]> git.proxmox.com Git - mirror_qemu.git/blob - migration/savevm.c
33da39f0eabe7d491e5924cebd431181ddad8c58
[mirror_qemu.git] / migration / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2009-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #include "net/net.h"
33 #include "migration.h"
34 #include "migration/snapshot.h"
35 #include "migration/vmstate.h"
36 #include "migration/misc.h"
37 #include "migration/register.h"
38 #include "migration/global_state.h"
39 #include "ram.h"
40 #include "qemu-file-channel.h"
41 #include "qemu-file.h"
42 #include "savevm.h"
43 #include "postcopy-ram.h"
44 #include "qapi/error.h"
45 #include "qapi/qapi-commands-migration.h"
46 #include "qapi/qapi-commands-misc.h"
47 #include "qapi/qmp/qerror.h"
48 #include "qemu/error-report.h"
49 #include "sysemu/cpus.h"
50 #include "exec/memory.h"
51 #include "exec/target_page.h"
52 #include "trace.h"
53 #include "qemu/iov.h"
54 #include "qemu/main-loop.h"
55 #include "block/snapshot.h"
56 #include "qemu/cutils.h"
57 #include "io/channel-buffer.h"
58 #include "io/channel-file.h"
59 #include "sysemu/replay.h"
60 #include "sysemu/sysemu.h"
61 #include "qjson.h"
62 #include "migration/colo.h"
63 #include "qemu/bitmap.h"
64 #include "net/announce.h"
65
66 const unsigned int postcopy_ram_discard_version = 0;
67
68 /* Subcommands for QEMU_VM_COMMAND */
69 enum qemu_vm_cmd {
70 MIG_CMD_INVALID = 0, /* Must be 0 */
71 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */
72 MIG_CMD_PING, /* Request a PONG on the RP */
73
74 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just
75 warn we might want to do PC */
76 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming
77 pages as it's running. */
78 MIG_CMD_POSTCOPY_RUN, /* Start execution */
79
80 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that
81 were previously sent during
82 precopy but are dirty. */
83 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */
84 MIG_CMD_ENABLE_COLO, /* Enable COLO */
85 MIG_CMD_POSTCOPY_RESUME, /* resume postcopy on dest */
86 MIG_CMD_RECV_BITMAP, /* Request for recved bitmap on dst */
87 MIG_CMD_MAX
88 };
89
90 #define MAX_VM_CMD_PACKAGED_SIZE UINT32_MAX
91 static struct mig_cmd_args {
92 ssize_t len; /* -1 = variable */
93 const char *name;
94 } mig_cmd_args[] = {
95 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" },
96 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" },
97 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" },
98 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" },
99 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" },
100 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" },
101 [MIG_CMD_POSTCOPY_RAM_DISCARD] = {
102 .len = -1, .name = "POSTCOPY_RAM_DISCARD" },
103 [MIG_CMD_POSTCOPY_RESUME] = { .len = 0, .name = "POSTCOPY_RESUME" },
104 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" },
105 [MIG_CMD_RECV_BITMAP] = { .len = -1, .name = "RECV_BITMAP" },
106 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" },
107 };
108
109 /* Note for MIG_CMD_POSTCOPY_ADVISE:
110 * The format of arguments is depending on postcopy mode:
111 * - postcopy RAM only
112 * uint64_t host page size
113 * uint64_t taget page size
114 *
115 * - postcopy RAM and postcopy dirty bitmaps
116 * format is the same as for postcopy RAM only
117 *
118 * - postcopy dirty bitmaps only
119 * Nothing. Command length field is 0.
120 *
121 * Be careful: adding a new postcopy entity with some other parameters should
122 * not break format self-description ability. Good way is to introduce some
123 * generic extendable format with an exception for two old entities.
124 */
125
126 /***********************************************************/
127 /* savevm/loadvm support */
128
129 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
130 int64_t pos)
131 {
132 int ret;
133 QEMUIOVector qiov;
134
135 qemu_iovec_init_external(&qiov, iov, iovcnt);
136 ret = bdrv_writev_vmstate(opaque, &qiov, pos);
137 if (ret < 0) {
138 return ret;
139 }
140
141 return qiov.size;
142 }
143
144 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos,
145 size_t size)
146 {
147 return bdrv_load_vmstate(opaque, buf, pos, size);
148 }
149
150 static int bdrv_fclose(void *opaque)
151 {
152 return bdrv_flush(opaque);
153 }
154
155 static const QEMUFileOps bdrv_read_ops = {
156 .get_buffer = block_get_buffer,
157 .close = bdrv_fclose
158 };
159
160 static const QEMUFileOps bdrv_write_ops = {
161 .writev_buffer = block_writev_buffer,
162 .close = bdrv_fclose
163 };
164
165 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
166 {
167 if (is_writable) {
168 return qemu_fopen_ops(bs, &bdrv_write_ops);
169 }
170 return qemu_fopen_ops(bs, &bdrv_read_ops);
171 }
172
173
174 /* QEMUFile timer support.
175 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c
176 */
177
178 void timer_put(QEMUFile *f, QEMUTimer *ts)
179 {
180 uint64_t expire_time;
181
182 expire_time = timer_expire_time_ns(ts);
183 qemu_put_be64(f, expire_time);
184 }
185
186 void timer_get(QEMUFile *f, QEMUTimer *ts)
187 {
188 uint64_t expire_time;
189
190 expire_time = qemu_get_be64(f);
191 if (expire_time != -1) {
192 timer_mod_ns(ts, expire_time);
193 } else {
194 timer_del(ts);
195 }
196 }
197
198
199 /* VMState timer support.
200 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c
201 */
202
203 static int get_timer(QEMUFile *f, void *pv, size_t size,
204 const VMStateField *field)
205 {
206 QEMUTimer *v = pv;
207 timer_get(f, v);
208 return 0;
209 }
210
211 static int put_timer(QEMUFile *f, void *pv, size_t size,
212 const VMStateField *field, QJSON *vmdesc)
213 {
214 QEMUTimer *v = pv;
215 timer_put(f, v);
216
217 return 0;
218 }
219
220 const VMStateInfo vmstate_info_timer = {
221 .name = "timer",
222 .get = get_timer,
223 .put = put_timer,
224 };
225
226
227 typedef struct CompatEntry {
228 char idstr[256];
229 int instance_id;
230 } CompatEntry;
231
232 typedef struct SaveStateEntry {
233 QTAILQ_ENTRY(SaveStateEntry) entry;
234 char idstr[256];
235 int instance_id;
236 int alias_id;
237 int version_id;
238 /* version id read from the stream */
239 int load_version_id;
240 int section_id;
241 /* section id read from the stream */
242 int load_section_id;
243 const SaveVMHandlers *ops;
244 const VMStateDescription *vmsd;
245 void *opaque;
246 CompatEntry *compat;
247 int is_ram;
248 } SaveStateEntry;
249
250 typedef struct SaveState {
251 QTAILQ_HEAD(, SaveStateEntry) handlers;
252 int global_section_id;
253 uint32_t len;
254 const char *name;
255 uint32_t target_page_bits;
256 uint32_t caps_count;
257 MigrationCapability *capabilities;
258 } SaveState;
259
260 static SaveState savevm_state = {
261 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers),
262 .global_section_id = 0,
263 };
264
265 static bool should_validate_capability(int capability)
266 {
267 assert(capability >= 0 && capability < MIGRATION_CAPABILITY__MAX);
268 /* Validate only new capabilities to keep compatibility. */
269 switch (capability) {
270 case MIGRATION_CAPABILITY_X_IGNORE_SHARED:
271 return true;
272 default:
273 return false;
274 }
275 }
276
277 static uint32_t get_validatable_capabilities_count(void)
278 {
279 MigrationState *s = migrate_get_current();
280 uint32_t result = 0;
281 int i;
282 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
283 if (should_validate_capability(i) && s->enabled_capabilities[i]) {
284 result++;
285 }
286 }
287 return result;
288 }
289
290 static int configuration_pre_save(void *opaque)
291 {
292 SaveState *state = opaque;
293 const char *current_name = MACHINE_GET_CLASS(current_machine)->name;
294 MigrationState *s = migrate_get_current();
295 int i, j;
296
297 state->len = strlen(current_name);
298 state->name = current_name;
299 state->target_page_bits = qemu_target_page_bits();
300
301 state->caps_count = get_validatable_capabilities_count();
302 state->capabilities = g_renew(MigrationCapability, state->capabilities,
303 state->caps_count);
304 for (i = j = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
305 if (should_validate_capability(i) && s->enabled_capabilities[i]) {
306 state->capabilities[j++] = i;
307 }
308 }
309
310 return 0;
311 }
312
313 static int configuration_pre_load(void *opaque)
314 {
315 SaveState *state = opaque;
316
317 /* If there is no target-page-bits subsection it means the source
318 * predates the variable-target-page-bits support and is using the
319 * minimum possible value for this CPU.
320 */
321 state->target_page_bits = qemu_target_page_bits_min();
322 return 0;
323 }
324
325 static bool configuration_validate_capabilities(SaveState *state)
326 {
327 bool ret = true;
328 MigrationState *s = migrate_get_current();
329 unsigned long *source_caps_bm;
330 int i;
331
332 source_caps_bm = bitmap_new(MIGRATION_CAPABILITY__MAX);
333 for (i = 0; i < state->caps_count; i++) {
334 MigrationCapability capability = state->capabilities[i];
335 set_bit(capability, source_caps_bm);
336 }
337
338 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
339 bool source_state, target_state;
340 if (!should_validate_capability(i)) {
341 continue;
342 }
343 source_state = test_bit(i, source_caps_bm);
344 target_state = s->enabled_capabilities[i];
345 if (source_state != target_state) {
346 error_report("Capability %s is %s, but received capability is %s",
347 MigrationCapability_str(i),
348 target_state ? "on" : "off",
349 source_state ? "on" : "off");
350 ret = false;
351 /* Don't break here to report all failed capabilities */
352 }
353 }
354
355 g_free(source_caps_bm);
356 return ret;
357 }
358
359 static int configuration_post_load(void *opaque, int version_id)
360 {
361 SaveState *state = opaque;
362 const char *current_name = MACHINE_GET_CLASS(current_machine)->name;
363
364 if (strncmp(state->name, current_name, state->len) != 0) {
365 error_report("Machine type received is '%.*s' and local is '%s'",
366 (int) state->len, state->name, current_name);
367 return -EINVAL;
368 }
369
370 if (state->target_page_bits != qemu_target_page_bits()) {
371 error_report("Received TARGET_PAGE_BITS is %d but local is %d",
372 state->target_page_bits, qemu_target_page_bits());
373 return -EINVAL;
374 }
375
376 if (!configuration_validate_capabilities(state)) {
377 return -EINVAL;
378 }
379
380 return 0;
381 }
382
383 static int get_capability(QEMUFile *f, void *pv, size_t size,
384 const VMStateField *field)
385 {
386 MigrationCapability *capability = pv;
387 char capability_str[UINT8_MAX + 1];
388 uint8_t len;
389 int i;
390
391 len = qemu_get_byte(f);
392 qemu_get_buffer(f, (uint8_t *)capability_str, len);
393 capability_str[len] = '\0';
394 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
395 if (!strcmp(MigrationCapability_str(i), capability_str)) {
396 *capability = i;
397 return 0;
398 }
399 }
400 error_report("Received unknown capability %s", capability_str);
401 return -EINVAL;
402 }
403
404 static int put_capability(QEMUFile *f, void *pv, size_t size,
405 const VMStateField *field, QJSON *vmdesc)
406 {
407 MigrationCapability *capability = pv;
408 const char *capability_str = MigrationCapability_str(*capability);
409 size_t len = strlen(capability_str);
410 assert(len <= UINT8_MAX);
411
412 qemu_put_byte(f, len);
413 qemu_put_buffer(f, (uint8_t *)capability_str, len);
414 return 0;
415 }
416
417 static const VMStateInfo vmstate_info_capability = {
418 .name = "capability",
419 .get = get_capability,
420 .put = put_capability,
421 };
422
423 /* The target-page-bits subsection is present only if the
424 * target page size is not the same as the default (ie the
425 * minimum page size for a variable-page-size guest CPU).
