323 }
2324
2325 /**
2326 * ram_find_and_save_block: finds a dirty page and sends it to f
2327 *
2328 * Called within an RCU critical section.
2329 *
2330 * Returns the number of pages written where zero means no dirty pages,
2331 * or negative on error
2332 *
2333 * @rs: current RAM state
2334 *
2335 * On systems where host-page-size > target-page-size it will send all the
2336 * pages in a host page that are dirty.
2337 */
2338 static int ram_find_and_save_block(RAMState *rs)
2339 {
2340 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2341 int pages = 0;
2342
2343 /* No dirty page as there is zero RAM */
2344 if (!rs->ram_bytes_total) {
2345 return pages;
2346 }
2347
2348 /*
2349 * Always keep last_seen_block/last_page valid during this procedure,
2350 * because find_dirty_block() relies on these values (e.g., we compare
2351 * last_seen_block with pss.block to see whether we searched all the
2352 * ramblocks) to detect the completion of migration. Having NULL value
2353 * of last_seen_block can conditionally cause below loop to run forever.
2354 */
2355 if (!rs->last_seen_block) {
2356 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2357 rs->last_page = 0;
2358 }
2359
2360 pss_init(pss, rs->last_seen_block, rs->last_page);
2361
2362 while (true){
2363 if (!get_queued_page(rs, pss)) {
2364 /* priority queue empty, so just search for something dirty */
2365 int res = find_dirty_block(rs, pss);
2366 if (res != PAGE_DIRTY_FOUND) {
2367 if (res == PAGE_ALL_CLEAN) {
2368 break;
2369 } else if (res == PAGE_TRY_AGAIN) {
2370 continue;
2371 } else if (res < 0) {
2372 pages = res;
2373 break;
2374 }
2375 }
2376 }
2377 pages = ram_save_host_page(rs, pss);
2378 if (pages) {
2379 break;
2380 }
2381 }
2382
2383 rs->last_seen_block = pss->block;
2384 rs->last_page = pss->page;
2385
2386 return pages;
2387 }
2388
2389 static uint64_t ram_bytes_total_with_ignored(void)
2390 {
2391 RAMBlock *block;
2392 uint64_t total = 0;
2393
2394 RCU_READ_LOCK_GUARD();
2395
2396 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2397 total += block->used_length;
2398 }
2399 return total;
2400 }
2401
2402 uint64_t ram_bytes_total(void)
2403 {
2404 RAMBlock *block;
2405 uint64_t total = 0;
2406
2407 RCU_READ_LOCK_GUARD();
2408
2409 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2410 total += block->used_length;
2411 }
2412 return total;
2413 }
2414
2415 static void xbzrle_load_setup(void)
2416 {
2417 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2418 }
2419
2420 static void xbzrle_load_cleanup(void)
2421 {
2422 g_free(XBZRLE.decoded_buf);
2423 XBZRLE.decoded_buf = NULL;
2424 }
2425
2426 static void ram_state_cleanup(RAMState **rsp)
2427 {
2428 if (*rsp) {
2429 migration_page_queue_free(*rsp);
2430 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2431 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2432 g_free(*rsp);
2433 *rsp = NULL;
2434 }
2435 }
2436
2437 static void xbzrle_cleanup(void)
2438 {
2439 XBZRLE_cache_lock();
2440 if (XBZRLE.cache) {
2441 cache_fini(XBZRLE.cache);
2442 g_free(XBZRLE.encoded_buf);
2443 g_free(XBZRLE.current_buf);
2444 g_free(XBZRLE.zero_target_page);
2445 XBZRLE.cache = NULL;
2446 XBZRLE.encoded_buf = NULL;
2447 XBZRLE.current_buf = NULL;
2448 XBZRLE.zero_target_page = NULL;
2449 }
2450 XBZRLE_cache_unlock();
2451 }
2452
2453 static void ram_save_cleanup(void *opaque)
2454 {
2455 RAMState **rsp = opaque;
2456 RAMBlock *block;
2457
2458 /* We don't use dirty log with background snapshots */
2459 if (!migrate_background_snapshot()) {
2460 /* caller have hold iothread lock or is in a bh, so there is
2461 * no writing race against the migration bitmap
2462 */
2463 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2464 /*
2465 * do not stop dirty log without starting it, since
2466 * memory_global_dirty_log_stop will assert that
2467 * memory_global_dirty_log_start/stop used in pairs
2468 */
2469 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2470 }
2471 }
2472
2473 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2474 g_free(block->clear_bmap);
2475 block->clear_bmap = NULL;
2476 g_free(block->bmap);
2477 block->bmap = NULL;
2478 }
2479
2480 xbzrle_cleanup();
2481 compress_threads_save_cleanup();
2482 ram_state_cleanup(rsp);
2483 g_free(migration_ops);
2484 migration_ops = NULL;
2485 }
2486
2487 static void ram_state_reset(RAMState *rs)
2488 {
2489 int i;
2490
2491 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2492 rs->pss[i].last_sent_block = NULL;
2493 }
2494
2495 rs->last_seen_block = NULL;
2496 rs->last_page = 0;
2497 rs->last_version = ram_list.version;
2498 rs->xbzrle_started = false;
2499 }
2500
2501 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2502
2503 /* **** functions for postcopy ***** */
2504
2505 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2506 {
2507 struct RAMBlock *block;
2508
2509 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2510 unsigned long *bitmap = block->bmap;
2511 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2512 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2513
2514 while (run_start < range) {
2515 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2516 ram_discard_range(block->idstr,
2517 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2518 ((ram_addr_t)(run_end - run_start))
2519 << TARGET_PAGE_BITS);
2520 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2521 }
2522 }
2523 }
2524
2525 /**
2526 * postcopy_send_discard_bm_ram: discard a RAMBlock
2527 *
2528 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2529 *
2530 * @ms: current migration state
2531 * @block: RAMBlock to discard
2532 */
2533 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2534 {
2535 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2536 unsigned long current;
2537 unsigned long *bitmap = block->bmap;
2538
2539 for (current = 0; current < end; ) {
2540 unsigned long one = find_next_bit(bitmap, end, current);
2541 unsigned long zero, discard_length;
2542
2543 if (one >= end) {
2544 break;
2545 }
2546
2547 zero = find_next_zero_bit(bitmap, end, one + 1);
2548
2549 if (zero >= end) {
2550 discard_length = end - one;
2551 } else {
2552 discard_length = zero - one;
2553 }
2554 postcopy_discard_send_range(ms, one, discard_length);
2555 current = one + discard_length;
2556 }
2557 }
2558
2559 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2560
2561 /**
2562 * postcopy_each_ram_send_discard: discard all RAMBlocks
2563 *
2564 * Utility for the outgoing postcopy code.
2565 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2566 * passing it bitmap indexes and name.
2567 * (qemu_ram_foreach_block ends up passing unscaled lengths
2568 * which would mean postcopy code would have to deal with target page)
2569 *
2570 * @ms: current migration state
2571 */
2572 static void postcopy_each_ram_send_discard(MigrationState *ms)
2573 {
2574 struct RAMBlock *block;
2575
2576 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2577 postcopy_discard_send_init(ms, block->idstr);
2578
2579 /*
2580 * Deal with TPS != HPS and huge pages. It discard any partially sent
2581 * host-page size chunks, mark any partially dirty host-page size
2582 * chunks as all dirty. In this case the host-page is the host-page
2583 * for the particular RAMBlock, i.e. it might be a huge page.
