]> git.proxmox.com Git - mirror_qemu.git/blob - migration/rdma.c
Merge remote-tracking branch 'remotes/lalrae/tags/mips-20150318' into staging
[mirror_qemu.git] / migration / rdma.c
1 /*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 *
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
12 *
13 */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29 #include "trace.h"
30
31 /*
32 * Print and error on both the Monitor and the Log file.
33 */
34 #define ERROR(errp, fmt, ...) \
35 do { \
36 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
37 if (errp && (*(errp) == NULL)) { \
38 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
39 } \
40 } while (0)
41
42 #define RDMA_RESOLVE_TIMEOUT_MS 10000
43
44 /* Do not merge data if larger than this. */
45 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
46 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
47
48 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
49
50 /*
51 * This is only for non-live state being migrated.
52 * Instead of RDMA_WRITE messages, we use RDMA_SEND
53 * messages for that state, which requires a different
54 * delivery design than main memory.
55 */
56 #define RDMA_SEND_INCREMENT 32768
57
58 /*
59 * Maximum size infiniband SEND message
60 */
61 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
62 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
63
64 #define RDMA_CONTROL_VERSION_CURRENT 1
65 /*
66 * Capabilities for negotiation.
67 */
68 #define RDMA_CAPABILITY_PIN_ALL 0x01
69
70 /*
71 * Add the other flags above to this list of known capabilities
72 * as they are introduced.
73 */
74 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
75
76 #define CHECK_ERROR_STATE() \
77 do { \
78 if (rdma->error_state) { \
79 if (!rdma->error_reported) { \
80 error_report("RDMA is in an error state waiting migration" \
81 " to abort!"); \
82 rdma->error_reported = 1; \
83 } \
84 return rdma->error_state; \
85 } \
86 } while (0);
87
88 /*
89 * A work request ID is 64-bits and we split up these bits
90 * into 3 parts:
91 *
92 * bits 0-15 : type of control message, 2^16
93 * bits 16-29: ram block index, 2^14
94 * bits 30-63: ram block chunk number, 2^34
95 *
96 * The last two bit ranges are only used for RDMA writes,
97 * in order to track their completion and potentially
98 * also track unregistration status of the message.
99 */
100 #define RDMA_WRID_TYPE_SHIFT 0UL
101 #define RDMA_WRID_BLOCK_SHIFT 16UL
102 #define RDMA_WRID_CHUNK_SHIFT 30UL
103
104 #define RDMA_WRID_TYPE_MASK \
105 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
106
107 #define RDMA_WRID_BLOCK_MASK \
108 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
109
110 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
111
112 /*
113 * RDMA migration protocol:
114 * 1. RDMA Writes (data messages, i.e. RAM)
115 * 2. IB Send/Recv (control channel messages)
116 */
117 enum {
118 RDMA_WRID_NONE = 0,
119 RDMA_WRID_RDMA_WRITE = 1,
120 RDMA_WRID_SEND_CONTROL = 2000,
121 RDMA_WRID_RECV_CONTROL = 4000,
122 };
123
124 static const char *wrid_desc[] = {
125 [RDMA_WRID_NONE] = "NONE",
126 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
127 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
128 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
129 };
130
131 /*
132 * Work request IDs for IB SEND messages only (not RDMA writes).
133 * This is used by the migration protocol to transmit
134 * control messages (such as device state and registration commands)
135 *
136 * We could use more WRs, but we have enough for now.
137 */
138 enum {
139 RDMA_WRID_READY = 0,
140 RDMA_WRID_DATA,
141 RDMA_WRID_CONTROL,
142 RDMA_WRID_MAX,
143 };
144
145 /*
146 * SEND/RECV IB Control Messages.
147 */
148 enum {
149 RDMA_CONTROL_NONE = 0,
150 RDMA_CONTROL_ERROR,
151 RDMA_CONTROL_READY, /* ready to receive */
152 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
153 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
154 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
155 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
156 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
157 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
158 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
159 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
160 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
161 };
162
163 static const char *control_desc[] = {
164 [RDMA_CONTROL_NONE] = "NONE",
165 [RDMA_CONTROL_ERROR] = "ERROR",
166 [RDMA_CONTROL_READY] = "READY",
167 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
168 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
169 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
170 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
171 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
172 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
173 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
174 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
175 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
176 };
177
178 /*
179 * Memory and MR structures used to represent an IB Send/Recv work request.
180 * This is *not* used for RDMA writes, only IB Send/Recv.
181 */
182 typedef struct {
183 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
184 struct ibv_mr *control_mr; /* registration metadata */
185 size_t control_len; /* length of the message */
186 uint8_t *control_curr; /* start of unconsumed bytes */
187 } RDMAWorkRequestData;
188
189 /*
190 * Negotiate RDMA capabilities during connection-setup time.
191 */
192 typedef struct {
193 uint32_t version;
194 uint32_t flags;
195 } RDMACapabilities;
196
197 static void caps_to_network(RDMACapabilities *cap)
198 {
199 cap->version = htonl(cap->version);
200 cap->flags = htonl(cap->flags);
201 }
202
203 static void network_to_caps(RDMACapabilities *cap)
204 {
205 cap->version = ntohl(cap->version);
206 cap->flags = ntohl(cap->flags);
207 }
208
209 /*
210 * Representation of a RAMBlock from an RDMA perspective.
211 * This is not transmitted, only local.
212 * This and subsequent structures cannot be linked lists
213 * because we're using a single IB message to transmit
214 * the information. It's small anyway, so a list is overkill.
215 */
216 typedef struct RDMALocalBlock {
217 uint8_t *local_host_addr; /* local virtual address */
218 uint64_t remote_host_addr; /* remote virtual address */
219 uint64_t offset;
220 uint64_t length;
221 struct ibv_mr **pmr; /* MRs for chunk-level registration */
222 struct ibv_mr *mr; /* MR for non-chunk-level registration */
223 uint32_t *remote_keys; /* rkeys for chunk-level registration */
224 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
225 int index; /* which block are we */
226 bool is_ram_block;
227 int nb_chunks;
228 unsigned long *transit_bitmap;
229 unsigned long *unregister_bitmap;
230 } RDMALocalBlock;
231
232 /*
233 * Also represents a RAMblock, but only on the dest.
234 * This gets transmitted by the dest during connection-time
235 * to the source VM and then is used to populate the
236 * corresponding RDMALocalBlock with
237 * the information needed to perform the actual RDMA.
238 */
239 typedef struct QEMU_PACKED RDMARemoteBlock {
240 uint64_t remote_host_addr;
241 uint64_t offset;
242 uint64_t length;
243 uint32_t remote_rkey;
244 uint32_t padding;
245 } RDMARemoteBlock;
246
247 static uint64_t htonll(uint64_t v)
248 {
249 union { uint32_t lv[2]; uint64_t llv; } u;
250 u.lv[0] = htonl(v >> 32);
251 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
252 return u.llv;
253 }
254
255 static uint64_t ntohll(uint64_t v) {
256 union { uint32_t lv[2]; uint64_t llv; } u;
257 u.llv = v;
258 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
259 }
260
261 static void remote_block_to_network(RDMARemoteBlock *rb)
262 {
263 rb->remote_host_addr = htonll(rb->remote_host_addr);
264 rb->offset = htonll(rb->offset);
265 rb->length = htonll(rb->length);
266 rb->remote_rkey = htonl(rb->remote_rkey);
267 }
268
269 static void network_to_remote_block(RDMARemoteBlock *rb)
270 {
271 rb->remote_host_addr = ntohll(rb->remote_host_addr);
272 rb->offset = ntohll(rb->offset);
273 rb->length = ntohll(rb->length);
274 rb->remote_rkey = ntohl(rb->remote_rkey);
275 }
276
277 /*
278 * Virtual address of the above structures used for transmitting
279 * the RAMBlock descriptions at connection-time.
280 * This structure is *not* transmitted.
281 */
282 typedef struct RDMALocalBlocks {
283 int nb_blocks;
284 bool init; /* main memory init complete */
285 RDMALocalBlock *block;
286 } RDMALocalBlocks;
287
288 /*
289 * Main data structure for RDMA state.
290 * While there is only one copy of this structure being allocated right now,
291 * this is the place where one would start if you wanted to consider
292 * having more than one RDMA connection open at the same time.
293 */
294 typedef struct RDMAContext {
295 char *host;
296 int port;
297
298 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
299
300 /*
301 * This is used by *_exchange_send() to figure out whether or not
302 * the initial "READY" message has already been received or not.
303 * This is because other functions may potentially poll() and detect
304 * the READY message before send() does, in which case we need to
305 * know if it completed.
306 */
307 int control_ready_expected;
308
309 /* number of outstanding writes */
310 int nb_sent;
311
312 /* store info about current buffer so that we can
313 merge it with future sends */
314 uint64_t current_addr;
315 uint64_t current_length;
316 /* index of ram block the current buffer belongs to */
317 int current_index;
318 /* index of the chunk in the current ram block */
319 int current_chunk;
320
321 bool pin_all;
322
323 /*
324 * infiniband-specific variables for opening the device
325 * and maintaining connection state and so forth.
326 *
327 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
328 * cm_id->verbs, cm_id->channel, and cm_id->qp.
329 */
330 struct rdma_cm_id *cm_id; /* connection manager ID */
331 struct rdma_cm_id *listen_id;
332 bool connected;
333
334 struct ibv_context *verbs;
335 struct rdma_event_channel *channel;
336 struct ibv_qp *qp; /* queue pair */
337 struct ibv_comp_channel *comp_channel; /* completion channel */
338 struct ibv_pd *pd; /* protection domain */
339 struct ibv_cq *cq; /* completion queue */
340
341 /*
342 * If a previous write failed (perhaps because of a failed
343 * memory registration, then do not attempt any future work
344 * and remember the error state.
345 */
346 int error_state;
347 int error_reported;
348
349 /*
350 * Description of ram blocks used throughout the code.
351 */
352 RDMALocalBlocks local_ram_blocks;
353 RDMARemoteBlock *block;
354
355 /*
356 * Migration on *destination* started.
357 * Then use coroutine yield function.
358 * Source runs in a thread, so we don't care.
359 */
360 int migration_started_on_destination;
361
362 int total_registrations;
363 int total_writes;
364
365 int unregister_current, unregister_next;
366 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
367
368 GHashTable *blockmap;
369 } RDMAContext;
370
371 /*
372 * Interface to the rest of the migration call stack.
373 */
374 typedef struct QEMUFileRDMA {
375 RDMAContext *rdma;
376 size_t len;
377 void *file;
378 } QEMUFileRDMA;
379
380 /*
381 * Main structure for IB Send/Recv control messages.
382 * This gets prepended at the beginning of every Send/Recv.
383 */
384 typedef struct QEMU_PACKED {
385 uint32_t len; /* Total length of data portion */
386 uint32_t type; /* which control command to perform */
387 uint32_t repeat; /* number of commands in data portion of same type */
388 uint32_t padding;
389 } RDMAControlHeader;
390
391 static void control_to_network(RDMAControlHeader *control)
392 {
393 control->type = htonl(control->type);
394 control->len = htonl(control->len);
395 control->repeat = htonl(control->repeat);
396 }
397
398 static void network_to_control(RDMAControlHeader *control)
399 {
400 control->type = ntohl(control->type);
401 control->len = ntohl(control->len);
402 control->repeat = ntohl(control->repeat);
403 }
404
405 /*
406 * Register a single Chunk.
407 * Information sent by the source VM to inform the dest
408 * to register an single chunk of memory before we can perform
409 * the actual RDMA operation.
