]> git.proxmox.com Git - mirror_qemu.git/blob - migration/rdma.c
block/copy-before-write: implement cbw-timeout option
[mirror_qemu.git] / migration / rdma.c
1 /*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
6 *
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
14 *
15 */
16
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu/error-report.h"
25 #include "qemu/main-loop.h"
26 #include "qemu/module.h"
27 #include "qemu/rcu.h"
28 #include "qemu/sockets.h"
29 #include "qemu/bitmap.h"
30 #include "qemu/coroutine.h"
31 #include "exec/memory.h"
32 #include <sys/socket.h>
33 #include <netdb.h>
34 #include <arpa/inet.h>
35 #include <rdma/rdma_cma.h>
36 #include "trace.h"
37 #include "qom/object.h"
38 #include <poll.h>
39
40 /*
41 * Print and error on both the Monitor and the Log file.
42 */
43 #define ERROR(errp, fmt, ...) \
44 do { \
45 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
46 if (errp && (*(errp) == NULL)) { \
47 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
48 } \
49 } while (0)
50
51 #define RDMA_RESOLVE_TIMEOUT_MS 10000
52
53 /* Do not merge data if larger than this. */
54 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
55 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
56
57 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
58
59 /*
60 * This is only for non-live state being migrated.
61 * Instead of RDMA_WRITE messages, we use RDMA_SEND
62 * messages for that state, which requires a different
63 * delivery design than main memory.
64 */
65 #define RDMA_SEND_INCREMENT 32768
66
67 /*
68 * Maximum size infiniband SEND message
69 */
70 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
71 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
72
73 #define RDMA_CONTROL_VERSION_CURRENT 1
74 /*
75 * Capabilities for negotiation.
76 */
77 #define RDMA_CAPABILITY_PIN_ALL 0x01
78
79 /*
80 * Add the other flags above to this list of known capabilities
81 * as they are introduced.
82 */
83 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
84
85 #define CHECK_ERROR_STATE() \
86 do { \
87 if (rdma->error_state) { \
88 if (!rdma->error_reported) { \
89 error_report("RDMA is in an error state waiting migration" \
90 " to abort!"); \
91 rdma->error_reported = 1; \
92 } \
93 return rdma->error_state; \
94 } \
95 } while (0)
96
97 /*
98 * A work request ID is 64-bits and we split up these bits
99 * into 3 parts:
100 *
101 * bits 0-15 : type of control message, 2^16
102 * bits 16-29: ram block index, 2^14
103 * bits 30-63: ram block chunk number, 2^34
104 *
105 * The last two bit ranges are only used for RDMA writes,
106 * in order to track their completion and potentially
107 * also track unregistration status of the message.
108 */
109 #define RDMA_WRID_TYPE_SHIFT 0UL
110 #define RDMA_WRID_BLOCK_SHIFT 16UL
111 #define RDMA_WRID_CHUNK_SHIFT 30UL
112
113 #define RDMA_WRID_TYPE_MASK \
114 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
115
116 #define RDMA_WRID_BLOCK_MASK \
117 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
118
119 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
120
121 /*
122 * RDMA migration protocol:
123 * 1. RDMA Writes (data messages, i.e. RAM)
124 * 2. IB Send/Recv (control channel messages)
125 */
126 enum {
127 RDMA_WRID_NONE = 0,
128 RDMA_WRID_RDMA_WRITE = 1,
129 RDMA_WRID_SEND_CONTROL = 2000,
130 RDMA_WRID_RECV_CONTROL = 4000,
131 };
132
133 static const char *wrid_desc[] = {
134 [RDMA_WRID_NONE] = "NONE",
135 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
136 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
137 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
138 };
139
140 /*
141 * Work request IDs for IB SEND messages only (not RDMA writes).
142 * This is used by the migration protocol to transmit
143 * control messages (such as device state and registration commands)
144 *
145 * We could use more WRs, but we have enough for now.
146 */
147 enum {
148 RDMA_WRID_READY = 0,
149 RDMA_WRID_DATA,
150 RDMA_WRID_CONTROL,
151 RDMA_WRID_MAX,
152 };
153
154 /*
155 * SEND/RECV IB Control Messages.
156 */
157 enum {
158 RDMA_CONTROL_NONE = 0,
159 RDMA_CONTROL_ERROR,
160 RDMA_CONTROL_READY, /* ready to receive */
161 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
162 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
163 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
164 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
165 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
166 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
167 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
168 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
169 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
170 };
171
172
173 /*
174 * Memory and MR structures used to represent an IB Send/Recv work request.
175 * This is *not* used for RDMA writes, only IB Send/Recv.
176 */
177 typedef struct {
178 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
179 struct ibv_mr *control_mr; /* registration metadata */
180 size_t control_len; /* length of the message */
181 uint8_t *control_curr; /* start of unconsumed bytes */
182 } RDMAWorkRequestData;
183
184 /*
185 * Negotiate RDMA capabilities during connection-setup time.
186 */
187 typedef struct {
188 uint32_t version;
189 uint32_t flags;
190 } RDMACapabilities;
191
192 static void caps_to_network(RDMACapabilities *cap)
193 {
194 cap->version = htonl(cap->version);
195 cap->flags = htonl(cap->flags);
196 }
197
198 static void network_to_caps(RDMACapabilities *cap)
199 {
200 cap->version = ntohl(cap->version);
201 cap->flags = ntohl(cap->flags);
202 }
203
204 /*
205 * Representation of a RAMBlock from an RDMA perspective.
206 * This is not transmitted, only local.
207 * This and subsequent structures cannot be linked lists
208 * because we're using a single IB message to transmit
209 * the information. It's small anyway, so a list is overkill.
210 */
211 typedef struct RDMALocalBlock {
212 char *block_name;
213 uint8_t *local_host_addr; /* local virtual address */
214 uint64_t remote_host_addr; /* remote virtual address */
215 uint64_t offset;
216 uint64_t length;
217 struct ibv_mr **pmr; /* MRs for chunk-level registration */
218 struct ibv_mr *mr; /* MR for non-chunk-level registration */
219 uint32_t *remote_keys; /* rkeys for chunk-level registration */
220 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
221 int index; /* which block are we */
222 unsigned int src_index; /* (Only used on dest) */
223 bool is_ram_block;
224 int nb_chunks;
225 unsigned long *transit_bitmap;
226 unsigned long *unregister_bitmap;
227 } RDMALocalBlock;
228
229 /*
230 * Also represents a RAMblock, but only on the dest.
231 * This gets transmitted by the dest during connection-time
232 * to the source VM and then is used to populate the
233 * corresponding RDMALocalBlock with
234 * the information needed to perform the actual RDMA.
235 */
236 typedef struct QEMU_PACKED RDMADestBlock {
237 uint64_t remote_host_addr;
238 uint64_t offset;
239 uint64_t length;
240 uint32_t remote_rkey;
241 uint32_t padding;
242 } RDMADestBlock;
243
244 static const char *control_desc(unsigned int rdma_control)
245 {
246 static const char *strs[] = {
247 [RDMA_CONTROL_NONE] = "NONE",
248 [RDMA_CONTROL_ERROR] = "ERROR",
249 [RDMA_CONTROL_READY] = "READY",
250 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
251 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
252 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
253 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
254 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
255 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
256 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
257 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
258 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
259 };
260
261 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
262 return "??BAD CONTROL VALUE??";
263 }
264
265 return strs[rdma_control];
266 }
267
268 static uint64_t htonll(uint64_t v)
269 {
270 union { uint32_t lv[2]; uint64_t llv; } u;
271 u.lv[0] = htonl(v >> 32);
272 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
273 return u.llv;
274 }
275
276 static uint64_t ntohll(uint64_t v)
277 {
278 union { uint32_t lv[2]; uint64_t llv; } u;
279 u.llv = v;
280 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
281 }
282
283 static void dest_block_to_network(RDMADestBlock *db)
284 {
285 db->remote_host_addr = htonll(db->remote_host_addr);
286 db->offset = htonll(db->offset);
287 db->length = htonll(db->length);
288 db->remote_rkey = htonl(db->remote_rkey);
289 }
290
291 static void network_to_dest_block(RDMADestBlock *db)
292 {
293 db->remote_host_addr = ntohll(db->remote_host_addr);
294 db->offset = ntohll(db->offset);
295 db->length = ntohll(db->length);
296 db->remote_rkey = ntohl(db->remote_rkey);
297 }
298
299 /*
300 * Virtual address of the above structures used for transmitting
301 * the RAMBlock descriptions at connection-time.
302 * This structure is *not* transmitted.
303 */
304 typedef struct RDMALocalBlocks {
305 int nb_blocks;
306 bool init; /* main memory init complete */
307 RDMALocalBlock *block;
308 } RDMALocalBlocks;
309
310 /*
311 * Main data structure for RDMA state.
312 * While there is only one copy of this structure being allocated right now,
313 * this is the place where one would start if you wanted to consider
314 * having more than one RDMA connection open at the same time.
315 */
316 typedef struct RDMAContext {
317 char *host;
318 int port;
319 char *host_port;
320
321 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
322
323 /*
324 * This is used by *_exchange_send() to figure out whether or not
325 * the initial "READY" message has already been received or not.
326 * This is because other functions may potentially poll() and detect
327 * the READY message before send() does, in which case we need to
328 * know if it completed.
329 */
330 int control_ready_expected;
331
332 /* number of outstanding writes */
333 int nb_sent;
334
335 /* store info about current buffer so that we can
336 merge it with future sends */
337 uint64_t current_addr;
338 uint64_t current_length;
339 /* index of ram block the current buffer belongs to */
340 int current_index;
341 /* index of the chunk in the current ram block */
342 int current_chunk;
343
344 bool pin_all;
345
346 /*
347 * infiniband-specific variables for opening the device
348 * and maintaining connection state and so forth.
349 *
350 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
351 * cm_id->verbs, cm_id->channel, and cm_id->qp.
352 */
353 struct rdma_cm_id *cm_id; /* connection manager ID */
354 struct rdma_cm_id *listen_id;
355 bool connected;
356
357 struct ibv_context *verbs;
358 struct rdma_event_channel *channel;
359 struct ibv_qp *qp; /* queue pair */
360 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
361 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
362 struct ibv_pd *pd; /* protection domain */
363 struct ibv_cq *recv_cq; /* recvieve completion queue */
364 struct ibv_cq *send_cq; /* send completion queue */
365
366 /*
367 * If a previous write failed (perhaps because of a failed
368 * memory registration, then do not attempt any future work
369 * and remember the error state.
370 */
371 int error_state;
372 int error_reported;
373 int received_error;
374
375 /*
376 * Description of ram blocks used throughout the code.
377 */
378 RDMALocalBlocks local_ram_blocks;
379 RDMADestBlock *dest_blocks;
380
381 /* Index of the next RAMBlock received during block registration */
382 unsigned int next_src_index;
383
384 /*
385 * Migration on *destination* started.
386 * Then use coroutine yield function.
387 * Source runs in a thread, so we don't care.
388 */
389 int migration_started_on_destination;
390
391 int total_registrations;
392 int total_writes;
393
394 int unregister_current, unregister_next;
395 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
396
397 GHashTable *blockmap;
398
399 /* the RDMAContext for return path */
400 struct RDMAContext *return_path;
401 bool is_return_path;
402 } RDMAContext;
403
404 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
405 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
406
407
408
409 struct QIOChannelRDMA {
410 QIOChannel parent;
411 RDMAContext *rdmain;
412 RDMAContext *rdmaout;
413 QEMUFile *file;
414 bool blocking; /* XXX we don't actually honour this yet */
415 };
416
417 /*
418 * Main structure for IB Send/Recv control messages.
419 * This gets prepended at the beginning of every Send/Recv.
420 */
421 typedef struct QEMU_PACKED {
422 uint32_t len; /* Total length of data portion */
423 uint32_t type; /* which control command to perform */
424 uint32_t repeat; /* number of commands in data portion of same type */
425 uint32_t padding;
426 } RDMAControlHeader;
427
428 static void control_to_network(RDMAControlHeader *control)
429 {
430 control->type = htonl(control->type);
431 control->len = htonl(control->len);
432 control->repeat = htonl(control->repeat);
433 }
434
435 static void network_to_control(RDMAControlHeader *control)
436 {
437 control->type = ntohl(control->type);
438 control->len = ntohl(control->len);
439 control->repeat = ntohl(control->repeat);
440 }
441
442 /*
443 * Register a single Chunk.
444 * Information sent by the source VM to inform the dest
445 * to register an single chunk of memory before we can perform
446 * the actual RDMA operation.
447 */
448 typedef struct QEMU_PACKED {
449 union QEMU_PACKED {
450 uint64_t current_addr; /* offset into the ram_addr_t space */
451 uint64_t chunk; /* chunk to lookup if unregistering */
452 } key;
453 uint32_t current_index; /* which ramblock the chunk belongs to */
454 uint32_t padding;
455 uint64_t chunks; /* how many sequential chunks to register */
456 } RDMARegister;
457
458 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
459 {
460 RDMALocalBlock *local_block;
461 local_block = &rdma->local_ram_blocks.block[reg->current_index];
462
463 if (local_block->is_ram_block) {
464 /*
465 * current_addr as passed in is an address in the local ram_addr_t
466 * space, we need to translate this for the destination
467 */
468 reg->key.current_addr -= local_block->offset;
469 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
470 }
471 reg->key.current_addr = htonll(reg->key.current_addr);
472 reg->current_index = htonl(reg->current_index);
473 reg->chunks = htonll(reg->chunks);
474 }
475
476 static void network_to_register(RDMARegister *reg)
477 {
478 reg->key.current_addr = ntohll(reg->key.current_addr);
479 reg->current_index = ntohl(reg->current_index);
480 reg->chunks = ntohll(reg->chunks);
481 }
482
483 typedef struct QEMU_PACKED {
484 uint32_t value; /* if zero, we will madvise() */
485 uint32_t block_idx; /* which ram block index */
486 uint64_t offset; /* Address in remote ram_addr_t space */
487 uint64_t length; /* length of the chunk */
488 } RDMACompress;
489
490 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
491 {
492 comp->value = htonl(comp->value);
493 /*
494 * comp->offset as passed in is an address in the local ram_addr_t
495 * space, we need to translate this for the destination
496 */
497 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
498 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
499 comp->block_idx = htonl(comp->block_idx);
500 comp->offset = htonll(comp->offset);
501 comp->length = htonll(comp->length);
502 }
503
504 static void network_to_compress(RDMACompress *comp)
505 {
506 comp->value = ntohl(comp->value);
507 comp->block_idx = ntohl(comp->block_idx);
508 comp->offset = ntohll(comp->offset);
509 comp->length = ntohll(comp->length);
510 }
511
512 /*
513 * The result of the dest's memory registration produces an "rkey"
514 * which the source VM must reference in order to perform
515 * the RDMA operation.