2584 */
2585 postcopy_chunk_hostpages_pass(ms, block);
2586
2587 /*
2588 * Postcopy sends chunks of bitmap over the wire, but it
2589 * just needs indexes at this point, avoids it having
2590 * target page specific code.
2591 */
2592 postcopy_send_discard_bm_ram(ms, block);
2593 postcopy_discard_send_finish(ms);
2594 }
2595 }
2596
2597 /**
2598 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2599 *
2600 * Helper for postcopy_chunk_hostpages; it's called twice to
2601 * canonicalize the two bitmaps, that are similar, but one is
2602 * inverted.
2603 *
2604 * Postcopy requires that all target pages in a hostpage are dirty or
2605 * clean, not a mix. This function canonicalizes the bitmaps.
2606 *
2607 * @ms: current migration state
2608 * @block: block that contains the page we want to canonicalize
2609 */
2610 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2611 {
2612 RAMState *rs = ram_state;
2613 unsigned long *bitmap = block->bmap;
2614 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2615 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2616 unsigned long run_start;
2617
2618 if (block->page_size == TARGET_PAGE_SIZE) {
2619 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2620 return;
2621 }
2622
2623 /* Find a dirty page */
2624 run_start = find_next_bit(bitmap, pages, 0);
2625
2626 while (run_start < pages) {
2627
2628 /*
2629 * If the start of this run of pages is in the middle of a host
2630 * page, then we need to fixup this host page.
2631 */
2632 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2633 /* Find the end of this run */
2634 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2635 /*
2636 * If the end isn't at the start of a host page, then the
2637 * run doesn't finish at the end of a host page
2638 * and we need to discard.
2639 */
2640 }
2641
2642 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2643 unsigned long page;
2644 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2645 host_ratio);
2646 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2647
2648 /* Clean up the bitmap */
2649 for (page = fixup_start_addr;
2650 page < fixup_start_addr + host_ratio; page++) {
2651 /*
2652 * Remark them as dirty, updating the count for any pages
2653 * that weren't previously dirty.
2654 */
2655 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2656 }
2657 }
2658
2659 /* Find the next dirty page for the next iteration */
2660 run_start = find_next_bit(bitmap, pages, run_start);
2661 }
2662 }
2663
2664 /**
2665 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2666 *
2667 * Transmit the set of pages to be discarded after precopy to the target
2668 * these are pages that:
2669 * a) Have been previously transmitted but are now dirty again
2670 * b) Pages that have never been transmitted, this ensures that
2671 * any pages on the destination that have been mapped by background
2672 * tasks get discarded (transparent huge pages is the specific concern)
2673 * Hopefully this is pretty sparse
2674 *
2675 * @ms: current migration state
2676 */
2677 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2678 {
2679 RAMState *rs = ram_state;
2680
2681 RCU_READ_LOCK_GUARD();
2682
2683 /* This should be our last sync, the src is now paused */
2684 migration_bitmap_sync(rs, false);
2685
2686 /* Easiest way to make sure we don't resume in the middle of a host-page */
2687 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2688 rs->last_seen_block = NULL;
2689 rs->last_page = 0;
2690
2691 postcopy_each_ram_send_discard(ms);
2692
2693 trace_ram_postcopy_send_discard_bitmap();
2694 }
2695
2696 /**
2697 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2698 *
2699 * Returns zero on success
2700 *
2701 * @rbname: name of the RAMBlock of the request. NULL means the
2702 * same that last one.
2703 * @start: RAMBlock starting page
2704 * @length: RAMBlock size
2705 */
2706 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2707 {
2708 trace_ram_discard_range(rbname, start, length);
2709
2710 RCU_READ_LOCK_GUARD();
2711 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2712
2713 if (!rb) {
2714 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2715 return -1;
2716 }
2717
2718 /*
2719 * On source VM, we don't need to update the received bitmap since
2720 * we don't even have one.
2721 */
2722 if (rb->receivedmap) {
2723 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2724 length >> qemu_target_page_bits());
2725 }
2726
2727 return ram_block_discard_range(rb, start, length);
2728 }
2729
2730 /*
2731 * For every allocation, we will try not to crash the VM if the
2732 * allocation failed.
2733 */
2734 static int xbzrle_init(void)
2735 {
2736 Error *local_err = NULL;
2737
2738 if (!migrate_xbzrle()) {
2739 return 0;
2740 }
2741
2742 XBZRLE_cache_lock();
2743
2744 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2745 if (!XBZRLE.zero_target_page) {
2746 error_report("%s: Error allocating zero page", __func__);
2747 goto err_out;
2748 }
2749
2750 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2751 TARGET_PAGE_SIZE, &local_err);
2752 if (!XBZRLE.cache) {
2753 error_report_err(local_err);
2754 goto free_zero_page;
2755 }
2756
2757 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2758 if (!XBZRLE.encoded_buf) {
2759 error_report("%s: Error allocating encoded_buf", __func__);
2760 goto free_cache;
2761 }
2762
2763 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2764 if (!XBZRLE.current_buf) {
2765 error_report("%s: Error allocating current_buf", __func__);
2766 goto free_encoded_buf;
2767 }
2768
2769 /* We are all good */
2770 XBZRLE_cache_unlock();
2771 return 0;
2772
2773 free_encoded_buf:
2774 g_free(XBZRLE.encoded_buf);
2775 XBZRLE.encoded_buf = NULL;
2776 free_cache:
2777 cache_fini(XBZRLE.cache);
2778 XBZRLE.cache = NULL;
2779 free_zero_page:
2780 g_free(XBZRLE.zero_target_page);
2781 XBZRLE.zero_target_page = NULL;
2782 err_out:
2783 XBZRLE_cache_unlock();
2784 return -ENOMEM;
2785 }
2786
2787 static int ram_state_init(RAMState **rsp)
2788 {
2789 *rsp = g_try_new0(RAMState, 1);
2790
2791 if (!*rsp) {
2792 error_report("%s: Init ramstate fail", __func__);
2793 return -1;
2794 }
2795
2796 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2797 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2798 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2799 (*rsp)->ram_bytes_total = ram_bytes_total();
2800
2801 /*
2802 * Count the total number of pages used by ram blocks not including any
2803 * gaps due to alignment or unplugs.
2804 * This must match with the initial values of dirty bitmap.
2805 */
2806 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2807 ram_state_reset(*rsp);
2808
2809 return 0;
2810 }
2811
2812 static void ram_list_init_bitmaps(void)
2813 {
2814 MigrationState *ms = migrate_get_current();
2815 RAMBlock *block;
2816 unsigned long pages;
2817 uint8_t shift;
2818
2819 /* Skip setting bitmap if there is no RAM */
2820 if (ram_bytes_total()) {
2821 shift = ms->clear_bitmap_shift;
2822 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2823 error_report("clear_bitmap_shift (%u) too big, using "
2824 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2825 shift = CLEAR_BITMAP_SHIFT_MAX;
2826 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2827 error_report("clear_bitmap_shift (%u) too small, using "
2828 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2829 shift = CLEAR_BITMAP_SHIFT_MIN;
2830 }
2831
2832 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2833 pages = block->max_length >> TARGET_PAGE_BITS;
2834 /*
2835 * The initial dirty bitmap for migration must be set with all
2836 * ones to make sure we'll migrate every guest RAM page to
2837 * destination.
2838 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2839 * new migration after a failed migration, ram_list.
2840 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2841 * guest memory.