410 */
411 typedef struct QEMU_PACKED {
412 union QEMU_PACKED {
413 uint64_t current_addr; /* offset into the ramblock of the chunk */
414 uint64_t chunk; /* chunk to lookup if unregistering */
415 } key;
416 uint32_t current_index; /* which ramblock the chunk belongs to */
417 uint32_t padding;
418 uint64_t chunks; /* how many sequential chunks to register */
419 } RDMARegister;
420
421 static void register_to_network(RDMARegister *reg)
422 {
423 reg->key.current_addr = htonll(reg->key.current_addr);
424 reg->current_index = htonl(reg->current_index);
425 reg->chunks = htonll(reg->chunks);
426 }
427
428 static void network_to_register(RDMARegister *reg)
429 {
430 reg->key.current_addr = ntohll(reg->key.current_addr);
431 reg->current_index = ntohl(reg->current_index);
432 reg->chunks = ntohll(reg->chunks);
433 }
434
435 typedef struct QEMU_PACKED {
436 uint32_t value; /* if zero, we will madvise() */
437 uint32_t block_idx; /* which ram block index */
438 uint64_t offset; /* where in the remote ramblock this chunk */
439 uint64_t length; /* length of the chunk */
440 } RDMACompress;
441
442 static void compress_to_network(RDMACompress *comp)
443 {
444 comp->value = htonl(comp->value);
445 comp->block_idx = htonl(comp->block_idx);
446 comp->offset = htonll(comp->offset);
447 comp->length = htonll(comp->length);
448 }
449
450 static void network_to_compress(RDMACompress *comp)
451 {
452 comp->value = ntohl(comp->value);
453 comp->block_idx = ntohl(comp->block_idx);
454 comp->offset = ntohll(comp->offset);
455 comp->length = ntohll(comp->length);
456 }
457
458 /*
459 * The result of the dest's memory registration produces an "rkey"
460 * which the source VM must reference in order to perform
461 * the RDMA operation.
462 */
463 typedef struct QEMU_PACKED {
464 uint32_t rkey;
465 uint32_t padding;
466 uint64_t host_addr;
467 } RDMARegisterResult;
468
469 static void result_to_network(RDMARegisterResult *result)
470 {
471 result->rkey = htonl(result->rkey);
472 result->host_addr = htonll(result->host_addr);
473 };
474
475 static void network_to_result(RDMARegisterResult *result)
476 {
477 result->rkey = ntohl(result->rkey);
478 result->host_addr = ntohll(result->host_addr);
479 };
480
481 const char *print_wrid(int wrid);
482 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
483 uint8_t *data, RDMAControlHeader *resp,
484 int *resp_idx,
485 int (*callback)(RDMAContext *rdma));
486
487 static inline uint64_t ram_chunk_index(const uint8_t *start,
488 const uint8_t *host)
489 {
490 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
491 }
492
493 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
494 uint64_t i)
495 {
496 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
497 (i << RDMA_REG_CHUNK_SHIFT));
498 }
499
500 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
501 uint64_t i)
502 {
503 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
504 (1UL << RDMA_REG_CHUNK_SHIFT);
505
506 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
507 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
508 }
509
510 return result;
511 }
512
513 static int rdma_add_block(RDMAContext *rdma, void *host_addr,
514 ram_addr_t block_offset, uint64_t length)
515 {
516 RDMALocalBlocks *local = &rdma->local_ram_blocks;
517 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
518 (void *)(uintptr_t)block_offset);
519 RDMALocalBlock *old = local->block;
520
521 assert(block == NULL);
522
523 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
524
525 if (local->nb_blocks) {
526 int x;
527
528 for (x = 0; x < local->nb_blocks; x++) {
529 g_hash_table_remove(rdma->blockmap,
530 (void *)(uintptr_t)old[x].offset);
531 g_hash_table_insert(rdma->blockmap,
532 (void *)(uintptr_t)old[x].offset,
533 &local->block[x]);
534 }
535 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
536 g_free(old);
537 }
538
539 block = &local->block[local->nb_blocks];
540
541 block->local_host_addr = host_addr;
542 block->offset = block_offset;
543 block->length = length;
544 block->index = local->nb_blocks;
545 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
546 block->transit_bitmap = bitmap_new(block->nb_chunks);
547 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
548 block->unregister_bitmap = bitmap_new(block->nb_chunks);
549 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
550 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
551
552 block->is_ram_block = local->init ? false : true;
553
554 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
555
556 trace_rdma_add_block(local->nb_blocks, (uintptr_t) block->local_host_addr,
557 block->offset, block->length,
558 (uintptr_t) (block->local_host_addr + block->length),
559 BITS_TO_LONGS(block->nb_chunks) *
560 sizeof(unsigned long) * 8,
561 block->nb_chunks);
562
563 local->nb_blocks++;
564
565 return 0;
566 }
567
568 /*
569 * Memory regions need to be registered with the device and queue pairs setup
570 * in advanced before the migration starts. This tells us where the RAM blocks
571 * are so that we can register them individually.
572 */
573 static void qemu_rdma_init_one_block(void *host_addr,
574 ram_addr_t block_offset, ram_addr_t length, void *opaque)
575 {
576 rdma_add_block(opaque, host_addr, block_offset, length);
577 }
578
579 /*
580 * Identify the RAMBlocks and their quantity. They will be references to
581 * identify chunk boundaries inside each RAMBlock and also be referenced
582 * during dynamic page registration.
583 */
584 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
585 {
586 RDMALocalBlocks *local = &rdma->local_ram_blocks;
587
588 assert(rdma->blockmap == NULL);
589 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
590 memset(local, 0, sizeof *local);
591 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
592 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
593 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
594 rdma->local_ram_blocks.nb_blocks);
595 local->init = true;
596 return 0;
597 }
598
599 static int rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
600 {
601 RDMALocalBlocks *local = &rdma->local_ram_blocks;
602 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
603 (void *) block_offset);
604 RDMALocalBlock *old = local->block;
605 int x;
606
607 assert(block);
608
609 if (block->pmr) {
610 int j;
611
612 for (j = 0; j < block->nb_chunks; j++) {
613 if (!block->pmr[j]) {
614 continue;
615 }
616 ibv_dereg_mr(block->pmr[j]);
617 rdma->total_registrations--;
618 }
619 g_free(block->pmr);
620 block->pmr = NULL;
621 }
622
623 if (block->mr) {
624 ibv_dereg_mr(block->mr);
625 rdma->total_registrations--;
626 block->mr = NULL;
627 }
628
629 g_free(block->transit_bitmap);
630 block->transit_bitmap = NULL;
631
632 g_free(block->unregister_bitmap);
633 block->unregister_bitmap = NULL;
634
635 g_free(block->remote_keys);
636 block->remote_keys = NULL;
637
638 for (x = 0; x < local->nb_blocks; x++) {
639 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)old[x].offset);
640 }
641
642 if (local->nb_blocks > 1) {
643
644 local->block = g_malloc0(sizeof(RDMALocalBlock) *
645 (local->nb_blocks - 1));
646
647 if (block->index) {
648 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
649 }
650
651 if (block->index < (local->nb_blocks - 1)) {
652 memcpy(local->block + block->index, old + (block->index + 1),
653 sizeof(RDMALocalBlock) *
654 (local->nb_blocks - (block->index + 1)));
655 }
656 } else {
657 assert(block == local->block);
658 local->block = NULL;
659 }
660
661 trace_rdma_delete_block(local->nb_blocks,
662 (uintptr_t)block->local_host_addr,
663 block->offset, block->length,
664 (uintptr_t)(block->local_host_addr + block->length),
665 BITS_TO_LONGS(block->nb_chunks) *
666 sizeof(unsigned long) * 8, block->nb_chunks);
667
668 g_free(old);
669
670 local->nb_blocks--;
671
672 if (local->nb_blocks) {
673 for (x = 0; x < local->nb_blocks; x++) {
674 g_hash_table_insert(rdma->blockmap,
675 (void *)(uintptr_t)local->block[x].offset,
676 &local->block[x]);
677 }
678 }
679
680 return 0;
681 }
682
683 /*
684 * Put in the log file which RDMA device was opened and the details
685 * associated with that device.
686 */
687 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
688 {
689 struct ibv_port_attr port;
690
691 if (ibv_query_port(verbs, 1, &port)) {
692 error_report("Failed to query port information");
693 return;
694 }
695
696 printf("%s RDMA Device opened: kernel name %s "
697 "uverbs device name %s, "
698 "infiniband_verbs class device path %s, "
699 "infiniband class device path %s, "
700 "transport: (%d) %s\n",
701 who,
702 verbs->device->name,
703 verbs->device->dev_name,
704 verbs->device->dev_path,
705 verbs->device->ibdev_path,
706 port.link_layer,
707 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
708 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
709 ? "Ethernet" : "Unknown"));
710 }
711
712 /*
713 * Put in the log file the RDMA gid addressing information,
714 * useful for folks who have trouble understanding the
715 * RDMA device hierarchy in the kernel.
716 */
717 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
718 {
719 char sgid[33];
720 char dgid[33];
721 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
722 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
723 trace_qemu_rdma_dump_gid(who, sgid, dgid);
724 }
725
726 /*
727 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
728 * We will try the next addrinfo struct, and fail if there are
729 * no other valid addresses to bind against.
730 *
731 * If user is listening on '[::]', then we will not have a opened a device
732 * yet and have no way of verifying if the device is RoCE or not.
733 *
734 * In this case, the source VM will throw an error for ALL types of
735 * connections (both IPv4 and IPv6) if the destination machine does not have
736 * a regular infiniband network available for use.
737 *
738 * The only way to guarantee that an error is thrown for broken kernels is
739 * for the management software to choose a *specific* interface at bind time
740 * and validate what time of hardware it is.
741 *
742 * Unfortunately, this puts the user in a fix:
743 *
744 * If the source VM connects with an IPv4 address without knowing that the
745 * destination has bound to '[::]' the migration will unconditionally fail
746 * unless the management software is explicitly listening on the the IPv4
747 * address while using a RoCE-based device.
748 *
749 * If the source VM connects with an IPv6 address, then we're OK because we can
750 * throw an error on the source (and similarly on the destination).
751 *
752 * But in mixed environments, this will be broken for a while until it is fixed
753 * inside linux.
754 *
755 * We do provide a *tiny* bit of help in this function: We can list all of the
756 * devices in the system and check to see if all the devices are RoCE or
757 * Infiniband.
758 *
759 * If we detect that we have a *pure* RoCE environment, then we can safely
760 * thrown an error even if the management software has specified '[::]' as the
761 * bind address.
762 *
763 * However, if there is are multiple hetergeneous devices, then we cannot make
764 * this assumption and the user just has to be sure they know what they are
765 * doing.
766 *
767 * Patches are being reviewed on linux-rdma.
768 */
769 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
770 {
771 struct ibv_port_attr port_attr;
772
773 /* This bug only exists in linux, to our knowledge. */
774 #ifdef CONFIG_LINUX
775
776 /*
777 * Verbs are only NULL if management has bound to '[::]'.
778 *
779 * Let's iterate through all the devices and see if there any pure IB
780 * devices (non-ethernet).
781 *
782 * If not, then we can safely proceed with the migration.
783 * Otherwise, there are no guarantees until the bug is fixed in linux.
784 */
785 if (!verbs) {
786 int num_devices, x;
787 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
788 bool roce_found = false;
789 bool ib_found = false;
790
791 for (x = 0; x < num_devices; x++) {
792 verbs = ibv_open_device(dev_list[x]);
793
794 if (ibv_query_port(verbs, 1, &port_attr)) {
795 ibv_close_device(verbs);
796 ERROR(errp, "Could not query initial IB port");
797 return -EINVAL;
798 }
799
800 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
801 ib_found = true;
802 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
803 roce_found = true;
804 }
805
806 ibv_close_device(verbs);
807
808 }
809
810 if (roce_found) {
811 if (ib_found) {
812 fprintf(stderr, "WARN: migrations may fail:"
813 " IPv6 over RoCE / iWARP in linux"
814 " is broken. But since you appear to have a"
815 " mixed RoCE / IB environment, be sure to only"
816 " migrate over the IB fabric until the kernel "
817 " fixes the bug.\n");
818 } else {
819 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
820 " and your management software has specified '[::]'"
821 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
822 return -ENONET;
823 }
824 }
825
826 return 0;
827 }
828
829 /*
830 * If we have a verbs context, that means that some other than '[::]' was
831 * used by the management software for binding. In which case we can
832 * actually warn the user about a potentially broken kernel.
