]> git.proxmox.com Git - mirror_qemu.git/blob - migration/rdma.c
Merge remote-tracking branch 'remotes/cody/tags/block-pull-request' into staging
[mirror_qemu.git] / migration / rdma.c
1 /*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
6 *
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
14 *
15 */
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/sockets.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/coroutine.h"
30 #include <sys/socket.h>
31 #include <netdb.h>
32 #include <arpa/inet.h>
33 #include <rdma/rdma_cma.h>
34 #include "trace.h"
35
36 /*
37 * Print and error on both the Monitor and the Log file.
38 */
39 #define ERROR(errp, fmt, ...) \
40 do { \
41 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
42 if (errp && (*(errp) == NULL)) { \
43 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
44 } \
45 } while (0)
46
47 #define RDMA_RESOLVE_TIMEOUT_MS 10000
48
49 /* Do not merge data if larger than this. */
50 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
51 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
52
53 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
54
55 /*
56 * This is only for non-live state being migrated.
57 * Instead of RDMA_WRITE messages, we use RDMA_SEND
58 * messages for that state, which requires a different
59 * delivery design than main memory.
60 */
61 #define RDMA_SEND_INCREMENT 32768
62
63 /*
64 * Maximum size infiniband SEND message
65 */
66 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
67 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
68
69 #define RDMA_CONTROL_VERSION_CURRENT 1
70 /*
71 * Capabilities for negotiation.
72 */
73 #define RDMA_CAPABILITY_PIN_ALL 0x01
74
75 /*
76 * Add the other flags above to this list of known capabilities
77 * as they are introduced.
78 */
79 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
80
81 #define CHECK_ERROR_STATE() \
82 do { \
83 if (rdma->error_state) { \
84 if (!rdma->error_reported) { \
85 error_report("RDMA is in an error state waiting migration" \
86 " to abort!"); \
87 rdma->error_reported = 1; \
88 } \
89 return rdma->error_state; \
90 } \
91 } while (0)
92
93 /*
94 * A work request ID is 64-bits and we split up these bits
95 * into 3 parts:
96 *
97 * bits 0-15 : type of control message, 2^16
98 * bits 16-29: ram block index, 2^14
99 * bits 30-63: ram block chunk number, 2^34
100 *
101 * The last two bit ranges are only used for RDMA writes,
102 * in order to track their completion and potentially
103 * also track unregistration status of the message.
104 */
105 #define RDMA_WRID_TYPE_SHIFT 0UL
106 #define RDMA_WRID_BLOCK_SHIFT 16UL
107 #define RDMA_WRID_CHUNK_SHIFT 30UL
108
109 #define RDMA_WRID_TYPE_MASK \
110 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
111
112 #define RDMA_WRID_BLOCK_MASK \
113 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
114
115 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
116
117 /*
118 * RDMA migration protocol:
119 * 1. RDMA Writes (data messages, i.e. RAM)
120 * 2. IB Send/Recv (control channel messages)
121 */
122 enum {
123 RDMA_WRID_NONE = 0,
124 RDMA_WRID_RDMA_WRITE = 1,
125 RDMA_WRID_SEND_CONTROL = 2000,
126 RDMA_WRID_RECV_CONTROL = 4000,
127 };
128
129 static const char *wrid_desc[] = {
130 [RDMA_WRID_NONE] = "NONE",
131 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
132 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
133 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
134 };
135
136 /*
137 * Work request IDs for IB SEND messages only (not RDMA writes).
138 * This is used by the migration protocol to transmit
139 * control messages (such as device state and registration commands)
140 *
141 * We could use more WRs, but we have enough for now.
142 */
143 enum {
144 RDMA_WRID_READY = 0,
145 RDMA_WRID_DATA,
146 RDMA_WRID_CONTROL,
147 RDMA_WRID_MAX,
148 };
149
150 /*
151 * SEND/RECV IB Control Messages.
152 */
153 enum {
154 RDMA_CONTROL_NONE = 0,
155 RDMA_CONTROL_ERROR,
156 RDMA_CONTROL_READY, /* ready to receive */
157 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
158 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
159 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
160 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
161 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
162 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
163 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
164 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
165 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
166 };
167
168
169 /*
170 * Memory and MR structures used to represent an IB Send/Recv work request.
171 * This is *not* used for RDMA writes, only IB Send/Recv.
172 */
173 typedef struct {
174 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
175 struct ibv_mr *control_mr; /* registration metadata */
176 size_t control_len; /* length of the message */
177 uint8_t *control_curr; /* start of unconsumed bytes */
178 } RDMAWorkRequestData;
179
180 /*
181 * Negotiate RDMA capabilities during connection-setup time.
182 */
183 typedef struct {
184 uint32_t version;
185 uint32_t flags;
186 } RDMACapabilities;
187
188 static void caps_to_network(RDMACapabilities *cap)
189 {
190 cap->version = htonl(cap->version);
191 cap->flags = htonl(cap->flags);
192 }
193
194 static void network_to_caps(RDMACapabilities *cap)
195 {
196 cap->version = ntohl(cap->version);
197 cap->flags = ntohl(cap->flags);
198 }
199
200 /*
201 * Representation of a RAMBlock from an RDMA perspective.
202 * This is not transmitted, only local.
203 * This and subsequent structures cannot be linked lists
204 * because we're using a single IB message to transmit
205 * the information. It's small anyway, so a list is overkill.
206 */
207 typedef struct RDMALocalBlock {
208 char *block_name;
209 uint8_t *local_host_addr; /* local virtual address */
210 uint64_t remote_host_addr; /* remote virtual address */
211 uint64_t offset;
212 uint64_t length;
213 struct ibv_mr **pmr; /* MRs for chunk-level registration */
214 struct ibv_mr *mr; /* MR for non-chunk-level registration */
215 uint32_t *remote_keys; /* rkeys for chunk-level registration */
216 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
217 int index; /* which block are we */
218 unsigned int src_index; /* (Only used on dest) */
219 bool is_ram_block;
220 int nb_chunks;
221 unsigned long *transit_bitmap;
222 unsigned long *unregister_bitmap;
223 } RDMALocalBlock;
224
225 /*
226 * Also represents a RAMblock, but only on the dest.
227 * This gets transmitted by the dest during connection-time
228 * to the source VM and then is used to populate the
229 * corresponding RDMALocalBlock with
230 * the information needed to perform the actual RDMA.
231 */
232 typedef struct QEMU_PACKED RDMADestBlock {
233 uint64_t remote_host_addr;
234 uint64_t offset;
235 uint64_t length;
236 uint32_t remote_rkey;
237 uint32_t padding;
238 } RDMADestBlock;
239
240 static const char *control_desc(unsigned int rdma_control)
241 {
242 static const char *strs[] = {
243 [RDMA_CONTROL_NONE] = "NONE",
244 [RDMA_CONTROL_ERROR] = "ERROR",
245 [RDMA_CONTROL_READY] = "READY",
246 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
247 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
248 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
249 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
250 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
251 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
252 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
253 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
254 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
255 };
256
257 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
258 return "??BAD CONTROL VALUE??";
259 }
260
261 return strs[rdma_control];
262 }
263
264 static uint64_t htonll(uint64_t v)
265 {
266 union { uint32_t lv[2]; uint64_t llv; } u;
267 u.lv[0] = htonl(v >> 32);
268 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
269 return u.llv;
270 }
271
272 static uint64_t ntohll(uint64_t v) {
273 union { uint32_t lv[2]; uint64_t llv; } u;
274 u.llv = v;
275 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
276 }
277
278 static void dest_block_to_network(RDMADestBlock *db)
279 {
280 db->remote_host_addr = htonll(db->remote_host_addr);
281 db->offset = htonll(db->offset);
282 db->length = htonll(db->length);
283 db->remote_rkey = htonl(db->remote_rkey);
284 }
285
286 static void network_to_dest_block(RDMADestBlock *db)
287 {
288 db->remote_host_addr = ntohll(db->remote_host_addr);
289 db->offset = ntohll(db->offset);
290 db->length = ntohll(db->length);
291 db->remote_rkey = ntohl(db->remote_rkey);
292 }
293
294 /*
295 * Virtual address of the above structures used for transmitting
296 * the RAMBlock descriptions at connection-time.
297 * This structure is *not* transmitted.
298 */
299 typedef struct RDMALocalBlocks {
300 int nb_blocks;
301 bool init; /* main memory init complete */
302 RDMALocalBlock *block;
303 } RDMALocalBlocks;
304
305 /*
306 * Main data structure for RDMA state.
307 * While there is only one copy of this structure being allocated right now,
308 * this is the place where one would start if you wanted to consider
309 * having more than one RDMA connection open at the same time.
310 */
311 typedef struct RDMAContext {
312 char *host;
313 int port;
314
315 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
316
317 /*
318 * This is used by *_exchange_send() to figure out whether or not
319 * the initial "READY" message has already been received or not.
320 * This is because other functions may potentially poll() and detect
321 * the READY message before send() does, in which case we need to
322 * know if it completed.
323 */
324 int control_ready_expected;
325
326 /* number of outstanding writes */
327 int nb_sent;
328
329 /* store info about current buffer so that we can
330 merge it with future sends */
331 uint64_t current_addr;
332 uint64_t current_length;
333 /* index of ram block the current buffer belongs to */
334 int current_index;
335 /* index of the chunk in the current ram block */
336 int current_chunk;
337
338 bool pin_all;
339
340 /*
341 * infiniband-specific variables for opening the device
342 * and maintaining connection state and so forth.
343 *
344 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
345 * cm_id->verbs, cm_id->channel, and cm_id->qp.
346 */
347 struct rdma_cm_id *cm_id; /* connection manager ID */
348 struct rdma_cm_id *listen_id;
349 bool connected;
350
351 struct ibv_context *verbs;
352 struct rdma_event_channel *channel;
353 struct ibv_qp *qp; /* queue pair */
354 struct ibv_comp_channel *comp_channel; /* completion channel */
355 struct ibv_pd *pd; /* protection domain */
356 struct ibv_cq *cq; /* completion queue */
357
358 /*
359 * If a previous write failed (perhaps because of a failed
360 * memory registration, then do not attempt any future work
361 * and remember the error state.
362 */
363 int error_state;
364 int error_reported;
365 int received_error;
366
367 /*
368 * Description of ram blocks used throughout the code.
369 */
370 RDMALocalBlocks local_ram_blocks;
371 RDMADestBlock *dest_blocks;
372
373 /* Index of the next RAMBlock received during block registration */
374 unsigned int next_src_index;
375
376 /*
377 * Migration on *destination* started.
378 * Then use coroutine yield function.
379 * Source runs in a thread, so we don't care.
380 */
381 int migration_started_on_destination;
382
383 int total_registrations;
384 int total_writes;
385
386 int unregister_current, unregister_next;
387 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
388
389 GHashTable *blockmap;
390 } RDMAContext;
391
392 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
393 #define QIO_CHANNEL_RDMA(obj) \
394 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
395
396 typedef struct QIOChannelRDMA QIOChannelRDMA;
397
398
399 struct QIOChannelRDMA {
400 QIOChannel parent;
401 RDMAContext *rdma;
402 QEMUFile *file;
403 size_t len;
404 bool blocking; /* XXX we don't actually honour this yet */
405 };
406
407 /*
408 * Main structure for IB Send/Recv control messages.
409 * This gets prepended at the beginning of every Send/Recv.
410 */
411 typedef struct QEMU_PACKED {
412 uint32_t len; /* Total length of data portion */
413 uint32_t type; /* which control command to perform */
414 uint32_t repeat; /* number of commands in data portion of same type */
415 uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420 control->type = htonl(control->type);
421 control->len = htonl(control->len);
422 control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427 control->type = ntohl(control->type);
428 control->len = ntohl(control->len);
429 control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433 * Register a single Chunk.
434 * Information sent by the source VM to inform the dest
435 * to register an single chunk of memory before we can perform
436 * the actual RDMA operation.
437 */
438 typedef struct QEMU_PACKED {
439 union QEMU_PACKED {
440 uint64_t current_addr; /* offset into the ram_addr_t space */
441 uint64_t chunk; /* chunk to lookup if unregistering */
442 } key;
443 uint32_t current_index; /* which ramblock the chunk belongs to */
444 uint32_t padding;
445 uint64_t chunks; /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
449 {
450 RDMALocalBlock *local_block;
451 local_block = &rdma->local_ram_blocks.block[reg->current_index];
452
453 if (local_block->is_ram_block) {
454 /*
455 * current_addr as passed in is an address in the local ram_addr_t
456 * space, we need to translate this for the destination
457 */
458 reg->key.current_addr -= local_block->offset;
459 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
460 }
461 reg->key.current_addr = htonll(reg->key.current_addr);
462 reg->current_index = htonl(reg->current_index);
463 reg->chunks = htonll(reg->chunks);
464 }
465
466 static void network_to_register(RDMARegister *reg)
467 {
468 reg->key.current_addr = ntohll(reg->key.current_addr);
469 reg->current_index = ntohl(reg->current_index);
470 reg->chunks = ntohll(reg->chunks);
471 }
472
473 typedef struct QEMU_PACKED {
474 uint32_t value; /* if zero, we will madvise() */
475 uint32_t block_idx; /* which ram block index */
476 uint64_t offset; /* Address in remote ram_addr_t space */
477 uint64_t length; /* length of the chunk */
478 } RDMACompress;
479
480 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
481 {
482 comp->value = htonl(comp->value);
483 /*
484 * comp->offset as passed in is an address in the local ram_addr_t
485 * space, we need to translate this for the destination
486 */
487 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
488 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
489 comp->block_idx = htonl(comp->block_idx);
490 comp->offset = htonll(comp->offset);
491 comp->length = htonll(comp->length);
492 }
493
494 static void network_to_compress(RDMACompress *comp)
495 {
496 comp->value = ntohl(comp->value);
497 comp->block_idx = ntohl(comp->block_idx);
498 comp->offset = ntohll(comp->offset);
499 comp->length = ntohll(comp->length);
500 }
501
502 /*
503 * The result of the dest's memory registration produces an "rkey"
504 * which the source VM must reference in order to perform
505 * the RDMA operation.