2842 */
2843 block->bmap = bitmap_new(pages);
2844 bitmap_set(block->bmap, 0, pages);
2845 block->clear_bmap_shift = shift;
2846 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2847 }
2848 }
2849 }
2850
2851 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2852 {
2853 unsigned long pages;
2854 RAMBlock *rb;
2855
2856 RCU_READ_LOCK_GUARD();
2857
2858 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2859 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2860 rs->migration_dirty_pages -= pages;
2861 }
2862 }
2863
2864 static void ram_init_bitmaps(RAMState *rs)
2865 {
2866 qemu_mutex_lock_ramlist();
2867
2868 WITH_RCU_READ_LOCK_GUARD() {
2869 ram_list_init_bitmaps();
2870 /* We don't use dirty log with background snapshots */
2871 if (!migrate_background_snapshot()) {
2872 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2873 migration_bitmap_sync_precopy(rs, false);
2874 }
2875 }
2876 qemu_mutex_unlock_ramlist();
2877
2878 /*
2879 * After an eventual first bitmap sync, fixup the initial bitmap
2880 * containing all 1s to exclude any discarded pages from migration.
2881 */
2882 migration_bitmap_clear_discarded_pages(rs);
2883 }
2884
2885 static int ram_init_all(RAMState **rsp)
2886 {
2887 if (ram_state_init(rsp)) {
2888 return -1;
2889 }
2890
2891 if (xbzrle_init()) {
2892 ram_state_cleanup(rsp);
2893 return -1;
2894 }
2895
2896 ram_init_bitmaps(*rsp);
2897
2898 return 0;
2899 }
2900
2901 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2902 {
2903 RAMBlock *block;
2904 uint64_t pages = 0;
2905
2906 /*
2907 * Postcopy is not using xbzrle/compression, so no need for that.
2908 * Also, since source are already halted, we don't need to care
2909 * about dirty page logging as well.
2910 */
2911
2912 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2913 pages += bitmap_count_one(block->bmap,
2914 block->used_length >> TARGET_PAGE_BITS);
2915 }
2916
2917 /* This may not be aligned with current bitmaps. Recalculate. */
2918 rs->migration_dirty_pages = pages;
2919
2920 ram_state_reset(rs);
2921
2922 /* Update RAMState cache of output QEMUFile */
2923 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2924
2925 trace_ram_state_resume_prepare(pages);
2926 }
2927
2928 /*
2929 * This function clears bits of the free pages reported by the caller from the
2930 * migration dirty bitmap. @addr is the host address corresponding to the
2931 * start of the continuous guest free pages, and @len is the total bytes of
2932 * those pages.
2933 */
2934 void qemu_guest_free_page_hint(void *addr, size_t len)
2935 {
2936 RAMBlock *block;
2937 ram_addr_t offset;
2938 size_t used_len, start, npages;
2939 MigrationState *s = migrate_get_current();
2940
2941 /* This function is currently expected to be used during live migration */
2942 if (!migration_is_setup_or_active(s->state)) {
2943 return;
2944 }
2945
2946 for (; len > 0; len -= used_len, addr += used_len) {
2947 block = qemu_ram_block_from_host(addr, false, &offset);
2948 if (unlikely(!block || offset >= block->used_length)) {
2949 /*
2950 * The implementation might not support RAMBlock resize during
2951 * live migration, but it could happen in theory with future
2952 * updates. So we add a check here to capture that case.
2953 */
2954 error_report_once("%s unexpected error", __func__);
2955 return;
2956 }
2957
2958 if (len <= block->used_length - offset) {
2959 used_len = len;
2960 } else {
2961 used_len = block->used_length - offset;
2962 }
2963
2964 start = offset >> TARGET_PAGE_BITS;
2965 npages = used_len >> TARGET_PAGE_BITS;
2966
2967 qemu_mutex_lock(&ram_state->bitmap_mutex);
2968 /*
2969 * The skipped free pages are equavalent to be sent from clear_bmap's
2970 * perspective, so clear the bits from the memory region bitmap which
2971 * are initially set. Otherwise those skipped pages will be sent in
2972 * the next round after syncing from the memory region bitmap.
2973 */
2974 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2975 ram_state->migration_dirty_pages -=
2976 bitmap_count_one_with_offset(block->bmap, start, npages);
2977 bitmap_clear(block->bmap, start, npages);
2978 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2979 }
2980 }
2981
2982 /*
2983 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2984 * long-running RCU critical section. When rcu-reclaims in the code
2985 * start to become numerous it will be necessary to reduce the
2986 * granularity of these critical sections.
2987 */
2988
2989 /**
2990 * ram_save_setup: Setup RAM for migration
2991 *
2992 * Returns zero to indicate success and negative for error
2993 *
2994 * @f: QEMUFile where to send the data
2995 * @opaque: RAMState pointer
2996 */
2997 static int ram_save_setup(QEMUFile *f, void *opaque)
2998 {
2999 RAMState **rsp = opaque;
3000 RAMBlock *block;
3001 int ret;
3002
3003 if (compress_threads_save_setup()) {
3004 return -1;
3005 }
3006
3007 /* migration has already setup the bitmap, reuse it. */
3008 if (!migration_in_colo_state()) {
3009 if (ram_init_all(rsp) != 0) {
3010 compress_threads_save_cleanup();
3011 return -1;
3012 }
3013 }
3014 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3015
3016 WITH_RCU_READ_LOCK_GUARD() {
3017 qemu_put_be64(f, ram_bytes_total_with_ignored()
3018 | RAM_SAVE_FLAG_MEM_SIZE);
3019
3020 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3021 qemu_put_byte(f, strlen(block->idstr));
3022 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3023 qemu_put_be64(f, block->used_length);
3024 if (migrate_postcopy_ram() && block->page_size !=
3025 qemu_host_page_size) {
3026 qemu_put_be64(f, block->page_size);
3027 }
3028 if (migrate_ignore_shared()) {
3029 qemu_put_be64(f, block->mr->addr);
3030 }
3031 }
3032 }
3033
3034 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3035 if (ret < 0) {
3036 qemu_file_set_error(f, ret);
3037 }
3038
3039 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3040 if (ret < 0) {
3041 qemu_file_set_error(f, ret);
3042 }
3043
3044 migration_ops = g_malloc0(sizeof(MigrationOps));
3045 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3046
3047 qemu_mutex_unlock_iothread();
3048 ret = multifd_send_sync_main(f);
3049 qemu_mutex_lock_iothread();
3050 if (ret < 0) {
3051 return ret;
3052 }
3053
3054 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3055 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3056 }
3057
3058 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3059 qemu_fflush(f);
3060
3061 return 0;
3062 }
3063
3064 /**
3065 * ram_save_iterate: iterative stage for migration
3066 *
3067 * Returns zero to indicate success and negative for error
3068 *
3069 * @f: QEMUFile where to send the data
3070 * @opaque: RAMState pointer
3071 */
3072 static int ram_save_iterate(QEMUFile *f, void *opaque)
3073 {
3074 RAMState **temp = opaque;
3075 RAMState *rs = *temp;
3076 int ret = 0;
3077 int i;
3078 int64_t t0;
3079 int done = 0;
3080
3081 if (blk_mig_bulk_active()) {
3082 /* Avoid transferring ram during bulk phase of block migration as
3083 * the bulk phase will usually take a long time and transferring
3084 * ram updates during that time is pointless. */
3085 goto out;
3086 }
3087
3088 /*
3089 * We'll take this lock a little bit long, but it's okay for two reasons.
3090 * Firstly, the only possible other thread to take it is who calls
3091 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3092 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3093 * guarantees that we'll at least released it in a regular basis.