833 */
834
835 /* IB ports start with 1, not 0 */
836 if (ibv_query_port(verbs, 1, &port_attr)) {
837 ERROR(errp, "Could not query initial IB port");
838 return -EINVAL;
839 }
840
841 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
842 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
843 "(but patches on linux-rdma in progress)");
844 return -ENONET;
845 }
846
847 #endif
848
849 return 0;
850 }
851
852 /*
853 * Figure out which RDMA device corresponds to the requested IP hostname
854 * Also create the initial connection manager identifiers for opening
855 * the connection.
856 */
857 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
858 {
859 int ret;
860 struct rdma_addrinfo *res;
861 char port_str[16];
862 struct rdma_cm_event *cm_event;
863 char ip[40] = "unknown";
864 struct rdma_addrinfo *e;
865
866 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
867 ERROR(errp, "RDMA hostname has not been set");
868 return -EINVAL;
869 }
870
871 /* create CM channel */
872 rdma->channel = rdma_create_event_channel();
873 if (!rdma->channel) {
874 ERROR(errp, "could not create CM channel");
875 return -EINVAL;
876 }
877
878 /* create CM id */
879 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
880 if (ret) {
881 ERROR(errp, "could not create channel id");
882 goto err_resolve_create_id;
883 }
884
885 snprintf(port_str, 16, "%d", rdma->port);
886 port_str[15] = '\0';
887
888 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
889 if (ret < 0) {
890 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
891 goto err_resolve_get_addr;
892 }
893
894 for (e = res; e != NULL; e = e->ai_next) {
895 inet_ntop(e->ai_family,
896 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
897 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
898
899 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
900 RDMA_RESOLVE_TIMEOUT_MS);
901 if (!ret) {
902 if (e->ai_family == AF_INET6) {
903 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
904 if (ret) {
905 continue;
906 }
907 }
908 goto route;
909 }
910 }
911
912 ERROR(errp, "could not resolve address %s", rdma->host);
913 goto err_resolve_get_addr;
914
915 route:
916 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
917
918 ret = rdma_get_cm_event(rdma->channel, &cm_event);
919 if (ret) {
920 ERROR(errp, "could not perform event_addr_resolved");
921 goto err_resolve_get_addr;
922 }
923
924 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
925 ERROR(errp, "result not equal to event_addr_resolved %s",
926 rdma_event_str(cm_event->event));
927 perror("rdma_resolve_addr");
928 rdma_ack_cm_event(cm_event);
929 ret = -EINVAL;
930 goto err_resolve_get_addr;
931 }
932 rdma_ack_cm_event(cm_event);
933
934 /* resolve route */
935 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
936 if (ret) {
937 ERROR(errp, "could not resolve rdma route");
938 goto err_resolve_get_addr;
939 }
940
941 ret = rdma_get_cm_event(rdma->channel, &cm_event);
942 if (ret) {
943 ERROR(errp, "could not perform event_route_resolved");
944 goto err_resolve_get_addr;
945 }
946 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
947 ERROR(errp, "result not equal to event_route_resolved: %s",
948 rdma_event_str(cm_event->event));
949 rdma_ack_cm_event(cm_event);
950 ret = -EINVAL;
951 goto err_resolve_get_addr;
952 }
953 rdma_ack_cm_event(cm_event);
954 rdma->verbs = rdma->cm_id->verbs;
955 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
956 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
957 return 0;
958
959 err_resolve_get_addr:
960 rdma_destroy_id(rdma->cm_id);
961 rdma->cm_id = NULL;
962 err_resolve_create_id:
963 rdma_destroy_event_channel(rdma->channel);
964 rdma->channel = NULL;
965 return ret;
966 }
967
968 /*
969 * Create protection domain and completion queues
970 */
971 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
972 {
973 /* allocate pd */
974 rdma->pd = ibv_alloc_pd(rdma->verbs);
975 if (!rdma->pd) {
976 error_report("failed to allocate protection domain");
977 return -1;
978 }
979
980 /* create completion channel */
981 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
982 if (!rdma->comp_channel) {
983 error_report("failed to allocate completion channel");
984 goto err_alloc_pd_cq;
985 }
986
987 /*
988 * Completion queue can be filled by both read and write work requests,
989 * so must reflect the sum of both possible queue sizes.
990 */
991 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
992 NULL, rdma->comp_channel, 0);
993 if (!rdma->cq) {
994 error_report("failed to allocate completion queue");
995 goto err_alloc_pd_cq;
996 }
997
998 return 0;
999
1000 err_alloc_pd_cq:
1001 if (rdma->pd) {
1002 ibv_dealloc_pd(rdma->pd);
1003 }
1004 if (rdma->comp_channel) {
1005 ibv_destroy_comp_channel(rdma->comp_channel);
1006 }
1007 rdma->pd = NULL;
1008 rdma->comp_channel = NULL;
1009 return -1;
1010
1011 }
1012
1013 /*
1014 * Create queue pairs.
1015 */
1016 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1017 {
1018 struct ibv_qp_init_attr attr = { 0 };
1019 int ret;
1020
1021 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1022 attr.cap.max_recv_wr = 3;
1023 attr.cap.max_send_sge = 1;
1024 attr.cap.max_recv_sge = 1;
1025 attr.send_cq = rdma->cq;
1026 attr.recv_cq = rdma->cq;
1027 attr.qp_type = IBV_QPT_RC;
1028
1029 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1030 if (ret) {
1031 return -1;
1032 }
1033
1034 rdma->qp = rdma->cm_id->qp;
1035 return 0;
1036 }
1037
1038 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1039 {
1040 int i;
1041 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1042
1043 for (i = 0; i < local->nb_blocks; i++) {
1044 local->block[i].mr =
1045 ibv_reg_mr(rdma->pd,
1046 local->block[i].local_host_addr,
1047 local->block[i].length,
1048 IBV_ACCESS_LOCAL_WRITE |
1049 IBV_ACCESS_REMOTE_WRITE
1050 );
1051 if (!local->block[i].mr) {
1052 perror("Failed to register local dest ram block!\n");
1053 break;
1054 }
1055 rdma->total_registrations++;
1056 }
1057
1058 if (i >= local->nb_blocks) {
1059 return 0;
1060 }
1061
1062 for (i--; i >= 0; i--) {
1063 ibv_dereg_mr(local->block[i].mr);
1064 rdma->total_registrations--;
1065 }
1066
1067 return -1;
1068
1069 }
1070
1071 /*
1072 * Find the ram block that corresponds to the page requested to be
1073 * transmitted by QEMU.
1074 *
1075 * Once the block is found, also identify which 'chunk' within that
1076 * block that the page belongs to.
1077 *
1078 * This search cannot fail or the migration will fail.
1079 */
1080 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1081 uintptr_t block_offset,
1082 uint64_t offset,
1083 uint64_t length,
1084 uint64_t *block_index,
1085 uint64_t *chunk_index)
1086 {
1087 uint64_t current_addr = block_offset + offset;
1088 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1089 (void *) block_offset);
1090 assert(block);
1091 assert(current_addr >= block->offset);
1092 assert((current_addr + length) <= (block->offset + block->length));
1093
1094 *block_index = block->index;
1095 *chunk_index = ram_chunk_index(block->local_host_addr,
1096 block->local_host_addr + (current_addr - block->offset));
1097
1098 return 0;
1099 }
1100
1101 /*
1102 * Register a chunk with IB. If the chunk was already registered
1103 * previously, then skip.
1104 *
1105 * Also return the keys associated with the registration needed
1106 * to perform the actual RDMA operation.
1107 */
1108 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1109 RDMALocalBlock *block, uintptr_t host_addr,
1110 uint32_t *lkey, uint32_t *rkey, int chunk,
1111 uint8_t *chunk_start, uint8_t *chunk_end)
1112 {
1113 if (block->mr) {
1114 if (lkey) {
1115 *lkey = block->mr->lkey;
1116 }
1117 if (rkey) {
1118 *rkey = block->mr->rkey;
1119 }
1120 return 0;
1121 }
1122
1123 /* allocate memory to store chunk MRs */
1124 if (!block->pmr) {
1125 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1126 }
1127
1128 /*
1129 * If 'rkey', then we're the destination, so grant access to the source.
1130 *
1131 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1132 */
1133 if (!block->pmr[chunk]) {
1134 uint64_t len = chunk_end - chunk_start;
1135
1136 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1137
1138 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1139 chunk_start, len,
1140 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1141 IBV_ACCESS_REMOTE_WRITE) : 0));
1142
1143 if (!block->pmr[chunk]) {
1144 perror("Failed to register chunk!");
1145 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1146 " start %" PRIuPTR " end %" PRIuPTR
1147 " host %" PRIuPTR
1148 " local %" PRIuPTR " registrations: %d\n",
1149 block->index, chunk, (uintptr_t)chunk_start,
1150 (uintptr_t)chunk_end, host_addr,
1151 (uintptr_t)block->local_host_addr,
1152 rdma->total_registrations);
1153 return -1;
1154 }
1155 rdma->total_registrations++;
1156 }
1157
1158 if (lkey) {
1159 *lkey = block->pmr[chunk]->lkey;
1160 }
1161 if (rkey) {
1162 *rkey = block->pmr[chunk]->rkey;
1163 }
1164 return 0;
1165 }
1166
1167 /*
1168 * Register (at connection time) the memory used for control
1169 * channel messages.
1170 */
1171 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1172 {
1173 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1174 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1175 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1176 if (rdma->wr_data[idx].control_mr) {
1177 rdma->total_registrations++;
1178 return 0;
1179 }
1180 error_report("qemu_rdma_reg_control failed");
1181 return -1;
1182 }
1183
1184 const char *print_wrid(int wrid)
1185 {
1186 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1187 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1188 }
1189 return wrid_desc[wrid];
1190 }
1191
1192 /*
1193 * RDMA requires memory registration (mlock/pinning), but this is not good for
1194 * overcommitment.
1195 *
1196 * In preparation for the future where LRU information or workload-specific
1197 * writable writable working set memory access behavior is available to QEMU
1198 * it would be nice to have in place the ability to UN-register/UN-pin
1199 * particular memory regions from the RDMA hardware when it is determine that
1200 * those regions of memory will likely not be accessed again in the near future.
1201 *
1202 * While we do not yet have such information right now, the following
1203 * compile-time option allows us to perform a non-optimized version of this
1204 * behavior.
1205 *
1206 * By uncommenting this option, you will cause *all* RDMA transfers to be
1207 * unregistered immediately after the transfer completes on both sides of the
1208 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1209 *
1210 * This will have a terrible impact on migration performance, so until future
1211 * workload information or LRU information is available, do not attempt to use
1212 * this feature except for basic testing.
1213 */
1214 //#define RDMA_UNREGISTRATION_EXAMPLE
1215
1216 /*
1217 * Perform a non-optimized memory unregistration after every transfer
1218 * for demonsration purposes, only if pin-all is not requested.
1219 *
1220 * Potential optimizations:
1221 * 1. Start a new thread to run this function continuously
1222 - for bit clearing
1223 - and for receipt of unregister messages
1224 * 2. Use an LRU.
1225 * 3. Use workload hints.
1226 */
1227 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1228 {
1229 while (rdma->unregistrations[rdma->unregister_current]) {
1230 int ret;
1231 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1232 uint64_t chunk =
1233 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1234 uint64_t index =
1235 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1236 RDMALocalBlock *block =
1237 &(rdma->local_ram_blocks.block[index]);
1238 RDMARegister reg = { .current_index = index };
1239 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1240 };
1241 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1242 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1243 .repeat = 1,
1244 };
1245
1246 trace_qemu_rdma_unregister_waiting_proc(chunk,
1247 rdma->unregister_current);
1248
1249 rdma->unregistrations[rdma->unregister_current] = 0;
1250 rdma->unregister_current++;
1251
1252 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1253 rdma->unregister_current = 0;
1254 }
1255
1256
1257 /*
1258 * Unregistration is speculative (because migration is single-threaded
1259 * and we cannot break the protocol's inifinband message ordering).