516 */
517 typedef struct QEMU_PACKED {
518 uint32_t rkey;
519 uint32_t padding;
520 uint64_t host_addr;
521 } RDMARegisterResult;
522
523 static void result_to_network(RDMARegisterResult *result)
524 {
525 result->rkey = htonl(result->rkey);
526 result->host_addr = htonll(result->host_addr);
527 };
528
529 static void network_to_result(RDMARegisterResult *result)
530 {
531 result->rkey = ntohl(result->rkey);
532 result->host_addr = ntohll(result->host_addr);
533 };
534
535 const char *print_wrid(int wrid);
536 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
537 uint8_t *data, RDMAControlHeader *resp,
538 int *resp_idx,
539 int (*callback)(RDMAContext *rdma));
540
541 static inline uint64_t ram_chunk_index(const uint8_t *start,
542 const uint8_t *host)
543 {
544 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
545 }
546
547 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
548 uint64_t i)
549 {
550 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
551 (i << RDMA_REG_CHUNK_SHIFT));
552 }
553
554 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
555 uint64_t i)
556 {
557 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
558 (1UL << RDMA_REG_CHUNK_SHIFT);
559
560 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
561 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
562 }
563
564 return result;
565 }
566
567 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
568 void *host_addr,
569 ram_addr_t block_offset, uint64_t length)
570 {
571 RDMALocalBlocks *local = &rdma->local_ram_blocks;
572 RDMALocalBlock *block;
573 RDMALocalBlock *old = local->block;
574
575 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
576
577 if (local->nb_blocks) {
578 int x;
579
580 if (rdma->blockmap) {
581 for (x = 0; x < local->nb_blocks; x++) {
582 g_hash_table_remove(rdma->blockmap,
583 (void *)(uintptr_t)old[x].offset);
584 g_hash_table_insert(rdma->blockmap,
585 (void *)(uintptr_t)old[x].offset,
586 &local->block[x]);
587 }
588 }
589 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
590 g_free(old);
591 }
592
593 block = &local->block[local->nb_blocks];
594
595 block->block_name = g_strdup(block_name);
596 block->local_host_addr = host_addr;
597 block->offset = block_offset;
598 block->length = length;
599 block->index = local->nb_blocks;
600 block->src_index = ~0U; /* Filled in by the receipt of the block list */
601 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
602 block->transit_bitmap = bitmap_new(block->nb_chunks);
603 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
604 block->unregister_bitmap = bitmap_new(block->nb_chunks);
605 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
606 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
607
608 block->is_ram_block = local->init ? false : true;
609
610 if (rdma->blockmap) {
611 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
612 }
613
614 trace_rdma_add_block(block_name, local->nb_blocks,
615 (uintptr_t) block->local_host_addr,
616 block->offset, block->length,
617 (uintptr_t) (block->local_host_addr + block->length),
618 BITS_TO_LONGS(block->nb_chunks) *
619 sizeof(unsigned long) * 8,
620 block->nb_chunks);
621
622 local->nb_blocks++;
623
624 return 0;
625 }
626
627 /*
628 * Memory regions need to be registered with the device and queue pairs setup
629 * in advanced before the migration starts. This tells us where the RAM blocks
630 * are so that we can register them individually.
631 */
632 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
633 {
634 const char *block_name = qemu_ram_get_idstr(rb);
635 void *host_addr = qemu_ram_get_host_addr(rb);
636 ram_addr_t block_offset = qemu_ram_get_offset(rb);
637 ram_addr_t length = qemu_ram_get_used_length(rb);
638 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
639 }
640
641 /*
642 * Identify the RAMBlocks and their quantity. They will be references to
643 * identify chunk boundaries inside each RAMBlock and also be referenced
644 * during dynamic page registration.
645 */
646 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
647 {
648 RDMALocalBlocks *local = &rdma->local_ram_blocks;
649 int ret;
650
651 assert(rdma->blockmap == NULL);
652 memset(local, 0, sizeof *local);
653 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
654 if (ret) {
655 return ret;
656 }
657 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
658 rdma->dest_blocks = g_new0(RDMADestBlock,
659 rdma->local_ram_blocks.nb_blocks);
660 local->init = true;
661 return 0;
662 }
663
664 /*
665 * Note: If used outside of cleanup, the caller must ensure that the destination
666 * block structures are also updated
667 */
668 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
669 {
670 RDMALocalBlocks *local = &rdma->local_ram_blocks;
671 RDMALocalBlock *old = local->block;
672 int x;
673
674 if (rdma->blockmap) {
675 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
676 }
677 if (block->pmr) {
678 int j;
679
680 for (j = 0; j < block->nb_chunks; j++) {
681 if (!block->pmr[j]) {
682 continue;
683 }
684 ibv_dereg_mr(block->pmr[j]);
685 rdma->total_registrations--;
686 }
687 g_free(block->pmr);
688 block->pmr = NULL;
689 }
690
691 if (block->mr) {
692 ibv_dereg_mr(block->mr);
693 rdma->total_registrations--;
694 block->mr = NULL;
695 }
696
697 g_free(block->transit_bitmap);
698 block->transit_bitmap = NULL;
699
700 g_free(block->unregister_bitmap);
701 block->unregister_bitmap = NULL;
702
703 g_free(block->remote_keys);
704 block->remote_keys = NULL;
705
706 g_free(block->block_name);
707 block->block_name = NULL;
708
709 if (rdma->blockmap) {
710 for (x = 0; x < local->nb_blocks; x++) {
711 g_hash_table_remove(rdma->blockmap,
712 (void *)(uintptr_t)old[x].offset);
713 }
714 }
715
716 if (local->nb_blocks > 1) {
717
718 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
719
720 if (block->index) {
721 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
722 }
723
724 if (block->index < (local->nb_blocks - 1)) {
725 memcpy(local->block + block->index, old + (block->index + 1),
726 sizeof(RDMALocalBlock) *
727 (local->nb_blocks - (block->index + 1)));
728 for (x = block->index; x < local->nb_blocks - 1; x++) {
729 local->block[x].index--;
730 }
731 }
732 } else {
733 assert(block == local->block);
734 local->block = NULL;
735 }
736
737 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
738 block->offset, block->length,
739 (uintptr_t)(block->local_host_addr + block->length),
740 BITS_TO_LONGS(block->nb_chunks) *
741 sizeof(unsigned long) * 8, block->nb_chunks);
742
743 g_free(old);
744
745 local->nb_blocks--;
746
747 if (local->nb_blocks && rdma->blockmap) {
748 for (x = 0; x < local->nb_blocks; x++) {
749 g_hash_table_insert(rdma->blockmap,
750 (void *)(uintptr_t)local->block[x].offset,
751 &local->block[x]);
752 }
753 }
754
755 return 0;
756 }
757
758 /*
759 * Put in the log file which RDMA device was opened and the details
760 * associated with that device.
761 */
762 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
763 {
764 struct ibv_port_attr port;
765
766 if (ibv_query_port(verbs, 1, &port)) {
767 error_report("Failed to query port information");
768 return;
769 }
770
771 printf("%s RDMA Device opened: kernel name %s "
772 "uverbs device name %s, "
773 "infiniband_verbs class device path %s, "
774 "infiniband class device path %s, "
775 "transport: (%d) %s\n",
776 who,
777 verbs->device->name,
778 verbs->device->dev_name,
779 verbs->device->dev_path,
780 verbs->device->ibdev_path,
781 port.link_layer,
782 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
783 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
784 ? "Ethernet" : "Unknown"));
785 }
786
787 /*
788 * Put in the log file the RDMA gid addressing information,
789 * useful for folks who have trouble understanding the
790 * RDMA device hierarchy in the kernel.
791 */
792 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
793 {
794 char sgid[33];
795 char dgid[33];
796 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
797 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
798 trace_qemu_rdma_dump_gid(who, sgid, dgid);
799 }
800
801 /*
802 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
803 * We will try the next addrinfo struct, and fail if there are
804 * no other valid addresses to bind against.
805 *
806 * If user is listening on '[::]', then we will not have a opened a device
807 * yet and have no way of verifying if the device is RoCE or not.
808 *
809 * In this case, the source VM will throw an error for ALL types of
810 * connections (both IPv4 and IPv6) if the destination machine does not have
811 * a regular infiniband network available for use.
812 *
813 * The only way to guarantee that an error is thrown for broken kernels is
814 * for the management software to choose a *specific* interface at bind time
815 * and validate what time of hardware it is.
816 *
817 * Unfortunately, this puts the user in a fix:
818 *
819 * If the source VM connects with an IPv4 address without knowing that the
820 * destination has bound to '[::]' the migration will unconditionally fail
821 * unless the management software is explicitly listening on the IPv4
822 * address while using a RoCE-based device.
823 *
824 * If the source VM connects with an IPv6 address, then we're OK because we can
825 * throw an error on the source (and similarly on the destination).
826 *
827 * But in mixed environments, this will be broken for a while until it is fixed
828 * inside linux.
829 *
830 * We do provide a *tiny* bit of help in this function: We can list all of the
831 * devices in the system and check to see if all the devices are RoCE or
832 * Infiniband.
833 *
834 * If we detect that we have a *pure* RoCE environment, then we can safely
835 * thrown an error even if the management software has specified '[::]' as the
836 * bind address.
837 *
838 * However, if there is are multiple hetergeneous devices, then we cannot make
839 * this assumption and the user just has to be sure they know what they are
840 * doing.
841 *
842 * Patches are being reviewed on linux-rdma.
843 */
844 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
845 {
846 /* This bug only exists in linux, to our knowledge. */
847 #ifdef CONFIG_LINUX
848 struct ibv_port_attr port_attr;
849
850 /*
851 * Verbs are only NULL if management has bound to '[::]'.
852 *
853 * Let's iterate through all the devices and see if there any pure IB
854 * devices (non-ethernet).
855 *
856 * If not, then we can safely proceed with the migration.
857 * Otherwise, there are no guarantees until the bug is fixed in linux.
858 */
859 if (!verbs) {
860 int num_devices, x;
861 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
862 bool roce_found = false;
863 bool ib_found = false;
864
865 for (x = 0; x < num_devices; x++) {
866 verbs = ibv_open_device(dev_list[x]);
867 if (!verbs) {
868 if (errno == EPERM) {
869 continue;
870 } else {
871 return -EINVAL;
872 }
873 }
874
875 if (ibv_query_port(verbs, 1, &port_attr)) {
876 ibv_close_device(verbs);
877 ERROR(errp, "Could not query initial IB port");
878 return -EINVAL;
879 }
880
881 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
882 ib_found = true;
883 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
884 roce_found = true;
885 }
886
887 ibv_close_device(verbs);
888
889 }
890
891 if (roce_found) {
892 if (ib_found) {
893 fprintf(stderr, "WARN: migrations may fail:"
894 " IPv6 over RoCE / iWARP in linux"
895 " is broken. But since you appear to have a"
896 " mixed RoCE / IB environment, be sure to only"
897 " migrate over the IB fabric until the kernel "
898 " fixes the bug.\n");
899 } else {
900 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
901 " and your management software has specified '[::]'"
902 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
903 return -ENONET;
904 }
905 }
906
907 return 0;
908 }
909
910 /*
911 * If we have a verbs context, that means that some other than '[::]' was
912 * used by the management software for binding. In which case we can
913 * actually warn the user about a potentially broken kernel.
914 */
915
916 /* IB ports start with 1, not 0 */
917 if (ibv_query_port(verbs, 1, &port_attr)) {
918 ERROR(errp, "Could not query initial IB port");
919 return -EINVAL;
920 }
921
922 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
923 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
924 "(but patches on linux-rdma in progress)");
925 return -ENONET;
926 }
927
928 #endif
929
930 return 0;
931 }
932
933 /*
934 * Figure out which RDMA device corresponds to the requested IP hostname
935 * Also create the initial connection manager identifiers for opening
936 * the connection.
937 */
938 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
939 {
940 int ret;
941 struct rdma_addrinfo *res;
942 char port_str[16];
943 struct rdma_cm_event *cm_event;
944 char ip[40] = "unknown";
945 struct rdma_addrinfo *e;
946
947 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
948 ERROR(errp, "RDMA hostname has not been set");
949 return -EINVAL;
950 }
951
952 /* create CM channel */
953 rdma->channel = rdma_create_event_channel();
954 if (!rdma->channel) {
955 ERROR(errp, "could not create CM channel");
956 return -EINVAL;
957 }
958
959 /* create CM id */
960 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
961 if (ret) {
962 ERROR(errp, "could not create channel id");
963 goto err_resolve_create_id;
964 }
965
966 snprintf(port_str, 16, "%d", rdma->port);
967 port_str[15] = '\0';
968
969 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
970 if (ret < 0) {
971 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
972 goto err_resolve_get_addr;
973 }
974
975 for (e = res; e != NULL; e = e->ai_next) {
976 inet_ntop(e->ai_family,
977 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
978 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
979
980 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
981 RDMA_RESOLVE_TIMEOUT_MS);
982 if (!ret) {
983 if (e->ai_family == AF_INET6) {
984 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
985 if (ret) {
986 continue;
987 }
988 }
989 goto route;
990 }
991 }
992
993 rdma_freeaddrinfo(res);
994 ERROR(errp, "could not resolve address %s", rdma->host);
995 goto err_resolve_get_addr;
996
997 route:
998 rdma_freeaddrinfo(res);
999 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1000
1001 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1002 if (ret) {
1003 ERROR(errp, "could not perform event_addr_resolved");
1004 goto err_resolve_get_addr;
1005 }
1006
1007 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1008 ERROR(errp, "result not equal to event_addr_resolved %s",
1009 rdma_event_str(cm_event->event));
1010 error_report("rdma_resolve_addr");
1011 rdma_ack_cm_event(cm_event);
1012 ret = -EINVAL;
1013 goto err_resolve_get_addr;
1014 }
1015 rdma_ack_cm_event(cm_event);
1016
1017 /* resolve route */
1018 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1019 if (ret) {
1020 ERROR(errp, "could not resolve rdma route");
1021 goto err_resolve_get_addr;
1022 }
1023
1024 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1025 if (ret) {
1026 ERROR(errp, "could not perform event_route_resolved");
1027 goto err_resolve_get_addr;
1028 }
1029 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1030 ERROR(errp, "result not equal to event_route_resolved: %s",
1031 rdma_event_str(cm_event->event));
1032 rdma_ack_cm_event(cm_event);
1033 ret = -EINVAL;
1034 goto err_resolve_get_addr;
1035 }
1036 rdma_ack_cm_event(cm_event);
1037 rdma->verbs = rdma->cm_id->verbs;
1038 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1039 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1040 return 0;
1041
1042 err_resolve_get_addr:
1043 rdma_destroy_id(rdma->cm_id);
1044 rdma->cm_id = NULL;
1045 err_resolve_create_id:
1046 rdma_destroy_event_channel(rdma->channel);
1047 rdma->channel = NULL;
1048 return ret;
1049 }
1050
1051 /*
1052 * Create protection domain and completion queues
1053 */
1054 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1055 {
1056 /* allocate pd */
1057 rdma->pd = ibv_alloc_pd(rdma->verbs);
1058 if (!rdma->pd) {
1059 error_report("failed to allocate protection domain");
1060 return -1;
1061 }
1062
1063 /* create receive completion channel */
1064 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1065 if (!rdma->recv_comp_channel) {
1066 error_report("failed to allocate receive completion channel");
1067 goto err_alloc_pd_cq;
1068 }
1069
1070 /*
1071 * Completion queue can be filled by read work requests.