506 */
507 typedef struct QEMU_PACKED {
508 uint32_t rkey;
509 uint32_t padding;
510 uint64_t host_addr;
511 } RDMARegisterResult;
512
513 static void result_to_network(RDMARegisterResult *result)
514 {
515 result->rkey = htonl(result->rkey);
516 result->host_addr = htonll(result->host_addr);
517 };
518
519 static void network_to_result(RDMARegisterResult *result)
520 {
521 result->rkey = ntohl(result->rkey);
522 result->host_addr = ntohll(result->host_addr);
523 };
524
525 const char *print_wrid(int wrid);
526 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
527 uint8_t *data, RDMAControlHeader *resp,
528 int *resp_idx,
529 int (*callback)(RDMAContext *rdma));
530
531 static inline uint64_t ram_chunk_index(const uint8_t *start,
532 const uint8_t *host)
533 {
534 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
535 }
536
537 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
538 uint64_t i)
539 {
540 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
541 (i << RDMA_REG_CHUNK_SHIFT));
542 }
543
544 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
545 uint64_t i)
546 {
547 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
548 (1UL << RDMA_REG_CHUNK_SHIFT);
549
550 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
551 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
552 }
553
554 return result;
555 }
556
557 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
558 void *host_addr,
559 ram_addr_t block_offset, uint64_t length)
560 {
561 RDMALocalBlocks *local = &rdma->local_ram_blocks;
562 RDMALocalBlock *block;
563 RDMALocalBlock *old = local->block;
564
565 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
566
567 if (local->nb_blocks) {
568 int x;
569
570 if (rdma->blockmap) {
571 for (x = 0; x < local->nb_blocks; x++) {
572 g_hash_table_remove(rdma->blockmap,
573 (void *)(uintptr_t)old[x].offset);
574 g_hash_table_insert(rdma->blockmap,
575 (void *)(uintptr_t)old[x].offset,
576 &local->block[x]);
577 }
578 }
579 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
580 g_free(old);
581 }
582
583 block = &local->block[local->nb_blocks];
584
585 block->block_name = g_strdup(block_name);
586 block->local_host_addr = host_addr;
587 block->offset = block_offset;
588 block->length = length;
589 block->index = local->nb_blocks;
590 block->src_index = ~0U; /* Filled in by the receipt of the block list */
591 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
592 block->transit_bitmap = bitmap_new(block->nb_chunks);
593 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
594 block->unregister_bitmap = bitmap_new(block->nb_chunks);
595 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
596 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
597
598 block->is_ram_block = local->init ? false : true;
599
600 if (rdma->blockmap) {
601 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
602 }
603
604 trace_rdma_add_block(block_name, local->nb_blocks,
605 (uintptr_t) block->local_host_addr,
606 block->offset, block->length,
607 (uintptr_t) (block->local_host_addr + block->length),
608 BITS_TO_LONGS(block->nb_chunks) *
609 sizeof(unsigned long) * 8,
610 block->nb_chunks);
611
612 local->nb_blocks++;
613
614 return 0;
615 }
616
617 /*
618 * Memory regions need to be registered with the device and queue pairs setup
619 * in advanced before the migration starts. This tells us where the RAM blocks
620 * are so that we can register them individually.
621 */
622 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
623 ram_addr_t block_offset, ram_addr_t length, void *opaque)
624 {
625 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
626 }
627
628 /*
629 * Identify the RAMBlocks and their quantity. They will be references to
630 * identify chunk boundaries inside each RAMBlock and also be referenced
631 * during dynamic page registration.
632 */
633 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
634 {
635 RDMALocalBlocks *local = &rdma->local_ram_blocks;
636
637 assert(rdma->blockmap == NULL);
638 memset(local, 0, sizeof *local);
639 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
640 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
641 rdma->dest_blocks = g_new0(RDMADestBlock,
642 rdma->local_ram_blocks.nb_blocks);
643 local->init = true;
644 return 0;
645 }
646
647 /*
648 * Note: If used outside of cleanup, the caller must ensure that the destination
649 * block structures are also updated
650 */
651 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
652 {
653 RDMALocalBlocks *local = &rdma->local_ram_blocks;
654 RDMALocalBlock *old = local->block;
655 int x;
656
657 if (rdma->blockmap) {
658 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
659 }
660 if (block->pmr) {
661 int j;
662
663 for (j = 0; j < block->nb_chunks; j++) {
664 if (!block->pmr[j]) {
665 continue;
666 }
667 ibv_dereg_mr(block->pmr[j]);
668 rdma->total_registrations--;
669 }
670 g_free(block->pmr);
671 block->pmr = NULL;
672 }
673
674 if (block->mr) {
675 ibv_dereg_mr(block->mr);
676 rdma->total_registrations--;
677 block->mr = NULL;
678 }
679
680 g_free(block->transit_bitmap);
681 block->transit_bitmap = NULL;
682
683 g_free(block->unregister_bitmap);
684 block->unregister_bitmap = NULL;
685
686 g_free(block->remote_keys);
687 block->remote_keys = NULL;
688
689 g_free(block->block_name);
690 block->block_name = NULL;
691
692 if (rdma->blockmap) {
693 for (x = 0; x < local->nb_blocks; x++) {
694 g_hash_table_remove(rdma->blockmap,
695 (void *)(uintptr_t)old[x].offset);
696 }
697 }
698
699 if (local->nb_blocks > 1) {
700
701 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
702
703 if (block->index) {
704 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
705 }
706
707 if (block->index < (local->nb_blocks - 1)) {
708 memcpy(local->block + block->index, old + (block->index + 1),
709 sizeof(RDMALocalBlock) *
710 (local->nb_blocks - (block->index + 1)));
711 for (x = block->index; x < local->nb_blocks - 1; x++) {
712 local->block[x].index--;
713 }
714 }
715 } else {
716 assert(block == local->block);
717 local->block = NULL;
718 }
719
720 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
721 block->offset, block->length,
722 (uintptr_t)(block->local_host_addr + block->length),
723 BITS_TO_LONGS(block->nb_chunks) *
724 sizeof(unsigned long) * 8, block->nb_chunks);
725
726 g_free(old);
727
728 local->nb_blocks--;
729
730 if (local->nb_blocks && rdma->blockmap) {
731 for (x = 0; x < local->nb_blocks; x++) {
732 g_hash_table_insert(rdma->blockmap,
733 (void *)(uintptr_t)local->block[x].offset,
734 &local->block[x]);
735 }
736 }
737
738 return 0;
739 }
740
741 /*
742 * Put in the log file which RDMA device was opened and the details
743 * associated with that device.
744 */
745 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
746 {
747 struct ibv_port_attr port;
748
749 if (ibv_query_port(verbs, 1, &port)) {
750 error_report("Failed to query port information");
751 return;
752 }
753
754 printf("%s RDMA Device opened: kernel name %s "
755 "uverbs device name %s, "
756 "infiniband_verbs class device path %s, "
757 "infiniband class device path %s, "
758 "transport: (%d) %s\n",
759 who,
760 verbs->device->name,
761 verbs->device->dev_name,
762 verbs->device->dev_path,
763 verbs->device->ibdev_path,
764 port.link_layer,
765 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
766 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
767 ? "Ethernet" : "Unknown"));
768 }
769
770 /*
771 * Put in the log file the RDMA gid addressing information,
772 * useful for folks who have trouble understanding the
773 * RDMA device hierarchy in the kernel.
774 */
775 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
776 {
777 char sgid[33];
778 char dgid[33];
779 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
780 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
781 trace_qemu_rdma_dump_gid(who, sgid, dgid);
782 }
783
784 /*
785 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
786 * We will try the next addrinfo struct, and fail if there are
787 * no other valid addresses to bind against.
788 *
789 * If user is listening on '[::]', then we will not have a opened a device
790 * yet and have no way of verifying if the device is RoCE or not.
791 *
792 * In this case, the source VM will throw an error for ALL types of
793 * connections (both IPv4 and IPv6) if the destination machine does not have
794 * a regular infiniband network available for use.
795 *
796 * The only way to guarantee that an error is thrown for broken kernels is
797 * for the management software to choose a *specific* interface at bind time
798 * and validate what time of hardware it is.
799 *
800 * Unfortunately, this puts the user in a fix:
801 *
802 * If the source VM connects with an IPv4 address without knowing that the
803 * destination has bound to '[::]' the migration will unconditionally fail
804 * unless the management software is explicitly listening on the IPv4
805 * address while using a RoCE-based device.
806 *
807 * If the source VM connects with an IPv6 address, then we're OK because we can
808 * throw an error on the source (and similarly on the destination).
809 *
810 * But in mixed environments, this will be broken for a while until it is fixed
811 * inside linux.
812 *
813 * We do provide a *tiny* bit of help in this function: We can list all of the
814 * devices in the system and check to see if all the devices are RoCE or
815 * Infiniband.
816 *
817 * If we detect that we have a *pure* RoCE environment, then we can safely
818 * thrown an error even if the management software has specified '[::]' as the
819 * bind address.
820 *
821 * However, if there is are multiple hetergeneous devices, then we cannot make
822 * this assumption and the user just has to be sure they know what they are
823 * doing.
824 *
825 * Patches are being reviewed on linux-rdma.
826 */
827 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
828 {
829 struct ibv_port_attr port_attr;
830
831 /* This bug only exists in linux, to our knowledge. */
832 #ifdef CONFIG_LINUX
833
834 /*
835 * Verbs are only NULL if management has bound to '[::]'.
836 *
837 * Let's iterate through all the devices and see if there any pure IB
838 * devices (non-ethernet).
839 *
840 * If not, then we can safely proceed with the migration.
841 * Otherwise, there are no guarantees until the bug is fixed in linux.
842 */
843 if (!verbs) {
844 int num_devices, x;
845 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
846 bool roce_found = false;
847 bool ib_found = false;
848
849 for (x = 0; x < num_devices; x++) {
850 verbs = ibv_open_device(dev_list[x]);
851 if (!verbs) {
852 if (errno == EPERM) {
853 continue;
854 } else {
855 return -EINVAL;
856 }
857 }
858
859 if (ibv_query_port(verbs, 1, &port_attr)) {
860 ibv_close_device(verbs);
861 ERROR(errp, "Could not query initial IB port");
862 return -EINVAL;
863 }
864
865 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
866 ib_found = true;
867 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
868 roce_found = true;
869 }
870
871 ibv_close_device(verbs);
872
873 }
874
875 if (roce_found) {
876 if (ib_found) {
877 fprintf(stderr, "WARN: migrations may fail:"
878 " IPv6 over RoCE / iWARP in linux"
879 " is broken. But since you appear to have a"
880 " mixed RoCE / IB environment, be sure to only"
881 " migrate over the IB fabric until the kernel "
882 " fixes the bug.\n");
883 } else {
884 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
885 " and your management software has specified '[::]'"
886 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
887 return -ENONET;
888 }
889 }
890
891 return 0;
892 }
893
894 /*
895 * If we have a verbs context, that means that some other than '[::]' was
896 * used by the management software for binding. In which case we can
897 * actually warn the user about a potentially broken kernel.
898 */
899
900 /* IB ports start with 1, not 0 */
901 if (ibv_query_port(verbs, 1, &port_attr)) {
902 ERROR(errp, "Could not query initial IB port");
903 return -EINVAL;
904 }
905
906 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
907 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
908 "(but patches on linux-rdma in progress)");
909 return -ENONET;
910 }
911
912 #endif
913
914 return 0;
915 }
916
917 /*
918 * Figure out which RDMA device corresponds to the requested IP hostname
919 * Also create the initial connection manager identifiers for opening
920 * the connection.