1260 * Thus, if the memory is currently being used for transmission,
1261 * then abort the attempt to unregister and try again
1262 * later the next time a completion is received for this memory.
1263 */
1264 clear_bit(chunk, block->unregister_bitmap);
1265
1266 if (test_bit(chunk, block->transit_bitmap)) {
1267 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1268 continue;
1269 }
1270
1271 trace_qemu_rdma_unregister_waiting_send(chunk);
1272
1273 ret = ibv_dereg_mr(block->pmr[chunk]);
1274 block->pmr[chunk] = NULL;
1275 block->remote_keys[chunk] = 0;
1276
1277 if (ret != 0) {
1278 perror("unregistration chunk failed");
1279 return -ret;
1280 }
1281 rdma->total_registrations--;
1282
1283 reg.key.chunk = chunk;
1284 register_to_network(&reg);
1285 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1286 &resp, NULL, NULL);
1287 if (ret < 0) {
1288 return ret;
1289 }
1290
1291 trace_qemu_rdma_unregister_waiting_complete(chunk);
1292 }
1293
1294 return 0;
1295 }
1296
1297 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1298 uint64_t chunk)
1299 {
1300 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1301
1302 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1303 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1304
1305 return result;
1306 }
1307
1308 /*
1309 * Set bit for unregistration in the next iteration.
1310 * We cannot transmit right here, but will unpin later.
1311 */
1312 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1313 uint64_t chunk, uint64_t wr_id)
1314 {
1315 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1316 error_report("rdma migration: queue is full");
1317 } else {
1318 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1319
1320 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1321 trace_qemu_rdma_signal_unregister_append(chunk,
1322 rdma->unregister_next);
1323
1324 rdma->unregistrations[rdma->unregister_next++] =
1325 qemu_rdma_make_wrid(wr_id, index, chunk);
1326
1327 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1328 rdma->unregister_next = 0;
1329 }
1330 } else {
1331 trace_qemu_rdma_signal_unregister_already(chunk);
1332 }
1333 }
1334 }
1335
1336 /*
1337 * Consult the connection manager to see a work request
1338 * (of any kind) has completed.
1339 * Return the work request ID that completed.
1340 */
1341 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1342 uint32_t *byte_len)
1343 {
1344 int ret;
1345 struct ibv_wc wc;
1346 uint64_t wr_id;
1347
1348 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1349
1350 if (!ret) {
1351 *wr_id_out = RDMA_WRID_NONE;
1352 return 0;
1353 }
1354
1355 if (ret < 0) {
1356 error_report("ibv_poll_cq return %d", ret);
1357 return ret;
1358 }
1359
1360 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1361
1362 if (wc.status != IBV_WC_SUCCESS) {
1363 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1364 wc.status, ibv_wc_status_str(wc.status));
1365 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1366
1367 return -1;
1368 }
1369
1370 if (rdma->control_ready_expected &&
1371 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1372 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1373 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1374 rdma->control_ready_expected = 0;
1375 }
1376
1377 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1378 uint64_t chunk =
1379 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1380 uint64_t index =
1381 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1382 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1383
1384 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1385 index, chunk, block->local_host_addr,
1386 (void *)(uintptr_t)block->remote_host_addr);
1387
1388 clear_bit(chunk, block->transit_bitmap);
1389
1390 if (rdma->nb_sent > 0) {
1391 rdma->nb_sent--;
1392 }
1393
1394 if (!rdma->pin_all) {
1395 /*
1396 * FYI: If one wanted to signal a specific chunk to be unregistered
1397 * using LRU or workload-specific information, this is the function
1398 * you would call to do so. That chunk would then get asynchronously
1399 * unregistered later.
1400 */
1401 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1402 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1403 #endif
1404 }
1405 } else {
1406 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1407 }
1408
1409 *wr_id_out = wc.wr_id;
1410 if (byte_len) {
1411 *byte_len = wc.byte_len;
1412 }
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * Block until the next work request has completed.
1419 *
1420 * First poll to see if a work request has already completed,
1421 * otherwise block.
1422 *
1423 * If we encounter completed work requests for IDs other than
1424 * the one we're interested in, then that's generally an error.
1425 *
1426 * The only exception is actual RDMA Write completions. These
1427 * completions only need to be recorded, but do not actually
1428 * need further processing.
1429 */
1430 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1431 uint32_t *byte_len)
1432 {
1433 int num_cq_events = 0, ret = 0;
1434 struct ibv_cq *cq;
1435 void *cq_ctx;
1436 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1437
1438 if (ibv_req_notify_cq(rdma->cq, 0)) {
1439 return -1;
1440 }
1441 /* poll cq first */
1442 while (wr_id != wrid_requested) {
1443 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1444 if (ret < 0) {
1445 return ret;
1446 }
1447
1448 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1449
1450 if (wr_id == RDMA_WRID_NONE) {
1451 break;
1452 }
1453 if (wr_id != wrid_requested) {
1454 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1455 wrid_requested, print_wrid(wr_id), wr_id);
1456 }
1457 }
1458
1459 if (wr_id == wrid_requested) {
1460 return 0;
1461 }
1462
1463 while (1) {
1464 /*
1465 * Coroutine doesn't start until process_incoming_migration()
1466 * so don't yield unless we know we're running inside of a coroutine.
1467 */
1468 if (rdma->migration_started_on_destination) {
1469 yield_until_fd_readable(rdma->comp_channel->fd);
1470 }
1471
1472 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1473 perror("ibv_get_cq_event");
1474 goto err_block_for_wrid;
1475 }
1476
1477 num_cq_events++;
1478
1479 if (ibv_req_notify_cq(cq, 0)) {
1480 goto err_block_for_wrid;
1481 }
1482
1483 while (wr_id != wrid_requested) {
1484 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1485 if (ret < 0) {
1486 goto err_block_for_wrid;
1487 }
1488
1489 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1490
1491 if (wr_id == RDMA_WRID_NONE) {
1492 break;
1493 }
1494 if (wr_id != wrid_requested) {
1495 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1496 wrid_requested, print_wrid(wr_id), wr_id);
1497 }
1498 }
1499
1500 if (wr_id == wrid_requested) {
1501 goto success_block_for_wrid;
1502 }
1503 }
1504
1505 success_block_for_wrid:
1506 if (num_cq_events) {
1507 ibv_ack_cq_events(cq, num_cq_events);
1508 }
1509 return 0;
1510
1511 err_block_for_wrid:
1512 if (num_cq_events) {
1513 ibv_ack_cq_events(cq, num_cq_events);
1514 }
1515 return ret;
1516 }
1517
1518 /*
1519 * Post a SEND message work request for the control channel
1520 * containing some data and block until the post completes.
1521 */
1522 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1523 RDMAControlHeader *head)
1524 {
1525 int ret = 0;
1526 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1527 struct ibv_send_wr *bad_wr;
1528 struct ibv_sge sge = {
1529 .addr = (uintptr_t)(wr->control),
1530 .length = head->len + sizeof(RDMAControlHeader),
1531 .lkey = wr->control_mr->lkey,
1532 };
1533 struct ibv_send_wr send_wr = {
1534 .wr_id = RDMA_WRID_SEND_CONTROL,
1535 .opcode = IBV_WR_SEND,
1536 .send_flags = IBV_SEND_SIGNALED,
1537 .sg_list = &sge,
1538 .num_sge = 1,
1539 };
1540
1541 trace_qemu_rdma_post_send_control(control_desc[head->type]);
1542
1543 /*
1544 * We don't actually need to do a memcpy() in here if we used
1545 * the "sge" properly, but since we're only sending control messages
1546 * (not RAM in a performance-critical path), then its OK for now.
1547 *
1548 * The copy makes the RDMAControlHeader simpler to manipulate
1549 * for the time being.
1550 */
1551 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1552 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1553 control_to_network((void *) wr->control);
1554
1555 if (buf) {
1556 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1557 }
1558
1559
1560 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1561
1562 if (ret > 0) {
1563 error_report("Failed to use post IB SEND for control");
1564 return -ret;
1565 }
1566
1567 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1568 if (ret < 0) {
1569 error_report("rdma migration: send polling control error");
1570 }
1571
1572 return ret;
1573 }
1574
1575 /*
1576 * Post a RECV work request in anticipation of some future receipt
1577 * of data on the control channel.
1578 */
1579 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1580 {
1581 struct ibv_recv_wr *bad_wr;
1582 struct ibv_sge sge = {
1583 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1584 .length = RDMA_CONTROL_MAX_BUFFER,
1585 .lkey = rdma->wr_data[idx].control_mr->lkey,
1586 };
1587
1588 struct ibv_recv_wr recv_wr = {
1589 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1590 .sg_list = &sge,
1591 .num_sge = 1,
1592 };
1593
1594
1595 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1596 return -1;
1597 }
1598
1599 return 0;
1600 }
1601
1602 /*
1603 * Block and wait for a RECV control channel message to arrive.
1604 */
1605 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1606 RDMAControlHeader *head, int expecting, int idx)
1607 {
1608 uint32_t byte_len;
1609 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1610 &byte_len);
1611
1612 if (ret < 0) {
1613 error_report("rdma migration: recv polling control error!");
1614 return ret;
1615 }
1616
1617 network_to_control((void *) rdma->wr_data[idx].control);
1618 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1619
1620 trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1621
1622 if (expecting == RDMA_CONTROL_NONE) {
1623 trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1624 head->type);
1625 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1626 error_report("Was expecting a %s (%d) control message"
1627 ", but got: %s (%d), length: %d",
1628 control_desc[expecting], expecting,
1629 control_desc[head->type], head->type, head->len);
1630 return -EIO;
1631 }
1632 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1633 error_report("too long length: %d", head->len);
1634 return -EINVAL;
1635 }
1636 if (sizeof(*head) + head->len != byte_len) {
1637 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1638 return -EINVAL;
1639 }
1640
1641 return 0;
1642 }
1643
1644 /*
1645 * When a RECV work request has completed, the work request's
1646 * buffer is pointed at the header.
1647 *
1648 * This will advance the pointer to the data portion
1649 * of the control message of the work request's buffer that
1650 * was populated after the work request finished.
1651 */
1652 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1653 RDMAControlHeader *head)
1654 {
1655 rdma->wr_data[idx].control_len = head->len;
1656 rdma->wr_data[idx].control_curr =
1657 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1658 }
1659
1660 /*
1661 * This is an 'atomic' high-level operation to deliver a single, unified
1662 * control-channel message.
1663 *
1664 * Additionally, if the user is expecting some kind of reply to this message,
1665 * they can request a 'resp' response message be filled in by posting an
1666 * additional work request on behalf of the user and waiting for an additional
1667 * completion.
1668 *
1669 * The extra (optional) response is used during registration to us from having
1670 * to perform an *additional* exchange of message just to provide a response by
1671 * instead piggy-backing on the acknowledgement.
1672 */
1673 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1674 uint8_t *data, RDMAControlHeader *resp,
1675 int *resp_idx,
1676 int (*callback)(RDMAContext *rdma))
1677 {
1678 int ret = 0;
1679
1680 /*
1681 * Wait until the dest is ready before attempting to deliver the message
1682 * by waiting for a READY message.
1683 */
1684 if (rdma->control_ready_expected) {
1685 RDMAControlHeader resp;
1686 ret = qemu_rdma_exchange_get_response(rdma,
1687 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1688 if (ret < 0) {
1689 return ret;
1690 }
1691 }
1692
1693 /*
1694 * If the user is expecting a response, post a WR in anticipation of it.
1695 */
1696 if (resp) {
1697 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1698 if (ret) {
1699 error_report("rdma migration: error posting"
1700 " extra control recv for anticipated result!");
1701 return ret;
1702 }
1703 }
1704
1705 /*
1706 * Post a WR to replace the one we just consumed for the READY message.
1707 */
1708 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1709 if (ret) {
1710 error_report("rdma migration: error posting first control recv!");
1711 return ret;
1712 }
1713
1714 /*
1715 * Deliver the control message that was requested.