426 * If it is present then it contains the actual target page
427 * bits for the machine, and migration will fail if the
428 * two ends don't agree about it.
429 */
430 static bool vmstate_target_page_bits_needed(void *opaque)
431 {
432 return qemu_target_page_bits()
433 > qemu_target_page_bits_min();
434 }
435
436 static const VMStateDescription vmstate_target_page_bits = {
437 .name = "configuration/target-page-bits",
438 .version_id = 1,
439 .minimum_version_id = 1,
440 .needed = vmstate_target_page_bits_needed,
441 .fields = (VMStateField[]) {
442 VMSTATE_UINT32(target_page_bits, SaveState),
443 VMSTATE_END_OF_LIST()
444 }
445 };
446
447 static bool vmstate_capabilites_needed(void *opaque)
448 {
449 return get_validatable_capabilities_count() > 0;
450 }
451
452 static const VMStateDescription vmstate_capabilites = {
453 .name = "configuration/capabilities",
454 .version_id = 1,
455 .minimum_version_id = 1,
456 .needed = vmstate_capabilites_needed,
457 .fields = (VMStateField[]) {
458 VMSTATE_UINT32_V(caps_count, SaveState, 1),
459 VMSTATE_VARRAY_UINT32_ALLOC(capabilities, SaveState, caps_count, 1,
460 vmstate_info_capability,
461 MigrationCapability),
462 VMSTATE_END_OF_LIST()
463 }
464 };
465
466 static const VMStateDescription vmstate_configuration = {
467 .name = "configuration",
468 .version_id = 1,
469 .pre_load = configuration_pre_load,
470 .post_load = configuration_post_load,
471 .pre_save = configuration_pre_save,
472 .fields = (VMStateField[]) {
473 VMSTATE_UINT32(len, SaveState),
474 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len),
475 VMSTATE_END_OF_LIST()
476 },
477 .subsections = (const VMStateDescription*[]) {
478 &vmstate_target_page_bits,
479 &vmstate_capabilites,
480 NULL
481 }
482 };
483
484 static void dump_vmstate_vmsd(FILE *out_file,
485 const VMStateDescription *vmsd, int indent,
486 bool is_subsection);
487
488 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field,
489 int indent)
490 {
491 fprintf(out_file, "%*s{\n", indent, "");
492 indent += 2;
493 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name);
494 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
495 field->version_id);
496 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "",
497 field->field_exists ? "true" : "false");
498 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size);
499 if (field->vmsd != NULL) {
500 fprintf(out_file, ",\n");
501 dump_vmstate_vmsd(out_file, field->vmsd, indent, false);
502 }
503 fprintf(out_file, "\n%*s}", indent - 2, "");
504 }
505
506 static void dump_vmstate_vmss(FILE *out_file,
507 const VMStateDescription **subsection,
508 int indent)
509 {
510 if (*subsection != NULL) {
511 dump_vmstate_vmsd(out_file, *subsection, indent, true);
512 }
513 }
514
515 static void dump_vmstate_vmsd(FILE *out_file,
516 const VMStateDescription *vmsd, int indent,
517 bool is_subsection)
518 {
519 if (is_subsection) {
520 fprintf(out_file, "%*s{\n", indent, "");
521 } else {
522 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description");
523 }
524 indent += 2;
525 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name);
526 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
527 vmsd->version_id);
528 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "",
529 vmsd->minimum_version_id);
530 if (vmsd->fields != NULL) {
531 const VMStateField *field = vmsd->fields;
532 bool first;
533
534 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, "");
535 first = true;
536 while (field->name != NULL) {
537 if (field->flags & VMS_MUST_EXIST) {
538 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */
539 field++;
540 continue;
541 }
542 if (!first) {
543 fprintf(out_file, ",\n");
544 }
545 dump_vmstate_vmsf(out_file, field, indent + 2);
546 field++;
547 first = false;
548 }
549 fprintf(out_file, "\n%*s]", indent, "");
550 }
551 if (vmsd->subsections != NULL) {
552 const VMStateDescription **subsection = vmsd->subsections;
553 bool first;
554
555 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, "");
556 first = true;
557 while (*subsection != NULL) {
558 if (!first) {
559 fprintf(out_file, ",\n");
560 }
561 dump_vmstate_vmss(out_file, subsection, indent + 2);
562 subsection++;
563 first = false;
564 }
565 fprintf(out_file, "\n%*s]", indent, "");
566 }
567 fprintf(out_file, "\n%*s}", indent - 2, "");
568 }
569
570 static void dump_machine_type(FILE *out_file)
571 {
572 MachineClass *mc;
573
574 mc = MACHINE_GET_CLASS(current_machine);
575
576 fprintf(out_file, " \"vmschkmachine\": {\n");
577 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name);
578 fprintf(out_file, " },\n");
579 }
580
581 void dump_vmstate_json_to_file(FILE *out_file)
582 {
583 GSList *list, *elt;
584 bool first;
585
586 fprintf(out_file, "{\n");
587 dump_machine_type(out_file);
588
589 first = true;
590 list = object_class_get_list(TYPE_DEVICE, true);
591 for (elt = list; elt; elt = elt->next) {
592 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data,
593 TYPE_DEVICE);
594 const char *name;
595 int indent = 2;
596
597 if (!dc->vmsd) {
598 continue;
599 }
600
601 if (!first) {
602 fprintf(out_file, ",\n");
603 }
604 name = object_class_get_name(OBJECT_CLASS(dc));
605 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name);
606 indent += 2;
607 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name);
608 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
609 dc->vmsd->version_id);
610 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "",
611 dc->vmsd->minimum_version_id);
612
613 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false);
614
615 fprintf(out_file, "\n%*s}", indent - 2, "");
616 first = false;
617 }
618 fprintf(out_file, "\n}\n");
619 fclose(out_file);
620 }
621
622 static int calculate_new_instance_id(const char *idstr)
623 {
624 SaveStateEntry *se;
625 int instance_id = 0;
626
627 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
628 if (strcmp(idstr, se->idstr) == 0
629 && instance_id <= se->instance_id) {
630 instance_id = se->instance_id + 1;
631 }
632 }
633 return instance_id;
634 }
635
636 static int calculate_compat_instance_id(const char *idstr)
637 {
638 SaveStateEntry *se;
639 int instance_id = 0;
640
641 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
642 if (!se->compat) {
643 continue;
644 }
645
646 if (strcmp(idstr, se->compat->idstr) == 0
647 && instance_id <= se->compat->instance_id) {
648 instance_id = se->compat->instance_id + 1;
649 }
650 }
651 return instance_id;
652 }
653
654 static inline MigrationPriority save_state_priority(SaveStateEntry *se)
655 {
656 if (se->vmsd) {
657 return se->vmsd->priority;
658 }
659 return MIG_PRI_DEFAULT;
660 }
661
662 static void savevm_state_handler_insert(SaveStateEntry *nse)
663 {
664 MigrationPriority priority = save_state_priority(nse);
665 SaveStateEntry *se;
666
667 assert(priority <= MIG_PRI_MAX);
668
669 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
670 if (save_state_priority(se) < priority) {
671 break;
672 }
673 }
674
675 if (se) {
676 QTAILQ_INSERT_BEFORE(se, nse, entry);
677 } else {
678 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry);
679 }
680 }
681
682 /* TODO: Individual devices generally have very little idea about the rest
683 of the system, so instance_id should be removed/replaced.
684 Meanwhile pass -1 as instance_id if you do not already have a clearly
685 distinguishing id for all instances of your device class. */
686 int register_savevm_live(DeviceState *dev,
687 const char *idstr,
688 int instance_id,
689 int version_id,
690 const SaveVMHandlers *ops,
691 void *opaque)
692 {
693 SaveStateEntry *se;
694
695 se = g_new0(SaveStateEntry, 1);
696 se->version_id = version_id;
697 se->section_id = savevm_state.global_section_id++;
698 se->ops = ops;
699 se->opaque = opaque;
700 se->vmsd = NULL;
701 /* if this is a live_savem then set is_ram */
702 if (ops->save_setup != NULL) {
703 se->is_ram = 1;
704 }
705
706 if (dev) {
707 char *id = qdev_get_dev_path(dev);
708 if (id) {
709 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >=
710 sizeof(se->idstr)) {
711 error_report("Path too long for VMState (%s)", id);
712 g_free(id);
713 g_free(se);
714
715 return -1;
716 }
717 g_free(id);
718
719 se->compat = g_new0(CompatEntry, 1);
720 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
721 se->compat->instance_id = instance_id == -1 ?
722 calculate_compat_instance_id(idstr) : instance_id;
723 instance_id = -1;
724 }
725 }
726 pstrcat(se->idstr, sizeof(se->idstr), idstr);
727
728 if (instance_id == -1) {
729 se->instance_id = calculate_new_instance_id(se->idstr);
730 } else {
731 se->instance_id = instance_id;
732 }
733 assert(!se->compat || se->instance_id == 0);
734 savevm_state_handler_insert(se);
735 return 0;
736 }
737
738 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
739 {
740 SaveStateEntry *se, *new_se;
741 char id[256] = "";
742
743 if (dev) {
744 char *path = qdev_get_dev_path(dev);
745 if (path) {
746 pstrcpy(id, sizeof(id), path);
747 pstrcat(id, sizeof(id), "/");
748 g_free(path);
749 }
750 }
751 pstrcat(id, sizeof(id), idstr);
752
753 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
754 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
755 QTAILQ_REMOVE(&savevm_state.handlers, se, entry);
756 g_free(se->compat);
757 g_free(se);
758 }
759 }
760 }
761
762 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
763 const VMStateDescription *vmsd,
764 void *opaque, int alias_id,
765 int required_for_version,
766 Error **errp)
767 {
768 SaveStateEntry *se;
769
770 /* If this triggers, alias support can be dropped for the vmsd. */
771 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
772
773 se = g_new0(SaveStateEntry, 1);
774 se->version_id = vmsd->version_id;
775 se->section_id = savevm_state.global_section_id++;
776 se->opaque = opaque;
777 se->vmsd = vmsd;
778 se->alias_id = alias_id;
779
780 if (dev) {
781 char *id = qdev_get_dev_path(dev);
782 if (id) {
783 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >=
784 sizeof(se->idstr)) {
785 error_setg(errp, "Path too long for VMState (%s)", id);
786 g_free(id);
787 g_free(se);
788
789 return -1;
790 }
791 g_free(id);
792
793 se->compat = g_new0(CompatEntry, 1);
794 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
795 se->compat->instance_id = instance_id == -1 ?