921 */
922 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
923 {
924 int ret;
925 struct rdma_addrinfo *res;
926 char port_str[16];
927 struct rdma_cm_event *cm_event;
928 char ip[40] = "unknown";
929 struct rdma_addrinfo *e;
930
931 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
932 ERROR(errp, "RDMA hostname has not been set");
933 return -EINVAL;
934 }
935
936 /* create CM channel */
937 rdma->channel = rdma_create_event_channel();
938 if (!rdma->channel) {
939 ERROR(errp, "could not create CM channel");
940 return -EINVAL;
941 }
942
943 /* create CM id */
944 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
945 if (ret) {
946 ERROR(errp, "could not create channel id");
947 goto err_resolve_create_id;
948 }
949
950 snprintf(port_str, 16, "%d", rdma->port);
951 port_str[15] = '\0';
952
953 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
954 if (ret < 0) {
955 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
956 goto err_resolve_get_addr;
957 }
958
959 for (e = res; e != NULL; e = e->ai_next) {
960 inet_ntop(e->ai_family,
961 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
962 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
963
964 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
965 RDMA_RESOLVE_TIMEOUT_MS);
966 if (!ret) {
967 if (e->ai_family == AF_INET6) {
968 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
969 if (ret) {
970 continue;
971 }
972 }
973 goto route;
974 }
975 }
976
977 ERROR(errp, "could not resolve address %s", rdma->host);
978 goto err_resolve_get_addr;
979
980 route:
981 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
982
983 ret = rdma_get_cm_event(rdma->channel, &cm_event);
984 if (ret) {
985 ERROR(errp, "could not perform event_addr_resolved");
986 goto err_resolve_get_addr;
987 }
988
989 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
990 ERROR(errp, "result not equal to event_addr_resolved %s",
991 rdma_event_str(cm_event->event));
992 perror("rdma_resolve_addr");
993 rdma_ack_cm_event(cm_event);
994 ret = -EINVAL;
995 goto err_resolve_get_addr;
996 }
997 rdma_ack_cm_event(cm_event);
998
999 /* resolve route */
1000 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1001 if (ret) {
1002 ERROR(errp, "could not resolve rdma route");
1003 goto err_resolve_get_addr;
1004 }
1005
1006 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1007 if (ret) {
1008 ERROR(errp, "could not perform event_route_resolved");
1009 goto err_resolve_get_addr;
1010 }
1011 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1012 ERROR(errp, "result not equal to event_route_resolved: %s",
1013 rdma_event_str(cm_event->event));
1014 rdma_ack_cm_event(cm_event);
1015 ret = -EINVAL;
1016 goto err_resolve_get_addr;
1017 }
1018 rdma_ack_cm_event(cm_event);
1019 rdma->verbs = rdma->cm_id->verbs;
1020 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1021 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1022 return 0;
1023
1024 err_resolve_get_addr:
1025 rdma_destroy_id(rdma->cm_id);
1026 rdma->cm_id = NULL;
1027 err_resolve_create_id:
1028 rdma_destroy_event_channel(rdma->channel);
1029 rdma->channel = NULL;
1030 return ret;
1031 }
1032
1033 /*
1034 * Create protection domain and completion queues
1035 */
1036 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1037 {
1038 /* allocate pd */
1039 rdma->pd = ibv_alloc_pd(rdma->verbs);
1040 if (!rdma->pd) {
1041 error_report("failed to allocate protection domain");
1042 return -1;
1043 }
1044
1045 /* create completion channel */
1046 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1047 if (!rdma->comp_channel) {
1048 error_report("failed to allocate completion channel");
1049 goto err_alloc_pd_cq;
1050 }
1051
1052 /*
1053 * Completion queue can be filled by both read and write work requests,
1054 * so must reflect the sum of both possible queue sizes.
1055 */
1056 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1057 NULL, rdma->comp_channel, 0);
1058 if (!rdma->cq) {
1059 error_report("failed to allocate completion queue");
1060 goto err_alloc_pd_cq;
1061 }
1062
1063 return 0;
1064
1065 err_alloc_pd_cq:
1066 if (rdma->pd) {
1067 ibv_dealloc_pd(rdma->pd);
1068 }
1069 if (rdma->comp_channel) {
1070 ibv_destroy_comp_channel(rdma->comp_channel);
1071 }
1072 rdma->pd = NULL;
1073 rdma->comp_channel = NULL;
1074 return -1;
1075
1076 }
1077
1078 /*
1079 * Create queue pairs.
1080 */
1081 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1082 {
1083 struct ibv_qp_init_attr attr = { 0 };
1084 int ret;
1085
1086 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1087 attr.cap.max_recv_wr = 3;
1088 attr.cap.max_send_sge = 1;
1089 attr.cap.max_recv_sge = 1;
1090 attr.send_cq = rdma->cq;
1091 attr.recv_cq = rdma->cq;
1092 attr.qp_type = IBV_QPT_RC;
1093
1094 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1095 if (ret) {
1096 return -1;
1097 }
1098
1099 rdma->qp = rdma->cm_id->qp;
1100 return 0;
1101 }
1102
1103 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1104 {
1105 int i;
1106 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1107
1108 for (i = 0; i < local->nb_blocks; i++) {
1109 local->block[i].mr =
1110 ibv_reg_mr(rdma->pd,
1111 local->block[i].local_host_addr,
1112 local->block[i].length,
1113 IBV_ACCESS_LOCAL_WRITE |
1114 IBV_ACCESS_REMOTE_WRITE
1115 );
1116 if (!local->block[i].mr) {
1117 perror("Failed to register local dest ram block!\n");
1118 break;
1119 }
1120 rdma->total_registrations++;
1121 }
1122
1123 if (i >= local->nb_blocks) {
1124 return 0;
1125 }
1126
1127 for (i--; i >= 0; i--) {
1128 ibv_dereg_mr(local->block[i].mr);
1129 rdma->total_registrations--;
1130 }
1131
1132 return -1;
1133
1134 }
1135
1136 /*
1137 * Find the ram block that corresponds to the page requested to be
1138 * transmitted by QEMU.
1139 *
1140 * Once the block is found, also identify which 'chunk' within that
1141 * block that the page belongs to.
1142 *
1143 * This search cannot fail or the migration will fail.
1144 */
1145 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1146 uintptr_t block_offset,
1147 uint64_t offset,
1148 uint64_t length,
1149 uint64_t *block_index,
1150 uint64_t *chunk_index)
1151 {
1152 uint64_t current_addr = block_offset + offset;
1153 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1154 (void *) block_offset);
1155 assert(block);
1156 assert(current_addr >= block->offset);
1157 assert((current_addr + length) <= (block->offset + block->length));
1158
1159 *block_index = block->index;
1160 *chunk_index = ram_chunk_index(block->local_host_addr,
1161 block->local_host_addr + (current_addr - block->offset));
1162
1163 return 0;
1164 }
1165
1166 /*
1167 * Register a chunk with IB. If the chunk was already registered
1168 * previously, then skip.
1169 *
1170 * Also return the keys associated with the registration needed
1171 * to perform the actual RDMA operation.
1172 */
1173 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1174 RDMALocalBlock *block, uintptr_t host_addr,
1175 uint32_t *lkey, uint32_t *rkey, int chunk,
1176 uint8_t *chunk_start, uint8_t *chunk_end)
1177 {
1178 if (block->mr) {
1179 if (lkey) {
1180 *lkey = block->mr->lkey;
1181 }
1182 if (rkey) {
1183 *rkey = block->mr->rkey;
1184 }
1185 return 0;
1186 }
1187
1188 /* allocate memory to store chunk MRs */
1189 if (!block->pmr) {
1190 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1191 }
1192
1193 /*
1194 * If 'rkey', then we're the destination, so grant access to the source.
1195 *
1196 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1197 */
1198 if (!block->pmr[chunk]) {
1199 uint64_t len = chunk_end - chunk_start;
1200
1201 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1202
1203 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1204 chunk_start, len,
1205 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1206 IBV_ACCESS_REMOTE_WRITE) : 0));
1207
1208 if (!block->pmr[chunk]) {
1209 perror("Failed to register chunk!");
1210 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1211 " start %" PRIuPTR " end %" PRIuPTR
1212 " host %" PRIuPTR
1213 " local %" PRIuPTR " registrations: %d\n",
1214 block->index, chunk, (uintptr_t)chunk_start,
1215 (uintptr_t)chunk_end, host_addr,
1216 (uintptr_t)block->local_host_addr,
1217 rdma->total_registrations);
1218 return -1;
1219 }
1220 rdma->total_registrations++;
1221 }
1222
1223 if (lkey) {
1224 *lkey = block->pmr[chunk]->lkey;
1225 }
1226 if (rkey) {
1227 *rkey = block->pmr[chunk]->rkey;
1228 }
1229 return 0;
1230 }
1231
1232 /*
1233 * Register (at connection time) the memory used for control
1234 * channel messages.
1235 */
1236 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1237 {
1238 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1239 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1240 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1241 if (rdma->wr_data[idx].control_mr) {
1242 rdma->total_registrations++;
1243 return 0;
1244 }
1245 error_report("qemu_rdma_reg_control failed");
1246 return -1;
1247 }
1248
1249 const char *print_wrid(int wrid)
1250 {
1251 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1252 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1253 }
1254 return wrid_desc[wrid];
1255 }
1256
1257 /*
1258 * RDMA requires memory registration (mlock/pinning), but this is not good for
1259 * overcommitment.
1260 *
1261 * In preparation for the future where LRU information or workload-specific
1262 * writable writable working set memory access behavior is available to QEMU
1263 * it would be nice to have in place the ability to UN-register/UN-pin
1264 * particular memory regions from the RDMA hardware when it is determine that
1265 * those regions of memory will likely not be accessed again in the near future.
1266 *
1267 * While we do not yet have such information right now, the following
1268 * compile-time option allows us to perform a non-optimized version of this
1269 * behavior.
1270 *
1271 * By uncommenting this option, you will cause *all* RDMA transfers to be
1272 * unregistered immediately after the transfer completes on both sides of the
1273 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1274 *
1275 * This will have a terrible impact on migration performance, so until future
1276 * workload information or LRU information is available, do not attempt to use
1277 * this feature except for basic testing.
1278 */
1279 //#define RDMA_UNREGISTRATION_EXAMPLE
1280
1281 /*
1282 * Perform a non-optimized memory unregistration after every transfer
1283 * for demonstration purposes, only if pin-all is not requested.
1284 *
1285 * Potential optimizations:
1286 * 1. Start a new thread to run this function continuously
1287 - for bit clearing
1288 - and for receipt of unregister messages
1289 * 2. Use an LRU.
1290 * 3. Use workload hints.
1291 */
1292 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1293 {
1294 while (rdma->unregistrations[rdma->unregister_current]) {
1295 int ret;
1296 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1297 uint64_t chunk =
1298 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1299 uint64_t index =
1300 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1301 RDMALocalBlock *block =
1302 &(rdma->local_ram_blocks.block[index]);
1303 RDMARegister reg = { .current_index = index };
1304 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1305 };
1306 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1307 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1308 .repeat = 1,
1309 };
1310
1311 trace_qemu_rdma_unregister_waiting_proc(chunk,
1312 rdma->unregister_current);
1313
1314 rdma->unregistrations[rdma->unregister_current] = 0;
1315 rdma->unregister_current++;
1316
1317 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1318 rdma->unregister_current = 0;
1319 }
1320
1321
1322 /*
1323 * Unregistration is speculative (because migration is single-threaded
1324 * and we cannot break the protocol's inifinband message ordering).
1325 * Thus, if the memory is currently being used for transmission,
1326 * then abort the attempt to unregister and try again
1327 * later the next time a completion is received for this memory.
1328 */
1329 clear_bit(chunk, block->unregister_bitmap);
1330
1331 if (test_bit(chunk, block->transit_bitmap)) {
1332 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1333 continue;
1334 }
1335
1336 trace_qemu_rdma_unregister_waiting_send(chunk);
1337
1338 ret = ibv_dereg_mr(block->pmr[chunk]);
1339 block->pmr[chunk] = NULL;
1340 block->remote_keys[chunk] = 0;
1341
1342 if (ret != 0) {
1343 perror("unregistration chunk failed");
1344 return -ret;
1345 }
1346 rdma->total_registrations--;
1347
1348 reg.key.chunk = chunk;
1349 register_to_network(rdma, &reg);
1350 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1351 &resp, NULL, NULL);
1352 if (ret < 0) {
1353 return ret;
1354 }
1355
1356 trace_qemu_rdma_unregister_waiting_complete(chunk);
1357 }
1358
1359 return 0;
1360 }
1361
1362 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1363 uint64_t chunk)
1364 {
1365 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1366
1367 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1368 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1369
1370 return result;
1371 }
1372
1373 /*
1374 * Set bit for unregistration in the next iteration.
1375 * We cannot transmit right here, but will unpin later.
1376 */
1377 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1378 uint64_t chunk, uint64_t wr_id)
1379 {
1380 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1381 error_report("rdma migration: queue is full");
1382 } else {
1383 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1384
1385 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1386 trace_qemu_rdma_signal_unregister_append(chunk,
1387 rdma->unregister_next);
1388
1389 rdma->unregistrations[rdma->unregister_next++] =
1390 qemu_rdma_make_wrid(wr_id, index, chunk);
1391
1392 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1393 rdma->unregister_next = 0;
1394 }
1395 } else {
1396 trace_qemu_rdma_signal_unregister_already(chunk);
1397 }
1398 }
1399 }
1400
1401 /*
1402 * Consult the connection manager to see a work request
1403 * (of any kind) has completed.
1404 * Return the work request ID that completed.