1716 */
1717 ret = qemu_rdma_post_send_control(rdma, data, head);
1718
1719 if (ret < 0) {
1720 error_report("Failed to send control buffer!");
1721 return ret;
1722 }
1723
1724 /*
1725 * If we're expecting a response, block and wait for it.
1726 */
1727 if (resp) {
1728 if (callback) {
1729 trace_qemu_rdma_exchange_send_issue_callback();
1730 ret = callback(rdma);
1731 if (ret < 0) {
1732 return ret;
1733 }
1734 }
1735
1736 trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1737 ret = qemu_rdma_exchange_get_response(rdma, resp,
1738 resp->type, RDMA_WRID_DATA);
1739
1740 if (ret < 0) {
1741 return ret;
1742 }
1743
1744 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1745 if (resp_idx) {
1746 *resp_idx = RDMA_WRID_DATA;
1747 }
1748 trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1749 }
1750
1751 rdma->control_ready_expected = 1;
1752
1753 return 0;
1754 }
1755
1756 /*
1757 * This is an 'atomic' high-level operation to receive a single, unified
1758 * control-channel message.
1759 */
1760 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1761 int expecting)
1762 {
1763 RDMAControlHeader ready = {
1764 .len = 0,
1765 .type = RDMA_CONTROL_READY,
1766 .repeat = 1,
1767 };
1768 int ret;
1769
1770 /*
1771 * Inform the source that we're ready to receive a message.
1772 */
1773 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1774
1775 if (ret < 0) {
1776 error_report("Failed to send control buffer!");
1777 return ret;
1778 }
1779
1780 /*
1781 * Block and wait for the message.
1782 */
1783 ret = qemu_rdma_exchange_get_response(rdma, head,
1784 expecting, RDMA_WRID_READY);
1785
1786 if (ret < 0) {
1787 return ret;
1788 }
1789
1790 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1791
1792 /*
1793 * Post a new RECV work request to replace the one we just consumed.
1794 */
1795 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1796 if (ret) {
1797 error_report("rdma migration: error posting second control recv!");
1798 return ret;
1799 }
1800
1801 return 0;
1802 }
1803
1804 /*
1805 * Write an actual chunk of memory using RDMA.
1806 *
1807 * If we're using dynamic registration on the dest-side, we have to
1808 * send a registration command first.
1809 */
1810 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1811 int current_index, uint64_t current_addr,
1812 uint64_t length)
1813 {
1814 struct ibv_sge sge;
1815 struct ibv_send_wr send_wr = { 0 };
1816 struct ibv_send_wr *bad_wr;
1817 int reg_result_idx, ret, count = 0;
1818 uint64_t chunk, chunks;
1819 uint8_t *chunk_start, *chunk_end;
1820 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1821 RDMARegister reg;
1822 RDMARegisterResult *reg_result;
1823 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1824 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1825 .type = RDMA_CONTROL_REGISTER_REQUEST,
1826 .repeat = 1,
1827 };
1828
1829 retry:
1830 sge.addr = (uintptr_t)(block->local_host_addr +
1831 (current_addr - block->offset));
1832 sge.length = length;
1833
1834 chunk = ram_chunk_index(block->local_host_addr,
1835 (uint8_t *)(uintptr_t)sge.addr);
1836 chunk_start = ram_chunk_start(block, chunk);
1837
1838 if (block->is_ram_block) {
1839 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1840
1841 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1842 chunks--;
1843 }
1844 } else {
1845 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1846
1847 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1848 chunks--;
1849 }
1850 }
1851
1852 trace_qemu_rdma_write_one_top(chunks + 1,
1853 (chunks + 1) *
1854 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1855
1856 chunk_end = ram_chunk_end(block, chunk + chunks);
1857
1858 if (!rdma->pin_all) {
1859 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1860 qemu_rdma_unregister_waiting(rdma);
1861 #endif
1862 }
1863
1864 while (test_bit(chunk, block->transit_bitmap)) {
1865 (void)count;
1866 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1867 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1868
1869 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1870
1871 if (ret < 0) {
1872 error_report("Failed to Wait for previous write to complete "
1873 "block %d chunk %" PRIu64
1874 " current %" PRIu64 " len %" PRIu64 " %d",
1875 current_index, chunk, sge.addr, length, rdma->nb_sent);
1876 return ret;
1877 }
1878 }
1879
1880 if (!rdma->pin_all || !block->is_ram_block) {
1881 if (!block->remote_keys[chunk]) {
1882 /*
1883 * This chunk has not yet been registered, so first check to see
1884 * if the entire chunk is zero. If so, tell the other size to
1885 * memset() + madvise() the entire chunk without RDMA.
1886 */
1887
1888 if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1889 length)
1890 && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1891 length) == length) {
1892 RDMACompress comp = {
1893 .offset = current_addr,
1894 .value = 0,
1895 .block_idx = current_index,
1896 .length = length,
1897 };
1898
1899 head.len = sizeof(comp);
1900 head.type = RDMA_CONTROL_COMPRESS;
1901
1902 trace_qemu_rdma_write_one_zero(chunk, sge.length,
1903 current_index, current_addr);
1904
1905 compress_to_network(&comp);
1906 ret = qemu_rdma_exchange_send(rdma, &head,
1907 (uint8_t *) &comp, NULL, NULL, NULL);
1908
1909 if (ret < 0) {
1910 return -EIO;
1911 }
1912
1913 acct_update_position(f, sge.length, true);
1914
1915 return 1;
1916 }
1917
1918 /*
1919 * Otherwise, tell other side to register.
1920 */
1921 reg.current_index = current_index;
1922 if (block->is_ram_block) {
1923 reg.key.current_addr = current_addr;
1924 } else {
1925 reg.key.chunk = chunk;
1926 }
1927 reg.chunks = chunks;
1928
1929 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1930 current_addr);
1931
1932 register_to_network(&reg);
1933 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1934 &resp, &reg_result_idx, NULL);
1935 if (ret < 0) {
1936 return ret;
1937 }
1938
1939 /* try to overlap this single registration with the one we sent. */
1940 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1941 &sge.lkey, NULL, chunk,
1942 chunk_start, chunk_end)) {
1943 error_report("cannot get lkey");
1944 return -EINVAL;
1945 }
1946
1947 reg_result = (RDMARegisterResult *)
1948 rdma->wr_data[reg_result_idx].control_curr;
1949
1950 network_to_result(reg_result);
1951
1952 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
1953 reg_result->rkey, chunk);
1954
1955 block->remote_keys[chunk] = reg_result->rkey;
1956 block->remote_host_addr = reg_result->host_addr;
1957 } else {
1958 /* already registered before */
1959 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1960 &sge.lkey, NULL, chunk,
1961 chunk_start, chunk_end)) {
1962 error_report("cannot get lkey!");
1963 return -EINVAL;
1964 }
1965 }
1966
1967 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1968 } else {
1969 send_wr.wr.rdma.rkey = block->remote_rkey;
1970
1971 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1972 &sge.lkey, NULL, chunk,
1973 chunk_start, chunk_end)) {
1974 error_report("cannot get lkey!");
1975 return -EINVAL;
1976 }
1977 }
1978
1979 /*
1980 * Encode the ram block index and chunk within this wrid.
1981 * We will use this information at the time of completion
1982 * to figure out which bitmap to check against and then which
1983 * chunk in the bitmap to look for.
1984 */
1985 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1986 current_index, chunk);
1987
1988 send_wr.opcode = IBV_WR_RDMA_WRITE;
1989 send_wr.send_flags = IBV_SEND_SIGNALED;
1990 send_wr.sg_list = &sge;
1991 send_wr.num_sge = 1;
1992 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1993 (current_addr - block->offset);
1994
1995 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1996 sge.length);
1997
1998 /*
1999 * ibv_post_send() does not return negative error numbers,
2000 * per the specification they are positive - no idea why.
2001 */
2002 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2003
2004 if (ret == ENOMEM) {
2005 trace_qemu_rdma_write_one_queue_full();
2006 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2007 if (ret < 0) {
2008 error_report("rdma migration: failed to make "
2009 "room in full send queue! %d", ret);
2010 return ret;
2011 }
2012
2013 goto retry;
2014
2015 } else if (ret > 0) {
2016 perror("rdma migration: post rdma write failed");
2017 return -ret;
2018 }
2019
2020 set_bit(chunk, block->transit_bitmap);
2021 acct_update_position(f, sge.length, false);
2022 rdma->total_writes++;
2023
2024 return 0;
2025 }
2026
2027 /*
2028 * Push out any unwritten RDMA operations.
2029 *
2030 * We support sending out multiple chunks at the same time.
2031 * Not all of them need to get signaled in the completion queue.
2032 */
2033 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2034 {
2035 int ret;
2036
2037 if (!rdma->current_length) {
2038 return 0;
2039 }
2040
2041 ret = qemu_rdma_write_one(f, rdma,
2042 rdma->current_index, rdma->current_addr, rdma->current_length);
2043
2044 if (ret < 0) {
2045 return ret;
2046 }
2047
2048 if (ret == 0) {
2049 rdma->nb_sent++;
2050 trace_qemu_rdma_write_flush(rdma->nb_sent);
2051 }
2052
2053 rdma->current_length = 0;
2054 rdma->current_addr = 0;
2055
2056 return 0;
2057 }
2058
2059 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2060 uint64_t offset, uint64_t len)
2061 {
2062 RDMALocalBlock *block;
2063 uint8_t *host_addr;
2064 uint8_t *chunk_end;
2065
2066 if (rdma->current_index < 0) {
2067 return 0;
2068 }
2069
2070 if (rdma->current_chunk < 0) {
2071 return 0;
2072 }
2073
2074 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2075 host_addr = block->local_host_addr + (offset - block->offset);
2076 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2077
2078 if (rdma->current_length == 0) {
2079 return 0;
2080 }
2081
2082 /*
2083 * Only merge into chunk sequentially.
2084 */
2085 if (offset != (rdma->current_addr + rdma->current_length)) {
2086 return 0;
2087 }
2088
2089 if (offset < block->offset) {
2090 return 0;
2091 }
2092
2093 if ((offset + len) > (block->offset + block->length)) {
2094 return 0;
2095 }
2096
2097 if ((host_addr + len) > chunk_end) {
2098 return 0;
2099 }
2100
2101 return 1;
2102 }
2103
2104 /*
2105 * We're not actually writing here, but doing three things:
2106 *
2107 * 1. Identify the chunk the buffer belongs to.
2108 * 2. If the chunk is full or the buffer doesn't belong to the current
2109 * chunk, then start a new chunk and flush() the old chunk.
2110 * 3. To keep the hardware busy, we also group chunks into batches
2111 * and only require that a batch gets acknowledged in the completion
2112 * qeueue instead of each individual chunk.