796 calculate_compat_instance_id(vmsd->name) : instance_id;
797 instance_id = -1;
798 }
799 }
800 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
801
802 if (instance_id == -1) {
803 se->instance_id = calculate_new_instance_id(se->idstr);
804 } else {
805 se->instance_id = instance_id;
806 }
807 assert(!se->compat || se->instance_id == 0);
808 savevm_state_handler_insert(se);
809 return 0;
810 }
811
812 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
813 void *opaque)
814 {
815 SaveStateEntry *se, *new_se;
816
817 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
818 if (se->vmsd == vmsd && se->opaque == opaque) {
819 QTAILQ_REMOVE(&savevm_state.handlers, se, entry);
820 g_free(se->compat);
821 g_free(se);
822 }
823 }
824 }
825
826 static int vmstate_load(QEMUFile *f, SaveStateEntry *se)
827 {
828 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)");
829 if (!se->vmsd) { /* Old style */
830 return se->ops->load_state(f, se->opaque, se->load_version_id);
831 }
832 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id);
833 }
834
835 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc)
836 {
837 int64_t old_offset, size;
838
839 old_offset = qemu_ftell_fast(f);
840 se->ops->save_state(f, se->opaque);
841 size = qemu_ftell_fast(f) - old_offset;
842
843 if (vmdesc) {
844 json_prop_int(vmdesc, "size", size);
845 json_start_array(vmdesc, "fields");
846 json_start_object(vmdesc, NULL);
847 json_prop_str(vmdesc, "name", "data");
848 json_prop_int(vmdesc, "size", size);
849 json_prop_str(vmdesc, "type", "buffer");
850 json_end_object(vmdesc);
851 json_end_array(vmdesc);
852 }
853 }
854
855 static int vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc)
856 {
857 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)");
858 if (!se->vmsd) {
859 vmstate_save_old_style(f, se, vmdesc);
860 return 0;
861 }
862 return vmstate_save_state(f, se->vmsd, se->opaque, vmdesc);
863 }
864
865 /*
866 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL)
867 */
868 static void save_section_header(QEMUFile *f, SaveStateEntry *se,
869 uint8_t section_type)
870 {
871 qemu_put_byte(f, section_type);
872 qemu_put_be32(f, se->section_id);
873
874 if (section_type == QEMU_VM_SECTION_FULL ||
875 section_type == QEMU_VM_SECTION_START) {
876 /* ID string */
877 size_t len = strlen(se->idstr);
878 qemu_put_byte(f, len);
879 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
880
881 qemu_put_be32(f, se->instance_id);
882 qemu_put_be32(f, se->version_id);
883 }
884 }
885
886 /*
887 * Write a footer onto device sections that catches cases misformatted device
888 * sections.
889 */
890 static void save_section_footer(QEMUFile *f, SaveStateEntry *se)
891 {
892 if (migrate_get_current()->send_section_footer) {
893 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER);
894 qemu_put_be32(f, se->section_id);
895 }
896 }
897
898 /**
899 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the
900 * command and associated data.
901 *
902 * @f: File to send command on
903 * @command: Command type to send
904 * @len: Length of associated data
905 * @data: Data associated with command.
906 */
907 static void qemu_savevm_command_send(QEMUFile *f,
908 enum qemu_vm_cmd command,
909 uint16_t len,
910 uint8_t *data)
911 {
912 trace_savevm_command_send(command, len);
913 qemu_put_byte(f, QEMU_VM_COMMAND);
914 qemu_put_be16(f, (uint16_t)command);
915 qemu_put_be16(f, len);
916 qemu_put_buffer(f, data, len);
917 qemu_fflush(f);
918 }
919
920 void qemu_savevm_send_colo_enable(QEMUFile *f)
921 {
922 trace_savevm_send_colo_enable();
923 qemu_savevm_command_send(f, MIG_CMD_ENABLE_COLO, 0, NULL);
924 }
925
926 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value)
927 {
928 uint32_t buf;
929
930 trace_savevm_send_ping(value);
931 buf = cpu_to_be32(value);
932 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf);
933 }
934
935 void qemu_savevm_send_open_return_path(QEMUFile *f)
936 {
937 trace_savevm_send_open_return_path();
938 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL);
939 }
940
941 /* We have a buffer of data to send; we don't want that all to be loaded
942 * by the command itself, so the command contains just the length of the
943 * extra buffer that we then send straight after it.
944 * TODO: Must be a better way to organise that
945 *
946 * Returns:
947 * 0 on success
948 * -ve on error
949 */
950 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len)
951 {
952 uint32_t tmp;
953
954 if (len > MAX_VM_CMD_PACKAGED_SIZE) {
955 error_report("%s: Unreasonably large packaged state: %zu",
956 __func__, len);
957 return -1;
958 }
959
960 tmp = cpu_to_be32(len);
961
962 trace_qemu_savevm_send_packaged();
963 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp);
964
965 qemu_put_buffer(f, buf, len);
966
967 return 0;
968 }
969
970 /* Send prior to any postcopy transfer */
971 void qemu_savevm_send_postcopy_advise(QEMUFile *f)
972 {
973 if (migrate_postcopy_ram()) {
974 uint64_t tmp[2];
975 tmp[0] = cpu_to_be64(ram_pagesize_summary());
976 tmp[1] = cpu_to_be64(qemu_target_page_size());
977
978 trace_qemu_savevm_send_postcopy_advise();
979 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE,
980 16, (uint8_t *)tmp);
981 } else {
982 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL);
983 }
984 }
985
986 /* Sent prior to starting the destination running in postcopy, discard pages
987 * that have already been sent but redirtied on the source.
988 * CMD_POSTCOPY_RAM_DISCARD consist of:
989 * byte version (0)
990 * byte Length of name field (not including 0)
991 * n x byte RAM block name
992 * byte 0 terminator (just for safety)
993 * n x Byte ranges within the named RAMBlock
994 * be64 Start of the range
995 * be64 Length
996 *
997 * name: RAMBlock name that these entries are part of
998 * len: Number of page entries
999 * start_list: 'len' addresses
1000 * length_list: 'len' addresses
1001 *
1002 */
1003 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name,
1004 uint16_t len,
1005 uint64_t *start_list,
1006 uint64_t *length_list)
1007 {
1008 uint8_t *buf;
1009 uint16_t tmplen;
1010 uint16_t t;
1011 size_t name_len = strlen(name);
1012
1013 trace_qemu_savevm_send_postcopy_ram_discard(name, len);
1014 assert(name_len < 256);
1015 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len);
1016 buf[0] = postcopy_ram_discard_version;
1017 buf[1] = name_len;
1018 memcpy(buf + 2, name, name_len);
1019 tmplen = 2 + name_len;
1020 buf[tmplen++] = '\0';
1021
1022 for (t = 0; t < len; t++) {
1023 stq_be_p(buf + tmplen, start_list[t]);
1024 tmplen += 8;
1025 stq_be_p(buf + tmplen, length_list[t]);
1026 tmplen += 8;
1027 }
1028 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf);
1029 g_free(buf);
1030 }
1031
1032 /* Get the destination into a state where it can receive postcopy data. */
1033 void qemu_savevm_send_postcopy_listen(QEMUFile *f)
1034 {
1035 trace_savevm_send_postcopy_listen();
1036 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL);
1037 }
1038
1039 /* Kick the destination into running */
1040 void qemu_savevm_send_postcopy_run(QEMUFile *f)
1041 {
1042 trace_savevm_send_postcopy_run();
1043 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL);
1044 }
1045
1046 void qemu_savevm_send_postcopy_resume(QEMUFile *f)
1047 {
1048 trace_savevm_send_postcopy_resume();
1049 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RESUME, 0, NULL);
1050 }
1051
1052 void qemu_savevm_send_recv_bitmap(QEMUFile *f, char *block_name)
1053 {
1054 size_t len;
1055 char buf[256];
1056
1057 trace_savevm_send_recv_bitmap(block_name);
1058
1059 buf[0] = len = strlen(block_name);
1060 memcpy(buf + 1, block_name, len);
1061
1062 qemu_savevm_command_send(f, MIG_CMD_RECV_BITMAP, len + 1, (uint8_t *)buf);
1063 }
1064
1065 bool qemu_savevm_state_blocked(Error **errp)
1066 {
1067 SaveStateEntry *se;
1068
1069 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1070 if (se->vmsd && se->vmsd->unmigratable) {
1071 error_setg(errp, "State blocked by non-migratable device '%s'",
1072 se->idstr);
1073 return true;
1074 }
1075 }
1076 return false;
1077 }
1078
1079 void qemu_savevm_state_header(QEMUFile *f)
1080 {
1081 trace_savevm_state_header();
1082 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1083 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1084
1085 if (migrate_get_current()->send_configuration) {
1086 qemu_put_byte(f, QEMU_VM_CONFIGURATION);
1087 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0);
1088 }
1089 }
1090
1091 void qemu_savevm_state_setup(QEMUFile *f)
1092 {
1093 SaveStateEntry *se;
1094 Error *local_err = NULL;
1095 int ret;
1096
1097 trace_savevm_state_setup();
1098 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1099 if (!se->ops || !se->ops->save_setup) {
1100 continue;
1101 }
1102 if (se->ops && se->ops->is_active) {
1103 if (!se->ops->is_active(se->opaque)) {
1104 continue;
1105 }
1106 }
1107 save_section_header(f, se, QEMU_VM_SECTION_START);
1108
1109 ret = se->ops->save_setup(f, se->opaque);
1110 save_section_footer(f, se);
1111 if (ret < 0) {
1112 qemu_file_set_error(f, ret);
1113 break;
1114 }
1115 }
1116
1117 if (precopy_notify(PRECOPY_NOTIFY_SETUP, &local_err)) {
1118 error_report_err(local_err);
1119 }
1120 }
1121
1122 int qemu_savevm_state_resume_prepare(MigrationState *s)
1123 {
1124 SaveStateEntry *se;
1125 int ret;
1126
1127 trace_savevm_state_resume_prepare();
1128
1129 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1130 if (!se->ops || !se->ops->resume_prepare) {
1131 continue;
1132 }
1133 if (se->ops && se->ops->is_active) {
1134 if (!se->ops->is_active(se->opaque)) {
1135 continue;
1136 }
1137 }
1138 ret = se->ops->resume_prepare(s, se->opaque);
1139 if (ret < 0) {
1140 return ret;
1141 }
1142 }
1143
1144 return 0;
1145 }
1146
1147 /*
1148 * this function has three return values:
1149 * negative: there was one error, and we have -errno.