1072 */
1073 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074 NULL, rdma->recv_comp_channel, 0);
1075 if (!rdma->recv_cq) {
1076 error_report("failed to allocate receive completion queue");
1077 goto err_alloc_pd_cq;
1078 }
1079
1080 /* create send completion channel */
1081 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1082 if (!rdma->send_comp_channel) {
1083 error_report("failed to allocate send completion channel");
1084 goto err_alloc_pd_cq;
1085 }
1086
1087 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1088 NULL, rdma->send_comp_channel, 0);
1089 if (!rdma->send_cq) {
1090 error_report("failed to allocate send completion queue");
1091 goto err_alloc_pd_cq;
1092 }
1093
1094 return 0;
1095
1096 err_alloc_pd_cq:
1097 if (rdma->pd) {
1098 ibv_dealloc_pd(rdma->pd);
1099 }
1100 if (rdma->recv_comp_channel) {
1101 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1102 }
1103 if (rdma->send_comp_channel) {
1104 ibv_destroy_comp_channel(rdma->send_comp_channel);
1105 }
1106 if (rdma->recv_cq) {
1107 ibv_destroy_cq(rdma->recv_cq);
1108 rdma->recv_cq = NULL;
1109 }
1110 rdma->pd = NULL;
1111 rdma->recv_comp_channel = NULL;
1112 rdma->send_comp_channel = NULL;
1113 return -1;
1114
1115 }
1116
1117 /*
1118 * Create queue pairs.
1119 */
1120 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1121 {
1122 struct ibv_qp_init_attr attr = { 0 };
1123 int ret;
1124
1125 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1126 attr.cap.max_recv_wr = 3;
1127 attr.cap.max_send_sge = 1;
1128 attr.cap.max_recv_sge = 1;
1129 attr.send_cq = rdma->send_cq;
1130 attr.recv_cq = rdma->recv_cq;
1131 attr.qp_type = IBV_QPT_RC;
1132
1133 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1134 if (ret) {
1135 return -1;
1136 }
1137
1138 rdma->qp = rdma->cm_id->qp;
1139 return 0;
1140 }
1141
1142 /* Check whether On-Demand Paging is supported by RDAM device */
1143 static bool rdma_support_odp(struct ibv_context *dev)
1144 {
1145 struct ibv_device_attr_ex attr = {0};
1146 int ret = ibv_query_device_ex(dev, NULL, &attr);
1147 if (ret) {
1148 return false;
1149 }
1150
1151 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1152 return true;
1153 }
1154
1155 return false;
1156 }
1157
1158 /*
1159 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1160 * The responder mr registering with ODP will sent RNR NAK back to
1161 * the requester in the face of the page fault.
1162 */
1163 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1164 uint32_t len, uint32_t lkey,
1165 const char *name, bool wr)
1166 {
1167 #ifdef HAVE_IBV_ADVISE_MR
1168 int ret;
1169 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1170 IBV_ADVISE_MR_ADVICE_PREFETCH;
1171 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1172
1173 ret = ibv_advise_mr(pd, advice,
1174 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1175 /* ignore the error */
1176 if (ret) {
1177 trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1178 } else {
1179 trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1180 }
1181 #endif
1182 }
1183
1184 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1185 {
1186 int i;
1187 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1188
1189 for (i = 0; i < local->nb_blocks; i++) {
1190 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1191
1192 local->block[i].mr =
1193 ibv_reg_mr(rdma->pd,
1194 local->block[i].local_host_addr,
1195 local->block[i].length, access
1196 );
1197
1198 if (!local->block[i].mr &&
1199 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1200 access |= IBV_ACCESS_ON_DEMAND;
1201 /* register ODP mr */
1202 local->block[i].mr =
1203 ibv_reg_mr(rdma->pd,
1204 local->block[i].local_host_addr,
1205 local->block[i].length, access);
1206 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1207
1208 if (local->block[i].mr) {
1209 qemu_rdma_advise_prefetch_mr(rdma->pd,
1210 (uintptr_t)local->block[i].local_host_addr,
1211 local->block[i].length,
1212 local->block[i].mr->lkey,
1213 local->block[i].block_name,
1214 true);
1215 }
1216 }
1217
1218 if (!local->block[i].mr) {
1219 perror("Failed to register local dest ram block!");
1220 break;
1221 }
1222 rdma->total_registrations++;
1223 }
1224
1225 if (i >= local->nb_blocks) {
1226 return 0;
1227 }
1228
1229 for (i--; i >= 0; i--) {
1230 ibv_dereg_mr(local->block[i].mr);
1231 local->block[i].mr = NULL;
1232 rdma->total_registrations--;
1233 }
1234
1235 return -1;
1236
1237 }
1238
1239 /*
1240 * Find the ram block that corresponds to the page requested to be
1241 * transmitted by QEMU.
1242 *
1243 * Once the block is found, also identify which 'chunk' within that
1244 * block that the page belongs to.
1245 *
1246 * This search cannot fail or the migration will fail.
1247 */
1248 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1249 uintptr_t block_offset,
1250 uint64_t offset,
1251 uint64_t length,
1252 uint64_t *block_index,
1253 uint64_t *chunk_index)
1254 {
1255 uint64_t current_addr = block_offset + offset;
1256 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1257 (void *) block_offset);
1258 assert(block);
1259 assert(current_addr >= block->offset);
1260 assert((current_addr + length) <= (block->offset + block->length));
1261
1262 *block_index = block->index;
1263 *chunk_index = ram_chunk_index(block->local_host_addr,
1264 block->local_host_addr + (current_addr - block->offset));
1265
1266 return 0;
1267 }
1268
1269 /*
1270 * Register a chunk with IB. If the chunk was already registered
1271 * previously, then skip.
1272 *
1273 * Also return the keys associated with the registration needed
1274 * to perform the actual RDMA operation.
1275 */
1276 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1277 RDMALocalBlock *block, uintptr_t host_addr,
1278 uint32_t *lkey, uint32_t *rkey, int chunk,
1279 uint8_t *chunk_start, uint8_t *chunk_end)
1280 {
1281 if (block->mr) {
1282 if (lkey) {
1283 *lkey = block->mr->lkey;
1284 }
1285 if (rkey) {
1286 *rkey = block->mr->rkey;
1287 }
1288 return 0;
1289 }
1290
1291 /* allocate memory to store chunk MRs */
1292 if (!block->pmr) {
1293 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1294 }
1295
1296 /*
1297 * If 'rkey', then we're the destination, so grant access to the source.
1298 *
1299 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1300 */
1301 if (!block->pmr[chunk]) {
1302 uint64_t len = chunk_end - chunk_start;
1303 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1304 0;
1305
1306 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1307
1308 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1309 if (!block->pmr[chunk] &&
1310 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1311 access |= IBV_ACCESS_ON_DEMAND;
1312 /* register ODP mr */
1313 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1314 trace_qemu_rdma_register_odp_mr(block->block_name);
1315
1316 if (block->pmr[chunk]) {
1317 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1318 len, block->pmr[chunk]->lkey,
1319 block->block_name, rkey);
1320
1321 }
1322 }
1323 }
1324 if (!block->pmr[chunk]) {
1325 perror("Failed to register chunk!");
1326 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1327 " start %" PRIuPTR " end %" PRIuPTR
1328 " host %" PRIuPTR
1329 " local %" PRIuPTR " registrations: %d\n",
1330 block->index, chunk, (uintptr_t)chunk_start,
1331 (uintptr_t)chunk_end, host_addr,
1332 (uintptr_t)block->local_host_addr,
1333 rdma->total_registrations);
1334 return -1;
1335 }
1336 rdma->total_registrations++;
1337
1338 if (lkey) {
1339 *lkey = block->pmr[chunk]->lkey;
1340 }
1341 if (rkey) {
1342 *rkey = block->pmr[chunk]->rkey;
1343 }
1344 return 0;
1345 }
1346
1347 /*
1348 * Register (at connection time) the memory used for control
1349 * channel messages.
1350 */
1351 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1352 {
1353 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1354 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1355 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1356 if (rdma->wr_data[idx].control_mr) {
1357 rdma->total_registrations++;
1358 return 0;
1359 }
1360 error_report("qemu_rdma_reg_control failed");
1361 return -1;
1362 }
1363
1364 const char *print_wrid(int wrid)
1365 {
1366 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1367 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1368 }
1369 return wrid_desc[wrid];
1370 }
1371
1372 /*
1373 * Perform a non-optimized memory unregistration after every transfer
1374 * for demonstration purposes, only if pin-all is not requested.
1375 *
1376 * Potential optimizations:
1377 * 1. Start a new thread to run this function continuously
1378 - for bit clearing
1379 - and for receipt of unregister messages
1380 * 2. Use an LRU.
1381 * 3. Use workload hints.
1382 */
1383 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1384 {
1385 while (rdma->unregistrations[rdma->unregister_current]) {
1386 int ret;
1387 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1388 uint64_t chunk =
1389 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1390 uint64_t index =
1391 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1392 RDMALocalBlock *block =
1393 &(rdma->local_ram_blocks.block[index]);
1394 RDMARegister reg = { .current_index = index };
1395 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1396 };
1397 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1398 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1399 .repeat = 1,
1400 };
1401
1402 trace_qemu_rdma_unregister_waiting_proc(chunk,
1403 rdma->unregister_current);
1404
1405 rdma->unregistrations[rdma->unregister_current] = 0;
1406 rdma->unregister_current++;
1407
1408 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1409 rdma->unregister_current = 0;
1410 }
1411
1412
1413 /*
1414 * Unregistration is speculative (because migration is single-threaded
1415 * and we cannot break the protocol's inifinband message ordering).
1416 * Thus, if the memory is currently being used for transmission,
1417 * then abort the attempt to unregister and try again
1418 * later the next time a completion is received for this memory.
1419 */
1420 clear_bit(chunk, block->unregister_bitmap);
1421
1422 if (test_bit(chunk, block->transit_bitmap)) {
1423 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1424 continue;
1425 }
1426
1427 trace_qemu_rdma_unregister_waiting_send(chunk);
1428
1429 ret = ibv_dereg_mr(block->pmr[chunk]);
1430 block->pmr[chunk] = NULL;
1431 block->remote_keys[chunk] = 0;
1432
1433 if (ret != 0) {
1434 perror("unregistration chunk failed");
1435 return -ret;
1436 }
1437 rdma->total_registrations--;
1438
1439 reg.key.chunk = chunk;
1440 register_to_network(rdma, &reg);
1441 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1442 &resp, NULL, NULL);
1443 if (ret < 0) {
1444 return ret;
1445 }
1446
1447 trace_qemu_rdma_unregister_waiting_complete(chunk);
1448 }
1449
1450 return 0;
1451 }
1452
1453 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1454 uint64_t chunk)
1455 {
1456 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1457
1458 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1459 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1460
1461 return result;
1462 }
1463
1464 /*
1465 * Consult the connection manager to see a work request
1466 * (of any kind) has completed.
1467 * Return the work request ID that completed.
1468 */
1469 static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1470 uint64_t *wr_id_out, uint32_t *byte_len)
1471 {
1472 int ret;
1473 struct ibv_wc wc;
1474 uint64_t wr_id;
1475
1476 ret = ibv_poll_cq(cq, 1, &wc);
1477
1478 if (!ret) {
1479 *wr_id_out = RDMA_WRID_NONE;
1480 return 0;
1481 }
1482
1483 if (ret < 0) {
1484 error_report("ibv_poll_cq return %d", ret);
1485 return ret;
1486 }
1487
1488 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1489
1490 if (wc.status != IBV_WC_SUCCESS) {
1491 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1492 wc.status, ibv_wc_status_str(wc.status));
1493 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1494
1495 return -1;
1496 }
1497
1498 if (rdma->control_ready_expected &&
1499 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1500 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1501 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1502 rdma->control_ready_expected = 0;
1503 }
1504
1505 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1506 uint64_t chunk =
1507 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1508 uint64_t index =
1509 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1510 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1511
1512 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1513 index, chunk, block->local_host_addr,
1514 (void *)(uintptr_t)block->remote_host_addr);
1515
1516 clear_bit(chunk, block->transit_bitmap);
1517
1518 if (rdma->nb_sent > 0) {
1519 rdma->nb_sent--;
1520 }
1521 } else {
1522 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1523 }
1524
1525 *wr_id_out = wc.wr_id;
1526 if (byte_len) {
1527 *byte_len = wc.byte_len;
1528 }
1529
1530 return 0;
1531 }
1532
1533 /* Wait for activity on the completion channel.
1534 * Returns 0 on success, none-0 on error.
1535 */
1536 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1537 struct ibv_comp_channel *comp_channel)
1538 {
1539 struct rdma_cm_event *cm_event;
1540 int ret = -1;
1541
1542 /*
1543 * Coroutine doesn't start until migration_fd_process_incoming()
1544 * so don't yield unless we know we're running inside of a coroutine.
1545 */
1546 if (rdma->migration_started_on_destination &&
1547 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1548 yield_until_fd_readable(comp_channel->fd);
1549 } else {
1550 /* This is the source side, we're in a separate thread
1551 * or destination prior to migration_fd_process_incoming()
1552 * after postcopy, the destination also in a separate thread.
1553 * we can't yield; so we have to poll the fd.
1554 * But we need to be able to handle 'cancel' or an error
1555 * without hanging forever.
1556 */
1557 while (!rdma->error_state && !rdma->received_error) {
1558 GPollFD pfds[2];
1559 pfds[0].fd = comp_channel->fd;
1560 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1561 pfds[0].revents = 0;
1562
1563 pfds[1].fd = rdma->channel->fd;
1564 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1565 pfds[1].revents = 0;
1566
1567 /* 0.1s timeout, should be fine for a 'cancel' */
1568 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1569 case 2:
1570 case 1: /* fd active */
1571 if (pfds[0].revents) {
1572 return 0;
1573 }
1574
1575 if (pfds[1].revents) {
1576 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1577 if (ret) {
1578 error_report("failed to get cm event while wait "
1579 "completion channel");
1580 return -EPIPE;
1581 }
1582
1583 error_report("receive cm event while wait comp channel,"
1584 "cm event is %d", cm_event->event);
1585 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1586 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1587 rdma_ack_cm_event(cm_event);
1588 return -EPIPE;
1589 }
1590 rdma_ack_cm_event(cm_event);
1591 }
1592 break;
1593
1594 case 0: /* Timeout, go around again */
1595 break;
1596
1597 default: /* Error of some type -
1598 * I don't trust errno from qemu_poll_ns
1599 */
1600 error_report("%s: poll failed", __func__);
1601 return -EPIPE;
1602 }
1603
1604 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1605 /* Bail out and let the cancellation happen */
1606 return -EPIPE;
1607 }
1608 }
1609 }
1610
1611 if (rdma->received_error) {
1612 return -EPIPE;
1613 }
1614 return rdma->error_state;
1615 }
1616
1617 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1618 {
1619 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1620 rdma->recv_comp_channel;
1621 }
1622
1623 static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1624 {
1625 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1626 }
1627
1628 /*
1629 * Block until the next work request has completed.