3094 */
3095 qemu_mutex_lock(&rs->bitmap_mutex);
3096 WITH_RCU_READ_LOCK_GUARD() {
3097 if (ram_list.version != rs->last_version) {
3098 ram_state_reset(rs);
3099 }
3100
3101 /* Read version before ram_list.blocks */
3102 smp_rmb();
3103
3104 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3105 if (ret < 0) {
3106 qemu_file_set_error(f, ret);
3107 }
3108
3109 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3110 i = 0;
3111 while ((ret = migration_rate_exceeded(f)) == 0 ||
3112 postcopy_has_request(rs)) {
3113 int pages;
3114
3115 if (qemu_file_get_error(f)) {
3116 break;
3117 }
3118
3119 pages = ram_find_and_save_block(rs);
3120 /* no more pages to sent */
3121 if (pages == 0) {
3122 done = 1;
3123 break;
3124 }
3125
3126 if (pages < 0) {
3127 qemu_file_set_error(f, pages);
3128 break;
3129 }
3130
3131 rs->target_page_count += pages;
3132
3133 /*
3134 * During postcopy, it is necessary to make sure one whole host
3135 * page is sent in one chunk.
3136 */
3137 if (migrate_postcopy_ram()) {
3138 ram_flush_compressed_data(rs);
3139 }
3140
3141 /*
3142 * we want to check in the 1st loop, just in case it was the 1st
3143 * time and we had to sync the dirty bitmap.
3144 * qemu_clock_get_ns() is a bit expensive, so we only check each
3145 * some iterations
3146 */
3147 if ((i & 63) == 0) {
3148 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3149 1000000;
3150 if (t1 > MAX_WAIT) {
3151 trace_ram_save_iterate_big_wait(t1, i);
3152 break;
3153 }
3154 }
3155 i++;
3156 }
3157 }
3158 qemu_mutex_unlock(&rs->bitmap_mutex);
3159
3160 /*
3161 * Must occur before EOS (or any QEMUFile operation)
3162 * because of RDMA protocol.
3163 */
3164 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3165 if (ret < 0) {
3166 qemu_file_set_error(f, ret);
3167 }
3168
3169 out:
3170 if (ret >= 0
3171 && migration_is_setup_or_active(migrate_get_current()->state)) {
3172 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) {
3173 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3174 if (ret < 0) {
3175 return ret;
3176 }
3177 }
3178
3179 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3180 qemu_fflush(f);
3181 ram_transferred_add(8);
3182
3183 ret = qemu_file_get_error(f);
3184 }
3185 if (ret < 0) {
3186 return ret;
3187 }
3188
3189 return done;
3190 }
3191
3192 /**
3193 * ram_save_complete: function called to send the remaining amount of ram
3194 *
3195 * Returns zero to indicate success or negative on error
3196 *
3197 * Called with iothread lock
3198 *
3199 * @f: QEMUFile where to send the data
3200 * @opaque: RAMState pointer
3201 */
3202 static int ram_save_complete(QEMUFile *f, void *opaque)
3203 {
3204 RAMState **temp = opaque;
3205 RAMState *rs = *temp;
3206 int ret = 0;
3207
3208 rs->last_stage = !migration_in_colo_state();
3209
3210 WITH_RCU_READ_LOCK_GUARD() {
3211 if (!migration_in_postcopy()) {
3212 migration_bitmap_sync_precopy(rs, true);
3213 }
3214
3215 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3216 if (ret < 0) {
3217 qemu_file_set_error(f, ret);
3218 }
3219
3220 /* try transferring iterative blocks of memory */
3221
3222 /* flush all remaining blocks regardless of rate limiting */
3223 qemu_mutex_lock(&rs->bitmap_mutex);
3224 while (true) {
3225 int pages;
3226
3227 pages = ram_find_and_save_block(rs);
3228 /* no more blocks to sent */
3229 if (pages == 0) {
3230 break;
3231 }
3232 if (pages < 0) {
3233 ret = pages;
3234 break;
3235 }
3236 }
3237 qemu_mutex_unlock(&rs->bitmap_mutex);
3238
3239 ram_flush_compressed_data(rs);
3240
3241 int ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3242 if (ret < 0) {
3243 qemu_file_set_error(f, ret);
3244 }
3245 }
3246
3247 if (ret < 0) {
3248 return ret;
3249 }
3250
3251 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3252 if (ret < 0) {
3253 return ret;
3254 }
3255
3256 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3257 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3258 }
3259 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3260 qemu_fflush(f);
3261
3262 return 0;
3263 }
3264
3265 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3266 uint64_t *can_postcopy)
3267 {
3268 RAMState **temp = opaque;
3269 RAMState *rs = *temp;
3270
3271 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3272
3273 if (migrate_postcopy_ram()) {
3274 /* We can do postcopy, and all the data is postcopiable */
3275 *can_postcopy += remaining_size;
3276 } else {
3277 *must_precopy += remaining_size;
3278 }
3279 }
3280
3281 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3282 uint64_t *can_postcopy)
3283 {
3284 MigrationState *s = migrate_get_current();
3285 RAMState **temp = opaque;
3286 RAMState *rs = *temp;
3287
3288 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3289
3290 if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
3291 qemu_mutex_lock_iothread();
3292 WITH_RCU_READ_LOCK_GUARD() {
3293 migration_bitmap_sync_precopy(rs, false);
3294 }
3295 qemu_mutex_unlock_iothread();
3296 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3297 }
3298
3299 if (migrate_postcopy_ram()) {
3300 /* We can do postcopy, and all the data is postcopiable */
3301 *can_postcopy += remaining_size;
3302 } else {
3303 *must_precopy += remaining_size;
3304 }
3305 }
3306
3307 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3308 {
3309 unsigned int xh_len;
3310 int xh_flags;
3311 uint8_t *loaded_data;
3312
3313 /* extract RLE header */
3314 xh_flags = qemu_get_byte(f);
3315 xh_len = qemu_get_be16(f);
3316
3317 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3318 error_report("Failed to load XBZRLE page - wrong compression!");
3319 return -1;
3320 }
3321
3322 if (xh_len > TARGET_PAGE_SIZE) {
3323 error_report("Failed to load XBZRLE page - len overflow!");
3324 return -1;
3325 }
3326 loaded_data = XBZRLE.decoded_buf;
3327 /* load data and decode */
3328 /* it can change loaded_data to point to an internal buffer */
3329 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3330
3331 /* decode RLE */
3332 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3333 TARGET_PAGE_SIZE) == -1) {
3334 error_report("Failed to load XBZRLE page - decode error!");
3335 return -1;
3336 }
3337
3338 return 0;
3339 }
3340
3341 /**
3342 * ram_block_from_stream: read a RAMBlock id from the migration stream
3343 *
3344 * Must be called from within a rcu critical section.
3345 *
3346 * Returns a pointer from within the RCU-protected ram_list.