1150 * 0 : We haven't finished, caller have to go again
1151 * 1 : We have finished, we can go to complete phase
1152 */
1153 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy)
1154 {
1155 SaveStateEntry *se;
1156 int ret = 1;
1157
1158 trace_savevm_state_iterate();
1159 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1160 if (!se->ops || !se->ops->save_live_iterate) {
1161 continue;
1162 }
1163 if (se->ops->is_active &&
1164 !se->ops->is_active(se->opaque)) {
1165 continue;
1166 }
1167 if (se->ops->is_active_iterate &&
1168 !se->ops->is_active_iterate(se->opaque)) {
1169 continue;
1170 }
1171 /*
1172 * In the postcopy phase, any device that doesn't know how to
1173 * do postcopy should have saved it's state in the _complete
1174 * call that's already run, it might get confused if we call
1175 * iterate afterwards.
1176 */
1177 if (postcopy &&
1178 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) {
1179 continue;
1180 }
1181 if (qemu_file_rate_limit(f)) {
1182 return 0;
1183 }
1184 trace_savevm_section_start(se->idstr, se->section_id);
1185
1186 save_section_header(f, se, QEMU_VM_SECTION_PART);
1187
1188 ret = se->ops->save_live_iterate(f, se->opaque);
1189 trace_savevm_section_end(se->idstr, se->section_id, ret);
1190 save_section_footer(f, se);
1191
1192 if (ret < 0) {
1193 qemu_file_set_error(f, ret);
1194 }
1195 if (ret <= 0) {
1196 /* Do not proceed to the next vmstate before this one reported
1197 completion of the current stage. This serializes the migration
1198 and reduces the probability that a faster changing state is
1199 synchronized over and over again. */
1200 break;
1201 }
1202 }
1203 return ret;
1204 }
1205
1206 static bool should_send_vmdesc(void)
1207 {
1208 MachineState *machine = MACHINE(qdev_get_machine());
1209 bool in_postcopy = migration_in_postcopy();
1210 return !machine->suppress_vmdesc && !in_postcopy;
1211 }
1212
1213 /*
1214 * Calls the save_live_complete_postcopy methods
1215 * causing the last few pages to be sent immediately and doing any associated
1216 * cleanup.
1217 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete
1218 * all the other devices, but that happens at the point we switch to postcopy.
1219 */
1220 void qemu_savevm_state_complete_postcopy(QEMUFile *f)
1221 {
1222 SaveStateEntry *se;
1223 int ret;
1224
1225 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1226 if (!se->ops || !se->ops->save_live_complete_postcopy) {
1227 continue;
1228 }
1229 if (se->ops && se->ops->is_active) {
1230 if (!se->ops->is_active(se->opaque)) {
1231 continue;
1232 }
1233 }
1234 trace_savevm_section_start(se->idstr, se->section_id);
1235 /* Section type */
1236 qemu_put_byte(f, QEMU_VM_SECTION_END);
1237 qemu_put_be32(f, se->section_id);
1238
1239 ret = se->ops->save_live_complete_postcopy(f, se->opaque);
1240 trace_savevm_section_end(se->idstr, se->section_id, ret);
1241 save_section_footer(f, se);
1242 if (ret < 0) {
1243 qemu_file_set_error(f, ret);
1244 return;
1245 }
1246 }
1247
1248 qemu_put_byte(f, QEMU_VM_EOF);
1249 qemu_fflush(f);
1250 }
1251
1252 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only,
1253 bool inactivate_disks)
1254 {
1255 QJSON *vmdesc;
1256 int vmdesc_len;
1257 SaveStateEntry *se;
1258 int ret;
1259 bool in_postcopy = migration_in_postcopy();
1260 Error *local_err = NULL;
1261
1262 if (precopy_notify(PRECOPY_NOTIFY_COMPLETE, &local_err)) {
1263 error_report_err(local_err);
1264 }
1265
1266 trace_savevm_state_complete_precopy();
1267
1268 cpu_synchronize_all_states();
1269
1270 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1271 if (!se->ops ||
1272 (in_postcopy && se->ops->has_postcopy &&
1273 se->ops->has_postcopy(se->opaque)) ||
1274 (in_postcopy && !iterable_only) ||
1275 !se->ops->save_live_complete_precopy) {
1276 continue;
1277 }
1278
1279 if (se->ops && se->ops->is_active) {
1280 if (!se->ops->is_active(se->opaque)) {
1281 continue;
1282 }
1283 }
1284 trace_savevm_section_start(se->idstr, se->section_id);
1285
1286 save_section_header(f, se, QEMU_VM_SECTION_END);
1287
1288 ret = se->ops->save_live_complete_precopy(f, se->opaque);
1289 trace_savevm_section_end(se->idstr, se->section_id, ret);
1290 save_section_footer(f, se);
1291 if (ret < 0) {
1292 qemu_file_set_error(f, ret);
1293 return -1;
1294 }
1295 }
1296
1297 if (iterable_only) {
1298 return 0;
1299 }
1300
1301 vmdesc = qjson_new();
1302 json_prop_int(vmdesc, "page_size", qemu_target_page_size());
1303 json_start_array(vmdesc, "devices");
1304 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1305
1306 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1307 continue;
1308 }
1309 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) {
1310 trace_savevm_section_skip(se->idstr, se->section_id);
1311 continue;
1312 }
1313
1314 trace_savevm_section_start(se->idstr, se->section_id);
1315
1316 json_start_object(vmdesc, NULL);
1317 json_prop_str(vmdesc, "name", se->idstr);
1318 json_prop_int(vmdesc, "instance_id", se->instance_id);
1319
1320 save_section_header(f, se, QEMU_VM_SECTION_FULL);
1321 ret = vmstate_save(f, se, vmdesc);
1322 if (ret) {
1323 qemu_file_set_error(f, ret);
1324 return ret;
1325 }
1326 trace_savevm_section_end(se->idstr, se->section_id, 0);
1327 save_section_footer(f, se);
1328
1329 json_end_object(vmdesc);
1330 }
1331
1332 if (inactivate_disks) {
1333 /* Inactivate before sending QEMU_VM_EOF so that the
1334 * bdrv_invalidate_cache_all() on the other end won't fail. */
1335 ret = bdrv_inactivate_all();
1336 if (ret) {
1337 error_report("%s: bdrv_inactivate_all() failed (%d)",
1338 __func__, ret);
1339 qemu_file_set_error(f, ret);
1340 return ret;
1341 }
1342 }
1343 if (!in_postcopy) {
1344 /* Postcopy stream will still be going */
1345 qemu_put_byte(f, QEMU_VM_EOF);
1346 }
1347
1348 json_end_array(vmdesc);
1349 qjson_finish(vmdesc);
1350 vmdesc_len = strlen(qjson_get_str(vmdesc));
1351
1352 if (should_send_vmdesc()) {
1353 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION);
1354 qemu_put_be32(f, vmdesc_len);
1355 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len);
1356 }
1357 qjson_destroy(vmdesc);
1358
1359 qemu_fflush(f);
1360 return 0;
1361 }
1362
1363 /* Give an estimate of the amount left to be transferred,
1364 * the result is split into the amount for units that can and
1365 * for units that can't do postcopy.
1366 */
1367 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size,
1368 uint64_t *res_precopy_only,
1369 uint64_t *res_compatible,
1370 uint64_t *res_postcopy_only)
1371 {
1372 SaveStateEntry *se;
1373
1374 *res_precopy_only = 0;
1375 *res_compatible = 0;
1376 *res_postcopy_only = 0;
1377
1378
1379 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1380 if (!se->ops || !se->ops->save_live_pending) {
1381 continue;
1382 }
1383 if (se->ops && se->ops->is_active) {
1384 if (!se->ops->is_active(se->opaque)) {
1385 continue;
1386 }
1387 }
1388 se->ops->save_live_pending(f, se->opaque, threshold_size,
1389 res_precopy_only, res_compatible,
1390 res_postcopy_only);
1391 }
1392 }
1393
1394 void qemu_savevm_state_cleanup(void)
1395 {
1396 SaveStateEntry *se;
1397 Error *local_err = NULL;
1398
1399 if (precopy_notify(PRECOPY_NOTIFY_CLEANUP, &local_err)) {
1400 error_report_err(local_err);
1401 }
1402
1403 trace_savevm_state_cleanup();
1404 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1405 if (se->ops && se->ops->save_cleanup) {
1406 se->ops->save_cleanup(se->opaque);
1407 }
1408 }
1409 }
1410
1411 static int qemu_savevm_state(QEMUFile *f, Error **errp)
1412 {
1413 int ret;
1414 MigrationState *ms = migrate_get_current();
1415 MigrationStatus status;
1416
1417 if (migration_is_setup_or_active(ms->state) ||
1418 ms->state == MIGRATION_STATUS_CANCELLING ||
1419 ms->state == MIGRATION_STATUS_COLO) {
1420 error_setg(errp, QERR_MIGRATION_ACTIVE);
1421 return -EINVAL;
1422 }
1423
1424 if (migrate_use_block()) {
1425 error_setg(errp, "Block migration and snapshots are incompatible");
1426 return -EINVAL;
1427 }
1428
1429 migrate_init(ms);
1430 ms->to_dst_file = f;
1431
1432 qemu_mutex_unlock_iothread();
1433 qemu_savevm_state_header(f);
1434 qemu_savevm_state_setup(f);
1435 qemu_mutex_lock_iothread();
1436
1437 while (qemu_file_get_error(f) == 0) {
1438 if (qemu_savevm_state_iterate(f, false) > 0) {
1439 break;
1440 }
1441 }
1442
1443 ret = qemu_file_get_error(f);
1444 if (ret == 0) {
1445 qemu_savevm_state_complete_precopy(f, false, false);
1446 ret = qemu_file_get_error(f);
1447 }
1448 qemu_savevm_state_cleanup();
1449 if (ret != 0) {
1450 error_setg_errno(errp, -ret, "Error while writing VM state");
1451 }
1452
1453 if (ret != 0) {
1454 status = MIGRATION_STATUS_FAILED;
1455 } else {
1456 status = MIGRATION_STATUS_COMPLETED;
1457 }
1458 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status);
1459
1460 /* f is outer parameter, it should not stay in global migration state after
1461 * this function finished */
1462 ms->to_dst_file = NULL;
1463
1464 return ret;
1465 }
1466
1467 void qemu_savevm_live_state(QEMUFile *f)
1468 {
1469 /* save QEMU_VM_SECTION_END section */
1470 qemu_savevm_state_complete_precopy(f, true, false);
1471 qemu_put_byte(f, QEMU_VM_EOF);
1472 }
1473
1474 int qemu_save_device_state(QEMUFile *f)
1475 {
1476 SaveStateEntry *se;
1477
1478 if (!migration_in_colo_state()) {
1479 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1480 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1481 }
1482 cpu_synchronize_all_states();
1483
1484 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1485 int ret;
1486
1487 if (se->is_ram) {
1488 continue;
1489 }
1490 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1491 continue;
1492 }
1493 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) {
1494 continue;
1495 }
1496
1497 save_section_header(f, se, QEMU_VM_SECTION_FULL);
1498
1499 ret = vmstate_save(f, se, NULL);
1500 if (ret) {
1501 return ret;
1502 }
1503
1504 save_section_footer(f, se);
1505 }
1506
1507 qemu_put_byte(f, QEMU_VM_EOF);
1508
1509 return qemu_file_get_error(f);
1510 }
1511
1512 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1513 {
1514 SaveStateEntry *se;
1515
1516 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1517 if (!strcmp(se->idstr, idstr) &&
1518 (instance_id == se->instance_id ||
1519 instance_id == se->alias_id))
1520 return se;
1521 /* Migrating from an older version? */
1522 if (strstr(se->idstr, idstr) && se->compat) {
1523 if (!strcmp(se->compat->idstr, idstr) &&
1524 (instance_id == se->compat->instance_id ||
1525 instance_id == se->alias_id))
1526 return se;
1527 }
1528 }
1529 return NULL;
1530 }
1531
1532 enum LoadVMExitCodes {
1533 /* Allow a command to quit all layers of nested loadvm loops */
1534 LOADVM_QUIT = 1,
1535 };
1536
1537 /* ------ incoming postcopy messages ------ */
1538 /* 'advise' arrives before any transfers just to tell us that a postcopy
1539 * *might* happen - it might be skipped if precopy transferred everything
1540 * quickly.