1630 *
1631 * First poll to see if a work request has already completed,
1632 * otherwise block.
1633 *
1634 * If we encounter completed work requests for IDs other than
1635 * the one we're interested in, then that's generally an error.
1636 *
1637 * The only exception is actual RDMA Write completions. These
1638 * completions only need to be recorded, but do not actually
1639 * need further processing.
1640 */
1641 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1642 uint32_t *byte_len)
1643 {
1644 int num_cq_events = 0, ret = 0;
1645 struct ibv_cq *cq;
1646 void *cq_ctx;
1647 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1648 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1649 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1650
1651 if (ibv_req_notify_cq(poll_cq, 0)) {
1652 return -1;
1653 }
1654 /* poll cq first */
1655 while (wr_id != wrid_requested) {
1656 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1657 if (ret < 0) {
1658 return ret;
1659 }
1660
1661 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1662
1663 if (wr_id == RDMA_WRID_NONE) {
1664 break;
1665 }
1666 if (wr_id != wrid_requested) {
1667 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1668 wrid_requested, print_wrid(wr_id), wr_id);
1669 }
1670 }
1671
1672 if (wr_id == wrid_requested) {
1673 return 0;
1674 }
1675
1676 while (1) {
1677 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1678 if (ret) {
1679 goto err_block_for_wrid;
1680 }
1681
1682 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1683 if (ret) {
1684 perror("ibv_get_cq_event");
1685 goto err_block_for_wrid;
1686 }
1687
1688 num_cq_events++;
1689
1690 ret = -ibv_req_notify_cq(cq, 0);
1691 if (ret) {
1692 goto err_block_for_wrid;
1693 }
1694
1695 while (wr_id != wrid_requested) {
1696 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1697 if (ret < 0) {
1698 goto err_block_for_wrid;
1699 }
1700
1701 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1702
1703 if (wr_id == RDMA_WRID_NONE) {
1704 break;
1705 }
1706 if (wr_id != wrid_requested) {
1707 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1708 wrid_requested, print_wrid(wr_id), wr_id);
1709 }
1710 }
1711
1712 if (wr_id == wrid_requested) {
1713 goto success_block_for_wrid;
1714 }
1715 }
1716
1717 success_block_for_wrid:
1718 if (num_cq_events) {
1719 ibv_ack_cq_events(cq, num_cq_events);
1720 }
1721 return 0;
1722
1723 err_block_for_wrid:
1724 if (num_cq_events) {
1725 ibv_ack_cq_events(cq, num_cq_events);
1726 }
1727
1728 rdma->error_state = ret;
1729 return ret;
1730 }
1731
1732 /*
1733 * Post a SEND message work request for the control channel
1734 * containing some data and block until the post completes.
1735 */
1736 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1737 RDMAControlHeader *head)
1738 {
1739 int ret = 0;
1740 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1741 struct ibv_send_wr *bad_wr;
1742 struct ibv_sge sge = {
1743 .addr = (uintptr_t)(wr->control),
1744 .length = head->len + sizeof(RDMAControlHeader),
1745 .lkey = wr->control_mr->lkey,
1746 };
1747 struct ibv_send_wr send_wr = {
1748 .wr_id = RDMA_WRID_SEND_CONTROL,
1749 .opcode = IBV_WR_SEND,
1750 .send_flags = IBV_SEND_SIGNALED,
1751 .sg_list = &sge,
1752 .num_sge = 1,
1753 };
1754
1755 trace_qemu_rdma_post_send_control(control_desc(head->type));
1756
1757 /*
1758 * We don't actually need to do a memcpy() in here if we used
1759 * the "sge" properly, but since we're only sending control messages
1760 * (not RAM in a performance-critical path), then its OK for now.
1761 *
1762 * The copy makes the RDMAControlHeader simpler to manipulate
1763 * for the time being.
1764 */
1765 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1766 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1767 control_to_network((void *) wr->control);
1768
1769 if (buf) {
1770 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1771 }
1772
1773
1774 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1775
1776 if (ret > 0) {
1777 error_report("Failed to use post IB SEND for control");
1778 return -ret;
1779 }
1780
1781 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1782 if (ret < 0) {
1783 error_report("rdma migration: send polling control error");
1784 }
1785
1786 return ret;
1787 }
1788
1789 /*
1790 * Post a RECV work request in anticipation of some future receipt
1791 * of data on the control channel.
1792 */
1793 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1794 {
1795 struct ibv_recv_wr *bad_wr;
1796 struct ibv_sge sge = {
1797 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1798 .length = RDMA_CONTROL_MAX_BUFFER,
1799 .lkey = rdma->wr_data[idx].control_mr->lkey,
1800 };
1801
1802 struct ibv_recv_wr recv_wr = {
1803 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1804 .sg_list = &sge,
1805 .num_sge = 1,
1806 };
1807
1808
1809 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1810 return -1;
1811 }
1812
1813 return 0;
1814 }
1815
1816 /*
1817 * Block and wait for a RECV control channel message to arrive.
1818 */
1819 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1820 RDMAControlHeader *head, int expecting, int idx)
1821 {
1822 uint32_t byte_len;
1823 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1824 &byte_len);
1825
1826 if (ret < 0) {
1827 error_report("rdma migration: recv polling control error!");
1828 return ret;
1829 }
1830
1831 network_to_control((void *) rdma->wr_data[idx].control);
1832 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1833
1834 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1835
1836 if (expecting == RDMA_CONTROL_NONE) {
1837 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1838 head->type);
1839 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1840 error_report("Was expecting a %s (%d) control message"
1841 ", but got: %s (%d), length: %d",
1842 control_desc(expecting), expecting,
1843 control_desc(head->type), head->type, head->len);
1844 if (head->type == RDMA_CONTROL_ERROR) {
1845 rdma->received_error = true;
1846 }
1847 return -EIO;
1848 }
1849 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1850 error_report("too long length: %d", head->len);
1851 return -EINVAL;
1852 }
1853 if (sizeof(*head) + head->len != byte_len) {
1854 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1855 return -EINVAL;
1856 }
1857
1858 return 0;
1859 }
1860
1861 /*
1862 * When a RECV work request has completed, the work request's
1863 * buffer is pointed at the header.
1864 *
1865 * This will advance the pointer to the data portion
1866 * of the control message of the work request's buffer that
1867 * was populated after the work request finished.
1868 */
1869 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1870 RDMAControlHeader *head)
1871 {
1872 rdma->wr_data[idx].control_len = head->len;
1873 rdma->wr_data[idx].control_curr =
1874 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1875 }
1876
1877 /*
1878 * This is an 'atomic' high-level operation to deliver a single, unified
1879 * control-channel message.
1880 *
1881 * Additionally, if the user is expecting some kind of reply to this message,
1882 * they can request a 'resp' response message be filled in by posting an
1883 * additional work request on behalf of the user and waiting for an additional
1884 * completion.
1885 *
1886 * The extra (optional) response is used during registration to us from having
1887 * to perform an *additional* exchange of message just to provide a response by
1888 * instead piggy-backing on the acknowledgement.
1889 */
1890 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1891 uint8_t *data, RDMAControlHeader *resp,
1892 int *resp_idx,
1893 int (*callback)(RDMAContext *rdma))
1894 {
1895 int ret = 0;
1896
1897 /*
1898 * Wait until the dest is ready before attempting to deliver the message
1899 * by waiting for a READY message.
1900 */
1901 if (rdma->control_ready_expected) {
1902 RDMAControlHeader resp;
1903 ret = qemu_rdma_exchange_get_response(rdma,
1904 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1905 if (ret < 0) {
1906 return ret;
1907 }
1908 }
1909
1910 /*
1911 * If the user is expecting a response, post a WR in anticipation of it.
1912 */
1913 if (resp) {
1914 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1915 if (ret) {
1916 error_report("rdma migration: error posting"
1917 " extra control recv for anticipated result!");
1918 return ret;
1919 }
1920 }
1921
1922 /*
1923 * Post a WR to replace the one we just consumed for the READY message.
1924 */
1925 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1926 if (ret) {
1927 error_report("rdma migration: error posting first control recv!");
1928 return ret;
1929 }
1930
1931 /*
1932 * Deliver the control message that was requested.
1933 */
1934 ret = qemu_rdma_post_send_control(rdma, data, head);
1935
1936 if (ret < 0) {
1937 error_report("Failed to send control buffer!");
1938 return ret;
1939 }
1940
1941 /*
1942 * If we're expecting a response, block and wait for it.
1943 */
1944 if (resp) {
1945 if (callback) {
1946 trace_qemu_rdma_exchange_send_issue_callback();
1947 ret = callback(rdma);
1948 if (ret < 0) {
1949 return ret;
1950 }
1951 }
1952
1953 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1954 ret = qemu_rdma_exchange_get_response(rdma, resp,
1955 resp->type, RDMA_WRID_DATA);
1956
1957 if (ret < 0) {
1958 return ret;
1959 }
1960
1961 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1962 if (resp_idx) {
1963 *resp_idx = RDMA_WRID_DATA;
1964 }
1965 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1966 }
1967
1968 rdma->control_ready_expected = 1;
1969
1970 return 0;
1971 }
1972
1973 /*
1974 * This is an 'atomic' high-level operation to receive a single, unified
1975 * control-channel message.
1976 */
1977 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1978 int expecting)
1979 {
1980 RDMAControlHeader ready = {
1981 .len = 0,
1982 .type = RDMA_CONTROL_READY,
1983 .repeat = 1,
1984 };
1985 int ret;
1986
1987 /*
1988 * Inform the source that we're ready to receive a message.
1989 */
1990 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1991
1992 if (ret < 0) {
1993 error_report("Failed to send control buffer!");
1994 return ret;
1995 }
1996
1997 /*
1998 * Block and wait for the message.
1999 */
2000 ret = qemu_rdma_exchange_get_response(rdma, head,
2001 expecting, RDMA_WRID_READY);
2002
2003 if (ret < 0) {
2004 return ret;
2005 }
2006
2007 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2008
2009 /*
2010 * Post a new RECV work request to replace the one we just consumed.
2011 */
2012 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2013 if (ret) {
2014 error_report("rdma migration: error posting second control recv!");
2015 return ret;
2016 }
2017
2018 return 0;
2019 }
2020
2021 /*
2022 * Write an actual chunk of memory using RDMA.
2023 *
2024 * If we're using dynamic registration on the dest-side, we have to
2025 * send a registration command first.
2026 */
2027 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2028 int current_index, uint64_t current_addr,
2029 uint64_t length)
2030 {
2031 struct ibv_sge sge;
2032 struct ibv_send_wr send_wr = { 0 };
2033 struct ibv_send_wr *bad_wr;
2034 int reg_result_idx, ret, count = 0;
2035 uint64_t chunk, chunks;
2036 uint8_t *chunk_start, *chunk_end;
2037 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2038 RDMARegister reg;
2039 RDMARegisterResult *reg_result;
2040 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2041 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2042 .type = RDMA_CONTROL_REGISTER_REQUEST,
2043 .repeat = 1,
2044 };
2045
2046 retry:
2047 sge.addr = (uintptr_t)(block->local_host_addr +
2048 (current_addr - block->offset));
2049 sge.length = length;
2050
2051 chunk = ram_chunk_index(block->local_host_addr,
2052 (uint8_t *)(uintptr_t)sge.addr);
2053 chunk_start = ram_chunk_start(block, chunk);
2054
2055 if (block->is_ram_block) {
2056 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2057
2058 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2059 chunks--;
2060 }
2061 } else {
2062 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2063
2064 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2065 chunks--;
2066 }
2067 }
2068
2069 trace_qemu_rdma_write_one_top(chunks + 1,
2070 (chunks + 1) *
2071 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2072
2073 chunk_end = ram_chunk_end(block, chunk + chunks);
2074
2075
2076 while (test_bit(chunk, block->transit_bitmap)) {
2077 (void)count;
2078 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2079 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2080
2081 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2082
2083 if (ret < 0) {
2084 error_report("Failed to Wait for previous write to complete "
2085 "block %d chunk %" PRIu64
2086 " current %" PRIu64 " len %" PRIu64 " %d",
2087 current_index, chunk, sge.addr, length, rdma->nb_sent);
2088 return ret;
2089 }
2090 }
2091
2092 if (!rdma->pin_all || !block->is_ram_block) {
2093 if (!block->remote_keys[chunk]) {
2094 /*
2095 * This chunk has not yet been registered, so first check to see
2096 * if the entire chunk is zero. If so, tell the other size to
2097 * memset() + madvise() the entire chunk without RDMA.
2098 */
2099
2100 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2101 RDMACompress comp = {
2102 .offset = current_addr,
2103 .value = 0,
2104 .block_idx = current_index,
2105 .length = length,
2106 };
2107
2108 head.len = sizeof(comp);
2109 head.type = RDMA_CONTROL_COMPRESS;
2110
2111 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2112 current_index, current_addr);
2113
2114 compress_to_network(rdma, &comp);
2115 ret = qemu_rdma_exchange_send(rdma, &head,
2116 (uint8_t *) &comp, NULL, NULL, NULL);
2117
2118 if (ret < 0) {
2119 return -EIO;
2120 }
2121
2122 acct_update_position(f, sge.length, true);
2123
2124 return 1;
2125 }
2126
2127 /*
2128 * Otherwise, tell other side to register.
2129 */
2130 reg.current_index = current_index;
2131 if (block->is_ram_block) {
2132 reg.key.current_addr = current_addr;
2133 } else {
2134 reg.key.chunk = chunk;
2135 }
2136 reg.chunks = chunks;
2137
2138 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2139 current_addr);
2140
2141 register_to_network(rdma, &reg);
2142 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2143 &resp, &reg_result_idx, NULL);
2144 if (ret < 0) {
2145 return ret;
2146 }
2147
2148 /* try to overlap this single registration with the one we sent. */
2149 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2150 &sge.lkey, NULL, chunk,
2151 chunk_start, chunk_end)) {
2152 error_report("cannot get lkey");
2153 return -EINVAL;
2154 }
2155
2156 reg_result = (RDMARegisterResult *)
2157 rdma->wr_data[reg_result_idx].control_curr;
2158
2159 network_to_result(reg_result);
2160
2161 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2162 reg_result->rkey, chunk);
2163
2164 block->remote_keys[chunk] = reg_result->rkey;
2165 block->remote_host_addr = reg_result->host_addr;
2166 } else {
2167 /* already registered before */
2168 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2169 &sge.lkey, NULL, chunk,
2170 chunk_start, chunk_end)) {
2171 error_report("cannot get lkey!");
2172 return -EINVAL;
2173 }
2174 }
2175
2176 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2177 } else {
2178 send_wr.wr.rdma.rkey = block->remote_rkey;
2179
2180 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2181 &sge.lkey, NULL, chunk,
2182 chunk_start, chunk_end)) {
2183 error_report("cannot get lkey!");
2184 return -EINVAL;
2185 }
2186 }
2187
2188 /*
2189 * Encode the ram block index and chunk within this wrid.