1405 */
1406 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1407 uint32_t *byte_len)
1408 {
1409 int ret;
1410 struct ibv_wc wc;
1411 uint64_t wr_id;
1412
1413 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1414
1415 if (!ret) {
1416 *wr_id_out = RDMA_WRID_NONE;
1417 return 0;
1418 }
1419
1420 if (ret < 0) {
1421 error_report("ibv_poll_cq return %d", ret);
1422 return ret;
1423 }
1424
1425 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1426
1427 if (wc.status != IBV_WC_SUCCESS) {
1428 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1429 wc.status, ibv_wc_status_str(wc.status));
1430 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1431
1432 return -1;
1433 }
1434
1435 if (rdma->control_ready_expected &&
1436 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1437 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1438 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1439 rdma->control_ready_expected = 0;
1440 }
1441
1442 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1443 uint64_t chunk =
1444 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1445 uint64_t index =
1446 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1447 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1448
1449 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1450 index, chunk, block->local_host_addr,
1451 (void *)(uintptr_t)block->remote_host_addr);
1452
1453 clear_bit(chunk, block->transit_bitmap);
1454
1455 if (rdma->nb_sent > 0) {
1456 rdma->nb_sent--;
1457 }
1458
1459 if (!rdma->pin_all) {
1460 /*
1461 * FYI: If one wanted to signal a specific chunk to be unregistered
1462 * using LRU or workload-specific information, this is the function
1463 * you would call to do so. That chunk would then get asynchronously
1464 * unregistered later.
1465 */
1466 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1467 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1468 #endif
1469 }
1470 } else {
1471 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1472 }
1473
1474 *wr_id_out = wc.wr_id;
1475 if (byte_len) {
1476 *byte_len = wc.byte_len;
1477 }
1478
1479 return 0;
1480 }
1481
1482 /* Wait for activity on the completion channel.
1483 * Returns 0 on success, none-0 on error.
1484 */
1485 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1486 {
1487 /*
1488 * Coroutine doesn't start until migration_fd_process_incoming()
1489 * so don't yield unless we know we're running inside of a coroutine.
1490 */
1491 if (rdma->migration_started_on_destination) {
1492 yield_until_fd_readable(rdma->comp_channel->fd);
1493 } else {
1494 /* This is the source side, we're in a separate thread
1495 * or destination prior to migration_fd_process_incoming()
1496 * we can't yield; so we have to poll the fd.
1497 * But we need to be able to handle 'cancel' or an error
1498 * without hanging forever.
1499 */
1500 while (!rdma->error_state && !rdma->received_error) {
1501 GPollFD pfds[1];
1502 pfds[0].fd = rdma->comp_channel->fd;
1503 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1504 /* 0.1s timeout, should be fine for a 'cancel' */
1505 switch (qemu_poll_ns(pfds, 1, 100 * 1000 * 1000)) {
1506 case 1: /* fd active */
1507 return 0;
1508
1509 case 0: /* Timeout, go around again */
1510 break;
1511
1512 default: /* Error of some type -
1513 * I don't trust errno from qemu_poll_ns
1514 */
1515 error_report("%s: poll failed", __func__);
1516 return -EPIPE;
1517 }
1518
1519 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1520 /* Bail out and let the cancellation happen */
1521 return -EPIPE;
1522 }
1523 }
1524 }
1525
1526 if (rdma->received_error) {
1527 return -EPIPE;
1528 }
1529 return rdma->error_state;
1530 }
1531
1532 /*
1533 * Block until the next work request has completed.
1534 *
1535 * First poll to see if a work request has already completed,
1536 * otherwise block.
1537 *
1538 * If we encounter completed work requests for IDs other than
1539 * the one we're interested in, then that's generally an error.
1540 *
1541 * The only exception is actual RDMA Write completions. These
1542 * completions only need to be recorded, but do not actually
1543 * need further processing.
1544 */
1545 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1546 uint32_t *byte_len)
1547 {
1548 int num_cq_events = 0, ret = 0;
1549 struct ibv_cq *cq;
1550 void *cq_ctx;
1551 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1552
1553 if (ibv_req_notify_cq(rdma->cq, 0)) {
1554 return -1;
1555 }
1556 /* poll cq first */
1557 while (wr_id != wrid_requested) {
1558 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1559 if (ret < 0) {
1560 return ret;
1561 }
1562
1563 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1564
1565 if (wr_id == RDMA_WRID_NONE) {
1566 break;
1567 }
1568 if (wr_id != wrid_requested) {
1569 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1570 wrid_requested, print_wrid(wr_id), wr_id);
1571 }
1572 }
1573
1574 if (wr_id == wrid_requested) {
1575 return 0;
1576 }
1577
1578 while (1) {
1579 ret = qemu_rdma_wait_comp_channel(rdma);
1580 if (ret) {
1581 goto err_block_for_wrid;
1582 }
1583
1584 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1585 if (ret) {
1586 perror("ibv_get_cq_event");
1587 goto err_block_for_wrid;
1588 }
1589
1590 num_cq_events++;
1591
1592 ret = -ibv_req_notify_cq(cq, 0);
1593 if (ret) {
1594 goto err_block_for_wrid;
1595 }
1596
1597 while (wr_id != wrid_requested) {
1598 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1599 if (ret < 0) {
1600 goto err_block_for_wrid;
1601 }
1602
1603 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1604
1605 if (wr_id == RDMA_WRID_NONE) {
1606 break;
1607 }
1608 if (wr_id != wrid_requested) {
1609 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1610 wrid_requested, print_wrid(wr_id), wr_id);
1611 }
1612 }
1613
1614 if (wr_id == wrid_requested) {
1615 goto success_block_for_wrid;
1616 }
1617 }
1618
1619 success_block_for_wrid:
1620 if (num_cq_events) {
1621 ibv_ack_cq_events(cq, num_cq_events);
1622 }
1623 return 0;
1624
1625 err_block_for_wrid:
1626 if (num_cq_events) {
1627 ibv_ack_cq_events(cq, num_cq_events);
1628 }
1629
1630 rdma->error_state = ret;
1631 return ret;
1632 }
1633
1634 /*
1635 * Post a SEND message work request for the control channel
1636 * containing some data and block until the post completes.
1637 */
1638 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1639 RDMAControlHeader *head)
1640 {
1641 int ret = 0;
1642 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1643 struct ibv_send_wr *bad_wr;
1644 struct ibv_sge sge = {
1645 .addr = (uintptr_t)(wr->control),
1646 .length = head->len + sizeof(RDMAControlHeader),
1647 .lkey = wr->control_mr->lkey,
1648 };
1649 struct ibv_send_wr send_wr = {
1650 .wr_id = RDMA_WRID_SEND_CONTROL,
1651 .opcode = IBV_WR_SEND,
1652 .send_flags = IBV_SEND_SIGNALED,
1653 .sg_list = &sge,
1654 .num_sge = 1,
1655 };
1656
1657 trace_qemu_rdma_post_send_control(control_desc(head->type));
1658
1659 /*
1660 * We don't actually need to do a memcpy() in here if we used
1661 * the "sge" properly, but since we're only sending control messages
1662 * (not RAM in a performance-critical path), then its OK for now.
1663 *
1664 * The copy makes the RDMAControlHeader simpler to manipulate
1665 * for the time being.
1666 */
1667 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1668 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1669 control_to_network((void *) wr->control);
1670
1671 if (buf) {
1672 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1673 }
1674
1675
1676 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1677
1678 if (ret > 0) {
1679 error_report("Failed to use post IB SEND for control");
1680 return -ret;
1681 }
1682
1683 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1684 if (ret < 0) {
1685 error_report("rdma migration: send polling control error");
1686 }
1687
1688 return ret;
1689 }
1690
1691 /*
1692 * Post a RECV work request in anticipation of some future receipt
1693 * of data on the control channel.
1694 */
1695 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1696 {
1697 struct ibv_recv_wr *bad_wr;
1698 struct ibv_sge sge = {
1699 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1700 .length = RDMA_CONTROL_MAX_BUFFER,
1701 .lkey = rdma->wr_data[idx].control_mr->lkey,
1702 };
1703
1704 struct ibv_recv_wr recv_wr = {
1705 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1706 .sg_list = &sge,
1707 .num_sge = 1,
1708 };
1709
1710
1711 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1712 return -1;
1713 }
1714
1715 return 0;
1716 }
1717
1718 /*
1719 * Block and wait for a RECV control channel message to arrive.
1720 */
1721 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1722 RDMAControlHeader *head, int expecting, int idx)
1723 {
1724 uint32_t byte_len;
1725 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1726 &byte_len);
1727
1728 if (ret < 0) {
1729 error_report("rdma migration: recv polling control error!");
1730 return ret;
1731 }
1732
1733 network_to_control((void *) rdma->wr_data[idx].control);
1734 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1735
1736 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1737
1738 if (expecting == RDMA_CONTROL_NONE) {
1739 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1740 head->type);
1741 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1742 error_report("Was expecting a %s (%d) control message"
1743 ", but got: %s (%d), length: %d",
1744 control_desc(expecting), expecting,
1745 control_desc(head->type), head->type, head->len);
1746 if (head->type == RDMA_CONTROL_ERROR) {
1747 rdma->received_error = true;
1748 }
1749 return -EIO;
1750 }
1751 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1752 error_report("too long length: %d", head->len);
1753 return -EINVAL;
1754 }
1755 if (sizeof(*head) + head->len != byte_len) {
1756 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1757 return -EINVAL;
1758 }
1759
1760 return 0;
1761 }
1762
1763 /*
1764 * When a RECV work request has completed, the work request's
1765 * buffer is pointed at the header.
1766 *
1767 * This will advance the pointer to the data portion
1768 * of the control message of the work request's buffer that
1769 * was populated after the work request finished.
1770 */
1771 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1772 RDMAControlHeader *head)
1773 {
1774 rdma->wr_data[idx].control_len = head->len;
1775 rdma->wr_data[idx].control_curr =
1776 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1777 }
1778
1779 /*
1780 * This is an 'atomic' high-level operation to deliver a single, unified
1781 * control-channel message.
1782 *
1783 * Additionally, if the user is expecting some kind of reply to this message,
1784 * they can request a 'resp' response message be filled in by posting an
1785 * additional work request on behalf of the user and waiting for an additional
1786 * completion.
1787 *
1788 * The extra (optional) response is used during registration to us from having
1789 * to perform an *additional* exchange of message just to provide a response by
1790 * instead piggy-backing on the acknowledgement.
1791 */
1792 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1793 uint8_t *data, RDMAControlHeader *resp,
1794 int *resp_idx,
1795 int (*callback)(RDMAContext *rdma))
1796 {
1797 int ret = 0;
1798
1799 /*
1800 * Wait until the dest is ready before attempting to deliver the message
1801 * by waiting for a READY message.
1802 */
1803 if (rdma->control_ready_expected) {
1804 RDMAControlHeader resp;
1805 ret = qemu_rdma_exchange_get_response(rdma,
1806 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1807 if (ret < 0) {
1808 return ret;
1809 }
1810 }
1811
1812 /*
1813 * If the user is expecting a response, post a WR in anticipation of it.
1814 */
1815 if (resp) {
1816 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1817 if (ret) {
1818 error_report("rdma migration: error posting"
1819 " extra control recv for anticipated result!");
1820 return ret;
1821 }
1822 }
1823
1824 /*
1825 * Post a WR to replace the one we just consumed for the READY message.
1826 */
1827 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1828 if (ret) {
1829 error_report("rdma migration: error posting first control recv!");
1830 return ret;
1831 }
1832
1833 /*
1834 * Deliver the control message that was requested.
1835 */
1836 ret = qemu_rdma_post_send_control(rdma, data, head);
1837
1838 if (ret < 0) {
1839 error_report("Failed to send control buffer!");
1840 return ret;
1841 }
1842
1843 /*
1844 * If we're expecting a response, block and wait for it.
1845 */
1846 if (resp) {
1847 if (callback) {
1848 trace_qemu_rdma_exchange_send_issue_callback();
1849 ret = callback(rdma);
1850 if (ret < 0) {
1851 return ret;
1852 }
1853 }
1854
1855 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1856 ret = qemu_rdma_exchange_get_response(rdma, resp,
1857 resp->type, RDMA_WRID_DATA);
1858
1859 if (ret < 0) {
1860 return ret;
1861 }
1862
1863 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1864 if (resp_idx) {
1865 *resp_idx = RDMA_WRID_DATA;
1866 }
1867 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1868 }
1869
1870 rdma->control_ready_expected = 1;
1871
1872 return 0;
1873 }
1874
1875 /*
1876 * This is an 'atomic' high-level operation to receive a single, unified
1877 * control-channel message.
1878 */
1879 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1880 int expecting)
1881 {
1882 RDMAControlHeader ready = {
1883 .len = 0,
1884 .type = RDMA_CONTROL_READY,
1885 .repeat = 1,
1886 };
1887 int ret;
1888
1889 /*
1890 * Inform the source that we're ready to receive a message.
1891 */
1892 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1893
1894 if (ret < 0) {
1895 error_report("Failed to send control buffer!");
1896 return ret;
1897 }
1898
1899 /*
1900 * Block and wait for the message.
1901 */
1902 ret = qemu_rdma_exchange_get_response(rdma, head,
1903 expecting, RDMA_WRID_READY);
1904
1905 if (ret < 0) {
1906 return ret;
1907 }
1908
1909 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1910
1911 /*
1912 * Post a new RECV work request to replace the one we just consumed.
1913 */
1914 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1915 if (ret) {
1916 error_report("rdma migration: error posting second control recv!");
1917 return ret;
1918 }
1919
1920 return 0;
1921 }
1922
1923 /*
1924 * Write an actual chunk of memory using RDMA.
1925 *
1926 * If we're using dynamic registration on the dest-side, we have to
1927 * send a registration command first.