1541 */
1542 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis,
1543 uint16_t len)
1544 {
1545 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE);
1546 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps;
1547 Error *local_err = NULL;
1548
1549 trace_loadvm_postcopy_handle_advise();
1550 if (ps != POSTCOPY_INCOMING_NONE) {
1551 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps);
1552 return -1;
1553 }
1554
1555 switch (len) {
1556 case 0:
1557 if (migrate_postcopy_ram()) {
1558 error_report("RAM postcopy is enabled but have 0 byte advise");
1559 return -EINVAL;
1560 }
1561 return 0;
1562 case 8 + 8:
1563 if (!migrate_postcopy_ram()) {
1564 error_report("RAM postcopy is disabled but have 16 byte advise");
1565 return -EINVAL;
1566 }
1567 break;
1568 default:
1569 error_report("CMD_POSTCOPY_ADVISE invalid length (%d)", len);
1570 return -EINVAL;
1571 }
1572
1573 if (!postcopy_ram_supported_by_host(mis)) {
1574 postcopy_state_set(POSTCOPY_INCOMING_NONE);
1575 return -1;
1576 }
1577
1578 remote_pagesize_summary = qemu_get_be64(mis->from_src_file);
1579 local_pagesize_summary = ram_pagesize_summary();
1580
1581 if (remote_pagesize_summary != local_pagesize_summary) {
1582 /*
1583 * This detects two potential causes of mismatch:
1584 * a) A mismatch in host page sizes
1585 * Some combinations of mismatch are probably possible but it gets
1586 * a bit more complicated. In particular we need to place whole
1587 * host pages on the dest at once, and we need to ensure that we
1588 * handle dirtying to make sure we never end up sending part of
1589 * a hostpage on it's own.
1590 * b) The use of different huge page sizes on source/destination
1591 * a more fine grain test is performed during RAM block migration
1592 * but this test here causes a nice early clear failure, and
1593 * also fails when passed to an older qemu that doesn't
1594 * do huge pages.
1595 */
1596 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64
1597 " d=%" PRIx64 ")",
1598 remote_pagesize_summary, local_pagesize_summary);
1599 return -1;
1600 }
1601
1602 remote_tps = qemu_get_be64(mis->from_src_file);
1603 if (remote_tps != qemu_target_page_size()) {
1604 /*
1605 * Again, some differences could be dealt with, but for now keep it
1606 * simple.
1607 */
1608 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)",
1609 (int)remote_tps, qemu_target_page_size());
1610 return -1;
1611 }
1612
1613 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_ADVISE, &local_err)) {
1614 error_report_err(local_err);
1615 return -1;
1616 }
1617
1618 if (ram_postcopy_incoming_init(mis)) {
1619 return -1;
1620 }
1621
1622 postcopy_state_set(POSTCOPY_INCOMING_ADVISE);
1623
1624 return 0;
1625 }
1626
1627 /* After postcopy we will be told to throw some pages away since they're
1628 * dirty and will have to be demand fetched. Must happen before CPU is
1629 * started.
1630 * There can be 0..many of these messages, each encoding multiple pages.
1631 */
1632 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis,
1633 uint16_t len)
1634 {
1635 int tmp;
1636 char ramid[256];
1637 PostcopyState ps = postcopy_state_get();
1638
1639 trace_loadvm_postcopy_ram_handle_discard();
1640
1641 switch (ps) {
1642 case POSTCOPY_INCOMING_ADVISE:
1643 /* 1st discard */
1644 tmp = postcopy_ram_prepare_discard(mis);
1645 if (tmp) {
1646 return tmp;
1647 }
1648 break;
1649
1650 case POSTCOPY_INCOMING_DISCARD:
1651 /* Expected state */
1652 break;
1653
1654 default:
1655 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)",
1656 ps);
1657 return -1;
1658 }
1659 /* We're expecting a
1660 * Version (0)
1661 * a RAM ID string (length byte, name, 0 term)
1662 * then at least 1 16 byte chunk
1663 */
1664 if (len < (1 + 1 + 1 + 1 + 2 * 8)) {
1665 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len);
1666 return -1;
1667 }
1668
1669 tmp = qemu_get_byte(mis->from_src_file);
1670 if (tmp != postcopy_ram_discard_version) {
1671 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp);
1672 return -1;
1673 }
1674
1675 if (!qemu_get_counted_string(mis->from_src_file, ramid)) {
1676 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID");
1677 return -1;
1678 }
1679 tmp = qemu_get_byte(mis->from_src_file);
1680 if (tmp != 0) {
1681 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp);
1682 return -1;
1683 }
1684
1685 len -= 3 + strlen(ramid);
1686 if (len % 16) {
1687 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len);
1688 return -1;
1689 }
1690 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len);
1691 while (len) {
1692 uint64_t start_addr, block_length;
1693 start_addr = qemu_get_be64(mis->from_src_file);
1694 block_length = qemu_get_be64(mis->from_src_file);
1695
1696 len -= 16;
1697 int ret = ram_discard_range(ramid, start_addr, block_length);
1698 if (ret) {
1699 return ret;
1700 }
1701 }
1702 trace_loadvm_postcopy_ram_handle_discard_end();
1703
1704 return 0;
1705 }
1706
1707 /*
1708 * Triggered by a postcopy_listen command; this thread takes over reading
1709 * the input stream, leaving the main thread free to carry on loading the rest
1710 * of the device state (from RAM).
1711 * (TODO:This could do with being in a postcopy file - but there again it's
1712 * just another input loop, not that postcopy specific)
1713 */
1714 static void *postcopy_ram_listen_thread(void *opaque)
1715 {
1716 MigrationIncomingState *mis = migration_incoming_get_current();
1717 QEMUFile *f = mis->from_src_file;
1718 int load_res;
1719
1720 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE,
1721 MIGRATION_STATUS_POSTCOPY_ACTIVE);
1722 qemu_sem_post(&mis->listen_thread_sem);
1723 trace_postcopy_ram_listen_thread_start();
1724
1725 rcu_register_thread();
1726 /*
1727 * Because we're a thread and not a coroutine we can't yield
1728 * in qemu_file, and thus we must be blocking now.
1729 */
1730 qemu_file_set_blocking(f, true);
1731 load_res = qemu_loadvm_state_main(f, mis);
1732
1733 /*
1734 * This is tricky, but, mis->from_src_file can change after it
1735 * returns, when postcopy recovery happened. In the future, we may
1736 * want a wrapper for the QEMUFile handle.
1737 */
1738 f = mis->from_src_file;
1739
1740 /* And non-blocking again so we don't block in any cleanup */
1741 qemu_file_set_blocking(f, false);
1742
1743 trace_postcopy_ram_listen_thread_exit();
1744 if (load_res < 0) {
1745 error_report("%s: loadvm failed: %d", __func__, load_res);
1746 qemu_file_set_error(f, load_res);
1747 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
1748 MIGRATION_STATUS_FAILED);
1749 } else {
1750 /*
1751 * This looks good, but it's possible that the device loading in the
1752 * main thread hasn't finished yet, and so we might not be in 'RUN'
1753 * state yet; wait for the end of the main thread.
1754 */
1755 qemu_event_wait(&mis->main_thread_load_event);
1756 }
1757 postcopy_ram_incoming_cleanup(mis);
1758
1759 if (load_res < 0) {
1760 /*
1761 * If something went wrong then we have a bad state so exit;
1762 * depending how far we got it might be possible at this point
1763 * to leave the guest running and fire MCEs for pages that never
1764 * arrived as a desperate recovery step.
1765 */
1766 rcu_unregister_thread();
1767 exit(EXIT_FAILURE);
1768 }
1769
1770 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
1771 MIGRATION_STATUS_COMPLETED);
1772 /*
1773 * If everything has worked fine, then the main thread has waited
1774 * for us to start, and we're the last use of the mis.
1775 * (If something broke then qemu will have to exit anyway since it's
1776 * got a bad migration state).
1777 */
1778 migration_incoming_state_destroy();
1779 qemu_loadvm_state_cleanup();
1780
1781 rcu_unregister_thread();
1782 mis->have_listen_thread = false;
1783 return NULL;
1784 }
1785
1786 /* After this message we must be able to immediately receive postcopy data */
1787 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis)
1788 {
1789 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING);
1790 trace_loadvm_postcopy_handle_listen();
1791 Error *local_err = NULL;
1792
1793 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) {
1794 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps);
1795 return -1;
1796 }
1797 if (ps == POSTCOPY_INCOMING_ADVISE) {
1798 /*
1799 * A rare case, we entered listen without having to do any discards,
1800 * so do the setup that's normally done at the time of the 1st discard.