2113 */
2114 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2115 uint64_t block_offset, uint64_t offset,
2116 uint64_t len)
2117 {
2118 uint64_t current_addr = block_offset + offset;
2119 uint64_t index = rdma->current_index;
2120 uint64_t chunk = rdma->current_chunk;
2121 int ret;
2122
2123 /* If we cannot merge it, we flush the current buffer first. */
2124 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2125 ret = qemu_rdma_write_flush(f, rdma);
2126 if (ret) {
2127 return ret;
2128 }
2129 rdma->current_length = 0;
2130 rdma->current_addr = current_addr;
2131
2132 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2133 offset, len, &index, &chunk);
2134 if (ret) {
2135 error_report("ram block search failed");
2136 return ret;
2137 }
2138 rdma->current_index = index;
2139 rdma->current_chunk = chunk;
2140 }
2141
2142 /* merge it */
2143 rdma->current_length += len;
2144
2145 /* flush it if buffer is too large */
2146 if (rdma->current_length >= RDMA_MERGE_MAX) {
2147 return qemu_rdma_write_flush(f, rdma);
2148 }
2149
2150 return 0;
2151 }
2152
2153 static void qemu_rdma_cleanup(RDMAContext *rdma)
2154 {
2155 struct rdma_cm_event *cm_event;
2156 int ret, idx;
2157
2158 if (rdma->cm_id && rdma->connected) {
2159 if (rdma->error_state) {
2160 RDMAControlHeader head = { .len = 0,
2161 .type = RDMA_CONTROL_ERROR,
2162 .repeat = 1,
2163 };
2164 error_report("Early error. Sending error.");
2165 qemu_rdma_post_send_control(rdma, NULL, &head);
2166 }
2167
2168 ret = rdma_disconnect(rdma->cm_id);
2169 if (!ret) {
2170 trace_qemu_rdma_cleanup_waiting_for_disconnect();
2171 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2172 if (!ret) {
2173 rdma_ack_cm_event(cm_event);
2174 }
2175 }
2176 trace_qemu_rdma_cleanup_disconnect();
2177 rdma->connected = false;
2178 }
2179
2180 g_free(rdma->block);
2181 rdma->block = NULL;
2182
2183 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2184 if (rdma->wr_data[idx].control_mr) {
2185 rdma->total_registrations--;
2186 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2187 }
2188 rdma->wr_data[idx].control_mr = NULL;
2189 }
2190
2191 if (rdma->local_ram_blocks.block) {
2192 while (rdma->local_ram_blocks.nb_blocks) {
2193 rdma_delete_block(rdma, rdma->local_ram_blocks.block->offset);
2194 }
2195 }
2196
2197 if (rdma->cq) {
2198 ibv_destroy_cq(rdma->cq);
2199 rdma->cq = NULL;
2200 }
2201 if (rdma->comp_channel) {
2202 ibv_destroy_comp_channel(rdma->comp_channel);
2203 rdma->comp_channel = NULL;
2204 }
2205 if (rdma->pd) {
2206 ibv_dealloc_pd(rdma->pd);
2207 rdma->pd = NULL;
2208 }
2209 if (rdma->listen_id) {
2210 rdma_destroy_id(rdma->listen_id);
2211 rdma->listen_id = NULL;
2212 }
2213 if (rdma->cm_id) {
2214 if (rdma->qp) {
2215 rdma_destroy_qp(rdma->cm_id);
2216 rdma->qp = NULL;
2217 }
2218 rdma_destroy_id(rdma->cm_id);
2219 rdma->cm_id = NULL;
2220 }
2221 if (rdma->channel) {
2222 rdma_destroy_event_channel(rdma->channel);
2223 rdma->channel = NULL;
2224 }
2225 g_free(rdma->host);
2226 rdma->host = NULL;
2227 }
2228
2229
2230 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2231 {
2232 int ret, idx;
2233 Error *local_err = NULL, **temp = &local_err;
2234
2235 /*
2236 * Will be validated against destination's actual capabilities
2237 * after the connect() completes.
2238 */
2239 rdma->pin_all = pin_all;
2240
2241 ret = qemu_rdma_resolve_host(rdma, temp);
2242 if (ret) {
2243 goto err_rdma_source_init;
2244 }
2245
2246 ret = qemu_rdma_alloc_pd_cq(rdma);
2247 if (ret) {
2248 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2249 " limits may be too low. Please check $ ulimit -a # and "
2250 "search for 'ulimit -l' in the output");
2251 goto err_rdma_source_init;
2252 }
2253
2254 ret = qemu_rdma_alloc_qp(rdma);
2255 if (ret) {
2256 ERROR(temp, "rdma migration: error allocating qp!");
2257 goto err_rdma_source_init;
2258 }
2259
2260 ret = qemu_rdma_init_ram_blocks(rdma);
2261 if (ret) {
2262 ERROR(temp, "rdma migration: error initializing ram blocks!");
2263 goto err_rdma_source_init;
2264 }
2265
2266 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2267 ret = qemu_rdma_reg_control(rdma, idx);
2268 if (ret) {
2269 ERROR(temp, "rdma migration: error registering %d control!",
2270 idx);
2271 goto err_rdma_source_init;
2272 }
2273 }
2274
2275 return 0;
2276
2277 err_rdma_source_init:
2278 error_propagate(errp, local_err);
2279 qemu_rdma_cleanup(rdma);
2280 return -1;
2281 }
2282
2283 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2284 {
2285 RDMACapabilities cap = {
2286 .version = RDMA_CONTROL_VERSION_CURRENT,
2287 .flags = 0,
2288 };
2289 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2290 .retry_count = 5,
2291 .private_data = &cap,
2292 .private_data_len = sizeof(cap),
2293 };
2294 struct rdma_cm_event *cm_event;
2295 int ret;
2296
2297 /*
2298 * Only negotiate the capability with destination if the user
2299 * on the source first requested the capability.
2300 */
2301 if (rdma->pin_all) {
2302 trace_qemu_rdma_connect_pin_all_requested();
2303 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2304 }
2305
2306 caps_to_network(&cap);
2307
2308 ret = rdma_connect(rdma->cm_id, &conn_param);
2309 if (ret) {
2310 perror("rdma_connect");
2311 ERROR(errp, "connecting to destination!");
2312 rdma_destroy_id(rdma->cm_id);
2313 rdma->cm_id = NULL;
2314 goto err_rdma_source_connect;
2315 }
2316
2317 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2318 if (ret) {
2319 perror("rdma_get_cm_event after rdma_connect");
2320 ERROR(errp, "connecting to destination!");
2321 rdma_ack_cm_event(cm_event);
2322 rdma_destroy_id(rdma->cm_id);
2323 rdma->cm_id = NULL;
2324 goto err_rdma_source_connect;
2325 }
2326
2327 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2328 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2329 ERROR(errp, "connecting to destination!");
2330 rdma_ack_cm_event(cm_event);
2331 rdma_destroy_id(rdma->cm_id);
2332 rdma->cm_id = NULL;
2333 goto err_rdma_source_connect;
2334 }
2335 rdma->connected = true;
2336
2337 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2338 network_to_caps(&cap);
2339
2340 /*
2341 * Verify that the *requested* capabilities are supported by the destination
2342 * and disable them otherwise.
2343 */
2344 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2345 ERROR(errp, "Server cannot support pinning all memory. "
2346 "Will register memory dynamically.");
2347 rdma->pin_all = false;
2348 }
2349
2350 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2351
2352 rdma_ack_cm_event(cm_event);
2353
2354 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2355 if (ret) {
2356 ERROR(errp, "posting second control recv!");
2357 goto err_rdma_source_connect;
2358 }
2359
2360 rdma->control_ready_expected = 1;
2361 rdma->nb_sent = 0;
2362 return 0;
2363
2364 err_rdma_source_connect:
2365 qemu_rdma_cleanup(rdma);
2366 return -1;
2367 }
2368
2369 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2370 {
2371 int ret, idx;
2372 struct rdma_cm_id *listen_id;
2373 char ip[40] = "unknown";
2374 struct rdma_addrinfo *res, *e;
2375 char port_str[16];
2376
2377 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2378 rdma->wr_data[idx].control_len = 0;
2379 rdma->wr_data[idx].control_curr = NULL;
2380 }
2381
2382 if (!rdma->host || !rdma->host[0]) {
2383 ERROR(errp, "RDMA host is not set!");
2384 rdma->error_state = -EINVAL;
2385 return -1;
2386 }
2387 /* create CM channel */
2388 rdma->channel = rdma_create_event_channel();
2389 if (!rdma->channel) {
2390 ERROR(errp, "could not create rdma event channel");
2391 rdma->error_state = -EINVAL;
2392 return -1;
2393 }
2394
2395 /* create CM id */
2396 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2397 if (ret) {
2398 ERROR(errp, "could not create cm_id!");
2399 goto err_dest_init_create_listen_id;
2400 }
2401
2402 snprintf(port_str, 16, "%d", rdma->port);
2403 port_str[15] = '\0';
2404
2405 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2406 if (ret < 0) {
2407 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2408 goto err_dest_init_bind_addr;
2409 }
2410
2411 for (e = res; e != NULL; e = e->ai_next) {
2412 inet_ntop(e->ai_family,
2413 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2414 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2415 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2416 if (ret) {
2417 continue;
2418 }
2419 if (e->ai_family == AF_INET6) {
2420 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2421 if (ret) {
2422 continue;
2423 }
2424 }
2425 break;
2426 }
2427
2428 if (!e) {
2429 ERROR(errp, "Error: could not rdma_bind_addr!");
2430 goto err_dest_init_bind_addr;
2431 }
2432
2433 rdma->listen_id = listen_id;
2434 qemu_rdma_dump_gid("dest_init", listen_id);
2435 return 0;
2436
2437 err_dest_init_bind_addr:
2438 rdma_destroy_id(listen_id);
2439 err_dest_init_create_listen_id:
2440 rdma_destroy_event_channel(rdma->channel);
2441 rdma->channel = NULL;
2442 rdma->error_state = ret;
2443 return ret;
2444
2445 }
2446
2447 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2448 {
2449 RDMAContext *rdma = NULL;
2450 InetSocketAddress *addr;
2451
2452 if (host_port) {
2453 rdma = g_malloc0(sizeof(RDMAContext));
2454 memset(rdma, 0, sizeof(RDMAContext));
2455 rdma->current_index = -1;
2456 rdma->current_chunk = -1;
2457
2458 addr = inet_parse(host_port, NULL);
2459 if (addr != NULL) {
2460 rdma->port = atoi(addr->port);
2461 rdma->host = g_strdup(addr->host);
2462 } else {
2463 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2464 g_free(rdma);
2465 rdma = NULL;
2466 }
2467
2468 qapi_free_InetSocketAddress(addr);
2469 }
2470
2471 return rdma;
2472 }
2473
2474 /*
2475 * QEMUFile interface to the control channel.
2476 * SEND messages for control only.
2477 * VM's ram is handled with regular RDMA messages.
2478 */
2479 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2480 int64_t pos, int size)
2481 {
2482 QEMUFileRDMA *r = opaque;
2483 QEMUFile *f = r->file;
2484 RDMAContext *rdma = r->rdma;
2485 size_t remaining = size;
2486 uint8_t * data = (void *) buf;
2487 int ret;
2488
2489 CHECK_ERROR_STATE();
2490
2491 /*
2492 * Push out any writes that
2493 * we're queued up for VM's ram.
2494 */
2495 ret = qemu_rdma_write_flush(f, rdma);
2496 if (ret < 0) {
2497 rdma->error_state = ret;
2498 return ret;
2499 }
2500
2501 while (remaining) {
2502 RDMAControlHeader head;
2503
2504 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2505 remaining -= r->len;
2506
2507 head.len = r->len;
2508 head.type = RDMA_CONTROL_QEMU_FILE;
2509
2510 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2511
2512 if (ret < 0) {
2513 rdma->error_state = ret;
2514 return ret;
2515 }
2516
2517 data += r->len;
2518 }
2519
2520 return size;
2521 }
2522
2523 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2524 int size, int idx)
2525 {
2526 size_t len = 0;
2527
2528 if (rdma->wr_data[idx].control_len) {
2529 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2530
2531 len = MIN(size, rdma->wr_data[idx].control_len);
2532 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2533 rdma->wr_data[idx].control_curr += len;
2534 rdma->wr_data[idx].control_len -= len;
2535 }
2536
2537 return len;
2538 }
2539
2540 /*
2541 * QEMUFile interface to the control channel.
2542 * RDMA links don't use bytestreams, so we have to
2543 * return bytes to QEMUFile opportunistically.
2544 */
2545 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2546 int64_t pos, int size)
2547 {
2548 QEMUFileRDMA *r = opaque;
2549 RDMAContext *rdma = r->rdma;
2550 RDMAControlHeader head;
2551 int ret = 0;
2552
2553 CHECK_ERROR_STATE();
2554
2555 /*
2556 * First, we hold on to the last SEND message we
2557 * were given and dish out the bytes until we run
2558 * out of bytes.
2559 */
2560 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2561 if (r->len) {
2562 return r->len;
2563 }
2564
2565 /*
2566 * Once we run out, we block and wait for another
2567 * SEND message to arrive.
2568 */
2569 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2570
2571 if (ret < 0) {
2572 rdma->error_state = ret;
2573 return ret;
2574 }
2575
2576 /*
2577 * SEND was received with new bytes, now try again.