1928 */
1929 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1930 int current_index, uint64_t current_addr,
1931 uint64_t length)
1932 {
1933 struct ibv_sge sge;
1934 struct ibv_send_wr send_wr = { 0 };
1935 struct ibv_send_wr *bad_wr;
1936 int reg_result_idx, ret, count = 0;
1937 uint64_t chunk, chunks;
1938 uint8_t *chunk_start, *chunk_end;
1939 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1940 RDMARegister reg;
1941 RDMARegisterResult *reg_result;
1942 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1943 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1944 .type = RDMA_CONTROL_REGISTER_REQUEST,
1945 .repeat = 1,
1946 };
1947
1948 retry:
1949 sge.addr = (uintptr_t)(block->local_host_addr +
1950 (current_addr - block->offset));
1951 sge.length = length;
1952
1953 chunk = ram_chunk_index(block->local_host_addr,
1954 (uint8_t *)(uintptr_t)sge.addr);
1955 chunk_start = ram_chunk_start(block, chunk);
1956
1957 if (block->is_ram_block) {
1958 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1959
1960 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1961 chunks--;
1962 }
1963 } else {
1964 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1965
1966 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1967 chunks--;
1968 }
1969 }
1970
1971 trace_qemu_rdma_write_one_top(chunks + 1,
1972 (chunks + 1) *
1973 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1974
1975 chunk_end = ram_chunk_end(block, chunk + chunks);
1976
1977 if (!rdma->pin_all) {
1978 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1979 qemu_rdma_unregister_waiting(rdma);
1980 #endif
1981 }
1982
1983 while (test_bit(chunk, block->transit_bitmap)) {
1984 (void)count;
1985 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1986 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1987
1988 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1989
1990 if (ret < 0) {
1991 error_report("Failed to Wait for previous write to complete "
1992 "block %d chunk %" PRIu64
1993 " current %" PRIu64 " len %" PRIu64 " %d",
1994 current_index, chunk, sge.addr, length, rdma->nb_sent);
1995 return ret;
1996 }
1997 }
1998
1999 if (!rdma->pin_all || !block->is_ram_block) {
2000 if (!block->remote_keys[chunk]) {
2001 /*
2002 * This chunk has not yet been registered, so first check to see
2003 * if the entire chunk is zero. If so, tell the other size to
2004 * memset() + madvise() the entire chunk without RDMA.
2005 */
2006
2007 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2008 RDMACompress comp = {
2009 .offset = current_addr,
2010 .value = 0,
2011 .block_idx = current_index,
2012 .length = length,
2013 };
2014
2015 head.len = sizeof(comp);
2016 head.type = RDMA_CONTROL_COMPRESS;
2017
2018 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2019 current_index, current_addr);
2020
2021 compress_to_network(rdma, &comp);
2022 ret = qemu_rdma_exchange_send(rdma, &head,
2023 (uint8_t *) &comp, NULL, NULL, NULL);
2024
2025 if (ret < 0) {
2026 return -EIO;
2027 }
2028
2029 acct_update_position(f, sge.length, true);
2030
2031 return 1;
2032 }
2033
2034 /*
2035 * Otherwise, tell other side to register.
2036 */
2037 reg.current_index = current_index;
2038 if (block->is_ram_block) {
2039 reg.key.current_addr = current_addr;
2040 } else {
2041 reg.key.chunk = chunk;
2042 }
2043 reg.chunks = chunks;
2044
2045 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2046 current_addr);
2047
2048 register_to_network(rdma, &reg);
2049 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2050 &resp, &reg_result_idx, NULL);
2051 if (ret < 0) {
2052 return ret;
2053 }
2054
2055 /* try to overlap this single registration with the one we sent. */
2056 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2057 &sge.lkey, NULL, chunk,
2058 chunk_start, chunk_end)) {
2059 error_report("cannot get lkey");
2060 return -EINVAL;
2061 }
2062
2063 reg_result = (RDMARegisterResult *)
2064 rdma->wr_data[reg_result_idx].control_curr;
2065
2066 network_to_result(reg_result);
2067
2068 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2069 reg_result->rkey, chunk);
2070
2071 block->remote_keys[chunk] = reg_result->rkey;
2072 block->remote_host_addr = reg_result->host_addr;
2073 } else {
2074 /* already registered before */
2075 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2076 &sge.lkey, NULL, chunk,
2077 chunk_start, chunk_end)) {
2078 error_report("cannot get lkey!");
2079 return -EINVAL;
2080 }
2081 }
2082
2083 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2084 } else {
2085 send_wr.wr.rdma.rkey = block->remote_rkey;
2086
2087 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2088 &sge.lkey, NULL, chunk,
2089 chunk_start, chunk_end)) {
2090 error_report("cannot get lkey!");
2091 return -EINVAL;
2092 }
2093 }
2094
2095 /*
2096 * Encode the ram block index and chunk within this wrid.
2097 * We will use this information at the time of completion
2098 * to figure out which bitmap to check against and then which
2099 * chunk in the bitmap to look for.
2100 */
2101 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2102 current_index, chunk);
2103
2104 send_wr.opcode = IBV_WR_RDMA_WRITE;
2105 send_wr.send_flags = IBV_SEND_SIGNALED;
2106 send_wr.sg_list = &sge;
2107 send_wr.num_sge = 1;
2108 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2109 (current_addr - block->offset);
2110
2111 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2112 sge.length);
2113
2114 /*
2115 * ibv_post_send() does not return negative error numbers,
2116 * per the specification they are positive - no idea why.
2117 */
2118 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2119
2120 if (ret == ENOMEM) {
2121 trace_qemu_rdma_write_one_queue_full();
2122 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2123 if (ret < 0) {
2124 error_report("rdma migration: failed to make "
2125 "room in full send queue! %d", ret);
2126 return ret;
2127 }
2128
2129 goto retry;
2130
2131 } else if (ret > 0) {
2132 perror("rdma migration: post rdma write failed");
2133 return -ret;
2134 }
2135
2136 set_bit(chunk, block->transit_bitmap);
2137 acct_update_position(f, sge.length, false);
2138 rdma->total_writes++;
2139
2140 return 0;
2141 }
2142
2143 /*
2144 * Push out any unwritten RDMA operations.
2145 *
2146 * We support sending out multiple chunks at the same time.
2147 * Not all of them need to get signaled in the completion queue.
2148 */
2149 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2150 {
2151 int ret;
2152
2153 if (!rdma->current_length) {
2154 return 0;
2155 }
2156
2157 ret = qemu_rdma_write_one(f, rdma,
2158 rdma->current_index, rdma->current_addr, rdma->current_length);
2159
2160 if (ret < 0) {
2161 return ret;
2162 }
2163
2164 if (ret == 0) {
2165 rdma->nb_sent++;
2166 trace_qemu_rdma_write_flush(rdma->nb_sent);
2167 }
2168
2169 rdma->current_length = 0;
2170 rdma->current_addr = 0;
2171
2172 return 0;
2173 }
2174
2175 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2176 uint64_t offset, uint64_t len)
2177 {
2178 RDMALocalBlock *block;
2179 uint8_t *host_addr;
2180 uint8_t *chunk_end;
2181
2182 if (rdma->current_index < 0) {
2183 return 0;
2184 }
2185
2186 if (rdma->current_chunk < 0) {
2187 return 0;
2188 }
2189
2190 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2191 host_addr = block->local_host_addr + (offset - block->offset);
2192 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2193
2194 if (rdma->current_length == 0) {
2195 return 0;
2196 }
2197
2198 /*
2199 * Only merge into chunk sequentially.
2200 */
2201 if (offset != (rdma->current_addr + rdma->current_length)) {
2202 return 0;
2203 }
2204
2205 if (offset < block->offset) {
2206 return 0;
2207 }
2208
2209 if ((offset + len) > (block->offset + block->length)) {
2210 return 0;
2211 }
2212
2213 if ((host_addr + len) > chunk_end) {
2214 return 0;
2215 }
2216
2217 return 1;
2218 }
2219
2220 /*
2221 * We're not actually writing here, but doing three things:
2222 *
2223 * 1. Identify the chunk the buffer belongs to.
2224 * 2. If the chunk is full or the buffer doesn't belong to the current
2225 * chunk, then start a new chunk and flush() the old chunk.
2226 * 3. To keep the hardware busy, we also group chunks into batches
2227 * and only require that a batch gets acknowledged in the completion
2228 * qeueue instead of each individual chunk.
2229 */
2230 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2231 uint64_t block_offset, uint64_t offset,
2232 uint64_t len)
2233 {
2234 uint64_t current_addr = block_offset + offset;
2235 uint64_t index = rdma->current_index;
2236 uint64_t chunk = rdma->current_chunk;
2237 int ret;
2238
2239 /* If we cannot merge it, we flush the current buffer first. */
2240 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2241 ret = qemu_rdma_write_flush(f, rdma);
2242 if (ret) {
2243 return ret;
2244 }
2245 rdma->current_length = 0;
2246 rdma->current_addr = current_addr;
2247
2248 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2249 offset, len, &index, &chunk);
2250 if (ret) {
2251 error_report("ram block search failed");
2252 return ret;
2253 }
2254 rdma->current_index = index;
2255 rdma->current_chunk = chunk;
2256 }
2257
2258 /* merge it */
2259 rdma->current_length += len;
2260
2261 /* flush it if buffer is too large */
2262 if (rdma->current_length >= RDMA_MERGE_MAX) {
2263 return qemu_rdma_write_flush(f, rdma);
2264 }
2265
2266 return 0;
2267 }
2268
2269 static void qemu_rdma_cleanup(RDMAContext *rdma)
2270 {
2271 struct rdma_cm_event *cm_event;
2272 int ret, idx;
2273
2274 if (rdma->cm_id && rdma->connected) {
2275 if ((rdma->error_state ||
2276 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2277 !rdma->received_error) {
2278 RDMAControlHeader head = { .len = 0,
2279 .type = RDMA_CONTROL_ERROR,
2280 .repeat = 1,
2281 };
2282 error_report("Early error. Sending error.");
2283 qemu_rdma_post_send_control(rdma, NULL, &head);
2284 }
2285
2286 ret = rdma_disconnect(rdma->cm_id);
2287 if (!ret) {
2288 trace_qemu_rdma_cleanup_waiting_for_disconnect();
2289 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2290 if (!ret) {
2291 rdma_ack_cm_event(cm_event);
2292 }
2293 }
2294 trace_qemu_rdma_cleanup_disconnect();
2295 rdma->connected = false;
2296 }
2297
2298 g_free(rdma->dest_blocks);
2299 rdma->dest_blocks = NULL;
2300
2301 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2302 if (rdma->wr_data[idx].control_mr) {
2303 rdma->total_registrations--;
2304 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2305 }
2306 rdma->wr_data[idx].control_mr = NULL;
2307 }
2308
2309 if (rdma->local_ram_blocks.block) {
2310 while (rdma->local_ram_blocks.nb_blocks) {
2311 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2312 }
2313 }
2314
2315 if (rdma->qp) {
2316 rdma_destroy_qp(rdma->cm_id);
2317 rdma->qp = NULL;
2318 }
2319 if (rdma->cq) {
2320 ibv_destroy_cq(rdma->cq);
2321 rdma->cq = NULL;
2322 }
2323 if (rdma->comp_channel) {
2324 ibv_destroy_comp_channel(rdma->comp_channel);
2325 rdma->comp_channel = NULL;
2326 }
2327 if (rdma->pd) {
2328 ibv_dealloc_pd(rdma->pd);
2329 rdma->pd = NULL;
2330 }
2331 if (rdma->cm_id) {
2332 rdma_destroy_id(rdma->cm_id);
2333 rdma->cm_id = NULL;
2334 }
2335 if (rdma->listen_id) {
2336 rdma_destroy_id(rdma->listen_id);
2337 rdma->listen_id = NULL;
2338 }
2339 if (rdma->channel) {
2340 rdma_destroy_event_channel(rdma->channel);
2341 rdma->channel = NULL;
2342 }
2343 g_free(rdma->host);
2344 rdma->host = NULL;
2345 }
2346
2347
2348 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2349 {
2350 int ret, idx;
2351 Error *local_err = NULL, **temp = &local_err;
2352
2353 /*
2354 * Will be validated against destination's actual capabilities
2355 * after the connect() completes.
2356 */
2357 rdma->pin_all = pin_all;
2358
2359 ret = qemu_rdma_resolve_host(rdma, temp);
2360 if (ret) {
2361 goto err_rdma_source_init;
2362 }
2363
2364 ret = qemu_rdma_alloc_pd_cq(rdma);
2365 if (ret) {
2366 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2367 " limits may be too low. Please check $ ulimit -a # and "
2368 "search for 'ulimit -l' in the output");
2369 goto err_rdma_source_init;
2370 }
2371
2372 ret = qemu_rdma_alloc_qp(rdma);
2373 if (ret) {
2374 ERROR(temp, "rdma migration: error allocating qp!");
2375 goto err_rdma_source_init;
2376 }
2377
2378 ret = qemu_rdma_init_ram_blocks(rdma);
2379 if (ret) {
2380 ERROR(temp, "rdma migration: error initializing ram blocks!");
2381 goto err_rdma_source_init;
2382 }
2383
2384 /* Build the hash that maps from offset to RAMBlock */
2385 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2386 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2387 g_hash_table_insert(rdma->blockmap,
2388 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2389 &rdma->local_ram_blocks.block[idx]);
2390 }
2391
2392 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2393 ret = qemu_rdma_reg_control(rdma, idx);
2394 if (ret) {
2395 ERROR(temp, "rdma migration: error registering %d control!",
2396 idx);
2397 goto err_rdma_source_init;
2398 }
2399 }
2400
2401 return 0;
2402
2403 err_rdma_source_init:
2404 error_propagate(errp, local_err);
2405 qemu_rdma_cleanup(rdma);
2406 return -1;
2407 }
2408
2409 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2410 {
2411 RDMACapabilities cap = {
2412 .version = RDMA_CONTROL_VERSION_CURRENT,
2413 .flags = 0,
2414 };
2415 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2416 .retry_count = 5,
2417 .private_data = &cap,
2418 .private_data_len = sizeof(cap),
2419 };
2420 struct rdma_cm_event *cm_event;
2421 int ret;
2422
2423 /*
2424 * Only negotiate the capability with destination if the user
2425 * on the source first requested the capability.