1801 */
1802 if (migrate_postcopy_ram()) {
1803 postcopy_ram_prepare_discard(mis);
1804 }
1805 }
1806
1807 /*
1808 * Sensitise RAM - can now generate requests for blocks that don't exist
1809 * However, at this point the CPU shouldn't be running, and the IO
1810 * shouldn't be doing anything yet so don't actually expect requests
1811 */
1812 if (migrate_postcopy_ram()) {
1813 if (postcopy_ram_enable_notify(mis)) {
1814 postcopy_ram_incoming_cleanup(mis);
1815 return -1;
1816 }
1817 }
1818
1819 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_LISTEN, &local_err)) {
1820 error_report_err(local_err);
1821 return -1;
1822 }
1823
1824 if (mis->have_listen_thread) {
1825 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread");
1826 return -1;
1827 }
1828
1829 mis->have_listen_thread = true;
1830 /* Start up the listening thread and wait for it to signal ready */
1831 qemu_sem_init(&mis->listen_thread_sem, 0);
1832 qemu_thread_create(&mis->listen_thread, "postcopy/listen",
1833 postcopy_ram_listen_thread, NULL,
1834 QEMU_THREAD_DETACHED);
1835 qemu_sem_wait(&mis->listen_thread_sem);
1836 qemu_sem_destroy(&mis->listen_thread_sem);
1837
1838 return 0;
1839 }
1840
1841
1842 typedef struct {
1843 QEMUBH *bh;
1844 } HandleRunBhData;
1845
1846 static void loadvm_postcopy_handle_run_bh(void *opaque)
1847 {
1848 Error *local_err = NULL;
1849 HandleRunBhData *data = opaque;
1850 MigrationIncomingState *mis = migration_incoming_get_current();
1851
1852 /* TODO we should move all of this lot into postcopy_ram.c or a shared code
1853 * in migration.c
1854 */
1855 cpu_synchronize_all_post_init();
1856
1857 qemu_announce_self(&mis->announce_timer, migrate_announce_params());
1858
1859 /* Make sure all file formats flush their mutable metadata.
1860 * If we get an error here, just don't restart the VM yet. */
1861 bdrv_invalidate_cache_all(&local_err);
1862 if (local_err) {
1863 error_report_err(local_err);
1864 local_err = NULL;
1865 autostart = false;
1866 }
1867
1868 trace_loadvm_postcopy_handle_run_cpu_sync();
1869
1870 trace_loadvm_postcopy_handle_run_vmstart();
1871
1872 dirty_bitmap_mig_before_vm_start();
1873
1874 if (autostart) {
1875 /* Hold onto your hats, starting the CPU */
1876 vm_start();
1877 } else {
1878 /* leave it paused and let management decide when to start the CPU */
1879 runstate_set(RUN_STATE_PAUSED);
1880 }
1881
1882 qemu_bh_delete(data->bh);
1883 g_free(data);
1884 }
1885
1886 /* After all discards we can start running and asking for pages */
1887 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis)
1888 {
1889 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING);
1890 HandleRunBhData *data;
1891
1892 trace_loadvm_postcopy_handle_run();
1893 if (ps != POSTCOPY_INCOMING_LISTENING) {
1894 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps);
1895 return -1;
1896 }
1897
1898 data = g_new(HandleRunBhData, 1);
1899 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data);
1900 qemu_bh_schedule(data->bh);
1901
1902 /* We need to finish reading the stream from the package
1903 * and also stop reading anything more from the stream that loaded the
1904 * package (since it's now being read by the listener thread).
1905 * LOADVM_QUIT will quit all the layers of nested loadvm loops.
1906 */
1907 return LOADVM_QUIT;
1908 }
1909
1910 static int loadvm_postcopy_handle_resume(MigrationIncomingState *mis)
1911 {
1912 if (mis->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
1913 error_report("%s: illegal resume received", __func__);
1914 /* Don't fail the load, only for this. */
1915 return 0;
1916 }
1917
1918 /*
1919 * This means source VM is ready to resume the postcopy migration.
1920 * It's time to switch state and release the fault thread to
1921 * continue service page faults.
1922 */
1923 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_RECOVER,
1924 MIGRATION_STATUS_POSTCOPY_ACTIVE);
1925 qemu_sem_post(&mis->postcopy_pause_sem_fault);
1926
1927 trace_loadvm_postcopy_handle_resume();
1928
1929 /* Tell source that "we are ready" */
1930 migrate_send_rp_resume_ack(mis, MIGRATION_RESUME_ACK_VALUE);
1931
1932 return 0;
1933 }
1934
1935 /**
1936 * Immediately following this command is a blob of data containing an embedded
1937 * chunk of migration stream; read it and load it.
1938 *
1939 * @mis: Incoming state
1940 * @length: Length of packaged data to read
1941 *
1942 * Returns: Negative values on error
1943 *
1944 */
1945 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis)
1946 {
1947 int ret;
1948 size_t length;
1949 QIOChannelBuffer *bioc;
1950
1951 length = qemu_get_be32(mis->from_src_file);
1952 trace_loadvm_handle_cmd_packaged(length);
1953
1954 if (length > MAX_VM_CMD_PACKAGED_SIZE) {
1955 error_report("Unreasonably large packaged state: %zu", length);
1956 return -1;
1957 }
1958
1959 bioc = qio_channel_buffer_new(length);
1960 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer");
1961 ret = qemu_get_buffer(mis->from_src_file,
1962 bioc->data,
1963 length);
1964 if (ret != length) {
1965 object_unref(OBJECT(bioc));
1966 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu",
1967 ret, length);
1968 return (ret < 0) ? ret : -EAGAIN;
1969 }
1970 bioc->usage += length;
1971 trace_loadvm_handle_cmd_packaged_received(ret);
1972
1973 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc));
1974
1975 ret = qemu_loadvm_state_main(packf, mis);
1976 trace_loadvm_handle_cmd_packaged_main(ret);
1977 qemu_fclose(packf);
1978 object_unref(OBJECT(bioc));
1979
1980 return ret;
1981 }
1982
1983 /*
1984 * Handle request that source requests for recved_bitmap on
1985 * destination. Payload format:
1986 *
1987 * len (1 byte) + ramblock_name (<255 bytes)
1988 */
1989 static int loadvm_handle_recv_bitmap(MigrationIncomingState *mis,
1990 uint16_t len)
1991 {
1992 QEMUFile *file = mis->from_src_file;
1993 RAMBlock *rb;
1994 char block_name[256];
1995 size_t cnt;
1996
1997 cnt = qemu_get_counted_string(file, block_name);
1998 if (!cnt) {
1999 error_report("%s: failed to read block name", __func__);
2000 return -EINVAL;
2001 }
2002
2003 /* Validate before using the data */
2004 if (qemu_file_get_error(file)) {
2005 return qemu_file_get_error(file);
2006 }
2007
2008 if (len != cnt + 1) {
2009 error_report("%s: invalid payload length (%d)", __func__, len);
2010 return -EINVAL;
2011 }
2012
2013 rb = qemu_ram_block_by_name(block_name);
2014 if (!rb) {
2015 error_report("%s: block '%s' not found", __func__, block_name);
2016 return -EINVAL;
2017 }
2018
2019 migrate_send_rp_recv_bitmap(mis, block_name);
2020
2021 trace_loadvm_handle_recv_bitmap(block_name);
2022
2023 return 0;
2024 }
2025
2026 static int loadvm_process_enable_colo(MigrationIncomingState *mis)
2027 {
2028 migration_incoming_enable_colo();
2029 return colo_init_ram_cache();
2030 }
2031
2032 /*
2033 * Process an incoming 'QEMU_VM_COMMAND'
2034 * 0 just a normal return
2035 * LOADVM_QUIT All good, but exit the loop
2036 * <0 Error
2037 */
2038 static int loadvm_process_command(QEMUFile *f)
2039 {
2040 MigrationIncomingState *mis = migration_incoming_get_current();
2041 uint16_t cmd;
2042 uint16_t len;
2043 uint32_t tmp32;
2044
2045 cmd = qemu_get_be16(f);
2046 len = qemu_get_be16(f);
2047
2048 /* Check validity before continue processing of cmds */
2049 if (qemu_file_get_error(f)) {
2050 return qemu_file_get_error(f);
2051 }
2052
2053 trace_loadvm_process_command(cmd, len);
2054 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) {
2055 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len);
2056 return -EINVAL;
2057 }
2058
2059 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) {
2060 error_report("%s received with bad length - expecting %zu, got %d",
2061 mig_cmd_args[cmd].name,
2062 (size_t)mig_cmd_args[cmd].len, len);
2063 return -ERANGE;
2064 }
2065
2066 switch (cmd) {
2067 case MIG_CMD_OPEN_RETURN_PATH:
2068 if (mis->to_src_file) {
2069 error_report("CMD_OPEN_RETURN_PATH called when RP already open");
2070 /* Not really a problem, so don't give up */
2071 return 0;
2072 }
2073 mis->to_src_file = qemu_file_get_return_path(f);
2074 if (!mis->to_src_file) {
2075 error_report("CMD_OPEN_RETURN_PATH failed");
2076 return -1;
2077 }
2078 break;
2079
2080 case MIG_CMD_PING:
2081 tmp32 = qemu_get_be32(f);
2082 trace_loadvm_process_command_ping(tmp32);
2083 if (!mis->to_src_file) {
2084 error_report("CMD_PING (0x%x) received with no return path",
2085 tmp32);
2086 return -1;
2087 }
2088 migrate_send_rp_pong(mis, tmp32);
2089 break;
2090
2091 case MIG_CMD_PACKAGED:
2092 return loadvm_handle_cmd_packaged(mis);
2093
2094 case MIG_CMD_POSTCOPY_ADVISE:
2095 return loadvm_postcopy_handle_advise(mis, len);
2096
2097 case MIG_CMD_POSTCOPY_LISTEN:
2098 return loadvm_postcopy_handle_listen(mis);
2099
2100 case MIG_CMD_POSTCOPY_RUN:
2101 return loadvm_postcopy_handle_run(mis);
2102
2103 case MIG_CMD_POSTCOPY_RAM_DISCARD:
2104 return loadvm_postcopy_ram_handle_discard(mis, len);
2105
2106 case MIG_CMD_POSTCOPY_RESUME:
2107 return loadvm_postcopy_handle_resume(mis);
2108
2109 case MIG_CMD_RECV_BITMAP:
2110 return loadvm_handle_recv_bitmap(mis, len);
2111
2112 case MIG_CMD_ENABLE_COLO:
2113 return loadvm_process_enable_colo(mis);
2114 }
2115
2116 return 0;
2117 }
2118
2119 /*
2120 * Read a footer off the wire and check that it matches the expected section
2121 *
2122 * Returns: true if the footer was good
2123 * false if there is a problem (and calls error_report to say why)
2124 */
2125 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se)
2126 {
2127 int ret;
2128 uint8_t read_mark;
2129 uint32_t read_section_id;
2130
2131 if (!migrate_get_current()->send_section_footer) {