3347 *
3348 * @mis: the migration incoming state pointer
3349 * @f: QEMUFile where to read the data from
3350 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3351 * @channel: the channel we're using
3352 */
3353 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3354 QEMUFile *f, int flags,
3355 int channel)
3356 {
3357 RAMBlock *block = mis->last_recv_block[channel];
3358 char id[256];
3359 uint8_t len;
3360
3361 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3362 if (!block) {
3363 error_report("Ack, bad migration stream!");
3364 return NULL;
3365 }
3366 return block;
3367 }
3368
3369 len = qemu_get_byte(f);
3370 qemu_get_buffer(f, (uint8_t *)id, len);
3371 id[len] = 0;
3372
3373 block = qemu_ram_block_by_name(id);
3374 if (!block) {
3375 error_report("Can't find block %s", id);
3376 return NULL;
3377 }
3378
3379 if (migrate_ram_is_ignored(block)) {
3380 error_report("block %s should not be migrated !", id);
3381 return NULL;
3382 }
3383
3384 mis->last_recv_block[channel] = block;
3385
3386 return block;
3387 }
3388
3389 static inline void *host_from_ram_block_offset(RAMBlock *block,
3390 ram_addr_t offset)
3391 {
3392 if (!offset_in_ramblock(block, offset)) {
3393 return NULL;
3394 }
3395
3396 return block->host + offset;
3397 }
3398
3399 static void *host_page_from_ram_block_offset(RAMBlock *block,
3400 ram_addr_t offset)
3401 {
3402 /* Note: Explicitly no check against offset_in_ramblock(). */
3403 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3404 block->page_size);
3405 }
3406
3407 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3408 ram_addr_t offset)
3409 {
3410 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3411 }
3412
3413 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3414 {
3415 qemu_mutex_lock(&ram_state->bitmap_mutex);
3416 for (int i = 0; i < pages; i++) {
3417 ram_addr_t offset = normal[i];
3418 ram_state->migration_dirty_pages += !test_and_set_bit(
3419 offset >> TARGET_PAGE_BITS,
3420 block->bmap);
3421 }
3422 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3423 }
3424
3425 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3426 ram_addr_t offset, bool record_bitmap)
3427 {
3428 if (!offset_in_ramblock(block, offset)) {
3429 return NULL;
3430 }
3431 if (!block->colo_cache) {
3432 error_report("%s: colo_cache is NULL in block :%s",
3433 __func__, block->idstr);
3434 return NULL;
3435 }
3436
3437 /*
3438 * During colo checkpoint, we need bitmap of these migrated pages.
3439 * It help us to decide which pages in ram cache should be flushed
3440 * into VM's RAM later.
3441 */
3442 if (record_bitmap) {
3443 colo_record_bitmap(block, &offset, 1);
3444 }
3445 return block->colo_cache + offset;
3446 }
3447
3448 /**
3449 * ram_handle_compressed: handle the zero page case
3450 *
3451 * If a page (or a whole RDMA chunk) has been
3452 * determined to be zero, then zap it.
3453 *
3454 * @host: host address for the zero page
3455 * @ch: what the page is filled from. We only support zero
3456 * @size: size of the zero page
3457 */
3458 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3459 {
3460 if (ch != 0 || !buffer_is_zero(host, size)) {
3461 memset(host, ch, size);
3462 }
3463 }
3464
3465 static void colo_init_ram_state(void)
3466 {
3467 ram_state_init(&ram_state);
3468 }
3469
3470 /*
3471 * colo cache: this is for secondary VM, we cache the whole
3472 * memory of the secondary VM, it is need to hold the global lock
3473 * to call this helper.
3474 */
3475 int colo_init_ram_cache(void)
3476 {
3477 RAMBlock *block;
3478
3479 WITH_RCU_READ_LOCK_GUARD() {
3480 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3481 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3482 NULL, false, false);
3483 if (!block->colo_cache) {
3484 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3485 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3486 block->used_length);
3487 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3488 if (block->colo_cache) {
3489 qemu_anon_ram_free(block->colo_cache, block->used_length);
3490 block->colo_cache = NULL;
3491 }
3492 }
3493 return -errno;
3494 }
3495 if (!machine_dump_guest_core(current_machine)) {
3496 qemu_madvise(block->colo_cache, block->used_length,
3497 QEMU_MADV_DONTDUMP);
3498 }
3499 }
3500 }
3501
3502 /*
3503 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3504 * with to decide which page in cache should be flushed into SVM's RAM. Here
3505 * we use the same name 'ram_bitmap' as for migration.
3506 */
3507 if (ram_bytes_total()) {
3508 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3509 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3510 block->bmap = bitmap_new(pages);
3511 }
3512 }
3513
3514 colo_init_ram_state();
3515 return 0;
3516 }
3517
3518 /* TODO: duplicated with ram_init_bitmaps */
3519 void colo_incoming_start_dirty_log(void)
3520 {
3521 RAMBlock *block = NULL;
3522 /* For memory_global_dirty_log_start below. */
3523 qemu_mutex_lock_iothread();
3524 qemu_mutex_lock_ramlist();
3525
3526 memory_global_dirty_log_sync(false);
3527 WITH_RCU_READ_LOCK_GUARD() {
3528 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3529 ramblock_sync_dirty_bitmap(ram_state, block);
3530 /* Discard this dirty bitmap record */
3531 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3532 }
3533 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3534 }
3535 ram_state->migration_dirty_pages = 0;
3536 qemu_mutex_unlock_ramlist();
3537 qemu_mutex_unlock_iothread();
3538 }
3539
3540 /* It is need to hold the global lock to call this helper */
3541 void colo_release_ram_cache(void)
3542 {
3543 RAMBlock *block;
3544
3545 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3546 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3547 g_free(block->bmap);
3548 block->bmap = NULL;
3549 }
3550
3551 WITH_RCU_READ_LOCK_GUARD() {
3552 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3553 if (block->colo_cache) {
3554 qemu_anon_ram_free(block->colo_cache, block->used_length);
3555 block->colo_cache = NULL;
3556 }
3557 }
3558 }
3559 ram_state_cleanup(&ram_state);
3560 }
3561
3562 /**
3563 * ram_load_setup: Setup RAM for migration incoming side
3564 *
3565 * Returns zero to indicate success and negative for error
3566 *
3567 * @f: QEMUFile where to receive the data
3568 * @opaque: RAMState pointer
3569 */
3570 static int ram_load_setup(QEMUFile *f, void *opaque)
3571 {
3572 xbzrle_load_setup();
3573 ramblock_recv_map_init();
3574
3575 return 0;
3576 }
3577
3578 static int ram_load_cleanup(void *opaque)
3579 {
3580 RAMBlock *rb;
3581
3582 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3583 qemu_ram_block_writeback(rb);
3584 }
3585
3586 xbzrle_load_cleanup();
3587
3588 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3589 g_free(rb->receivedmap);
3590 rb->receivedmap = NULL;
3591 }
3592
3593 return 0;
3594 }
3595
3596 /**
3597 * ram_postcopy_incoming_init: allocate postcopy data structures
3598 *
3599 * Returns 0 for success and negative if there was one error
3600 *
3601 * @mis: current migration incoming state
3602 *
3603 * Allocate data structures etc needed by incoming migration with
3604 * postcopy-ram. postcopy-ram's similarly names
3605 * postcopy_ram_incoming_init does the work.
3606 */
3607 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3608 {
3609 return postcopy_ram_incoming_init(mis);
3610 }
3611
3612 /**
3613 * ram_load_postcopy: load a page in postcopy case
3614 *
3615 * Returns 0 for success or -errno in case of error
3616 *
3617 * Called in postcopy mode by ram_load().
3618 * rcu_read_lock is taken prior to this being called.