2578 */
2579 return qemu_rdma_fill(r->rdma, buf, size, 0);
2580 }
2581
2582 /*
2583 * Block until all the outstanding chunks have been delivered by the hardware.
2584 */
2585 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2586 {
2587 int ret;
2588
2589 if (qemu_rdma_write_flush(f, rdma) < 0) {
2590 return -EIO;
2591 }
2592
2593 while (rdma->nb_sent) {
2594 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2595 if (ret < 0) {
2596 error_report("rdma migration: complete polling error!");
2597 return -EIO;
2598 }
2599 }
2600
2601 qemu_rdma_unregister_waiting(rdma);
2602
2603 return 0;
2604 }
2605
2606 static int qemu_rdma_close(void *opaque)
2607 {
2608 trace_qemu_rdma_close();
2609 QEMUFileRDMA *r = opaque;
2610 if (r->rdma) {
2611 qemu_rdma_cleanup(r->rdma);
2612 g_free(r->rdma);
2613 }
2614 g_free(r);
2615 return 0;
2616 }
2617
2618 /*
2619 * Parameters:
2620 * @offset == 0 :
2621 * This means that 'block_offset' is a full virtual address that does not
2622 * belong to a RAMBlock of the virtual machine and instead
2623 * represents a private malloc'd memory area that the caller wishes to
2624 * transfer.
2625 *
2626 * @offset != 0 :
2627 * Offset is an offset to be added to block_offset and used
2628 * to also lookup the corresponding RAMBlock.
2629 *
2630 * @size > 0 :
2631 * Initiate an transfer this size.
2632 *
2633 * @size == 0 :
2634 * A 'hint' or 'advice' that means that we wish to speculatively
2635 * and asynchronously unregister this memory. In this case, there is no
2636 * guarantee that the unregister will actually happen, for example,
2637 * if the memory is being actively transmitted. Additionally, the memory
2638 * may be re-registered at any future time if a write within the same
2639 * chunk was requested again, even if you attempted to unregister it
2640 * here.
2641 *
2642 * @size < 0 : TODO, not yet supported
2643 * Unregister the memory NOW. This means that the caller does not
2644 * expect there to be any future RDMA transfers and we just want to clean
2645 * things up. This is used in case the upper layer owns the memory and
2646 * cannot wait for qemu_fclose() to occur.
2647 *
2648 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2649 * sent. Usually, this will not be more than a few bytes of
2650 * the protocol because most transfers are sent asynchronously.
2651 */
2652 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2653 ram_addr_t block_offset, ram_addr_t offset,
2654 size_t size, uint64_t *bytes_sent)
2655 {
2656 QEMUFileRDMA *rfile = opaque;
2657 RDMAContext *rdma = rfile->rdma;
2658 int ret;
2659
2660 CHECK_ERROR_STATE();
2661
2662 qemu_fflush(f);
2663
2664 if (size > 0) {
2665 /*
2666 * Add this page to the current 'chunk'. If the chunk
2667 * is full, or the page doen't belong to the current chunk,
2668 * an actual RDMA write will occur and a new chunk will be formed.
2669 */
2670 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2671 if (ret < 0) {
2672 error_report("rdma migration: write error! %d", ret);
2673 goto err;
2674 }
2675
2676 /*
2677 * We always return 1 bytes because the RDMA
2678 * protocol is completely asynchronous. We do not yet know
2679 * whether an identified chunk is zero or not because we're
2680 * waiting for other pages to potentially be merged with
2681 * the current chunk. So, we have to call qemu_update_position()
2682 * later on when the actual write occurs.
2683 */
2684 if (bytes_sent) {
2685 *bytes_sent = 1;
2686 }
2687 } else {
2688 uint64_t index, chunk;
2689
2690 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2691 if (size < 0) {
2692 ret = qemu_rdma_drain_cq(f, rdma);
2693 if (ret < 0) {
2694 fprintf(stderr, "rdma: failed to synchronously drain"
2695 " completion queue before unregistration.\n");
2696 goto err;
2697 }
2698 }
2699 */
2700
2701 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2702 offset, size, &index, &chunk);
2703
2704 if (ret) {
2705 error_report("ram block search failed");
2706 goto err;
2707 }
2708
2709 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2710
2711 /*
2712 * TODO: Synchronous, guaranteed unregistration (should not occur during
2713 * fast-path). Otherwise, unregisters will process on the next call to
2714 * qemu_rdma_drain_cq()
2715 if (size < 0) {
2716 qemu_rdma_unregister_waiting(rdma);
2717 }
2718 */
2719 }
2720
2721 /*
2722 * Drain the Completion Queue if possible, but do not block,
2723 * just poll.
2724 *
2725 * If nothing to poll, the end of the iteration will do this
2726 * again to make sure we don't overflow the request queue.
2727 */
2728 while (1) {
2729 uint64_t wr_id, wr_id_in;
2730 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2731 if (ret < 0) {
2732 error_report("rdma migration: polling error! %d", ret);
2733 goto err;
2734 }
2735
2736 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2737
2738 if (wr_id == RDMA_WRID_NONE) {
2739 break;
2740 }
2741 }
2742
2743 return RAM_SAVE_CONTROL_DELAYED;
2744 err:
2745 rdma->error_state = ret;
2746 return ret;
2747 }
2748
2749 static int qemu_rdma_accept(RDMAContext *rdma)
2750 {
2751 RDMACapabilities cap;
2752 struct rdma_conn_param conn_param = {
2753 .responder_resources = 2,
2754 .private_data = &cap,
2755 .private_data_len = sizeof(cap),
2756 };
2757 struct rdma_cm_event *cm_event;
2758 struct ibv_context *verbs;
2759 int ret = -EINVAL;
2760 int idx;
2761
2762 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2763 if (ret) {
2764 goto err_rdma_dest_wait;
2765 }
2766
2767 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2768 rdma_ack_cm_event(cm_event);
2769 goto err_rdma_dest_wait;
2770 }
2771
2772 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2773
2774 network_to_caps(&cap);
2775
2776 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2777 error_report("Unknown source RDMA version: %d, bailing...",
2778 cap.version);
2779 rdma_ack_cm_event(cm_event);
2780 goto err_rdma_dest_wait;
2781 }
2782
2783 /*
2784 * Respond with only the capabilities this version of QEMU knows about.
2785 */
2786 cap.flags &= known_capabilities;
2787
2788 /*
2789 * Enable the ones that we do know about.
2790 * Add other checks here as new ones are introduced.
2791 */
2792 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2793 rdma->pin_all = true;
2794 }
2795
2796 rdma->cm_id = cm_event->id;
2797 verbs = cm_event->id->verbs;
2798
2799 rdma_ack_cm_event(cm_event);
2800
2801 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
2802
2803 caps_to_network(&cap);
2804
2805 trace_qemu_rdma_accept_pin_verbsc(verbs);
2806
2807 if (!rdma->verbs) {
2808 rdma->verbs = verbs;
2809 } else if (rdma->verbs != verbs) {
2810 error_report("ibv context not matching %p, %p!", rdma->verbs,
2811 verbs);
2812 goto err_rdma_dest_wait;
2813 }
2814
2815 qemu_rdma_dump_id("dest_init", verbs);
2816
2817 ret = qemu_rdma_alloc_pd_cq(rdma);
2818 if (ret) {
2819 error_report("rdma migration: error allocating pd and cq!");
2820 goto err_rdma_dest_wait;
2821 }
2822
2823 ret = qemu_rdma_alloc_qp(rdma);
2824 if (ret) {
2825 error_report("rdma migration: error allocating qp!");
2826 goto err_rdma_dest_wait;
2827 }
2828
2829 ret = qemu_rdma_init_ram_blocks(rdma);
2830 if (ret) {
2831 error_report("rdma migration: error initializing ram blocks!");
2832 goto err_rdma_dest_wait;
2833 }
2834
2835 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2836 ret = qemu_rdma_reg_control(rdma, idx);
2837 if (ret) {
2838 error_report("rdma: error registering %d control", idx);
2839 goto err_rdma_dest_wait;
2840 }
2841 }
2842
2843 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2844
2845 ret = rdma_accept(rdma->cm_id, &conn_param);
2846 if (ret) {
2847 error_report("rdma_accept returns %d", ret);
2848 goto err_rdma_dest_wait;
2849 }
2850
2851 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2852 if (ret) {
2853 error_report("rdma_accept get_cm_event failed %d", ret);
2854 goto err_rdma_dest_wait;
2855 }
2856
2857 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2858 error_report("rdma_accept not event established");
2859 rdma_ack_cm_event(cm_event);
2860 goto err_rdma_dest_wait;
2861 }
2862
2863 rdma_ack_cm_event(cm_event);
2864 rdma->connected = true;
2865
2866 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2867 if (ret) {
2868 error_report("rdma migration: error posting second control recv");
2869 goto err_rdma_dest_wait;
2870 }
2871
2872 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2873
2874 return 0;
2875
2876 err_rdma_dest_wait:
2877 rdma->error_state = ret;
2878 qemu_rdma_cleanup(rdma);
2879 return ret;
2880 }
2881
2882 /*
2883 * During each iteration of the migration, we listen for instructions
2884 * by the source VM to perform dynamic page registrations before they
2885 * can perform RDMA operations.
2886 *
2887 * We respond with the 'rkey'.
2888 *
2889 * Keep doing this until the source tells us to stop.
2890 */
2891 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2892 uint64_t flags)
2893 {
2894 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2895 .type = RDMA_CONTROL_REGISTER_RESULT,
2896 .repeat = 0,
2897 };
2898 RDMAControlHeader unreg_resp = { .len = 0,
2899 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2900 .repeat = 0,
2901 };
2902 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2903 .repeat = 1 };
2904 QEMUFileRDMA *rfile = opaque;
2905 RDMAContext *rdma = rfile->rdma;
2906 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2907 RDMAControlHeader head;
2908 RDMARegister *reg, *registers;
2909 RDMACompress *comp;
2910 RDMARegisterResult *reg_result;
2911 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2912 RDMALocalBlock *block;
2913 void *host_addr;
2914 int ret = 0;
2915 int idx = 0;
2916 int count = 0;
2917 int i = 0;
2918
2919 CHECK_ERROR_STATE();
2920
2921 do {
2922 trace_qemu_rdma_registration_handle_wait(flags);
2923
2924 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2925
2926 if (ret < 0) {
2927 break;
2928 }
2929
2930 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2931 error_report("rdma: Too many requests in this message (%d)."
2932 "Bailing.", head.repeat);
2933 ret = -EIO;
2934 break;
2935 }
2936
2937 switch (head.type) {
2938 case RDMA_CONTROL_COMPRESS:
2939 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2940 network_to_compress(comp);
2941
2942 trace_qemu_rdma_registration_handle_compress(comp->length,
2943 comp->block_idx,
2944 comp->offset);
2945 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2946
2947 host_addr = block->local_host_addr +
2948 (comp->offset - block->offset);
2949
2950 ram_handle_compressed(host_addr, comp->value, comp->length);
2951 break;
2952
2953 case RDMA_CONTROL_REGISTER_FINISHED:
2954 trace_qemu_rdma_registration_handle_finished();
2955 goto out;
2956
2957 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2958 trace_qemu_rdma_registration_handle_ram_blocks();
2959
2960 if (rdma->pin_all) {
2961 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2962 if (ret) {
2963 error_report("rdma migration: error dest "
2964 "registering ram blocks");
2965 goto out;
2966 }
2967 }
2968
2969 /*
2970 * Dest uses this to prepare to transmit the RAMBlock descriptions
2971 * to the source VM after connection setup.
2972 * Both sides use the "remote" structure to communicate and update
2973 * their "local" descriptions with what was sent.