2132 /* No footer to check */
2133 return true;
2134 }
2135
2136 read_mark = qemu_get_byte(f);
2137
2138 ret = qemu_file_get_error(f);
2139 if (ret) {
2140 error_report("%s: Read section footer failed: %d",
2141 __func__, ret);
2142 return false;
2143 }
2144
2145 if (read_mark != QEMU_VM_SECTION_FOOTER) {
2146 error_report("Missing section footer for %s", se->idstr);
2147 return false;
2148 }
2149
2150 read_section_id = qemu_get_be32(f);
2151 if (read_section_id != se->load_section_id) {
2152 error_report("Mismatched section id in footer for %s -"
2153 " read 0x%x expected 0x%x",
2154 se->idstr, read_section_id, se->load_section_id);
2155 return false;
2156 }
2157
2158 /* All good */
2159 return true;
2160 }
2161
2162 static int
2163 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis)
2164 {
2165 uint32_t instance_id, version_id, section_id;
2166 SaveStateEntry *se;
2167 char idstr[256];
2168 int ret;
2169
2170 /* Read section start */
2171 section_id = qemu_get_be32(f);
2172 if (!qemu_get_counted_string(f, idstr)) {
2173 error_report("Unable to read ID string for section %u",
2174 section_id);
2175 return -EINVAL;
2176 }
2177 instance_id = qemu_get_be32(f);
2178 version_id = qemu_get_be32(f);
2179
2180 ret = qemu_file_get_error(f);
2181 if (ret) {
2182 error_report("%s: Failed to read instance/version ID: %d",
2183 __func__, ret);
2184 return ret;
2185 }
2186
2187 trace_qemu_loadvm_state_section_startfull(section_id, idstr,
2188 instance_id, version_id);
2189 /* Find savevm section */
2190 se = find_se(idstr, instance_id);
2191 if (se == NULL) {
2192 error_report("Unknown savevm section or instance '%s' %d. "
2193 "Make sure that your current VM setup matches your "
2194 "saved VM setup, including any hotplugged devices",
2195 idstr, instance_id);
2196 return -EINVAL;
2197 }
2198
2199 /* Validate version */
2200 if (version_id > se->version_id) {
2201 error_report("savevm: unsupported version %d for '%s' v%d",
2202 version_id, idstr, se->version_id);
2203 return -EINVAL;
2204 }
2205 se->load_version_id = version_id;
2206 se->load_section_id = section_id;
2207
2208 /* Validate if it is a device's state */
2209 if (xen_enabled() && se->is_ram) {
2210 error_report("loadvm: %s RAM loading not allowed on Xen", idstr);
2211 return -EINVAL;
2212 }
2213
2214 ret = vmstate_load(f, se);
2215 if (ret < 0) {
2216 error_report("error while loading state for instance 0x%x of"
2217 " device '%s'", instance_id, idstr);
2218 return ret;
2219 }
2220 if (!check_section_footer(f, se)) {
2221 return -EINVAL;
2222 }
2223
2224 return 0;
2225 }
2226
2227 static int
2228 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis)
2229 {
2230 uint32_t section_id;
2231 SaveStateEntry *se;
2232 int ret;
2233
2234 section_id = qemu_get_be32(f);
2235
2236 ret = qemu_file_get_error(f);
2237 if (ret) {
2238 error_report("%s: Failed to read section ID: %d",
2239 __func__, ret);
2240 return ret;
2241 }
2242
2243 trace_qemu_loadvm_state_section_partend(section_id);
2244 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2245 if (se->load_section_id == section_id) {
2246 break;
2247 }
2248 }
2249 if (se == NULL) {
2250 error_report("Unknown savevm section %d", section_id);
2251 return -EINVAL;
2252 }
2253
2254 ret = vmstate_load(f, se);
2255 if (ret < 0) {
2256 error_report("error while loading state section id %d(%s)",
2257 section_id, se->idstr);
2258 return ret;
2259 }
2260 if (!check_section_footer(f, se)) {
2261 return -EINVAL;
2262 }
2263
2264 return 0;
2265 }
2266
2267 static int qemu_loadvm_state_header(QEMUFile *f)
2268 {
2269 unsigned int v;
2270 int ret;
2271
2272 v = qemu_get_be32(f);
2273 if (v != QEMU_VM_FILE_MAGIC) {
2274 error_report("Not a migration stream");
2275 return -EINVAL;
2276 }
2277
2278 v = qemu_get_be32(f);
2279 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2280 error_report("SaveVM v2 format is obsolete and don't work anymore");
2281 return -ENOTSUP;
2282 }
2283 if (v != QEMU_VM_FILE_VERSION) {
2284 error_report("Unsupported migration stream version");
2285 return -ENOTSUP;
2286 }
2287
2288 if (migrate_get_current()->send_configuration) {
2289 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) {
2290 error_report("Configuration section missing");
2291 qemu_loadvm_state_cleanup();
2292 return -EINVAL;
2293 }
2294 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0);
2295
2296 if (ret) {
2297 qemu_loadvm_state_cleanup();
2298 return ret;
2299 }
2300 }
2301 return 0;
2302 }
2303
2304 static int qemu_loadvm_state_setup(QEMUFile *f)
2305 {
2306 SaveStateEntry *se;
2307 int ret;
2308
2309 trace_loadvm_state_setup();
2310 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2311 if (!se->ops || !se->ops->load_setup) {
2312 continue;
2313 }
2314 if (se->ops && se->ops->is_active) {
2315 if (!se->ops->is_active(se->opaque)) {
2316 continue;
2317 }
2318 }
2319
2320 ret = se->ops->load_setup(f, se->opaque);
2321 if (ret < 0) {
2322 qemu_file_set_error(f, ret);
2323 error_report("Load state of device %s failed", se->idstr);
2324 return ret;
2325 }
2326 }
2327 return 0;
2328 }
2329
2330 void qemu_loadvm_state_cleanup(void)
2331 {
2332 SaveStateEntry *se;
2333
2334 trace_loadvm_state_cleanup();
2335 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2336 if (se->ops && se->ops->load_cleanup) {
2337 se->ops->load_cleanup(se->opaque);
2338 }
2339 }
2340 }
2341
2342 /* Return true if we should continue the migration, or false. */
2343 static bool postcopy_pause_incoming(MigrationIncomingState *mis)
2344 {
2345 trace_postcopy_pause_incoming();
2346
2347 /* Clear the triggered bit to allow one recovery */
2348 mis->postcopy_recover_triggered = false;
2349
2350 assert(mis->from_src_file);
2351 qemu_file_shutdown(mis->from_src_file);
2352 qemu_fclose(mis->from_src_file);
2353 mis->from_src_file = NULL;
2354
2355 assert(mis->to_src_file);
2356 qemu_file_shutdown(mis->to_src_file);
2357 qemu_mutex_lock(&mis->rp_mutex);
2358 qemu_fclose(mis->to_src_file);
2359 mis->to_src_file = NULL;
2360 qemu_mutex_unlock(&mis->rp_mutex);
2361
2362 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
2363 MIGRATION_STATUS_POSTCOPY_PAUSED);
2364
2365 /* Notify the fault thread for the invalidated file handle */
2366 postcopy_fault_thread_notify(mis);
2367
2368 error_report("Detected IO failure for postcopy. "
2369 "Migration paused.");
2370
2371 while (mis->state == MIGRATION_STATUS_POSTCOPY_PAUSED) {
2372 qemu_sem_wait(&mis->postcopy_pause_sem_dst);
2373 }
2374
2375 trace_postcopy_pause_incoming_continued();
2376
2377 return true;
2378 }
2379
2380 int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis)
2381 {
2382 uint8_t section_type;
2383 int ret = 0;
2384
2385 retry:
2386 while (true) {
2387 section_type = qemu_get_byte(f);
2388
2389 if (qemu_file_get_error(f)) {
2390 ret = qemu_file_get_error(f);
2391 break;
2392 }
2393
2394 trace_qemu_loadvm_state_section(section_type);
2395 switch (section_type) {
2396 case QEMU_VM_SECTION_START:
2397 case QEMU_VM_SECTION_FULL:
2398 ret = qemu_loadvm_section_start_full(f, mis);
2399 if (ret < 0) {
2400 goto out;
2401 }
2402 break;
2403 case QEMU_VM_SECTION_PART:
2404 case QEMU_VM_SECTION_END:
2405 ret = qemu_loadvm_section_part_end(f, mis);
2406 if (ret < 0) {
2407 goto out;
2408 }
2409 break;
2410 case QEMU_VM_COMMAND:
2411 ret = loadvm_process_command(f);
2412 trace_qemu_loadvm_state_section_command(ret);
2413 if ((ret < 0) || (ret & LOADVM_QUIT)) {
2414 goto out;
2415 }
2416 break;
2417 case QEMU_VM_EOF:
2418 /* This is the end of migration */
2419 goto out;
2420 default:
2421 error_report("Unknown savevm section type %d", section_type);
2422 ret = -EINVAL;
2423 goto out;
2424 }
2425 }
2426
2427 out:
2428 if (ret < 0) {
2429 qemu_file_set_error(f, ret);
2430
2431 /*
2432 * If we are during an active postcopy, then we pause instead
2433 * of bail out to at least keep the VM's dirty data. Note
2434 * that POSTCOPY_INCOMING_LISTENING stage is still not enough,
2435 * during which we're still receiving device states and we
2436 * still haven't yet started the VM on destination.
2437 */
2438 if (postcopy_state_get() == POSTCOPY_INCOMING_RUNNING &&
2439 postcopy_pause_incoming(mis)) {
2440 /* Reset f to point to the newly created channel */
2441 f = mis->from_src_file;
2442 goto retry;
2443 }
2444 }
2445 return ret;
2446 }
2447
2448 int qemu_loadvm_state(QEMUFile *f)
2449 {
2450 MigrationIncomingState *mis = migration_incoming_get_current();
2451 Error *local_err = NULL;
2452 int ret;
2453
2454 if (qemu_savevm_state_blocked(&local_err)) {
2455 error_report_err(local_err);
2456 return -EINVAL;
2457 }
2458
2459 ret = qemu_loadvm_state_header(f);
2460 if (ret) {
2461 return ret;
2462 }
2463
2464 if (qemu_loadvm_state_setup(f) != 0) {
2465 return -EINVAL;
2466 }
2467
2468 cpu_synchronize_all_pre_loadvm();
2469
2470 ret = qemu_loadvm_state_main(f, mis);
2471 qemu_event_set(&mis->main_thread_load_event);
2472
2473 trace_qemu_loadvm_state_post_main(ret);
2474
2475 if (mis->have_listen_thread) {
2476 /* Listen thread still going, can't clean up yet */
2477 return ret;
2478 }
2479
2480 if (ret == 0) {
2481 ret = qemu_file_get_error(f);
2482 }
2483
2484 /*
2485 * Try to read in the VMDESC section as well, so that dumping tools that
2486 * intercept our migration stream have the chance to see it.
2487 */
2488
2489 /* We've got to be careful; if we don't read the data and just shut the fd
2490 * then the sender can error if we close while it's still sending.
2491 * We also mustn't read data that isn't there; some transports (RDMA)
2492 * will stall waiting for that data when the source has already closed.