2190 * We will use this information at the time of completion
2191 * to figure out which bitmap to check against and then which
2192 * chunk in the bitmap to look for.
2193 */
2194 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2195 current_index, chunk);
2196
2197 send_wr.opcode = IBV_WR_RDMA_WRITE;
2198 send_wr.send_flags = IBV_SEND_SIGNALED;
2199 send_wr.sg_list = &sge;
2200 send_wr.num_sge = 1;
2201 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2202 (current_addr - block->offset);
2203
2204 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2205 sge.length);
2206
2207 /*
2208 * ibv_post_send() does not return negative error numbers,
2209 * per the specification they are positive - no idea why.
2210 */
2211 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2212
2213 if (ret == ENOMEM) {
2214 trace_qemu_rdma_write_one_queue_full();
2215 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2216 if (ret < 0) {
2217 error_report("rdma migration: failed to make "
2218 "room in full send queue! %d", ret);
2219 return ret;
2220 }
2221
2222 goto retry;
2223
2224 } else if (ret > 0) {
2225 perror("rdma migration: post rdma write failed");
2226 return -ret;
2227 }
2228
2229 set_bit(chunk, block->transit_bitmap);
2230 acct_update_position(f, sge.length, false);
2231 rdma->total_writes++;
2232
2233 return 0;
2234 }
2235
2236 /*
2237 * Push out any unwritten RDMA operations.
2238 *
2239 * We support sending out multiple chunks at the same time.
2240 * Not all of them need to get signaled in the completion queue.
2241 */
2242 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2243 {
2244 int ret;
2245
2246 if (!rdma->current_length) {
2247 return 0;
2248 }
2249
2250 ret = qemu_rdma_write_one(f, rdma,
2251 rdma->current_index, rdma->current_addr, rdma->current_length);
2252
2253 if (ret < 0) {
2254 return ret;
2255 }
2256
2257 if (ret == 0) {
2258 rdma->nb_sent++;
2259 trace_qemu_rdma_write_flush(rdma->nb_sent);
2260 }
2261
2262 rdma->current_length = 0;
2263 rdma->current_addr = 0;
2264
2265 return 0;
2266 }
2267
2268 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2269 uint64_t offset, uint64_t len)
2270 {
2271 RDMALocalBlock *block;
2272 uint8_t *host_addr;
2273 uint8_t *chunk_end;
2274
2275 if (rdma->current_index < 0) {
2276 return 0;
2277 }
2278
2279 if (rdma->current_chunk < 0) {
2280 return 0;
2281 }
2282
2283 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2284 host_addr = block->local_host_addr + (offset - block->offset);
2285 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2286
2287 if (rdma->current_length == 0) {
2288 return 0;
2289 }
2290
2291 /*
2292 * Only merge into chunk sequentially.
2293 */
2294 if (offset != (rdma->current_addr + rdma->current_length)) {
2295 return 0;
2296 }
2297
2298 if (offset < block->offset) {
2299 return 0;
2300 }
2301
2302 if ((offset + len) > (block->offset + block->length)) {
2303 return 0;
2304 }
2305
2306 if ((host_addr + len) > chunk_end) {
2307 return 0;
2308 }
2309
2310 return 1;
2311 }
2312
2313 /*
2314 * We're not actually writing here, but doing three things:
2315 *
2316 * 1. Identify the chunk the buffer belongs to.
2317 * 2. If the chunk is full or the buffer doesn't belong to the current
2318 * chunk, then start a new chunk and flush() the old chunk.
2319 * 3. To keep the hardware busy, we also group chunks into batches
2320 * and only require that a batch gets acknowledged in the completion
2321 * queue instead of each individual chunk.
2322 */
2323 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2324 uint64_t block_offset, uint64_t offset,
2325 uint64_t len)
2326 {
2327 uint64_t current_addr = block_offset + offset;
2328 uint64_t index = rdma->current_index;
2329 uint64_t chunk = rdma->current_chunk;
2330 int ret;
2331
2332 /* If we cannot merge it, we flush the current buffer first. */
2333 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2334 ret = qemu_rdma_write_flush(f, rdma);
2335 if (ret) {
2336 return ret;
2337 }
2338 rdma->current_length = 0;
2339 rdma->current_addr = current_addr;
2340
2341 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2342 offset, len, &index, &chunk);
2343 if (ret) {
2344 error_report("ram block search failed");
2345 return ret;
2346 }
2347 rdma->current_index = index;
2348 rdma->current_chunk = chunk;
2349 }
2350
2351 /* merge it */
2352 rdma->current_length += len;
2353
2354 /* flush it if buffer is too large */
2355 if (rdma->current_length >= RDMA_MERGE_MAX) {
2356 return qemu_rdma_write_flush(f, rdma);
2357 }
2358
2359 return 0;
2360 }
2361
2362 static void qemu_rdma_cleanup(RDMAContext *rdma)
2363 {
2364 int idx;
2365
2366 if (rdma->cm_id && rdma->connected) {
2367 if ((rdma->error_state ||
2368 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2369 !rdma->received_error) {
2370 RDMAControlHeader head = { .len = 0,
2371 .type = RDMA_CONTROL_ERROR,
2372 .repeat = 1,
2373 };
2374 error_report("Early error. Sending error.");
2375 qemu_rdma_post_send_control(rdma, NULL, &head);
2376 }
2377
2378 rdma_disconnect(rdma->cm_id);
2379 trace_qemu_rdma_cleanup_disconnect();
2380 rdma->connected = false;
2381 }
2382
2383 if (rdma->channel) {
2384 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2385 }
2386 g_free(rdma->dest_blocks);
2387 rdma->dest_blocks = NULL;
2388
2389 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2390 if (rdma->wr_data[idx].control_mr) {
2391 rdma->total_registrations--;
2392 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2393 }
2394 rdma->wr_data[idx].control_mr = NULL;
2395 }
2396
2397 if (rdma->local_ram_blocks.block) {
2398 while (rdma->local_ram_blocks.nb_blocks) {
2399 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2400 }
2401 }
2402
2403 if (rdma->qp) {
2404 rdma_destroy_qp(rdma->cm_id);
2405 rdma->qp = NULL;
2406 }
2407 if (rdma->recv_cq) {
2408 ibv_destroy_cq(rdma->recv_cq);
2409 rdma->recv_cq = NULL;
2410 }
2411 if (rdma->send_cq) {
2412 ibv_destroy_cq(rdma->send_cq);
2413 rdma->send_cq = NULL;
2414 }
2415 if (rdma->recv_comp_channel) {
2416 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2417 rdma->recv_comp_channel = NULL;
2418 }
2419 if (rdma->send_comp_channel) {
2420 ibv_destroy_comp_channel(rdma->send_comp_channel);
2421 rdma->send_comp_channel = NULL;
2422 }
2423 if (rdma->pd) {
2424 ibv_dealloc_pd(rdma->pd);
2425 rdma->pd = NULL;
2426 }
2427 if (rdma->cm_id) {
2428 rdma_destroy_id(rdma->cm_id);
2429 rdma->cm_id = NULL;
2430 }
2431
2432 /* the destination side, listen_id and channel is shared */
2433 if (rdma->listen_id) {
2434 if (!rdma->is_return_path) {
2435 rdma_destroy_id(rdma->listen_id);
2436 }
2437 rdma->listen_id = NULL;
2438
2439 if (rdma->channel) {
2440 if (!rdma->is_return_path) {
2441 rdma_destroy_event_channel(rdma->channel);
2442 }
2443 rdma->channel = NULL;
2444 }
2445 }
2446
2447 if (rdma->channel) {
2448 rdma_destroy_event_channel(rdma->channel);
2449 rdma->channel = NULL;
2450 }
2451 g_free(rdma->host);
2452 g_free(rdma->host_port);
2453 rdma->host = NULL;
2454 rdma->host_port = NULL;
2455 }
2456
2457
2458 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2459 {
2460 int ret, idx;
2461 Error *local_err = NULL, **temp = &local_err;
2462
2463 /*
2464 * Will be validated against destination's actual capabilities
2465 * after the connect() completes.
2466 */
2467 rdma->pin_all = pin_all;
2468
2469 ret = qemu_rdma_resolve_host(rdma, temp);
2470 if (ret) {
2471 goto err_rdma_source_init;
2472 }
2473
2474 ret = qemu_rdma_alloc_pd_cq(rdma);
2475 if (ret) {
2476 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2477 " limits may be too low. Please check $ ulimit -a # and "
2478 "search for 'ulimit -l' in the output");
2479 goto err_rdma_source_init;
2480 }
2481
2482 ret = qemu_rdma_alloc_qp(rdma);
2483 if (ret) {
2484 ERROR(temp, "rdma migration: error allocating qp!");
2485 goto err_rdma_source_init;
2486 }
2487
2488 ret = qemu_rdma_init_ram_blocks(rdma);
2489 if (ret) {
2490 ERROR(temp, "rdma migration: error initializing ram blocks!");
2491 goto err_rdma_source_init;
2492 }
2493
2494 /* Build the hash that maps from offset to RAMBlock */
2495 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2496 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2497 g_hash_table_insert(rdma->blockmap,
2498 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2499 &rdma->local_ram_blocks.block[idx]);
2500 }
2501
2502 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2503 ret = qemu_rdma_reg_control(rdma, idx);
2504 if (ret) {
2505 ERROR(temp, "rdma migration: error registering %d control!",
2506 idx);
2507 goto err_rdma_source_init;
2508 }
2509 }
2510
2511 return 0;
2512
2513 err_rdma_source_init:
2514 error_propagate(errp, local_err);
2515 qemu_rdma_cleanup(rdma);
2516 return -1;
2517 }
2518
2519 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2520 struct rdma_cm_event **cm_event,
2521 long msec, Error **errp)
2522 {
2523 int ret;
2524 struct pollfd poll_fd = {
2525 .fd = rdma->channel->fd,
2526 .events = POLLIN,
2527 .revents = 0
2528 };
2529
2530 do {
2531 ret = poll(&poll_fd, 1, msec);
2532 } while (ret < 0 && errno == EINTR);
2533
2534 if (ret == 0) {
2535 ERROR(errp, "poll cm event timeout");
2536 return -1;
2537 } else if (ret < 0) {
2538 ERROR(errp, "failed to poll cm event, errno=%i", errno);
2539 return -1;
2540 } else if (poll_fd.revents & POLLIN) {
2541 return rdma_get_cm_event(rdma->channel, cm_event);
2542 } else {
2543 ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2544 return -1;
2545 }
2546 }
2547
2548 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2549 {
2550 RDMACapabilities cap = {
2551 .version = RDMA_CONTROL_VERSION_CURRENT,
2552 .flags = 0,
2553 };
2554 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2555 .retry_count = 5,
2556 .private_data = &cap,
2557 .private_data_len = sizeof(cap),
2558 };
2559 struct rdma_cm_event *cm_event;
2560 int ret;
2561
2562 /*
2563 * Only negotiate the capability with destination if the user
2564 * on the source first requested the capability.
2565 */
2566 if (rdma->pin_all) {
2567 trace_qemu_rdma_connect_pin_all_requested();
2568 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2569 }
2570
2571 caps_to_network(&cap);
2572
2573 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2574 if (ret) {
2575 ERROR(errp, "posting second control recv");
2576 goto err_rdma_source_connect;
2577 }
2578
2579 ret = rdma_connect(rdma->cm_id, &conn_param);
2580 if (ret) {
2581 perror("rdma_connect");
2582 ERROR(errp, "connecting to destination!");
2583 goto err_rdma_source_connect;
2584 }
2585
2586 if (return_path) {
2587 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2588 } else {
2589 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2590 }
2591 if (ret) {
2592 perror("rdma_get_cm_event after rdma_connect");
2593 ERROR(errp, "connecting to destination!");
2594 goto err_rdma_source_connect;
2595 }
2596
2597 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2598 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2599 ERROR(errp, "connecting to destination!");
2600 rdma_ack_cm_event(cm_event);
2601 goto err_rdma_source_connect;
2602 }
2603 rdma->connected = true;
2604
2605 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2606 network_to_caps(&cap);
2607
2608 /*
2609 * Verify that the *requested* capabilities are supported by the destination
2610 * and disable them otherwise.