2426 */
2427 if (rdma->pin_all) {
2428 trace_qemu_rdma_connect_pin_all_requested();
2429 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2430 }
2431
2432 caps_to_network(&cap);
2433
2434 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2435 if (ret) {
2436 ERROR(errp, "posting second control recv");
2437 goto err_rdma_source_connect;
2438 }
2439
2440 ret = rdma_connect(rdma->cm_id, &conn_param);
2441 if (ret) {
2442 perror("rdma_connect");
2443 ERROR(errp, "connecting to destination!");
2444 goto err_rdma_source_connect;
2445 }
2446
2447 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2448 if (ret) {
2449 perror("rdma_get_cm_event after rdma_connect");
2450 ERROR(errp, "connecting to destination!");
2451 rdma_ack_cm_event(cm_event);
2452 goto err_rdma_source_connect;
2453 }
2454
2455 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2456 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2457 ERROR(errp, "connecting to destination!");
2458 rdma_ack_cm_event(cm_event);
2459 goto err_rdma_source_connect;
2460 }
2461 rdma->connected = true;
2462
2463 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2464 network_to_caps(&cap);
2465
2466 /*
2467 * Verify that the *requested* capabilities are supported by the destination
2468 * and disable them otherwise.
2469 */
2470 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2471 ERROR(errp, "Server cannot support pinning all memory. "
2472 "Will register memory dynamically.");
2473 rdma->pin_all = false;
2474 }
2475
2476 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2477
2478 rdma_ack_cm_event(cm_event);
2479
2480 rdma->control_ready_expected = 1;
2481 rdma->nb_sent = 0;
2482 return 0;
2483
2484 err_rdma_source_connect:
2485 qemu_rdma_cleanup(rdma);
2486 return -1;
2487 }
2488
2489 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2490 {
2491 int ret, idx;
2492 struct rdma_cm_id *listen_id;
2493 char ip[40] = "unknown";
2494 struct rdma_addrinfo *res, *e;
2495 char port_str[16];
2496
2497 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2498 rdma->wr_data[idx].control_len = 0;
2499 rdma->wr_data[idx].control_curr = NULL;
2500 }
2501
2502 if (!rdma->host || !rdma->host[0]) {
2503 ERROR(errp, "RDMA host is not set!");
2504 rdma->error_state = -EINVAL;
2505 return -1;
2506 }
2507 /* create CM channel */
2508 rdma->channel = rdma_create_event_channel();
2509 if (!rdma->channel) {
2510 ERROR(errp, "could not create rdma event channel");
2511 rdma->error_state = -EINVAL;
2512 return -1;
2513 }
2514
2515 /* create CM id */
2516 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2517 if (ret) {
2518 ERROR(errp, "could not create cm_id!");
2519 goto err_dest_init_create_listen_id;
2520 }
2521
2522 snprintf(port_str, 16, "%d", rdma->port);
2523 port_str[15] = '\0';
2524
2525 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2526 if (ret < 0) {
2527 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2528 goto err_dest_init_bind_addr;
2529 }
2530
2531 for (e = res; e != NULL; e = e->ai_next) {
2532 inet_ntop(e->ai_family,
2533 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2534 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2535 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2536 if (ret) {
2537 continue;
2538 }
2539 if (e->ai_family == AF_INET6) {
2540 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2541 if (ret) {
2542 continue;
2543 }
2544 }
2545 break;
2546 }
2547
2548 if (!e) {
2549 ERROR(errp, "Error: could not rdma_bind_addr!");
2550 goto err_dest_init_bind_addr;
2551 }
2552
2553 rdma->listen_id = listen_id;
2554 qemu_rdma_dump_gid("dest_init", listen_id);
2555 return 0;
2556
2557 err_dest_init_bind_addr:
2558 rdma_destroy_id(listen_id);
2559 err_dest_init_create_listen_id:
2560 rdma_destroy_event_channel(rdma->channel);
2561 rdma->channel = NULL;
2562 rdma->error_state = ret;
2563 return ret;
2564
2565 }
2566
2567 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2568 {
2569 RDMAContext *rdma = NULL;
2570 InetSocketAddress *addr;
2571
2572 if (host_port) {
2573 rdma = g_new0(RDMAContext, 1);
2574 rdma->current_index = -1;
2575 rdma->current_chunk = -1;
2576
2577 addr = g_new(InetSocketAddress, 1);
2578 if (!inet_parse(addr, host_port, NULL)) {
2579 rdma->port = atoi(addr->port);
2580 rdma->host = g_strdup(addr->host);
2581 } else {
2582 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2583 g_free(rdma);
2584 rdma = NULL;
2585 }
2586
2587 qapi_free_InetSocketAddress(addr);
2588 }
2589
2590 return rdma;
2591 }
2592
2593 /*
2594 * QEMUFile interface to the control channel.
2595 * SEND messages for control only.
2596 * VM's ram is handled with regular RDMA messages.
2597 */
2598 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2599 const struct iovec *iov,
2600 size_t niov,
2601 int *fds,
2602 size_t nfds,
2603 Error **errp)
2604 {
2605 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2606 QEMUFile *f = rioc->file;
2607 RDMAContext *rdma = rioc->rdma;
2608 int ret;
2609 ssize_t done = 0;
2610 size_t i;
2611
2612 CHECK_ERROR_STATE();
2613
2614 /*
2615 * Push out any writes that
2616 * we're queued up for VM's ram.
2617 */
2618 ret = qemu_rdma_write_flush(f, rdma);
2619 if (ret < 0) {
2620 rdma->error_state = ret;
2621 return ret;
2622 }
2623
2624 for (i = 0; i < niov; i++) {
2625 size_t remaining = iov[i].iov_len;
2626 uint8_t * data = (void *)iov[i].iov_base;
2627 while (remaining) {
2628 RDMAControlHeader head;
2629
2630 rioc->len = MIN(remaining, RDMA_SEND_INCREMENT);
2631 remaining -= rioc->len;
2632
2633 head.len = rioc->len;
2634 head.type = RDMA_CONTROL_QEMU_FILE;
2635
2636 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2637
2638 if (ret < 0) {
2639 rdma->error_state = ret;
2640 return ret;
2641 }
2642
2643 data += rioc->len;
2644 done += rioc->len;
2645 }
2646 }
2647
2648 return done;
2649 }
2650
2651 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2652 size_t size, int idx)
2653 {
2654 size_t len = 0;
2655
2656 if (rdma->wr_data[idx].control_len) {
2657 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2658
2659 len = MIN(size, rdma->wr_data[idx].control_len);
2660 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2661 rdma->wr_data[idx].control_curr += len;
2662 rdma->wr_data[idx].control_len -= len;
2663 }
2664
2665 return len;
2666 }
2667
2668 /*
2669 * QEMUFile interface to the control channel.
2670 * RDMA links don't use bytestreams, so we have to
2671 * return bytes to QEMUFile opportunistically.
2672 */
2673 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2674 const struct iovec *iov,
2675 size_t niov,
2676 int **fds,
2677 size_t *nfds,
2678 Error **errp)
2679 {
2680 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2681 RDMAContext *rdma = rioc->rdma;
2682 RDMAControlHeader head;
2683 int ret = 0;
2684 ssize_t i;
2685 size_t done = 0;
2686
2687 CHECK_ERROR_STATE();
2688
2689 for (i = 0; i < niov; i++) {
2690 size_t want = iov[i].iov_len;
2691 uint8_t *data = (void *)iov[i].iov_base;
2692
2693 /*
2694 * First, we hold on to the last SEND message we
2695 * were given and dish out the bytes until we run
2696 * out of bytes.
2697 */
2698 ret = qemu_rdma_fill(rioc->rdma, data, want, 0);
2699 done += ret;
2700 want -= ret;
2701 /* Got what we needed, so go to next iovec */
2702 if (want == 0) {
2703 continue;
2704 }
2705
2706 /* If we got any data so far, then don't wait
2707 * for more, just return what we have */
2708 if (done > 0) {
2709 break;
2710 }
2711
2712
2713 /* We've got nothing at all, so lets wait for
2714 * more to arrive
2715 */
2716 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2717
2718 if (ret < 0) {
2719 rdma->error_state = ret;
2720 return ret;
2721 }
2722
2723 /*
2724 * SEND was received with new bytes, now try again.
2725 */
2726 ret = qemu_rdma_fill(rioc->rdma, data, want, 0);
2727 done += ret;
2728 want -= ret;
2729
2730 /* Still didn't get enough, so lets just return */
2731 if (want) {
2732 if (done == 0) {
2733 return QIO_CHANNEL_ERR_BLOCK;
2734 } else {
2735 break;
2736 }
2737 }
2738 }
2739 rioc->len = done;
2740 return rioc->len;
2741 }
2742
2743 /*
2744 * Block until all the outstanding chunks have been delivered by the hardware.
2745 */
2746 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2747 {
2748 int ret;
2749
2750 if (qemu_rdma_write_flush(f, rdma) < 0) {
2751 return -EIO;
2752 }
2753
2754 while (rdma->nb_sent) {
2755 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2756 if (ret < 0) {
2757 error_report("rdma migration: complete polling error!");
2758 return -EIO;
2759 }
2760 }
2761
2762 qemu_rdma_unregister_waiting(rdma);
2763
2764 return 0;
2765 }
2766
2767
2768 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2769 bool blocking,
2770 Error **errp)
2771 {
2772 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2773 /* XXX we should make readv/writev actually honour this :-) */
2774 rioc->blocking = blocking;
2775 return 0;
2776 }
2777
2778
2779 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2780 struct QIOChannelRDMASource {
2781 GSource parent;
2782 QIOChannelRDMA *rioc;
2783 GIOCondition condition;
2784 };
2785
2786 static gboolean
2787 qio_channel_rdma_source_prepare(GSource *source,
2788 gint *timeout)
2789 {
2790 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2791 RDMAContext *rdma = rsource->rioc->rdma;
2792 GIOCondition cond = 0;
2793 *timeout = -1;
2794
2795 if (rdma->wr_data[0].control_len) {
2796 cond |= G_IO_IN;
2797 }
2798 cond |= G_IO_OUT;
2799
2800 return cond & rsource->condition;
2801 }
2802
2803 static gboolean
2804 qio_channel_rdma_source_check(GSource *source)
2805 {
2806 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2807 RDMAContext *rdma = rsource->rioc->rdma;
2808 GIOCondition cond = 0;
2809
2810 if (rdma->wr_data[0].control_len) {
2811 cond |= G_IO_IN;
2812 }
2813 cond |= G_IO_OUT;
2814
2815 return cond & rsource->condition;
2816 }
2817
2818 static gboolean
2819 qio_channel_rdma_source_dispatch(GSource *source,
2820 GSourceFunc callback,
2821 gpointer user_data)
2822 {
2823 QIOChannelFunc func = (QIOChannelFunc)callback;
2824 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2825 RDMAContext *rdma = rsource->rioc->rdma;
2826 GIOCondition cond = 0;
2827
2828 if (rdma->wr_data[0].control_len) {
2829 cond |= G_IO_IN;
2830 }
2831 cond |= G_IO_OUT;
2832
2833 return (*func)(QIO_CHANNEL(rsource->rioc),
2834 (cond & rsource->condition),
2835 user_data);
2836 }
2837
2838 static void
2839 qio_channel_rdma_source_finalize(GSource *source)
2840 {
2841 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2842
2843 object_unref(OBJECT(ssource->rioc));
2844 }
2845
2846 GSourceFuncs qio_channel_rdma_source_funcs = {
2847 qio_channel_rdma_source_prepare,
2848 qio_channel_rdma_source_check,
2849 qio_channel_rdma_source_dispatch,
2850 qio_channel_rdma_source_finalize
2851 };
2852
2853 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2854 GIOCondition condition)
2855 {
2856 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2857 QIOChannelRDMASource *ssource;
2858 GSource *source;
2859
2860 source = g_source_new(&qio_channel_rdma_source_funcs,
2861 sizeof(QIOChannelRDMASource));
2862 ssource = (QIOChannelRDMASource *)source;
2863
2864 ssource->rioc = rioc;
2865 object_ref(OBJECT(rioc));
2866
2867 ssource->condition = condition;
2868
2869 return source;
2870 }
2871
2872
2873 static int qio_channel_rdma_close(QIOChannel *ioc,
2874 Error **errp)
2875 {
2876 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2877 trace_qemu_rdma_close();
2878 if (rioc->rdma) {
2879 if (!rioc->rdma->error_state) {
2880 rioc->rdma->error_state = qemu_file_get_error(rioc->file);
2881 }
2882 qemu_rdma_cleanup(rioc->rdma);
2883 g_free(rioc->rdma);
2884 rioc->rdma = NULL;
2885 }
2886 return 0;
2887 }
2888
2889 /*
2890 * Parameters:
2891 * @offset == 0 :
2892 * This means that 'block_offset' is a full virtual address that does not
2893 * belong to a RAMBlock of the virtual machine and instead
2894 * represents a private malloc'd memory area that the caller wishes to
2895 * transfer.