2493 */
2494 if (ret == 0 && should_send_vmdesc()) {
2495 uint8_t *buf;
2496 uint32_t size;
2497 uint8_t section_type = qemu_get_byte(f);
2498
2499 if (section_type != QEMU_VM_VMDESCRIPTION) {
2500 error_report("Expected vmdescription section, but got %d",
2501 section_type);
2502 /*
2503 * It doesn't seem worth failing at this point since
2504 * we apparently have an otherwise valid VM state
2505 */
2506 } else {
2507 buf = g_malloc(0x1000);
2508 size = qemu_get_be32(f);
2509
2510 while (size > 0) {
2511 uint32_t read_chunk = MIN(size, 0x1000);
2512 qemu_get_buffer(f, buf, read_chunk);
2513 size -= read_chunk;
2514 }
2515 g_free(buf);
2516 }
2517 }
2518
2519 qemu_loadvm_state_cleanup();
2520 cpu_synchronize_all_post_init();
2521
2522 return ret;
2523 }
2524
2525 int qemu_load_device_state(QEMUFile *f)
2526 {
2527 MigrationIncomingState *mis = migration_incoming_get_current();
2528 int ret;
2529
2530 /* Load QEMU_VM_SECTION_FULL section */
2531 ret = qemu_loadvm_state_main(f, mis);
2532 if (ret < 0) {
2533 error_report("Failed to load device state: %d", ret);
2534 return ret;
2535 }
2536
2537 cpu_synchronize_all_post_init();
2538 return 0;
2539 }
2540
2541 int save_snapshot(const char *name, Error **errp)
2542 {
2543 BlockDriverState *bs, *bs1;
2544 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2545 int ret = -1;
2546 QEMUFile *f;
2547 int saved_vm_running;
2548 uint64_t vm_state_size;
2549 qemu_timeval tv;
2550 struct tm tm;
2551 AioContext *aio_context;
2552
2553 if (migration_is_blocked(errp)) {
2554 return ret;
2555 }
2556
2557 if (!replay_can_snapshot()) {
2558 error_setg(errp, "Record/replay does not allow making snapshot "
2559 "right now. Try once more later.");
2560 return ret;
2561 }
2562
2563 if (!bdrv_all_can_snapshot(&bs)) {
2564 error_setg(errp, "Device '%s' is writable but does not support "
2565 "snapshots", bdrv_get_device_name(bs));
2566 return ret;
2567 }
2568
2569 /* Delete old snapshots of the same name */
2570 if (name) {
2571 ret = bdrv_all_delete_snapshot(name, &bs1, errp);
2572 if (ret < 0) {
2573 error_prepend(errp, "Error while deleting snapshot on device "
2574 "'%s': ", bdrv_get_device_name(bs1));
2575 return ret;
2576 }
2577 }
2578
2579 bs = bdrv_all_find_vmstate_bs();
2580 if (bs == NULL) {
2581 error_setg(errp, "No block device can accept snapshots");
2582 return ret;
2583 }
2584 aio_context = bdrv_get_aio_context(bs);
2585
2586 saved_vm_running = runstate_is_running();
2587
2588 ret = global_state_store();
2589 if (ret) {
2590 error_setg(errp, "Error saving global state");
2591 return ret;
2592 }
2593 vm_stop(RUN_STATE_SAVE_VM);
2594
2595 bdrv_drain_all_begin();
2596
2597 aio_context_acquire(aio_context);
2598
2599 memset(sn, 0, sizeof(*sn));
2600
2601 /* fill auxiliary fields */
2602 qemu_gettimeofday(&tv);
2603 sn->date_sec = tv.tv_sec;
2604 sn->date_nsec = tv.tv_usec * 1000;
2605 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2606
2607 if (name) {
2608 ret = bdrv_snapshot_find(bs, old_sn, name);
2609 if (ret >= 0) {
2610 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2611 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2612 } else {
2613 pstrcpy(sn->name, sizeof(sn->name), name);
2614 }
2615 } else {
2616 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2617 localtime_r((const time_t *)&tv.tv_sec, &tm);
2618 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2619 }
2620
2621 /* save the VM state */
2622 f = qemu_fopen_bdrv(bs, 1);
2623 if (!f) {
2624 error_setg(errp, "Could not open VM state file");
2625 goto the_end;
2626 }
2627 ret = qemu_savevm_state(f, errp);
2628 vm_state_size = qemu_ftell(f);
2629 qemu_fclose(f);
2630 if (ret < 0) {
2631 goto the_end;
2632 }
2633
2634 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext
2635 * for itself. BDRV_POLL_WHILE() does not support nested locking because
2636 * it only releases the lock once. Therefore synchronous I/O will deadlock
2637 * unless we release the AioContext before bdrv_all_create_snapshot().
2638 */
2639 aio_context_release(aio_context);
2640 aio_context = NULL;
2641
2642 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs);
2643 if (ret < 0) {
2644 error_setg(errp, "Error while creating snapshot on '%s'",
2645 bdrv_get_device_name(bs));
2646 goto the_end;
2647 }
2648
2649 ret = 0;
2650
2651 the_end:
2652 if (aio_context) {
2653 aio_context_release(aio_context);
2654 }
2655
2656 bdrv_drain_all_end();
2657
2658 if (saved_vm_running) {
2659 vm_start();
2660 }
2661 return ret;
2662 }
2663
2664 void qmp_xen_save_devices_state(const char *filename, bool has_live, bool live,
2665 Error **errp)
2666 {
2667 QEMUFile *f;
2668 QIOChannelFile *ioc;
2669 int saved_vm_running;
2670 int ret;
2671
2672 if (!has_live) {
2673 /* live default to true so old version of Xen tool stack can have a
2674 * successfull live migration */
2675 live = true;
2676 }
2677
2678 saved_vm_running = runstate_is_running();
2679 vm_stop(RUN_STATE_SAVE_VM);
2680 global_state_store_running();
2681
2682 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp);
2683 if (!ioc) {
2684 goto the_end;
2685 }
2686 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state");
2687 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc));
2688 object_unref(OBJECT(ioc));
2689 ret = qemu_save_device_state(f);
2690 if (ret < 0 || qemu_fclose(f) < 0) {
2691 error_setg(errp, QERR_IO_ERROR);
2692 } else {
2693 /* libxl calls the QMP command "stop" before calling
2694 * "xen-save-devices-state" and in case of migration failure, libxl
2695 * would call "cont".
2696 * So call bdrv_inactivate_all (release locks) here to let the other
2697 * side of the migration take controle of the images.
2698 */
2699 if (live && !saved_vm_running) {
2700 ret = bdrv_inactivate_all();
2701 if (ret) {
2702 error_setg(errp, "%s: bdrv_inactivate_all() failed (%d)",
2703 __func__, ret);
2704 }
2705 }
2706 }
2707
2708 the_end:
2709 if (saved_vm_running) {
2710 vm_start();
2711 }
2712 }
2713
2714 void qmp_xen_load_devices_state(const char *filename, Error **errp)
2715 {
2716 QEMUFile *f;
2717 QIOChannelFile *ioc;
2718 int ret;
2719
2720 /* Guest must be paused before loading the device state; the RAM state
2721 * will already have been loaded by xc
2722 */
2723 if (runstate_is_running()) {
2724 error_setg(errp, "Cannot update device state while vm is running");
2725 return;
2726 }
2727 vm_stop(RUN_STATE_RESTORE_VM);
2728
2729 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp);
2730 if (!ioc) {
2731 return;
2732 }
2733 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state");
2734 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc));
2735 object_unref(OBJECT(ioc));
2736
2737 ret = qemu_loadvm_state(f);
2738 qemu_fclose(f);
2739 if (ret < 0) {
2740 error_setg(errp, QERR_IO_ERROR);
2741 }
2742 migration_incoming_state_destroy();
2743 }
2744
2745 int load_snapshot(const char *name, Error **errp)
2746 {
2747 BlockDriverState *bs, *bs_vm_state;
2748 QEMUSnapshotInfo sn;
2749 QEMUFile *f;
2750 int ret;
2751 AioContext *aio_context;
2752 MigrationIncomingState *mis = migration_incoming_get_current();
2753
2754 if (!replay_can_snapshot()) {
2755 error_setg(errp, "Record/replay does not allow loading snapshot "
2756 "right now. Try once more later.");
2757 return -EINVAL;
2758 }
2759
2760 if (!bdrv_all_can_snapshot(&bs)) {
2761 error_setg(errp,
2762 "Device '%s' is writable but does not support snapshots",
2763 bdrv_get_device_name(bs));
2764 return -ENOTSUP;
2765 }
2766 ret = bdrv_all_find_snapshot(name, &bs);
2767 if (ret < 0) {
2768 error_setg(errp,
2769 "Device '%s' does not have the requested snapshot '%s'",
2770 bdrv_get_device_name(bs), name);
2771 return ret;
2772 }
2773
2774 bs_vm_state = bdrv_all_find_vmstate_bs();
2775 if (!bs_vm_state) {
2776 error_setg(errp, "No block device supports snapshots");
2777 return -ENOTSUP;
2778 }
2779 aio_context = bdrv_get_aio_context(bs_vm_state);
2780
2781 /* Don't even try to load empty VM states */
2782 aio_context_acquire(aio_context);
2783 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2784 aio_context_release(aio_context);
2785 if (ret < 0) {
2786 return ret;
2787 } else if (sn.vm_state_size == 0) {
2788 error_setg(errp, "This is a disk-only snapshot. Revert to it "
2789 " offline using qemu-img");
2790 return -EINVAL;
2791 }
2792
2793 /* Flush all IO requests so they don't interfere with the new state. */
2794 bdrv_drain_all_begin();
2795
2796 ret = bdrv_all_goto_snapshot(name, &bs, errp);
2797 if (ret < 0) {
2798 error_prepend(errp, "Could not load snapshot '%s' on '%s': ",
2799 name, bdrv_get_device_name(bs));
2800 goto err_drain;
2801 }
2802
2803 /* restore the VM state */
2804 f = qemu_fopen_bdrv(bs_vm_state, 0);
2805 if (!f) {
2806 error_setg(errp, "Could not open VM state file");
2807 ret = -EINVAL;
2808 goto err_drain;
2809 }
2810
2811 qemu_system_reset(SHUTDOWN_CAUSE_NONE);
2812 mis->from_src_file = f;
2813
2814 aio_context_acquire(aio_context);
2815 ret = qemu_loadvm_state(f);
2816 migration_incoming_state_destroy();
2817 aio_context_release(aio_context);
2818
2819 bdrv_drain_all_end();
2820
2821 if (ret < 0) {
2822 error_setg(errp, "Error %d while loading VM state", ret);
2823 return ret;
2824 }
2825
2826 return 0;
2827
2828 err_drain:
2829 bdrv_drain_all_end();
2830 return ret;
2831 }
2832
2833 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2834 {
2835 qemu_ram_set_idstr(mr->ram_block,
2836 memory_region_name(mr), dev);
2837 qemu_ram_set_migratable(mr->ram_block);
2838 }
2839
2840 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2841 {
2842 qemu_ram_unset_idstr(mr->ram_block);
2843 qemu_ram_unset_migratable(mr->ram_block);
2844 }
2845
2846 void vmstate_register_ram_global(MemoryRegion *mr)
2847 {
2848 vmstate_register_ram(mr, NULL);
2849 }
2850
2851 bool vmstate_check_only_migratable(const VMStateDescription *vmsd)
2852 {
2853 /* check needed if --only-migratable is specified */
2854 if (!only_migratable) {
2855 return true;
2856 }
2857
2858 return !(vmsd && vmsd->unmigratable);
2859 }