2611 */
2612 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2613 ERROR(errp, "Server cannot support pinning all memory. "
2614 "Will register memory dynamically.");
2615 rdma->pin_all = false;
2616 }
2617
2618 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2619
2620 rdma_ack_cm_event(cm_event);
2621
2622 rdma->control_ready_expected = 1;
2623 rdma->nb_sent = 0;
2624 return 0;
2625
2626 err_rdma_source_connect:
2627 qemu_rdma_cleanup(rdma);
2628 return -1;
2629 }
2630
2631 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2632 {
2633 int ret, idx;
2634 struct rdma_cm_id *listen_id;
2635 char ip[40] = "unknown";
2636 struct rdma_addrinfo *res, *e;
2637 char port_str[16];
2638 int reuse = 1;
2639
2640 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2641 rdma->wr_data[idx].control_len = 0;
2642 rdma->wr_data[idx].control_curr = NULL;
2643 }
2644
2645 if (!rdma->host || !rdma->host[0]) {
2646 ERROR(errp, "RDMA host is not set!");
2647 rdma->error_state = -EINVAL;
2648 return -1;
2649 }
2650 /* create CM channel */
2651 rdma->channel = rdma_create_event_channel();
2652 if (!rdma->channel) {
2653 ERROR(errp, "could not create rdma event channel");
2654 rdma->error_state = -EINVAL;
2655 return -1;
2656 }
2657
2658 /* create CM id */
2659 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2660 if (ret) {
2661 ERROR(errp, "could not create cm_id!");
2662 goto err_dest_init_create_listen_id;
2663 }
2664
2665 snprintf(port_str, 16, "%d", rdma->port);
2666 port_str[15] = '\0';
2667
2668 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2669 if (ret < 0) {
2670 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2671 goto err_dest_init_bind_addr;
2672 }
2673
2674 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2675 &reuse, sizeof reuse);
2676 if (ret) {
2677 ERROR(errp, "Error: could not set REUSEADDR option");
2678 goto err_dest_init_bind_addr;
2679 }
2680 for (e = res; e != NULL; e = e->ai_next) {
2681 inet_ntop(e->ai_family,
2682 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2683 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2684 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2685 if (ret) {
2686 continue;
2687 }
2688 if (e->ai_family == AF_INET6) {
2689 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2690 if (ret) {
2691 continue;
2692 }
2693 }
2694 break;
2695 }
2696
2697 rdma_freeaddrinfo(res);
2698 if (!e) {
2699 ERROR(errp, "Error: could not rdma_bind_addr!");
2700 goto err_dest_init_bind_addr;
2701 }
2702
2703 rdma->listen_id = listen_id;
2704 qemu_rdma_dump_gid("dest_init", listen_id);
2705 return 0;
2706
2707 err_dest_init_bind_addr:
2708 rdma_destroy_id(listen_id);
2709 err_dest_init_create_listen_id:
2710 rdma_destroy_event_channel(rdma->channel);
2711 rdma->channel = NULL;
2712 rdma->error_state = ret;
2713 return ret;
2714
2715 }
2716
2717 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2718 RDMAContext *rdma)
2719 {
2720 int idx;
2721
2722 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2723 rdma_return_path->wr_data[idx].control_len = 0;
2724 rdma_return_path->wr_data[idx].control_curr = NULL;
2725 }
2726
2727 /*the CM channel and CM id is shared*/
2728 rdma_return_path->channel = rdma->channel;
2729 rdma_return_path->listen_id = rdma->listen_id;
2730
2731 rdma->return_path = rdma_return_path;
2732 rdma_return_path->return_path = rdma;
2733 rdma_return_path->is_return_path = true;
2734 }
2735
2736 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2737 {
2738 RDMAContext *rdma = NULL;
2739 InetSocketAddress *addr;
2740
2741 if (host_port) {
2742 rdma = g_new0(RDMAContext, 1);
2743 rdma->current_index = -1;
2744 rdma->current_chunk = -1;
2745
2746 addr = g_new(InetSocketAddress, 1);
2747 if (!inet_parse(addr, host_port, NULL)) {
2748 rdma->port = atoi(addr->port);
2749 rdma->host = g_strdup(addr->host);
2750 rdma->host_port = g_strdup(host_port);
2751 } else {
2752 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2753 g_free(rdma);
2754 rdma = NULL;
2755 }
2756
2757 qapi_free_InetSocketAddress(addr);
2758 }
2759
2760 return rdma;
2761 }
2762
2763 /*
2764 * QEMUFile interface to the control channel.
2765 * SEND messages for control only.
2766 * VM's ram is handled with regular RDMA messages.
2767 */
2768 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2769 const struct iovec *iov,
2770 size_t niov,
2771 int *fds,
2772 size_t nfds,
2773 int flags,
2774 Error **errp)
2775 {
2776 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2777 QEMUFile *f = rioc->file;
2778 RDMAContext *rdma;
2779 int ret;
2780 ssize_t done = 0;
2781 size_t i;
2782 size_t len = 0;
2783
2784 RCU_READ_LOCK_GUARD();
2785 rdma = qatomic_rcu_read(&rioc->rdmaout);
2786
2787 if (!rdma) {
2788 return -EIO;
2789 }
2790
2791 CHECK_ERROR_STATE();
2792
2793 /*
2794 * Push out any writes that
2795 * we're queued up for VM's ram.
2796 */
2797 ret = qemu_rdma_write_flush(f, rdma);
2798 if (ret < 0) {
2799 rdma->error_state = ret;
2800 return ret;
2801 }
2802
2803 for (i = 0; i < niov; i++) {
2804 size_t remaining = iov[i].iov_len;
2805 uint8_t * data = (void *)iov[i].iov_base;
2806 while (remaining) {
2807 RDMAControlHeader head;
2808
2809 len = MIN(remaining, RDMA_SEND_INCREMENT);
2810 remaining -= len;
2811
2812 head.len = len;
2813 head.type = RDMA_CONTROL_QEMU_FILE;
2814
2815 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2816
2817 if (ret < 0) {
2818 rdma->error_state = ret;
2819 return ret;
2820 }
2821
2822 data += len;
2823 done += len;
2824 }
2825 }
2826
2827 return done;
2828 }
2829
2830 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2831 size_t size, int idx)
2832 {
2833 size_t len = 0;
2834
2835 if (rdma->wr_data[idx].control_len) {
2836 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2837
2838 len = MIN(size, rdma->wr_data[idx].control_len);
2839 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2840 rdma->wr_data[idx].control_curr += len;
2841 rdma->wr_data[idx].control_len -= len;
2842 }
2843
2844 return len;
2845 }
2846
2847 /*
2848 * QEMUFile interface to the control channel.
2849 * RDMA links don't use bytestreams, so we have to
2850 * return bytes to QEMUFile opportunistically.
2851 */
2852 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2853 const struct iovec *iov,
2854 size_t niov,
2855 int **fds,
2856 size_t *nfds,
2857 Error **errp)
2858 {
2859 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2860 RDMAContext *rdma;
2861 RDMAControlHeader head;
2862 int ret = 0;
2863 ssize_t i;
2864 size_t done = 0;
2865
2866 RCU_READ_LOCK_GUARD();
2867 rdma = qatomic_rcu_read(&rioc->rdmain);
2868
2869 if (!rdma) {
2870 return -EIO;
2871 }
2872
2873 CHECK_ERROR_STATE();
2874
2875 for (i = 0; i < niov; i++) {
2876 size_t want = iov[i].iov_len;
2877 uint8_t *data = (void *)iov[i].iov_base;
2878
2879 /*
2880 * First, we hold on to the last SEND message we
2881 * were given and dish out the bytes until we run
2882 * out of bytes.
2883 */
2884 ret = qemu_rdma_fill(rdma, data, want, 0);
2885 done += ret;
2886 want -= ret;
2887 /* Got what we needed, so go to next iovec */
2888 if (want == 0) {
2889 continue;
2890 }
2891
2892 /* If we got any data so far, then don't wait
2893 * for more, just return what we have */
2894 if (done > 0) {
2895 break;
2896 }
2897
2898
2899 /* We've got nothing at all, so lets wait for
2900 * more to arrive
2901 */
2902 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2903
2904 if (ret < 0) {
2905 rdma->error_state = ret;
2906 return ret;
2907 }
2908
2909 /*
2910 * SEND was received with new bytes, now try again.
2911 */
2912 ret = qemu_rdma_fill(rdma, data, want, 0);
2913 done += ret;
2914 want -= ret;
2915
2916 /* Still didn't get enough, so lets just return */
2917 if (want) {
2918 if (done == 0) {
2919 return QIO_CHANNEL_ERR_BLOCK;
2920 } else {
2921 break;
2922 }
2923 }
2924 }
2925 return done;
2926 }
2927
2928 /*
2929 * Block until all the outstanding chunks have been delivered by the hardware.
2930 */
2931 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2932 {
2933 int ret;
2934
2935 if (qemu_rdma_write_flush(f, rdma) < 0) {
2936 return -EIO;
2937 }
2938
2939 while (rdma->nb_sent) {
2940 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2941 if (ret < 0) {
2942 error_report("rdma migration: complete polling error!");
2943 return -EIO;
2944 }
2945 }
2946
2947 qemu_rdma_unregister_waiting(rdma);
2948
2949 return 0;
2950 }
2951
2952
2953 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2954 bool blocking,
2955 Error **errp)
2956 {
2957 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2958 /* XXX we should make readv/writev actually honour this :-) */
2959 rioc->blocking = blocking;
2960 return 0;
2961 }
2962
2963
2964 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2965 struct QIOChannelRDMASource {
2966 GSource parent;
2967 QIOChannelRDMA *rioc;
2968 GIOCondition condition;
2969 };
2970
2971 static gboolean
2972 qio_channel_rdma_source_prepare(GSource *source,
2973 gint *timeout)
2974 {
2975 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2976 RDMAContext *rdma;
2977 GIOCondition cond = 0;
2978 *timeout = -1;
2979
2980 RCU_READ_LOCK_GUARD();
2981 if (rsource->condition == G_IO_IN) {
2982 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2983 } else {
2984 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2985 }
2986
2987 if (!rdma) {
2988 error_report("RDMAContext is NULL when prepare Gsource");
2989 return FALSE;
2990 }
2991
2992 if (rdma->wr_data[0].control_len) {
2993 cond |= G_IO_IN;
2994 }
2995 cond |= G_IO_OUT;
2996
2997 return cond & rsource->condition;
2998 }
2999
3000 static gboolean
3001 qio_channel_rdma_source_check(GSource *source)
3002 {
3003 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3004 RDMAContext *rdma;
3005 GIOCondition cond = 0;
3006
3007 RCU_READ_LOCK_GUARD();
3008 if (rsource->condition == G_IO_IN) {
3009 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3010 } else {
3011 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3012 }
3013
3014 if (!rdma) {
3015 error_report("RDMAContext is NULL when check Gsource");
3016 return FALSE;
3017 }
3018
3019 if (rdma->wr_data[0].control_len) {
3020 cond |= G_IO_IN;
3021 }
3022 cond |= G_IO_OUT;
3023
3024 return cond & rsource->condition;
3025 }
3026
3027 static gboolean
3028 qio_channel_rdma_source_dispatch(GSource *source,
3029 GSourceFunc callback,
3030 gpointer user_data)
3031 {
3032 QIOChannelFunc func = (QIOChannelFunc)callback;
3033 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3034 RDMAContext *rdma;
3035 GIOCondition cond = 0;
3036
3037 RCU_READ_LOCK_GUARD();
3038 if (rsource->condition == G_IO_IN) {
3039 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3040 } else {
3041 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3042 }
3043
3044 if (!rdma) {
3045 error_report("RDMAContext is NULL when dispatch Gsource");
3046 return FALSE;
3047 }
3048
3049 if (rdma->wr_data[0].control_len) {
3050 cond |= G_IO_IN;
3051 }
3052 cond |= G_IO_OUT;
3053
3054 return (*func)(QIO_CHANNEL(rsource->rioc),
3055 (cond & rsource->condition),
3056 user_data);
3057 }
3058
3059 static void
3060 qio_channel_rdma_source_finalize(GSource *source)
3061 {
3062 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3063
3064 object_unref(OBJECT(ssource->rioc));
3065 }
3066
3067 GSourceFuncs qio_channel_rdma_source_funcs = {
3068 qio_channel_rdma_source_prepare,
3069 qio_channel_rdma_source_check,
3070 qio_channel_rdma_source_dispatch,
3071 qio_channel_rdma_source_finalize
3072 };
3073
3074 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3075 GIOCondition condition)
3076 {
3077 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3078 QIOChannelRDMASource *ssource;
3079 GSource *source;
3080
3081 source = g_source_new(&qio_channel_rdma_source_funcs,
3082 sizeof(QIOChannelRDMASource));
3083 ssource = (QIOChannelRDMASource *)source;
3084
3085 ssource->rioc = rioc;
3086 object_ref(OBJECT(rioc));
3087
3088 ssource->condition = condition;
3089
3090 return source;
3091 }
3092
3093 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3094 AioContext *ctx,
3095 IOHandler *io_read,
3096 IOHandler *io_write,
3097 void *opaque)
3098 {
3099 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3100 if (io_read) {
3101 aio_set_fd_handler(ctx, rioc->rdmain->recv_comp_channel->fd,
3102 false, io_read, io_write, NULL, NULL, opaque);
3103 aio_set_fd_handler(ctx, rioc->rdmain->send_comp_channel->fd,
3104 false, io_read, io_write, NULL, NULL, opaque);
3105 } else {
3106 aio_set_fd_handler(ctx, rioc->rdmaout->recv_comp_channel->fd,
3107 false, io_read, io_write, NULL, NULL, opaque);
3108 aio_set_fd_handler(ctx, rioc->rdmaout->send_comp_channel->fd,
3109 false, io_read, io_write, NULL, NULL, opaque);
3110 }
3111 }
3112
3113 struct rdma_close_rcu {
3114 struct rcu_head rcu;
3115 RDMAContext *rdmain;
3116 RDMAContext *rdmaout;
3117 };
3118
3119 /* callback from qio_channel_rdma_close via call_rcu */
3120 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3121 {
3122 if (rcu->rdmain) {
3123 qemu_rdma_cleanup(rcu->rdmain);
3124 }
3125
3126 if (rcu->rdmaout) {
3127 qemu_rdma_cleanup(rcu->rdmaout);
3128 }
3129
3130 g_free(rcu->rdmain);
3131 g_free(rcu->rdmaout);
3132 g_free(rcu);
3133 }
3134
3135 static int qio_channel_rdma_close(QIOChannel *ioc,
3136 Error **errp)
3137 {
3138 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3139 RDMAContext *rdmain, *rdmaout;
3140 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3141
3142 trace_qemu_rdma_close();
3143
3144 rdmain = rioc->rdmain;
3145 if (rdmain) {
3146 qatomic_rcu_set(&rioc->rdmain, NULL);
3147 }
3148
3149 rdmaout = rioc->rdmaout;
3150 if (rdmaout) {
3151 qatomic_rcu_set(&rioc->rdmaout, NULL);
3152 }
3153
3154 rcu->rdmain = rdmain;
3155 rcu->rdmaout = rdmaout;
3156 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3157
3158 return 0;
3159 }
3160
3161 static int
3162 qio_channel_rdma_shutdown(QIOChannel *ioc,
3163 QIOChannelShutdown how,
3164 Error **errp)
3165 {
3166 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3167 RDMAContext *rdmain, *rdmaout;
3168
3169 RCU_READ_LOCK_GUARD();
3170
3171 rdmain = qatomic_rcu_read(&rioc->rdmain);
3172 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3173
3174 switch (how) {
3175 case QIO_CHANNEL_SHUTDOWN_READ:
3176 if (rdmain) {
3177 rdmain->error_state = -1;
3178 }
3179 break;
3180 case QIO_CHANNEL_SHUTDOWN_WRITE:
3181 if (rdmaout) {
3182 rdmaout->error_state = -1;
3183 }
3184 break;
3185 case QIO_CHANNEL_SHUTDOWN_BOTH:
3186 default:
3187 if (rdmain) {
3188 rdmain->error_state = -1;
3189 }
3190 if (rdmaout) {
3191 rdmaout->error_state = -1;
3192 }
3193 break;
3194 }
3195
3196 return 0;
3197 }
3198
3199 /*
3200 * Parameters:
3201 * @offset == 0 :
3202 * This means that 'block_offset' is a full virtual address that does not
3203 * belong to a RAMBlock of the virtual machine and instead
3204 * represents a private malloc'd memory area that the caller wishes to
3205 * transfer.
3206 *
3207 * @offset != 0 :
3208 * Offset is an offset to be added to block_offset and used
3209 * to also lookup the corresponding RAMBlock.
3210 *
3211 * @size : Number of bytes to transfer
3212 *
3213 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3214 * sent. Usually, this will not be more than a few bytes of
3215 * the protocol because most transfers are sent asynchronously.