3619 *
3620 * @f: QEMUFile where to send the data
3621 * @channel: the channel to use for loading
3622 */
3623 int ram_load_postcopy(QEMUFile *f, int channel)
3624 {
3625 int flags = 0, ret = 0;
3626 bool place_needed = false;
3627 bool matches_target_page_size = false;
3628 MigrationIncomingState *mis = migration_incoming_get_current();
3629 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3630
3631 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3632 ram_addr_t addr;
3633 void *page_buffer = NULL;
3634 void *place_source = NULL;
3635 RAMBlock *block = NULL;
3636 uint8_t ch;
3637 int len;
3638
3639 addr = qemu_get_be64(f);
3640
3641 /*
3642 * If qemu file error, we should stop here, and then "addr"
3643 * may be invalid
3644 */
3645 ret = qemu_file_get_error(f);
3646 if (ret) {
3647 break;
3648 }
3649
3650 flags = addr & ~TARGET_PAGE_MASK;
3651 addr &= TARGET_PAGE_MASK;
3652
3653 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3654 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3655 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3656 block = ram_block_from_stream(mis, f, flags, channel);
3657 if (!block) {
3658 ret = -EINVAL;
3659 break;
3660 }
3661
3662 /*
3663 * Relying on used_length is racy and can result in false positives.
3664 * We might place pages beyond used_length in case RAM was shrunk
3665 * while in postcopy, which is fine - trying to place via
3666 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3667 */
3668 if (!block->host || addr >= block->postcopy_length) {
3669 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3670 ret = -EINVAL;
3671 break;
3672 }
3673 tmp_page->target_pages++;
3674 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3675 /*
3676 * Postcopy requires that we place whole host pages atomically;
3677 * these may be huge pages for RAMBlocks that are backed by
3678 * hugetlbfs.
3679 * To make it atomic, the data is read into a temporary page
3680 * that's moved into place later.
3681 * The migration protocol uses, possibly smaller, target-pages
3682 * however the source ensures it always sends all the components
3683 * of a host page in one chunk.
3684 */
3685 page_buffer = tmp_page->tmp_huge_page +
3686 host_page_offset_from_ram_block_offset(block, addr);
3687 /* If all TP are zero then we can optimise the place */
3688 if (tmp_page->target_pages == 1) {
3689 tmp_page->host_addr =
3690 host_page_from_ram_block_offset(block, addr);
3691 } else if (tmp_page->host_addr !=
3692 host_page_from_ram_block_offset(block, addr)) {
3693 /* not the 1st TP within the HP */
3694 error_report("Non-same host page detected on channel %d: "
3695 "Target host page %p, received host page %p "
3696 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3697 channel, tmp_page->host_addr,
3698 host_page_from_ram_block_offset(block, addr),
3699 block->idstr, addr, tmp_page->target_pages);
3700 ret = -EINVAL;
3701 break;
3702 }
3703
3704 /*
3705 * If it's the last part of a host page then we place the host
3706 * page
3707 */
3708 if (tmp_page->target_pages ==
3709 (block->page_size / TARGET_PAGE_SIZE)) {
3710 place_needed = true;
3711 }
3712 place_source = tmp_page->tmp_huge_page;
3713 }
3714
3715 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3716 case RAM_SAVE_FLAG_ZERO:
3717 ch = qemu_get_byte(f);
3718 /*
3719 * Can skip to set page_buffer when
3720 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3721 */
3722 if (ch || !matches_target_page_size) {
3723 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3724 }
3725 if (ch) {
3726 tmp_page->all_zero = false;
3727 }
3728 break;
3729
3730 case RAM_SAVE_FLAG_PAGE:
3731 tmp_page->all_zero = false;
3732 if (!matches_target_page_size) {
3733 /* For huge pages, we always use temporary buffer */
3734 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3735 } else {
3736 /*
3737 * For small pages that matches target page size, we
3738 * avoid the qemu_file copy. Instead we directly use
3739 * the buffer of QEMUFile to place the page. Note: we
3740 * cannot do any QEMUFile operation before using that
3741 * buffer to make sure the buffer is valid when
3742 * placing the page.
3743 */
3744 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3745 TARGET_PAGE_SIZE);
3746 }
3747 break;
3748 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3749 tmp_page->all_zero = false;
3750 len = qemu_get_be32(f);
3751 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3752 error_report("Invalid compressed data length: %d", len);
3753 ret = -EINVAL;
3754 break;
3755 }
3756 decompress_data_with_multi_threads(f, page_buffer, len);
3757 break;
3758 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3759 multifd_recv_sync_main();
3760 break;
3761 case RAM_SAVE_FLAG_EOS:
3762 /* normal exit */
3763 if (migrate_multifd() &&
3764 migrate_multifd_flush_after_each_section()) {
3765 multifd_recv_sync_main();
3766 }
3767 break;
3768 default:
3769 error_report("Unknown combination of migration flags: 0x%x"
3770 " (postcopy mode)", flags);
3771 ret = -EINVAL;
3772 break;
3773 }
3774
3775 /* Got the whole host page, wait for decompress before placing. */
3776 if (place_needed) {
3777 ret |= wait_for_decompress_done();
3778 }
3779
3780 /* Detect for any possible file errors */
3781 if (!ret && qemu_file_get_error(f)) {
3782 ret = qemu_file_get_error(f);
3783 }
3784
3785 if (!ret && place_needed) {
3786 if (tmp_page->all_zero) {
3787 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3788 } else {
3789 ret = postcopy_place_page(mis, tmp_page->host_addr,
3790 place_source, block);
3791 }
3792 place_needed = false;
3793 postcopy_temp_page_reset(tmp_page);
3794 }
3795 }
3796
3797 return ret;
3798 }
3799
3800 static bool postcopy_is_running(void)
3801 {
3802 PostcopyState ps = postcopy_state_get();
3803 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3804 }
3805
3806 /*
3807 * Flush content of RAM cache into SVM's memory.
3808 * Only flush the pages that be dirtied by PVM or SVM or both.