2896 *
2897 * @offset != 0 :
2898 * Offset is an offset to be added to block_offset and used
2899 * to also lookup the corresponding RAMBlock.
2900 *
2901 * @size > 0 :
2902 * Initiate an transfer this size.
2903 *
2904 * @size == 0 :
2905 * A 'hint' or 'advice' that means that we wish to speculatively
2906 * and asynchronously unregister this memory. In this case, there is no
2907 * guarantee that the unregister will actually happen, for example,
2908 * if the memory is being actively transmitted. Additionally, the memory
2909 * may be re-registered at any future time if a write within the same
2910 * chunk was requested again, even if you attempted to unregister it
2911 * here.
2912 *
2913 * @size < 0 : TODO, not yet supported
2914 * Unregister the memory NOW. This means that the caller does not
2915 * expect there to be any future RDMA transfers and we just want to clean
2916 * things up. This is used in case the upper layer owns the memory and
2917 * cannot wait for qemu_fclose() to occur.
2918 *
2919 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2920 * sent. Usually, this will not be more than a few bytes of
2921 * the protocol because most transfers are sent asynchronously.
2922 */
2923 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2924 ram_addr_t block_offset, ram_addr_t offset,
2925 size_t size, uint64_t *bytes_sent)
2926 {
2927 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
2928 RDMAContext *rdma = rioc->rdma;
2929 int ret;
2930
2931 CHECK_ERROR_STATE();
2932
2933 qemu_fflush(f);
2934
2935 if (size > 0) {
2936 /*
2937 * Add this page to the current 'chunk'. If the chunk
2938 * is full, or the page doen't belong to the current chunk,
2939 * an actual RDMA write will occur and a new chunk will be formed.
2940 */
2941 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2942 if (ret < 0) {
2943 error_report("rdma migration: write error! %d", ret);
2944 goto err;
2945 }
2946
2947 /*
2948 * We always return 1 bytes because the RDMA
2949 * protocol is completely asynchronous. We do not yet know
2950 * whether an identified chunk is zero or not because we're
2951 * waiting for other pages to potentially be merged with
2952 * the current chunk. So, we have to call qemu_update_position()
2953 * later on when the actual write occurs.
2954 */
2955 if (bytes_sent) {
2956 *bytes_sent = 1;
2957 }
2958 } else {
2959 uint64_t index, chunk;
2960
2961 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2962 if (size < 0) {
2963 ret = qemu_rdma_drain_cq(f, rdma);
2964 if (ret < 0) {
2965 fprintf(stderr, "rdma: failed to synchronously drain"
2966 " completion queue before unregistration.\n");
2967 goto err;
2968 }
2969 }
2970 */
2971
2972 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2973 offset, size, &index, &chunk);
2974
2975 if (ret) {
2976 error_report("ram block search failed");
2977 goto err;
2978 }
2979
2980 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2981
2982 /*
2983 * TODO: Synchronous, guaranteed unregistration (should not occur during
2984 * fast-path). Otherwise, unregisters will process on the next call to
2985 * qemu_rdma_drain_cq()
2986 if (size < 0) {
2987 qemu_rdma_unregister_waiting(rdma);
2988 }
2989 */
2990 }
2991
2992 /*
2993 * Drain the Completion Queue if possible, but do not block,
2994 * just poll.
2995 *
2996 * If nothing to poll, the end of the iteration will do this
2997 * again to make sure we don't overflow the request queue.
2998 */
2999 while (1) {
3000 uint64_t wr_id, wr_id_in;
3001 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3002 if (ret < 0) {
3003 error_report("rdma migration: polling error! %d", ret);
3004 goto err;
3005 }
3006
3007 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3008
3009 if (wr_id == RDMA_WRID_NONE) {
3010 break;
3011 }
3012 }
3013
3014 return RAM_SAVE_CONTROL_DELAYED;
3015 err:
3016 rdma->error_state = ret;
3017 return ret;
3018 }
3019
3020 static int qemu_rdma_accept(RDMAContext *rdma)
3021 {
3022 RDMACapabilities cap;
3023 struct rdma_conn_param conn_param = {
3024 .responder_resources = 2,
3025 .private_data = &cap,
3026 .private_data_len = sizeof(cap),
3027 };
3028 struct rdma_cm_event *cm_event;
3029 struct ibv_context *verbs;
3030 int ret = -EINVAL;
3031 int idx;
3032
3033 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3034 if (ret) {
3035 goto err_rdma_dest_wait;
3036 }
3037
3038 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3039 rdma_ack_cm_event(cm_event);
3040 goto err_rdma_dest_wait;
3041 }
3042
3043 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3044
3045 network_to_caps(&cap);
3046
3047 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3048 error_report("Unknown source RDMA version: %d, bailing...",
3049 cap.version);
3050 rdma_ack_cm_event(cm_event);
3051 goto err_rdma_dest_wait;
3052 }
3053
3054 /*
3055 * Respond with only the capabilities this version of QEMU knows about.
3056 */
3057 cap.flags &= known_capabilities;
3058
3059 /*
3060 * Enable the ones that we do know about.
3061 * Add other checks here as new ones are introduced.
3062 */
3063 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3064 rdma->pin_all = true;
3065 }
3066
3067 rdma->cm_id = cm_event->id;
3068 verbs = cm_event->id->verbs;
3069
3070 rdma_ack_cm_event(cm_event);
3071
3072 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3073
3074 caps_to_network(&cap);
3075
3076 trace_qemu_rdma_accept_pin_verbsc(verbs);
3077
3078 if (!rdma->verbs) {
3079 rdma->verbs = verbs;
3080 } else if (rdma->verbs != verbs) {
3081 error_report("ibv context not matching %p, %p!", rdma->verbs,
3082 verbs);
3083 goto err_rdma_dest_wait;
3084 }
3085
3086 qemu_rdma_dump_id("dest_init", verbs);
3087
3088 ret = qemu_rdma_alloc_pd_cq(rdma);
3089 if (ret) {
3090 error_report("rdma migration: error allocating pd and cq!");
3091 goto err_rdma_dest_wait;
3092 }
3093
3094 ret = qemu_rdma_alloc_qp(rdma);
3095 if (ret) {
3096 error_report("rdma migration: error allocating qp!");
3097 goto err_rdma_dest_wait;
3098 }
3099
3100 ret = qemu_rdma_init_ram_blocks(rdma);
3101 if (ret) {
3102 error_report("rdma migration: error initializing ram blocks!");
3103 goto err_rdma_dest_wait;
3104 }
3105
3106 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3107 ret = qemu_rdma_reg_control(rdma, idx);
3108 if (ret) {
3109 error_report("rdma: error registering %d control", idx);
3110 goto err_rdma_dest_wait;
3111 }
3112 }
3113
3114 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
3115
3116 ret = rdma_accept(rdma->cm_id, &conn_param);
3117 if (ret) {
3118 error_report("rdma_accept returns %d", ret);
3119 goto err_rdma_dest_wait;
3120 }
3121
3122 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3123 if (ret) {
3124 error_report("rdma_accept get_cm_event failed %d", ret);
3125 goto err_rdma_dest_wait;
3126 }
3127
3128 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3129 error_report("rdma_accept not event established");
3130 rdma_ack_cm_event(cm_event);
3131 goto err_rdma_dest_wait;
3132 }
3133
3134 rdma_ack_cm_event(cm_event);
3135 rdma->connected = true;
3136
3137 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3138 if (ret) {
3139 error_report("rdma migration: error posting second control recv");
3140 goto err_rdma_dest_wait;
3141 }
3142
3143 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3144
3145 return 0;
3146
3147 err_rdma_dest_wait:
3148 rdma->error_state = ret;
3149 qemu_rdma_cleanup(rdma);
3150 return ret;
3151 }
3152
3153 static int dest_ram_sort_func(const void *a, const void *b)
3154 {
3155 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3156 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3157
3158 return (a_index < b_index) ? -1 : (a_index != b_index);
3159 }
3160
3161 /*
3162 * During each iteration of the migration, we listen for instructions
3163 * by the source VM to perform dynamic page registrations before they
3164 * can perform RDMA operations.
3165 *
3166 * We respond with the 'rkey'.
3167 *
3168 * Keep doing this until the source tells us to stop.
3169 */
3170 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3171 {
3172 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3173 .type = RDMA_CONTROL_REGISTER_RESULT,
3174 .repeat = 0,
3175 };
3176 RDMAControlHeader unreg_resp = { .len = 0,
3177 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3178 .repeat = 0,
3179 };
3180 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3181 .repeat = 1 };
3182 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3183 RDMAContext *rdma = rioc->rdma;
3184 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3185 RDMAControlHeader head;
3186 RDMARegister *reg, *registers;
3187 RDMACompress *comp;
3188 RDMARegisterResult *reg_result;
3189 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3190 RDMALocalBlock *block;
3191 void *host_addr;
3192 int ret = 0;
3193 int idx = 0;
3194 int count = 0;
3195 int i = 0;
3196
3197 CHECK_ERROR_STATE();
3198
3199 do {
3200 trace_qemu_rdma_registration_handle_wait();
3201
3202 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3203
3204 if (ret < 0) {
3205 break;
3206 }
3207
3208 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3209 error_report("rdma: Too many requests in this message (%d)."
3210 "Bailing.", head.repeat);
3211 ret = -EIO;
3212 break;
3213 }
3214
3215 switch (head.type) {
3216 case RDMA_CONTROL_COMPRESS:
3217 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3218 network_to_compress(comp);
3219
3220 trace_qemu_rdma_registration_handle_compress(comp->length,
3221 comp->block_idx,
3222 comp->offset);
3223 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3224 error_report("rdma: 'compress' bad block index %u (vs %d)",
3225 (unsigned int)comp->block_idx,
3226 rdma->local_ram_blocks.nb_blocks);
3227 ret = -EIO;
3228 goto out;
3229 }
3230 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3231
3232 host_addr = block->local_host_addr +
3233 (comp->offset - block->offset);
3234
3235 ram_handle_compressed(host_addr, comp->value, comp->length);
3236 break;
3237
3238 case RDMA_CONTROL_REGISTER_FINISHED:
3239 trace_qemu_rdma_registration_handle_finished();
3240 goto out;
3241
3242 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3243 trace_qemu_rdma_registration_handle_ram_blocks();
3244
3245 /* Sort our local RAM Block list so it's the same as the source,
3246 * we can do this since we've filled in a src_index in the list
3247 * as we received the RAMBlock list earlier.
3248 */
3249 qsort(rdma->local_ram_blocks.block,
3250 rdma->local_ram_blocks.nb_blocks,
3251 sizeof(RDMALocalBlock), dest_ram_sort_func);
3252 for (i = 0; i < local->nb_blocks; i++) {
3253 local->block[i].index = i;
3254 }
3255
3256 if (rdma->pin_all) {
3257 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3258 if (ret) {
3259 error_report("rdma migration: error dest "
3260 "registering ram blocks");
3261 goto out;
3262 }
3263 }
3264
3265 /*
3266 * Dest uses this to prepare to transmit the RAMBlock descriptions
3267 * to the source VM after connection setup.
3268 * Both sides use the "remote" structure to communicate and update
3269 * their "local" descriptions with what was sent.