3216 */
3217 static size_t qemu_rdma_save_page(QEMUFile *f,
3218 ram_addr_t block_offset, ram_addr_t offset,
3219 size_t size, uint64_t *bytes_sent)
3220 {
3221 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3222 RDMAContext *rdma;
3223 int ret;
3224
3225 RCU_READ_LOCK_GUARD();
3226 rdma = qatomic_rcu_read(&rioc->rdmaout);
3227
3228 if (!rdma) {
3229 return -EIO;
3230 }
3231
3232 CHECK_ERROR_STATE();
3233
3234 if (migration_in_postcopy()) {
3235 return RAM_SAVE_CONTROL_NOT_SUPP;
3236 }
3237
3238 qemu_fflush(f);
3239
3240 /*
3241 * Add this page to the current 'chunk'. If the chunk
3242 * is full, or the page doesn't belong to the current chunk,
3243 * an actual RDMA write will occur and a new chunk will be formed.
3244 */
3245 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3246 if (ret < 0) {
3247 error_report("rdma migration: write error! %d", ret);
3248 goto err;
3249 }
3250
3251 /*
3252 * We always return 1 bytes because the RDMA
3253 * protocol is completely asynchronous. We do not yet know
3254 * whether an identified chunk is zero or not because we're
3255 * waiting for other pages to potentially be merged with
3256 * the current chunk. So, we have to call qemu_update_position()
3257 * later on when the actual write occurs.
3258 */
3259 if (bytes_sent) {
3260 *bytes_sent = 1;
3261 }
3262
3263 /*
3264 * Drain the Completion Queue if possible, but do not block,
3265 * just poll.
3266 *
3267 * If nothing to poll, the end of the iteration will do this
3268 * again to make sure we don't overflow the request queue.
3269 */
3270 while (1) {
3271 uint64_t wr_id, wr_id_in;
3272 int ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3273 if (ret < 0) {
3274 error_report("rdma migration: polling error! %d", ret);
3275 goto err;
3276 }
3277
3278 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3279
3280 if (wr_id == RDMA_WRID_NONE) {
3281 break;
3282 }
3283 }
3284
3285 while (1) {
3286 uint64_t wr_id, wr_id_in;
3287 int ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3288 if (ret < 0) {
3289 error_report("rdma migration: polling error! %d", ret);
3290 goto err;
3291 }
3292
3293 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3294
3295 if (wr_id == RDMA_WRID_NONE) {
3296 break;
3297 }
3298 }
3299
3300 return RAM_SAVE_CONTROL_DELAYED;
3301 err:
3302 rdma->error_state = ret;
3303 return ret;
3304 }
3305
3306 static void rdma_accept_incoming_migration(void *opaque);
3307
3308 static void rdma_cm_poll_handler(void *opaque)
3309 {
3310 RDMAContext *rdma = opaque;
3311 int ret;
3312 struct rdma_cm_event *cm_event;
3313 MigrationIncomingState *mis = migration_incoming_get_current();
3314
3315 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3316 if (ret) {
3317 error_report("get_cm_event failed %d", errno);
3318 return;
3319 }
3320
3321 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3322 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3323 if (!rdma->error_state &&
3324 migration_incoming_get_current()->state !=
3325 MIGRATION_STATUS_COMPLETED) {
3326 error_report("receive cm event, cm event is %d", cm_event->event);
3327 rdma->error_state = -EPIPE;
3328 if (rdma->return_path) {
3329 rdma->return_path->error_state = -EPIPE;
3330 }
3331 }
3332 rdma_ack_cm_event(cm_event);
3333
3334 if (mis->migration_incoming_co) {
3335 qemu_coroutine_enter(mis->migration_incoming_co);
3336 }
3337 return;
3338 }
3339 rdma_ack_cm_event(cm_event);
3340 }
3341
3342 static int qemu_rdma_accept(RDMAContext *rdma)
3343 {
3344 RDMACapabilities cap;
3345 struct rdma_conn_param conn_param = {
3346 .responder_resources = 2,
3347 .private_data = &cap,
3348 .private_data_len = sizeof(cap),
3349 };
3350 RDMAContext *rdma_return_path = NULL;
3351 struct rdma_cm_event *cm_event;
3352 struct ibv_context *verbs;
3353 int ret = -EINVAL;
3354 int idx;
3355
3356 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3357 if (ret) {
3358 goto err_rdma_dest_wait;
3359 }
3360
3361 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3362 rdma_ack_cm_event(cm_event);
3363 goto err_rdma_dest_wait;
3364 }
3365
3366 /*
3367 * initialize the RDMAContext for return path for postcopy after first
3368 * connection request reached.
3369 */
3370 if (migrate_postcopy() && !rdma->is_return_path) {
3371 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3372 if (rdma_return_path == NULL) {
3373 rdma_ack_cm_event(cm_event);
3374 goto err_rdma_dest_wait;
3375 }
3376
3377 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3378 }
3379
3380 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3381
3382 network_to_caps(&cap);
3383
3384 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3385 error_report("Unknown source RDMA version: %d, bailing...",
3386 cap.version);
3387 rdma_ack_cm_event(cm_event);
3388 goto err_rdma_dest_wait;
3389 }
3390
3391 /*
3392 * Respond with only the capabilities this version of QEMU knows about.
3393 */
3394 cap.flags &= known_capabilities;
3395
3396 /*
3397 * Enable the ones that we do know about.
3398 * Add other checks here as new ones are introduced.
3399 */
3400 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3401 rdma->pin_all = true;
3402 }
3403
3404 rdma->cm_id = cm_event->id;
3405 verbs = cm_event->id->verbs;
3406
3407 rdma_ack_cm_event(cm_event);
3408
3409 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3410
3411 caps_to_network(&cap);
3412
3413 trace_qemu_rdma_accept_pin_verbsc(verbs);
3414
3415 if (!rdma->verbs) {
3416 rdma->verbs = verbs;
3417 } else if (rdma->verbs != verbs) {
3418 error_report("ibv context not matching %p, %p!", rdma->verbs,
3419 verbs);
3420 goto err_rdma_dest_wait;
3421 }
3422
3423 qemu_rdma_dump_id("dest_init", verbs);
3424
3425 ret = qemu_rdma_alloc_pd_cq(rdma);
3426 if (ret) {
3427 error_report("rdma migration: error allocating pd and cq!");
3428 goto err_rdma_dest_wait;
3429 }
3430
3431 ret = qemu_rdma_alloc_qp(rdma);
3432 if (ret) {
3433 error_report("rdma migration: error allocating qp!");
3434 goto err_rdma_dest_wait;
3435 }
3436
3437 ret = qemu_rdma_init_ram_blocks(rdma);
3438 if (ret) {
3439 error_report("rdma migration: error initializing ram blocks!");
3440 goto err_rdma_dest_wait;
3441 }
3442
3443 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3444 ret = qemu_rdma_reg_control(rdma, idx);
3445 if (ret) {
3446 error_report("rdma: error registering %d control", idx);
3447 goto err_rdma_dest_wait;
3448 }
3449 }
3450
3451 /* Accept the second connection request for return path */
3452 if (migrate_postcopy() && !rdma->is_return_path) {
3453 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3454 NULL,
3455 (void *)(intptr_t)rdma->return_path);
3456 } else {
3457 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3458 NULL, rdma);
3459 }
3460
3461 ret = rdma_accept(rdma->cm_id, &conn_param);
3462 if (ret) {
3463 error_report("rdma_accept returns %d", ret);
3464 goto err_rdma_dest_wait;
3465 }
3466
3467 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3468 if (ret) {
3469 error_report("rdma_accept get_cm_event failed %d", ret);
3470 goto err_rdma_dest_wait;
3471 }
3472
3473 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3474 error_report("rdma_accept not event established");
3475 rdma_ack_cm_event(cm_event);
3476 goto err_rdma_dest_wait;
3477 }
3478
3479 rdma_ack_cm_event(cm_event);
3480 rdma->connected = true;
3481
3482 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3483 if (ret) {
3484 error_report("rdma migration: error posting second control recv");
3485 goto err_rdma_dest_wait;
3486 }
3487
3488 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3489
3490 return 0;
3491
3492 err_rdma_dest_wait:
3493 rdma->error_state = ret;
3494 qemu_rdma_cleanup(rdma);
3495 g_free(rdma_return_path);
3496 return ret;
3497 }
3498
3499 static int dest_ram_sort_func(const void *a, const void *b)
3500 {
3501 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3502 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3503
3504 return (a_index < b_index) ? -1 : (a_index != b_index);
3505 }
3506
3507 /*
3508 * During each iteration of the migration, we listen for instructions
3509 * by the source VM to perform dynamic page registrations before they
3510 * can perform RDMA operations.
3511 *
3512 * We respond with the 'rkey'.
3513 *
3514 * Keep doing this until the source tells us to stop.
3515 */
3516 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3517 {
3518 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3519 .type = RDMA_CONTROL_REGISTER_RESULT,
3520 .repeat = 0,
3521 };
3522 RDMAControlHeader unreg_resp = { .len = 0,
3523 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3524 .repeat = 0,
3525 };
3526 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3527 .repeat = 1 };
3528 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3529 RDMAContext *rdma;
3530 RDMALocalBlocks *local;
3531 RDMAControlHeader head;
3532 RDMARegister *reg, *registers;
3533 RDMACompress *comp;
3534 RDMARegisterResult *reg_result;
3535 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3536 RDMALocalBlock *block;
3537 void *host_addr;
3538 int ret = 0;
3539 int idx = 0;
3540 int count = 0;
3541 int i = 0;
3542
3543 RCU_READ_LOCK_GUARD();
3544 rdma = qatomic_rcu_read(&rioc->rdmain);
3545
3546 if (!rdma) {
3547 return -EIO;
3548 }
3549
3550 CHECK_ERROR_STATE();
3551
3552 local = &rdma->local_ram_blocks;
3553 do {
3554 trace_qemu_rdma_registration_handle_wait();
3555
3556 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3557
3558 if (ret < 0) {
3559 break;
3560 }
3561
3562 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3563 error_report("rdma: Too many requests in this message (%d)."
3564 "Bailing.", head.repeat);
3565 ret = -EIO;
3566 break;
3567 }
3568
3569 switch (head.type) {
3570 case RDMA_CONTROL_COMPRESS:
3571 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3572 network_to_compress(comp);
3573
3574 trace_qemu_rdma_registration_handle_compress(comp->length,
3575 comp->block_idx,
3576 comp->offset);
3577 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3578 error_report("rdma: 'compress' bad block index %u (vs %d)",
3579 (unsigned int)comp->block_idx,
3580 rdma->local_ram_blocks.nb_blocks);
3581 ret = -EIO;
3582 goto out;
3583 }
3584 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3585
3586 host_addr = block->local_host_addr +
3587 (comp->offset - block->offset);
3588
3589 ram_handle_compressed(host_addr, comp->value, comp->length);
3590 break;
3591
3592 case RDMA_CONTROL_REGISTER_FINISHED:
3593 trace_qemu_rdma_registration_handle_finished();
3594 goto out;
3595
3596 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3597 trace_qemu_rdma_registration_handle_ram_blocks();
3598
3599 /* Sort our local RAM Block list so it's the same as the source,
3600 * we can do this since we've filled in a src_index in the list
3601 * as we received the RAMBlock list earlier.
3602 */
3603 qsort(rdma->local_ram_blocks.block,
3604 rdma->local_ram_blocks.nb_blocks,
3605 sizeof(RDMALocalBlock), dest_ram_sort_func);
3606 for (i = 0; i < local->nb_blocks; i++) {
3607 local->block[i].index = i;
3608 }
3609
3610 if (rdma->pin_all) {
3611 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3612 if (ret) {
3613 error_report("rdma migration: error dest "
3614 "registering ram blocks");
3615 goto out;
3616 }
3617 }
3618
3619 /*
3620 * Dest uses this to prepare to transmit the RAMBlock descriptions
3621 * to the source VM after connection setup.
3622 * Both sides use the "remote" structure to communicate and update
3623 * their "local" descriptions with what was sent.
3624 */
3625 for (i = 0; i < local->nb_blocks; i++) {
3626 rdma->dest_blocks[i].remote_host_addr =
3627 (uintptr_t)(local->block[i].local_host_addr);
3628
3629 if (rdma->pin_all) {
3630 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3631 }
3632
3633 rdma->dest_blocks[i].offset = local->block[i].offset;
3634 rdma->dest_blocks[i].length = local->block[i].length;
3635
3636 dest_block_to_network(&rdma->dest_blocks[i]);
3637 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3638 local->block[i].block_name,
3639 local->block[i].offset,
3640 local->block[i].length,
3641 local->block[i].local_host_addr,
3642 local->block[i].src_index);
3643 }
3644
3645 blocks.len = rdma->local_ram_blocks.nb_blocks
3646 * sizeof(RDMADestBlock);
3647
3648
3649 ret = qemu_rdma_post_send_control(rdma,
3650 (uint8_t *) rdma->dest_blocks, &blocks);
3651
3652 if (ret < 0) {
3653 error_report("rdma migration: error sending remote info");
3654 goto out;
3655 }
3656
3657 break;
3658 case RDMA_CONTROL_REGISTER_REQUEST:
3659 trace_qemu_rdma_registration_handle_register(head.repeat);
3660
3661 reg_resp.repeat = head.repeat;
3662 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3663
3664 for (count = 0; count < head.repeat; count++) {
3665 uint64_t chunk;
3666 uint8_t *chunk_start, *chunk_end;
3667
3668 reg = &registers[count];
3669 network_to_register(reg);
3670
3671 reg_result = &results[count];
3672
3673 trace_qemu_rdma_registration_handle_register_loop(count,
3674 reg->current_index, reg->key.current_addr, reg->chunks);
3675
3676 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3677 error_report("rdma: 'register' bad block index %u (vs %d)",
3678 (unsigned int)reg->current_index,
3679 rdma->local_ram_blocks.nb_blocks);
3680 ret = -ENOENT;
3681 goto out;
3682 }
3683 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3684 if (block->is_ram_block) {
3685 if (block->offset > reg->key.current_addr) {
3686 error_report("rdma: bad register address for block %s"
3687 " offset: %" PRIx64 " current_addr: %" PRIx64,
3688 block->block_name, block->offset,
3689 reg->key.current_addr);
3690 ret = -ERANGE;
3691 goto out;
3692 }
3693 host_addr = (block->local_host_addr +
3694 (reg->key.current_addr - block->offset));
3695 chunk = ram_chunk_index(block->local_host_addr,
3696 (uint8_t *) host_addr);
3697 } else {
3698 chunk = reg->key.chunk;
3699 host_addr = block->local_host_addr +
3700 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3701 /* Check for particularly bad chunk value */
3702 if (host_addr < (void *)block->local_host_addr) {
3703 error_report("rdma: bad chunk for block %s"
3704 " chunk: %" PRIx64,
3705 block->block_name, reg->key.chunk);
3706 ret = -ERANGE;
3707 goto out;
3708 }
3709 }
3710 chunk_start = ram_chunk_start(block, chunk);
3711 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3712 /* avoid "-Waddress-of-packed-member" warning */
3713 uint32_t tmp_rkey = 0;
3714 if (qemu_rdma_register_and_get_keys(rdma, block,
3715 (uintptr_t)host_addr, NULL, &tmp_rkey,
3716 chunk, chunk_start, chunk_end)) {
3717 error_report("cannot get rkey");
3718 ret = -EINVAL;
3719 goto out;
3720 }
3721 reg_result->rkey = tmp_rkey;
3722
3723 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3724
3725 trace_qemu_rdma_registration_handle_register_rkey(
3726 reg_result->rkey);
3727
3728 result_to_network(reg_result);
3729 }
3730
3731 ret = qemu_rdma_post_send_control(rdma,
3732 (uint8_t *) results, &reg_resp);
3733
3734 if (ret < 0) {
3735 error_report("Failed to send control buffer");
3736 goto out;
3737 }
3738 break;
3739 case RDMA_CONTROL_UNREGISTER_REQUEST:
3740 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3741 unreg_resp.repeat = head.repeat;
3742 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3743
3744 for (count = 0; count < head.repeat; count++) {
3745 reg = &registers[count];
3746 network_to_register(reg);
3747
3748 trace_qemu_rdma_registration_handle_unregister_loop(count,
3749 reg->current_index, reg->key.chunk);
3750
3751 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3752
3753 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3754 block->pmr[reg->key.chunk] = NULL;
3755
3756 if (ret != 0) {
3757 perror("rdma unregistration chunk failed");
3758 ret = -ret;
3759 goto out;
3760 }
3761
3762 rdma->total_registrations--;
3763
3764 trace_qemu_rdma_registration_handle_unregister_success(
3765 reg->key.chunk);
3766 }
3767
3768 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3769
3770 if (ret < 0) {
3771 error_report("Failed to send control buffer");
3772 goto out;
3773 }
3774 break;
3775 case RDMA_CONTROL_REGISTER_RESULT:
3776 error_report("Invalid RESULT message at dest.");
3777 ret = -EIO;
3778 goto out;
3779 default:
3780 error_report("Unknown control message %s", control_desc(head.type));
3781 ret = -EIO;
3782 goto out;
3783 }
3784 } while (1);
3785 out:
3786 if (ret < 0) {
3787 rdma->error_state = ret;
3788 }
3789 return ret;
3790 }
3791
3792 /* Destination:
3793 * Called via a ram_control_load_hook during the initial RAM load section which
3794 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3795 * on the source.