3809 */
3810 void colo_flush_ram_cache(void)
3811 {
3812 RAMBlock *block = NULL;
3813 void *dst_host;
3814 void *src_host;
3815 unsigned long offset = 0;
3816
3817 memory_global_dirty_log_sync(false);
3818 qemu_mutex_lock(&ram_state->bitmap_mutex);
3819 WITH_RCU_READ_LOCK_GUARD() {
3820 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3821 ramblock_sync_dirty_bitmap(ram_state, block);
3822 }
3823 }
3824
3825 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3826 WITH_RCU_READ_LOCK_GUARD() {
3827 block = QLIST_FIRST_RCU(&ram_list.blocks);
3828
3829 while (block) {
3830 unsigned long num = 0;
3831
3832 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3833 if (!offset_in_ramblock(block,
3834 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3835 offset = 0;
3836 num = 0;
3837 block = QLIST_NEXT_RCU(block, next);
3838 } else {
3839 unsigned long i = 0;
3840
3841 for (i = 0; i < num; i++) {
3842 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3843 }
3844 dst_host = block->host
3845 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3846 src_host = block->colo_cache
3847 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3848 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3849 offset += num;
3850 }
3851 }
3852 }
3853 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3854 trace_colo_flush_ram_cache_end();
3855 }
3856
3857 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
3858 {
3859 int ret = 0;
3860 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3861 bool postcopy_advised = migration_incoming_postcopy_advised();
3862
3863 assert(block);
3864
3865 if (!qemu_ram_is_migratable(block)) {
3866 error_report("block %s should not be migrated !", block->idstr);
3867 return -EINVAL;
3868 }
3869
3870 if (length != block->used_length) {
3871 Error *local_err = NULL;
3872
3873 ret = qemu_ram_resize(block, length, &local_err);
3874 if (local_err) {
3875 error_report_err(local_err);
3876 return ret;
3877 }
3878 }
3879 /* For postcopy we need to check hugepage sizes match */
3880 if (postcopy_advised && migrate_postcopy_ram() &&
3881 block->page_size != qemu_host_page_size) {
3882 uint64_t remote_page_size = qemu_get_be64(f);
3883 if (remote_page_size != block->page_size) {
3884 error_report("Mismatched RAM page size %s "
3885 "(local) %zd != %" PRId64, block->idstr,
3886 block->page_size, remote_page_size);
3887 return -EINVAL;
3888 }
3889 }
3890 if (migrate_ignore_shared()) {
3891 hwaddr addr = qemu_get_be64(f);
3892 if (migrate_ram_is_ignored(block) &&
3893 block->mr->addr != addr) {
3894 error_report("Mismatched GPAs for block %s "
3895 "%" PRId64 "!= %" PRId64, block->idstr,
3896 (uint64_t)addr, (uint64_t)block->mr->addr);
3897 return -EINVAL;
3898 }
3899 }
3900 ret = rdma_block_notification_handle(f, block->idstr);
3901 if (ret < 0) {
3902 qemu_file_set_error(f, ret);
3903 }
3904
3905 return ret;
3906 }
3907
3908 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
3909 {
3910 int ret = 0;
3911
3912 /* Synchronize RAM block list */
3913 while (!ret && total_ram_bytes) {
3914 RAMBlock *block;
3915 char id[256];
3916 ram_addr_t length;
3917 int len = qemu_get_byte(f);
3918
3919 qemu_get_buffer(f, (uint8_t *)id, len);
3920 id[len] = 0;
3921 length = qemu_get_be64(f);
3922
3923 block = qemu_ram_block_by_name(id);
3924 if (block) {
3925 ret = parse_ramblock(f, block, length);
3926 } else {
3927 error_report("Unknown ramblock \"%s\", cannot accept "
3928 "migration", id);
3929 ret = -EINVAL;
3930 }
3931 total_ram_bytes -= length;
3932 }
3933
3934 return ret;
3935 }
3936
3937 /**
3938 * ram_load_precopy: load pages in precopy case
3939 *
3940 * Returns 0 for success or -errno in case of error
3941 *
3942 * Called in precopy mode by ram_load().
3943 * rcu_read_lock is taken prior to this being called.
3944 *
3945 * @f: QEMUFile where to send the data
3946 */
3947 static int ram_load_precopy(QEMUFile *f)
3948 {
3949 MigrationIncomingState *mis = migration_incoming_get_current();
3950 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3951
3952 if (!migrate_compress()) {
3953 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3954 }
3955
3956 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3957 ram_addr_t addr;
3958 void *host = NULL, *host_bak = NULL;
3959 uint8_t ch;
3960
3961 /*
3962 * Yield periodically to let main loop run, but an iteration of
3963 * the main loop is expensive, so do it each some iterations
3964 */
3965 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3966 aio_co_schedule(qemu_get_current_aio_context(),
3967 qemu_coroutine_self());
3968 qemu_coroutine_yield();
3969 }
3970 i++;
3971
3972 addr = qemu_get_be64(f);
3973 flags = addr & ~TARGET_PAGE_MASK;
3974 addr &= TARGET_PAGE_MASK;
3975
3976 if (flags & invalid_flags) {
3977 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3978 error_report("Received an unexpected compressed page");
3979 }
3980
3981 ret = -EINVAL;
3982 break;
3983 }
3984
3985 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3986 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3987 RAMBlock *block = ram_block_from_stream(mis, f, flags,
3988 RAM_CHANNEL_PRECOPY);
3989
3990 host = host_from_ram_block_offset(block, addr);
3991 /*
3992 * After going into COLO stage, we should not load the page
3993 * into SVM's memory directly, we put them into colo_cache firstly.
3994 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3995 * Previously, we copied all these memory in preparing stage of COLO
3996 * while we need to stop VM, which is a time-consuming process.
3997 * Here we optimize it by a trick, back-up every page while in
3998 * migration process while COLO is enabled, though it affects the
3999 * speed of the migration, but it obviously reduce the downtime of
4000 * back-up all SVM'S memory in COLO preparing stage.
4001 */
4002 if (migration_incoming_colo_enabled()) {
4003 if (migration_incoming_in_colo_state()) {
4004 /* In COLO stage, put all pages into cache temporarily */
4005 host = colo_cache_from_block_offset(block, addr, true);
4006 } else {
4007 /*
4008 * In migration stage but before COLO stage,
4009 * Put all pages into both cache and SVM's memory.
4010 */
4011 host_bak = colo_cache_from_block_offset(block, addr, false);
4012 }
4013 }
4014 if (!host) {
4015 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4016 ret = -EINVAL;
4017 break;
4018 }
4019 if (!migration_incoming_in_colo_state()) {
4020 ramblock_recv_bitmap_set(block, host);
4021 }
4022
4023 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4024 }
4025
4026 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4027 case RAM_SAVE_FLAG_MEM_SIZE:
4028 ret = parse_ramblocks(f, addr);
4029 break;
4030
4031 case RAM_SAVE_FLAG_ZERO:
4032 ch = qemu_get_byte(f);
4033 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4034 break;
4035
4036 case RAM_SAVE_FLAG_PAGE:
4037 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4038 break;
4039
4040 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4041 len = qemu_get_be32(f);
4042 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4043 error_report("Invalid compressed data length: %d", len);
4044 ret = -EINVAL;
4045 break;
4046 }
4047 decompress_data_with_multi_threads(f, host, len);
4048 break;
4049
4050 case RAM_SAVE_FLAG_XBZRLE:
4051 if (load_xbzrle(f, addr, host) < 0) {
4052 error_report("Failed to decompress XBZRLE page at "
4053 RAM_ADDR_FMT, addr);
4054 ret = -EINVAL;
4055 break;
4056 }
4057 break;
4058 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4059 multifd_recv_sync_main();
4060 break;
4061 case RAM_SAVE_FLAG_EOS:
4062 /* normal exit */
4063 if (migrate_multifd() &&
4064 migrate_multifd_flush_after_each_section()) {
4065 multifd_recv_sync_main();
4066 }
4067 break;
4068 case RAM_SAVE_FLAG_HOOK:
4069 ret = rdma_registration_handle(f);
4070 if (ret < 0) {
4071 qemu_file_set_error(f, ret);
4072 }
4073 break;
4074 default:
4075 error_report("Unknown combination of migration flags: 0x%x", flags);
4076 ret = -EINVAL;
4077 }
4078 if (!ret) {
4079 ret = qemu_file_get_error(f);
4080 }
4081 if (!ret && host_bak) {
4082 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4083 }
4084 }
4085
4086 ret |= wait_for_decompress_done();
4087 return ret;
4088 }
4089
4090 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4091 {
4092 int ret = 0;
4093 static uint64_t seq_iter;
4094 /*
4095 * If system is running in postcopy mode, page inserts to host memory must
4096 * be atomic
4097 */
4098 bool postcopy_running = postcopy_is_running();
4099
4100 seq_iter++;
4101
4102 if (version_id != 4) {
4103 return -EINVAL;
4104 }
4105
4106 /*
4107 * This RCU critical section can be very long running.
4108 * When RCU reclaims in the code start to become numerous,
4109 * it will be necessary to reduce the granularity of this
4110 * critical section.
4111 */
4112 WITH_RCU_READ_LOCK_GUARD() {
4113 if (postcopy_running) {
4114 /*
4115 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4116 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4117 * service fast page faults.