3270 */
3271 for (i = 0; i < local->nb_blocks; i++) {
3272 rdma->dest_blocks[i].remote_host_addr =
3273 (uintptr_t)(local->block[i].local_host_addr);
3274
3275 if (rdma->pin_all) {
3276 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3277 }
3278
3279 rdma->dest_blocks[i].offset = local->block[i].offset;
3280 rdma->dest_blocks[i].length = local->block[i].length;
3281
3282 dest_block_to_network(&rdma->dest_blocks[i]);
3283 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3284 local->block[i].block_name,
3285 local->block[i].offset,
3286 local->block[i].length,
3287 local->block[i].local_host_addr,
3288 local->block[i].src_index);
3289 }
3290
3291 blocks.len = rdma->local_ram_blocks.nb_blocks
3292 * sizeof(RDMADestBlock);
3293
3294
3295 ret = qemu_rdma_post_send_control(rdma,
3296 (uint8_t *) rdma->dest_blocks, &blocks);
3297
3298 if (ret < 0) {
3299 error_report("rdma migration: error sending remote info");
3300 goto out;
3301 }
3302
3303 break;
3304 case RDMA_CONTROL_REGISTER_REQUEST:
3305 trace_qemu_rdma_registration_handle_register(head.repeat);
3306
3307 reg_resp.repeat = head.repeat;
3308 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3309
3310 for (count = 0; count < head.repeat; count++) {
3311 uint64_t chunk;
3312 uint8_t *chunk_start, *chunk_end;
3313
3314 reg = &registers[count];
3315 network_to_register(reg);
3316
3317 reg_result = &results[count];
3318
3319 trace_qemu_rdma_registration_handle_register_loop(count,
3320 reg->current_index, reg->key.current_addr, reg->chunks);
3321
3322 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3323 error_report("rdma: 'register' bad block index %u (vs %d)",
3324 (unsigned int)reg->current_index,
3325 rdma->local_ram_blocks.nb_blocks);
3326 ret = -ENOENT;
3327 goto out;
3328 }
3329 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3330 if (block->is_ram_block) {
3331 if (block->offset > reg->key.current_addr) {
3332 error_report("rdma: bad register address for block %s"
3333 " offset: %" PRIx64 " current_addr: %" PRIx64,
3334 block->block_name, block->offset,
3335 reg->key.current_addr);
3336 ret = -ERANGE;
3337 goto out;
3338 }
3339 host_addr = (block->local_host_addr +
3340 (reg->key.current_addr - block->offset));
3341 chunk = ram_chunk_index(block->local_host_addr,
3342 (uint8_t *) host_addr);
3343 } else {
3344 chunk = reg->key.chunk;
3345 host_addr = block->local_host_addr +
3346 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3347 /* Check for particularly bad chunk value */
3348 if (host_addr < (void *)block->local_host_addr) {
3349 error_report("rdma: bad chunk for block %s"
3350 " chunk: %" PRIx64,
3351 block->block_name, reg->key.chunk);
3352 ret = -ERANGE;
3353 goto out;
3354 }
3355 }
3356 chunk_start = ram_chunk_start(block, chunk);
3357 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3358 if (qemu_rdma_register_and_get_keys(rdma, block,
3359 (uintptr_t)host_addr, NULL, &reg_result->rkey,
3360 chunk, chunk_start, chunk_end)) {
3361 error_report("cannot get rkey");
3362 ret = -EINVAL;
3363 goto out;
3364 }
3365
3366 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3367
3368 trace_qemu_rdma_registration_handle_register_rkey(
3369 reg_result->rkey);
3370
3371 result_to_network(reg_result);
3372 }
3373
3374 ret = qemu_rdma_post_send_control(rdma,
3375 (uint8_t *) results, &reg_resp);
3376
3377 if (ret < 0) {
3378 error_report("Failed to send control buffer");
3379 goto out;
3380 }
3381 break;
3382 case RDMA_CONTROL_UNREGISTER_REQUEST:
3383 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3384 unreg_resp.repeat = head.repeat;
3385 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3386
3387 for (count = 0; count < head.repeat; count++) {
3388 reg = &registers[count];
3389 network_to_register(reg);
3390
3391 trace_qemu_rdma_registration_handle_unregister_loop(count,
3392 reg->current_index, reg->key.chunk);
3393
3394 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3395
3396 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3397 block->pmr[reg->key.chunk] = NULL;
3398
3399 if (ret != 0) {
3400 perror("rdma unregistration chunk failed");
3401 ret = -ret;
3402 goto out;
3403 }
3404
3405 rdma->total_registrations--;
3406
3407 trace_qemu_rdma_registration_handle_unregister_success(
3408 reg->key.chunk);
3409 }
3410
3411 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3412
3413 if (ret < 0) {
3414 error_report("Failed to send control buffer");
3415 goto out;
3416 }
3417 break;
3418 case RDMA_CONTROL_REGISTER_RESULT:
3419 error_report("Invalid RESULT message at dest.");
3420 ret = -EIO;
3421 goto out;
3422 default:
3423 error_report("Unknown control message %s", control_desc(head.type));
3424 ret = -EIO;
3425 goto out;
3426 }
3427 } while (1);
3428 out:
3429 if (ret < 0) {
3430 rdma->error_state = ret;
3431 }
3432 return ret;
3433 }
3434
3435 /* Destination:
3436 * Called via a ram_control_load_hook during the initial RAM load section which
3437 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3438 * on the source.
3439 * We've already built our local RAMBlock list, but not yet sent the list to
3440 * the source.
3441 */
3442 static int
3443 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3444 {
3445 RDMAContext *rdma = rioc->rdma;
3446 int curr;
3447 int found = -1;
3448
3449 /* Find the matching RAMBlock in our local list */
3450 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3451 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3452 found = curr;
3453 break;
3454 }
3455 }
3456
3457 if (found == -1) {
3458 error_report("RAMBlock '%s' not found on destination", name);
3459 return -ENOENT;
3460 }
3461
3462 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3463 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3464 rdma->next_src_index++;
3465
3466 return 0;
3467 }
3468
3469 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3470 {
3471 switch (flags) {
3472 case RAM_CONTROL_BLOCK_REG:
3473 return rdma_block_notification_handle(opaque, data);
3474
3475 case RAM_CONTROL_HOOK:
3476 return qemu_rdma_registration_handle(f, opaque);
3477
3478 default:
3479 /* Shouldn't be called with any other values */
3480 abort();
3481 }
3482 }
3483
3484 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3485 uint64_t flags, void *data)
3486 {
3487 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3488 RDMAContext *rdma = rioc->rdma;
3489
3490 CHECK_ERROR_STATE();
3491
3492 trace_qemu_rdma_registration_start(flags);
3493 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3494 qemu_fflush(f);
3495
3496 return 0;
3497 }
3498
3499 /*
3500 * Inform dest that dynamic registrations are done for now.
3501 * First, flush writes, if any.
3502 */
3503 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3504 uint64_t flags, void *data)
3505 {
3506 Error *local_err = NULL, **errp = &local_err;
3507 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3508 RDMAContext *rdma = rioc->rdma;
3509 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3510 int ret = 0;
3511
3512 CHECK_ERROR_STATE();
3513
3514 qemu_fflush(f);
3515 ret = qemu_rdma_drain_cq(f, rdma);
3516
3517 if (ret < 0) {
3518 goto err;
3519 }
3520
3521 if (flags == RAM_CONTROL_SETUP) {
3522 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3523 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3524 int reg_result_idx, i, nb_dest_blocks;
3525
3526 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3527 trace_qemu_rdma_registration_stop_ram();
3528
3529 /*
3530 * Make sure that we parallelize the pinning on both sides.
3531 * For very large guests, doing this serially takes a really
3532 * long time, so we have to 'interleave' the pinning locally
3533 * with the control messages by performing the pinning on this
3534 * side before we receive the control response from the other
3535 * side that the pinning has completed.
3536 */
3537 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3538 &reg_result_idx, rdma->pin_all ?
3539 qemu_rdma_reg_whole_ram_blocks : NULL);
3540 if (ret < 0) {
3541 ERROR(errp, "receiving remote info!");
3542 return ret;
3543 }
3544
3545 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3546
3547 /*
3548 * The protocol uses two different sets of rkeys (mutually exclusive):
3549 * 1. One key to represent the virtual address of the entire ram block.
3550 * (dynamic chunk registration disabled - pin everything with one rkey.)
3551 * 2. One to represent individual chunks within a ram block.
3552 * (dynamic chunk registration enabled - pin individual chunks.)
3553 *
3554 * Once the capability is successfully negotiated, the destination transmits
3555 * the keys to use (or sends them later) including the virtual addresses
3556 * and then propagates the remote ram block descriptions to his local copy.
3557 */
3558
3559 if (local->nb_blocks != nb_dest_blocks) {
3560 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3561 "Your QEMU command line parameters are probably "
3562 "not identical on both the source and destination.",
3563 local->nb_blocks, nb_dest_blocks);
3564 rdma->error_state = -EINVAL;
3565 return -EINVAL;
3566 }
3567
3568 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3569 memcpy(rdma->dest_blocks,
3570 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3571 for (i = 0; i < nb_dest_blocks; i++) {
3572 network_to_dest_block(&rdma->dest_blocks[i]);
3573
3574 /* We require that the blocks are in the same order */
3575 if (rdma->dest_blocks[i].length != local->block[i].length) {
3576 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3577 "vs %" PRIu64, local->block[i].block_name, i,
3578 local->block[i].length,
3579 rdma->dest_blocks[i].length);
3580 rdma->error_state = -EINVAL;
3581 return -EINVAL;
3582 }
3583 local->block[i].remote_host_addr =
3584 rdma->dest_blocks[i].remote_host_addr;
3585 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3586 }
3587 }
3588
3589 trace_qemu_rdma_registration_stop(flags);
3590
3591 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3592 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3593
3594 if (ret < 0) {
3595 goto err;
3596 }
3597
3598 return 0;
3599 err:
3600 rdma->error_state = ret;
3601 return ret;
3602 }
3603
3604 static const QEMUFileHooks rdma_read_hooks = {
3605 .hook_ram_load = rdma_load_hook,
3606 };
3607
3608 static const QEMUFileHooks rdma_write_hooks = {
3609 .before_ram_iterate = qemu_rdma_registration_start,
3610 .after_ram_iterate = qemu_rdma_registration_stop,
3611 .save_page = qemu_rdma_save_page,
3612 };
3613
3614
3615 static void qio_channel_rdma_finalize(Object *obj)
3616 {
3617 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3618 if (rioc->rdma) {
3619 qemu_rdma_cleanup(rioc->rdma);
3620 g_free(rioc->rdma);
3621 rioc->rdma = NULL;
3622 }
3623 }
3624
3625 static void qio_channel_rdma_class_init(ObjectClass *klass,
3626 void *class_data G_GNUC_UNUSED)
3627 {
3628 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3629
3630 ioc_klass->io_writev = qio_channel_rdma_writev;
3631 ioc_klass->io_readv = qio_channel_rdma_readv;
3632 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3633 ioc_klass->io_close = qio_channel_rdma_close;
3634 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3635 }
3636
3637 static const TypeInfo qio_channel_rdma_info = {
3638 .parent = TYPE_QIO_CHANNEL,
3639 .name = TYPE_QIO_CHANNEL_RDMA,
3640 .instance_size = sizeof(QIOChannelRDMA),
3641 .instance_finalize = qio_channel_rdma_finalize,
3642 .class_init = qio_channel_rdma_class_init,
3643 };
3644
3645 static void qio_channel_rdma_register_types(void)
3646 {
3647 type_register_static(&qio_channel_rdma_info);
3648 }
3649
3650 type_init(qio_channel_rdma_register_types);
3651
3652 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3653 {
3654 QIOChannelRDMA *rioc;
3655
3656 if (qemu_file_mode_is_not_valid(mode)) {
3657 return NULL;
3658 }
3659
3660 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3661 rioc->rdma = rdma;
3662
3663 if (mode[0] == 'w') {
3664 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3665 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3666 } else {
3667 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3668 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3669 }
3670
3671 return rioc->file;
3672 }
3673
3674 static void rdma_accept_incoming_migration(void *opaque)
3675 {
3676 RDMAContext *rdma = opaque;
3677 int ret;
3678 QEMUFile *f;
3679 Error *local_err = NULL, **errp = &local_err;
3680
3681 trace_qemu_rdma_accept_incoming_migration();
3682 ret = qemu_rdma_accept(rdma);
3683
3684 if (ret) {
3685 ERROR(errp, "RDMA Migration initialization failed!");
3686 return;
3687 }
3688
3689 trace_qemu_rdma_accept_incoming_migration_accepted();
3690
3691 f = qemu_fopen_rdma(rdma, "rb");
3692 if (f == NULL) {
3693 ERROR(errp, "could not qemu_fopen_rdma!");
3694 qemu_rdma_cleanup(rdma);
3695 return;
3696 }
3697
3698 rdma->migration_started_on_destination = 1;
3699 migration_fd_process_incoming(f);
3700 }
3701
3702 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3703 {
3704 int ret;
3705 RDMAContext *rdma;
3706 Error *local_err = NULL;
3707
3708 trace_rdma_start_incoming_migration();
3709 rdma = qemu_rdma_data_init(host_port, &local_err);
3710
3711 if (rdma == NULL) {
3712 goto err;
3713 }
3714
3715 ret = qemu_rdma_dest_init(rdma, &local_err);
3716
3717 if (ret) {
3718 goto err;
3719 }
3720
3721 trace_rdma_start_incoming_migration_after_dest_init();
3722
3723 ret = rdma_listen(rdma->listen_id, 5);
3724
3725 if (ret) {
3726 ERROR(errp, "listening on socket!");
3727 goto err;
3728 }
3729
3730 trace_rdma_start_incoming_migration_after_rdma_listen();
3731
3732 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3733 NULL, (void *)(intptr_t)rdma);
3734 return;
3735 err:
3736 error_propagate(errp, local_err);
3737 g_free(rdma);
3738 }
3739
3740 void rdma_start_outgoing_migration(void *opaque,
3741 const char *host_port, Error **errp)
3742 {
3743 MigrationState *s = opaque;
3744 RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
3745 int ret = 0;
3746
3747 if (rdma == NULL) {
3748 goto err;
3749 }
3750
3751 ret = qemu_rdma_source_init(rdma,
3752 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
3753
3754 if (ret) {
3755 goto err;
3756 }
3757
3758 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3759 ret = qemu_rdma_connect(rdma, errp);
3760
3761 if (ret) {
3762 goto err;
3763 }
3764
3765 trace_rdma_start_outgoing_migration_after_rdma_connect();
3766
3767 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
3768 migrate_fd_connect(s, NULL);
3769 return;
3770 err:
3771 g_free(rdma);
3772 }