3796 * We've already built our local RAMBlock list, but not yet sent the list to
3797 * the source.
3798 */
3799 static int
3800 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3801 {
3802 RDMAContext *rdma;
3803 int curr;
3804 int found = -1;
3805
3806 RCU_READ_LOCK_GUARD();
3807 rdma = qatomic_rcu_read(&rioc->rdmain);
3808
3809 if (!rdma) {
3810 return -EIO;
3811 }
3812
3813 /* Find the matching RAMBlock in our local list */
3814 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3815 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3816 found = curr;
3817 break;
3818 }
3819 }
3820
3821 if (found == -1) {
3822 error_report("RAMBlock '%s' not found on destination", name);
3823 return -ENOENT;
3824 }
3825
3826 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3827 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3828 rdma->next_src_index++;
3829
3830 return 0;
3831 }
3832
3833 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3834 {
3835 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3836 switch (flags) {
3837 case RAM_CONTROL_BLOCK_REG:
3838 return rdma_block_notification_handle(rioc, data);
3839
3840 case RAM_CONTROL_HOOK:
3841 return qemu_rdma_registration_handle(f, rioc);
3842
3843 default:
3844 /* Shouldn't be called with any other values */
3845 abort();
3846 }
3847 }
3848
3849 static int qemu_rdma_registration_start(QEMUFile *f,
3850 uint64_t flags, void *data)
3851 {
3852 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3853 RDMAContext *rdma;
3854
3855 RCU_READ_LOCK_GUARD();
3856 rdma = qatomic_rcu_read(&rioc->rdmaout);
3857 if (!rdma) {
3858 return -EIO;
3859 }
3860
3861 CHECK_ERROR_STATE();
3862
3863 if (migration_in_postcopy()) {
3864 return 0;
3865 }
3866
3867 trace_qemu_rdma_registration_start(flags);
3868 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3869 qemu_fflush(f);
3870
3871 return 0;
3872 }
3873
3874 /*
3875 * Inform dest that dynamic registrations are done for now.
3876 * First, flush writes, if any.
3877 */
3878 static int qemu_rdma_registration_stop(QEMUFile *f,
3879 uint64_t flags, void *data)
3880 {
3881 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3882 RDMAContext *rdma;
3883 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3884 int ret = 0;
3885
3886 RCU_READ_LOCK_GUARD();
3887 rdma = qatomic_rcu_read(&rioc->rdmaout);
3888 if (!rdma) {
3889 return -EIO;
3890 }
3891
3892 CHECK_ERROR_STATE();
3893
3894 if (migration_in_postcopy()) {
3895 return 0;
3896 }
3897
3898 qemu_fflush(f);
3899 ret = qemu_rdma_drain_cq(f, rdma);
3900
3901 if (ret < 0) {
3902 goto err;
3903 }
3904
3905 if (flags == RAM_CONTROL_SETUP) {
3906 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3907 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3908 int reg_result_idx, i, nb_dest_blocks;
3909
3910 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3911 trace_qemu_rdma_registration_stop_ram();
3912
3913 /*
3914 * Make sure that we parallelize the pinning on both sides.
3915 * For very large guests, doing this serially takes a really
3916 * long time, so we have to 'interleave' the pinning locally
3917 * with the control messages by performing the pinning on this
3918 * side before we receive the control response from the other
3919 * side that the pinning has completed.
3920 */
3921 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3922 &reg_result_idx, rdma->pin_all ?
3923 qemu_rdma_reg_whole_ram_blocks : NULL);
3924 if (ret < 0) {
3925 fprintf(stderr, "receiving remote info!");
3926 return ret;
3927 }
3928
3929 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3930
3931 /*
3932 * The protocol uses two different sets of rkeys (mutually exclusive):
3933 * 1. One key to represent the virtual address of the entire ram block.
3934 * (dynamic chunk registration disabled - pin everything with one rkey.)
3935 * 2. One to represent individual chunks within a ram block.
3936 * (dynamic chunk registration enabled - pin individual chunks.)
3937 *
3938 * Once the capability is successfully negotiated, the destination transmits
3939 * the keys to use (or sends them later) including the virtual addresses
3940 * and then propagates the remote ram block descriptions to his local copy.
3941 */
3942
3943 if (local->nb_blocks != nb_dest_blocks) {
3944 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3945 "Your QEMU command line parameters are probably "
3946 "not identical on both the source and destination.",
3947 local->nb_blocks, nb_dest_blocks);
3948 rdma->error_state = -EINVAL;
3949 return -EINVAL;
3950 }
3951
3952 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3953 memcpy(rdma->dest_blocks,
3954 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3955 for (i = 0; i < nb_dest_blocks; i++) {
3956 network_to_dest_block(&rdma->dest_blocks[i]);
3957
3958 /* We require that the blocks are in the same order */
3959 if (rdma->dest_blocks[i].length != local->block[i].length) {
3960 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3961 "vs %" PRIu64, local->block[i].block_name, i,
3962 local->block[i].length,
3963 rdma->dest_blocks[i].length);
3964 rdma->error_state = -EINVAL;
3965 return -EINVAL;
3966 }
3967 local->block[i].remote_host_addr =
3968 rdma->dest_blocks[i].remote_host_addr;
3969 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3970 }
3971 }
3972
3973 trace_qemu_rdma_registration_stop(flags);
3974
3975 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3976 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3977
3978 if (ret < 0) {
3979 goto err;
3980 }
3981
3982 return 0;
3983 err:
3984 rdma->error_state = ret;
3985 return ret;
3986 }
3987
3988 static const QEMUFileHooks rdma_read_hooks = {
3989 .hook_ram_load = rdma_load_hook,
3990 };
3991
3992 static const QEMUFileHooks rdma_write_hooks = {
3993 .before_ram_iterate = qemu_rdma_registration_start,
3994 .after_ram_iterate = qemu_rdma_registration_stop,
3995 .save_page = qemu_rdma_save_page,
3996 };
3997
3998
3999 static void qio_channel_rdma_finalize(Object *obj)
4000 {
4001 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4002 if (rioc->rdmain) {
4003 qemu_rdma_cleanup(rioc->rdmain);
4004 g_free(rioc->rdmain);
4005 rioc->rdmain = NULL;
4006 }
4007 if (rioc->rdmaout) {
4008 qemu_rdma_cleanup(rioc->rdmaout);
4009 g_free(rioc->rdmaout);
4010 rioc->rdmaout = NULL;
4011 }
4012 }
4013
4014 static void qio_channel_rdma_class_init(ObjectClass *klass,
4015 void *class_data G_GNUC_UNUSED)
4016 {
4017 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4018
4019 ioc_klass->io_writev = qio_channel_rdma_writev;
4020 ioc_klass->io_readv = qio_channel_rdma_readv;
4021 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4022 ioc_klass->io_close = qio_channel_rdma_close;
4023 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4024 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4025 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4026 }
4027
4028 static const TypeInfo qio_channel_rdma_info = {
4029 .parent = TYPE_QIO_CHANNEL,
4030 .name = TYPE_QIO_CHANNEL_RDMA,
4031 .instance_size = sizeof(QIOChannelRDMA),
4032 .instance_finalize = qio_channel_rdma_finalize,
4033 .class_init = qio_channel_rdma_class_init,
4034 };
4035
4036 static void qio_channel_rdma_register_types(void)
4037 {
4038 type_register_static(&qio_channel_rdma_info);
4039 }
4040
4041 type_init(qio_channel_rdma_register_types);
4042
4043 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4044 {
4045 QIOChannelRDMA *rioc;
4046
4047 if (qemu_file_mode_is_not_valid(mode)) {
4048 return NULL;
4049 }
4050
4051 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4052
4053 if (mode[0] == 'w') {
4054 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4055 rioc->rdmaout = rdma;
4056 rioc->rdmain = rdma->return_path;
4057 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4058 } else {
4059 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4060 rioc->rdmain = rdma;
4061 rioc->rdmaout = rdma->return_path;
4062 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4063 }
4064
4065 return rioc->file;
4066 }
4067
4068 static void rdma_accept_incoming_migration(void *opaque)
4069 {
4070 RDMAContext *rdma = opaque;
4071 int ret;
4072 QEMUFile *f;
4073 Error *local_err = NULL;
4074
4075 trace_qemu_rdma_accept_incoming_migration();
4076 ret = qemu_rdma_accept(rdma);
4077
4078 if (ret) {
4079 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4080 return;
4081 }
4082
4083 trace_qemu_rdma_accept_incoming_migration_accepted();
4084
4085 if (rdma->is_return_path) {
4086 return;
4087 }
4088
4089 f = qemu_fopen_rdma(rdma, "rb");
4090 if (f == NULL) {
4091 fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4092 qemu_rdma_cleanup(rdma);
4093 return;
4094 }
4095
4096 rdma->migration_started_on_destination = 1;
4097 migration_fd_process_incoming(f, &local_err);
4098 if (local_err) {
4099 error_reportf_err(local_err, "RDMA ERROR:");
4100 }
4101 }
4102
4103 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4104 {
4105 int ret;
4106 RDMAContext *rdma, *rdma_return_path = NULL;
4107 Error *local_err = NULL;
4108
4109 trace_rdma_start_incoming_migration();
4110
4111 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4112 if (ram_block_discard_is_required()) {
4113 error_setg(errp, "RDMA: cannot disable RAM discard");
4114 return;
4115 }
4116
4117 rdma = qemu_rdma_data_init(host_port, &local_err);
4118 if (rdma == NULL) {
4119 goto err;
4120 }
4121
4122 ret = qemu_rdma_dest_init(rdma, &local_err);
4123
4124 if (ret) {
4125 goto err;
4126 }
4127
4128 trace_rdma_start_incoming_migration_after_dest_init();
4129
4130 ret = rdma_listen(rdma->listen_id, 5);
4131
4132 if (ret) {
4133 ERROR(errp, "listening on socket!");
4134 goto cleanup_rdma;
4135 }
4136
4137 trace_rdma_start_incoming_migration_after_rdma_listen();
4138
4139 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4140 NULL, (void *)(intptr_t)rdma);
4141 return;
4142
4143 cleanup_rdma:
4144 qemu_rdma_cleanup(rdma);
4145 err:
4146 error_propagate(errp, local_err);
4147 if (rdma) {
4148 g_free(rdma->host);
4149 g_free(rdma->host_port);
4150 }
4151 g_free(rdma);
4152 g_free(rdma_return_path);
4153 }
4154
4155 void rdma_start_outgoing_migration(void *opaque,
4156 const char *host_port, Error **errp)
4157 {
4158 MigrationState *s = opaque;
4159 RDMAContext *rdma_return_path = NULL;
4160 RDMAContext *rdma;
4161 int ret = 0;
4162
4163 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4164 if (ram_block_discard_is_required()) {
4165 error_setg(errp, "RDMA: cannot disable RAM discard");
4166 return;
4167 }
4168
4169 rdma = qemu_rdma_data_init(host_port, errp);
4170 if (rdma == NULL) {
4171 goto err;
4172 }
4173
4174 ret = qemu_rdma_source_init(rdma,
4175 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4176
4177 if (ret) {
4178 goto err;
4179 }
4180
4181 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4182 ret = qemu_rdma_connect(rdma, errp, false);
4183
4184 if (ret) {
4185 goto err;
4186 }
4187
4188 /* RDMA postcopy need a separate queue pair for return path */
4189 if (migrate_postcopy()) {
4190 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4191
4192 if (rdma_return_path == NULL) {
4193 goto return_path_err;
4194 }
4195
4196 ret = qemu_rdma_source_init(rdma_return_path,
4197 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4198
4199 if (ret) {
4200 goto return_path_err;
4201 }
4202
4203 ret = qemu_rdma_connect(rdma_return_path, errp, true);
4204
4205 if (ret) {
4206 goto return_path_err;
4207 }
4208
4209 rdma->return_path = rdma_return_path;
4210 rdma_return_path->return_path = rdma;
4211 rdma_return_path->is_return_path = true;
4212 }
4213
4214 trace_rdma_start_outgoing_migration_after_rdma_connect();
4215
4216 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4217 migrate_fd_connect(s, NULL);
4218 return;
4219 return_path_err:
4220 qemu_rdma_cleanup(rdma);
4221 err:
4222 g_free(rdma);
4223 g_free(rdma_return_path);
4224 }