2974 */
2975 for (i = 0; i < local->nb_blocks; i++) {
2976 rdma->block[i].remote_host_addr =
2977 (uintptr_t)(local->block[i].local_host_addr);
2978
2979 if (rdma->pin_all) {
2980 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2981 }
2982
2983 rdma->block[i].offset = local->block[i].offset;
2984 rdma->block[i].length = local->block[i].length;
2985
2986 remote_block_to_network(&rdma->block[i]);
2987 }
2988
2989 blocks.len = rdma->local_ram_blocks.nb_blocks
2990 * sizeof(RDMARemoteBlock);
2991
2992
2993 ret = qemu_rdma_post_send_control(rdma,
2994 (uint8_t *) rdma->block, &blocks);
2995
2996 if (ret < 0) {
2997 error_report("rdma migration: error sending remote info");
2998 goto out;
2999 }
3000
3001 break;
3002 case RDMA_CONTROL_REGISTER_REQUEST:
3003 trace_qemu_rdma_registration_handle_register(head.repeat);
3004
3005 reg_resp.repeat = head.repeat;
3006 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3007
3008 for (count = 0; count < head.repeat; count++) {
3009 uint64_t chunk;
3010 uint8_t *chunk_start, *chunk_end;
3011
3012 reg = &registers[count];
3013 network_to_register(reg);
3014
3015 reg_result = &results[count];
3016
3017 trace_qemu_rdma_registration_handle_register_loop(count,
3018 reg->current_index, reg->key.current_addr, reg->chunks);
3019
3020 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3021 if (block->is_ram_block) {
3022 host_addr = (block->local_host_addr +
3023 (reg->key.current_addr - block->offset));
3024 chunk = ram_chunk_index(block->local_host_addr,
3025 (uint8_t *) host_addr);
3026 } else {
3027 chunk = reg->key.chunk;
3028 host_addr = block->local_host_addr +
3029 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3030 }
3031 chunk_start = ram_chunk_start(block, chunk);
3032 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3033 if (qemu_rdma_register_and_get_keys(rdma, block,
3034 (uintptr_t)host_addr, NULL, &reg_result->rkey,
3035 chunk, chunk_start, chunk_end)) {
3036 error_report("cannot get rkey");
3037 ret = -EINVAL;
3038 goto out;
3039 }
3040
3041 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3042
3043 trace_qemu_rdma_registration_handle_register_rkey(
3044 reg_result->rkey);
3045
3046 result_to_network(reg_result);
3047 }
3048
3049 ret = qemu_rdma_post_send_control(rdma,
3050 (uint8_t *) results, &reg_resp);
3051
3052 if (ret < 0) {
3053 error_report("Failed to send control buffer");
3054 goto out;
3055 }
3056 break;
3057 case RDMA_CONTROL_UNREGISTER_REQUEST:
3058 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3059 unreg_resp.repeat = head.repeat;
3060 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3061
3062 for (count = 0; count < head.repeat; count++) {
3063 reg = &registers[count];
3064 network_to_register(reg);
3065
3066 trace_qemu_rdma_registration_handle_unregister_loop(count,
3067 reg->current_index, reg->key.chunk);
3068
3069 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3070
3071 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3072 block->pmr[reg->key.chunk] = NULL;
3073
3074 if (ret != 0) {
3075 perror("rdma unregistration chunk failed");
3076 ret = -ret;
3077 goto out;
3078 }
3079
3080 rdma->total_registrations--;
3081
3082 trace_qemu_rdma_registration_handle_unregister_success(
3083 reg->key.chunk);
3084 }
3085
3086 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3087
3088 if (ret < 0) {
3089 error_report("Failed to send control buffer");
3090 goto out;
3091 }
3092 break;
3093 case RDMA_CONTROL_REGISTER_RESULT:
3094 error_report("Invalid RESULT message at dest.");
3095 ret = -EIO;
3096 goto out;
3097 default:
3098 error_report("Unknown control message %s", control_desc[head.type]);
3099 ret = -EIO;
3100 goto out;
3101 }
3102 } while (1);
3103 out:
3104 if (ret < 0) {
3105 rdma->error_state = ret;
3106 }
3107 return ret;
3108 }
3109
3110 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3111 uint64_t flags)
3112 {
3113 QEMUFileRDMA *rfile = opaque;
3114 RDMAContext *rdma = rfile->rdma;
3115
3116 CHECK_ERROR_STATE();
3117
3118 trace_qemu_rdma_registration_start(flags);
3119 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3120 qemu_fflush(f);
3121
3122 return 0;
3123 }
3124
3125 /*
3126 * Inform dest that dynamic registrations are done for now.
3127 * First, flush writes, if any.
3128 */
3129 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3130 uint64_t flags)
3131 {
3132 Error *local_err = NULL, **errp = &local_err;
3133 QEMUFileRDMA *rfile = opaque;
3134 RDMAContext *rdma = rfile->rdma;
3135 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3136 int ret = 0;
3137
3138 CHECK_ERROR_STATE();
3139
3140 qemu_fflush(f);
3141 ret = qemu_rdma_drain_cq(f, rdma);
3142
3143 if (ret < 0) {
3144 goto err;
3145 }
3146
3147 if (flags == RAM_CONTROL_SETUP) {
3148 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3149 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3150 int reg_result_idx, i, j, nb_remote_blocks;
3151
3152 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3153 trace_qemu_rdma_registration_stop_ram();
3154
3155 /*
3156 * Make sure that we parallelize the pinning on both sides.
3157 * For very large guests, doing this serially takes a really
3158 * long time, so we have to 'interleave' the pinning locally
3159 * with the control messages by performing the pinning on this
3160 * side before we receive the control response from the other
3161 * side that the pinning has completed.
3162 */
3163 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3164 &reg_result_idx, rdma->pin_all ?
3165 qemu_rdma_reg_whole_ram_blocks : NULL);
3166 if (ret < 0) {
3167 ERROR(errp, "receiving remote info!");
3168 return ret;
3169 }
3170
3171 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3172
3173 /*
3174 * The protocol uses two different sets of rkeys (mutually exclusive):
3175 * 1. One key to represent the virtual address of the entire ram block.
3176 * (dynamic chunk registration disabled - pin everything with one rkey.)
3177 * 2. One to represent individual chunks within a ram block.
3178 * (dynamic chunk registration enabled - pin individual chunks.)
3179 *
3180 * Once the capability is successfully negotiated, the destination transmits
3181 * the keys to use (or sends them later) including the virtual addresses
3182 * and then propagates the remote ram block descriptions to his local copy.
3183 */
3184
3185 if (local->nb_blocks != nb_remote_blocks) {
3186 ERROR(errp, "ram blocks mismatch #1! "
3187 "Your QEMU command line parameters are probably "
3188 "not identical on both the source and destination.");
3189 return -EINVAL;
3190 }
3191
3192 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3193 memcpy(rdma->block,
3194 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3195 for (i = 0; i < nb_remote_blocks; i++) {
3196 network_to_remote_block(&rdma->block[i]);
3197
3198 /* search local ram blocks */
3199 for (j = 0; j < local->nb_blocks; j++) {
3200 if (rdma->block[i].offset != local->block[j].offset) {
3201 continue;
3202 }
3203
3204 if (rdma->block[i].length != local->block[j].length) {
3205 ERROR(errp, "ram blocks mismatch #2! "
3206 "Your QEMU command line parameters are probably "
3207 "not identical on both the source and destination.");
3208 return -EINVAL;
3209 }
3210 local->block[j].remote_host_addr =
3211 rdma->block[i].remote_host_addr;
3212 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3213 break;
3214 }
3215
3216 if (j >= local->nb_blocks) {
3217 ERROR(errp, "ram blocks mismatch #3! "
3218 "Your QEMU command line parameters are probably "
3219 "not identical on both the source and destination.");
3220 return -EINVAL;
3221 }
3222 }
3223 }
3224
3225 trace_qemu_rdma_registration_stop(flags);
3226
3227 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3228 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3229
3230 if (ret < 0) {
3231 goto err;
3232 }
3233
3234 return 0;
3235 err:
3236 rdma->error_state = ret;
3237 return ret;
3238 }
3239
3240 static int qemu_rdma_get_fd(void *opaque)
3241 {
3242 QEMUFileRDMA *rfile = opaque;
3243 RDMAContext *rdma = rfile->rdma;
3244
3245 return rdma->comp_channel->fd;
3246 }
3247
3248 static const QEMUFileOps rdma_read_ops = {
3249 .get_buffer = qemu_rdma_get_buffer,
3250 .get_fd = qemu_rdma_get_fd,
3251 .close = qemu_rdma_close,
3252 .hook_ram_load = qemu_rdma_registration_handle,
3253 };
3254
3255 static const QEMUFileOps rdma_write_ops = {
3256 .put_buffer = qemu_rdma_put_buffer,
3257 .close = qemu_rdma_close,
3258 .before_ram_iterate = qemu_rdma_registration_start,
3259 .after_ram_iterate = qemu_rdma_registration_stop,
3260 .save_page = qemu_rdma_save_page,
3261 };
3262
3263 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3264 {
3265 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3266
3267 if (qemu_file_mode_is_not_valid(mode)) {
3268 return NULL;
3269 }
3270
3271 r->rdma = rdma;
3272
3273 if (mode[0] == 'w') {
3274 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3275 } else {
3276 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3277 }
3278
3279 return r->file;
3280 }
3281
3282 static void rdma_accept_incoming_migration(void *opaque)
3283 {
3284 RDMAContext *rdma = opaque;
3285 int ret;
3286 QEMUFile *f;
3287 Error *local_err = NULL, **errp = &local_err;
3288
3289 trace_qemu_dma_accept_incoming_migration();
3290 ret = qemu_rdma_accept(rdma);
3291
3292 if (ret) {
3293 ERROR(errp, "RDMA Migration initialization failed!");
3294 return;
3295 }
3296
3297 trace_qemu_dma_accept_incoming_migration_accepted();
3298
3299 f = qemu_fopen_rdma(rdma, "rb");
3300 if (f == NULL) {
3301 ERROR(errp, "could not qemu_fopen_rdma!");
3302 qemu_rdma_cleanup(rdma);
3303 return;
3304 }
3305
3306 rdma->migration_started_on_destination = 1;
3307 process_incoming_migration(f);
3308 }
3309
3310 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3311 {
3312 int ret;
3313 RDMAContext *rdma;
3314 Error *local_err = NULL;
3315
3316 trace_rdma_start_incoming_migration();
3317 rdma = qemu_rdma_data_init(host_port, &local_err);
3318
3319 if (rdma == NULL) {
3320 goto err;
3321 }
3322
3323 ret = qemu_rdma_dest_init(rdma, &local_err);
3324
3325 if (ret) {
3326 goto err;
3327 }
3328
3329 trace_rdma_start_incoming_migration_after_dest_init();
3330
3331 ret = rdma_listen(rdma->listen_id, 5);
3332
3333 if (ret) {
3334 ERROR(errp, "listening on socket!");
3335 goto err;
3336 }
3337
3338 trace_rdma_start_incoming_migration_after_rdma_listen();
3339
3340 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3341 rdma_accept_incoming_migration, NULL,
3342 (void *)(intptr_t) rdma);
3343 return;
3344 err:
3345 error_propagate(errp, local_err);
3346 g_free(rdma);
3347 }
3348
3349 void rdma_start_outgoing_migration(void *opaque,
3350 const char *host_port, Error **errp)
3351 {
3352 MigrationState *s = opaque;
3353 Error *local_err = NULL, **temp = &local_err;
3354 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3355 int ret = 0;
3356
3357 if (rdma == NULL) {
3358 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3359 goto err;
3360 }
3361
3362 ret = qemu_rdma_source_init(rdma, &local_err,
3363 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3364
3365 if (ret) {
3366 goto err;
3367 }
3368
3369 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3370 ret = qemu_rdma_connect(rdma, &local_err);
3371
3372 if (ret) {
3373 goto err;
3374 }
3375
3376 trace_rdma_start_outgoing_migration_after_rdma_connect();
3377
3378 s->file = qemu_fopen_rdma(rdma, "wb");
3379 migrate_fd_connect(s);
3380 return;
3381 err:
3382 error_propagate(errp, local_err);
3383 g_free(rdma);
3384 migrate_fd_error(s);
3385 }