4118 */
4119 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4120 } else {
4121 ret = ram_load_precopy(f);
4122 }
4123 }
4124 trace_ram_load_complete(ret, seq_iter);
4125
4126 return ret;
4127 }
4128
4129 static bool ram_has_postcopy(void *opaque)
4130 {
4131 RAMBlock *rb;
4132 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4133 if (ramblock_is_pmem(rb)) {
4134 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4135 "is not supported now!", rb->idstr, rb->host);
4136 return false;
4137 }
4138 }
4139
4140 return migrate_postcopy_ram();
4141 }
4142
4143 /* Sync all the dirty bitmap with destination VM. */
4144 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4145 {
4146 RAMBlock *block;
4147 QEMUFile *file = s->to_dst_file;
4148
4149 trace_ram_dirty_bitmap_sync_start();
4150
4151 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4152 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4153 qemu_savevm_send_recv_bitmap(file, block->idstr);
4154 trace_ram_dirty_bitmap_request(block->idstr);
4155 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4156 }
4157
4158 trace_ram_dirty_bitmap_sync_wait();
4159
4160 /* Wait until all the ramblocks' dirty bitmap synced */
4161 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4162 migration_rp_wait(s);
4163 }
4164
4165 trace_ram_dirty_bitmap_sync_complete();
4166
4167 return 0;
4168 }
4169
4170 /*
4171 * Read the received bitmap, revert it as the initial dirty bitmap.
4172 * This is only used when the postcopy migration is paused but wants
4173 * to resume from a middle point.
4174 */
4175 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4176 {
4177 int ret = -EINVAL;
4178 /* from_dst_file is always valid because we're within rp_thread */
4179 QEMUFile *file = s->rp_state.from_dst_file;
4180 g_autofree unsigned long *le_bitmap = NULL;
4181 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4182 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4183 uint64_t size, end_mark;
4184 RAMState *rs = ram_state;
4185
4186 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4187
4188 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4189 error_report("%s: incorrect state %s", __func__,
4190 MigrationStatus_str(s->state));
4191 return -EINVAL;
4192 }
4193
4194 /*
4195 * Note: see comments in ramblock_recv_bitmap_send() on why we
4196 * need the endianness conversion, and the paddings.
4197 */
4198 local_size = ROUND_UP(local_size, 8);
4199
4200 /* Add paddings */
4201 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4202
4203 size = qemu_get_be64(file);
4204
4205 /* The size of the bitmap should match with our ramblock */
4206 if (size != local_size) {
4207 error_report("%s: ramblock '%s' bitmap size mismatch "
4208 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4209 block->idstr, size, local_size);
4210 return -EINVAL;
4211 }
4212
4213 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4214 end_mark = qemu_get_be64(file);
4215
4216 ret = qemu_file_get_error(file);
4217 if (ret || size != local_size) {
4218 error_report("%s: read bitmap failed for ramblock '%s': %d"
4219 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4220 __func__, block->idstr, ret, local_size, size);
4221 return -EIO;
4222 }
4223
4224 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4225 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4226 __func__, block->idstr, end_mark);
4227 return -EINVAL;
4228 }
4229
4230 /*
4231 * Endianness conversion. We are during postcopy (though paused).
4232 * The dirty bitmap won't change. We can directly modify it.
4233 */
4234 bitmap_from_le(block->bmap, le_bitmap, nbits);
4235
4236 /*
4237 * What we received is "received bitmap". Revert it as the initial
4238 * dirty bitmap for this ramblock.
4239 */
4240 bitmap_complement(block->bmap, block->bmap, nbits);
4241
4242 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4243 ramblock_dirty_bitmap_clear_discarded_pages(block);
4244
4245 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4246 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4247
4248 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4249
4250 /*
4251 * We succeeded to sync bitmap for current ramblock. Always kick the
4252 * migration thread to check whether all requested bitmaps are
4253 * reloaded. NOTE: it's racy to only kick when requested==0, because
4254 * we don't know whether the migration thread may still be increasing
4255 * it.
4256 */
4257 migration_rp_kick(s);
4258
4259 return 0;
4260 }
4261
4262 static int ram_resume_prepare(MigrationState *s, void *opaque)
4263 {
4264 RAMState *rs = *(RAMState **)opaque;
4265 int ret;
4266
4267 ret = ram_dirty_bitmap_sync_all(s, rs);
4268 if (ret) {
4269 return ret;
4270 }
4271
4272 ram_state_resume_prepare(rs, s->to_dst_file);
4273
4274 return 0;
4275 }
4276
4277 void postcopy_preempt_shutdown_file(MigrationState *s)
4278 {
4279 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4280 qemu_fflush(s->postcopy_qemufile_src);
4281 }
4282
4283 static SaveVMHandlers savevm_ram_handlers = {
4284 .save_setup = ram_save_setup,
4285 .save_live_iterate = ram_save_iterate,
4286 .save_live_complete_postcopy = ram_save_complete,
4287 .save_live_complete_precopy = ram_save_complete,
4288 .has_postcopy = ram_has_postcopy,
4289 .state_pending_exact = ram_state_pending_exact,
4290 .state_pending_estimate = ram_state_pending_estimate,
4291 .load_state = ram_load,
4292 .save_cleanup = ram_save_cleanup,
4293 .load_setup = ram_load_setup,
4294 .load_cleanup = ram_load_cleanup,
4295 .resume_prepare = ram_resume_prepare,
4296 };
4297
4298 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4299 size_t old_size, size_t new_size)
4300 {
4301 PostcopyState ps = postcopy_state_get();
4302 ram_addr_t offset;
4303 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4304 Error *err = NULL;
4305
4306 if (!rb) {
4307 error_report("RAM block not found");
4308 return;
4309 }
4310
4311 if (migrate_ram_is_ignored(rb)) {
4312 return;
4313 }
4314
4315 if (!migration_is_idle()) {
4316 /*
4317 * Precopy code on the source cannot deal with the size of RAM blocks
4318 * changing at random points in time - especially after sending the
4319 * RAM block sizes in the migration stream, they must no longer change.
4320 * Abort and indicate a proper reason.
4321 */
4322 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4323 migration_cancel(err);
4324 error_free(err);
4325 }
4326
4327 switch (ps) {
4328 case POSTCOPY_INCOMING_ADVISE:
4329 /*
4330 * Update what ram_postcopy_incoming_init()->init_range() does at the
4331 * time postcopy was advised. Syncing RAM blocks with the source will
4332 * result in RAM resizes.
4333 */
4334 if (old_size < new_size) {
4335 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4336 error_report("RAM block '%s' discard of resized RAM failed",
4337 rb->idstr);
4338 }
4339 }
4340 rb->postcopy_length = new_size;
4341 break;
4342 case POSTCOPY_INCOMING_NONE:
4343 case POSTCOPY_INCOMING_RUNNING:
4344 case POSTCOPY_INCOMING_END:
4345 /*
4346 * Once our guest is running, postcopy does no longer care about
4347 * resizes. When growing, the new memory was not available on the
4348 * source, no handler needed.
4349 */
4350 break;
4351 default:
4352 error_report("RAM block '%s' resized during postcopy state: %d",
4353 rb->idstr, ps);
4354 exit(-1);
4355 }
4356 }
4357
4358 static RAMBlockNotifier ram_mig_ram_notifier = {
4359 .ram_block_resized = ram_mig_ram_block_resized,
4360 };
4361
4362 void ram_mig_init(void)
4363 {
4364 qemu_mutex_init(&XBZRLE.lock);
4365 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4366 ram_block_notifier_add(&ram_mig_ram_notifier);
4367 }