]> git.proxmox.com Git - mirror_qemu.git/blob - migration/savevm.c
migration: avoid segmentfault when take a snapshot of a VM which being migrated
[mirror_qemu.git] / migration / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2009-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #include "net/net.h"
33 #include "migration.h"
34 #include "migration/snapshot.h"
35 #include "migration/misc.h"
36 #include "migration/register.h"
37 #include "migration/global_state.h"
38 #include "ram.h"
39 #include "qemu-file-channel.h"
40 #include "qemu-file.h"
41 #include "savevm.h"
42 #include "postcopy-ram.h"
43 #include "qapi/error.h"
44 #include "qapi/qapi-commands-migration.h"
45 #include "qapi/qapi-commands-misc.h"
46 #include "qapi/qmp/qerror.h"
47 #include "qemu/error-report.h"
48 #include "sysemu/cpus.h"
49 #include "exec/memory.h"
50 #include "exec/target_page.h"
51 #include "trace.h"
52 #include "qemu/iov.h"
53 #include "block/snapshot.h"
54 #include "qemu/cutils.h"
55 #include "io/channel-buffer.h"
56 #include "io/channel-file.h"
57 #include "sysemu/replay.h"
58 #include "qjson.h"
59 #include "migration/colo.h"
60
61 #ifndef ETH_P_RARP
62 #define ETH_P_RARP 0x8035
63 #endif
64 #define ARP_HTYPE_ETH 0x0001
65 #define ARP_PTYPE_IP 0x0800
66 #define ARP_OP_REQUEST_REV 0x3
67
68 const unsigned int postcopy_ram_discard_version = 0;
69
70 /* Subcommands for QEMU_VM_COMMAND */
71 enum qemu_vm_cmd {
72 MIG_CMD_INVALID = 0, /* Must be 0 */
73 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */
74 MIG_CMD_PING, /* Request a PONG on the RP */
75
76 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just
77 warn we might want to do PC */
78 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming
79 pages as it's running. */
80 MIG_CMD_POSTCOPY_RUN, /* Start execution */
81
82 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that
83 were previously sent during
84 precopy but are dirty. */
85 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */
86 MIG_CMD_ENABLE_COLO, /* Enable COLO */
87 MIG_CMD_POSTCOPY_RESUME, /* resume postcopy on dest */
88 MIG_CMD_RECV_BITMAP, /* Request for recved bitmap on dst */
89 MIG_CMD_MAX
90 };
91
92 #define MAX_VM_CMD_PACKAGED_SIZE UINT32_MAX
93 static struct mig_cmd_args {
94 ssize_t len; /* -1 = variable */
95 const char *name;
96 } mig_cmd_args[] = {
97 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" },
98 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" },
99 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" },
100 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" },
101 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" },
102 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" },
103 [MIG_CMD_POSTCOPY_RAM_DISCARD] = {
104 .len = -1, .name = "POSTCOPY_RAM_DISCARD" },
105 [MIG_CMD_POSTCOPY_RESUME] = { .len = 0, .name = "POSTCOPY_RESUME" },
106 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" },
107 [MIG_CMD_RECV_BITMAP] = { .len = -1, .name = "RECV_BITMAP" },
108 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" },
109 };
110
111 /* Note for MIG_CMD_POSTCOPY_ADVISE:
112 * The format of arguments is depending on postcopy mode:
113 * - postcopy RAM only
114 * uint64_t host page size
115 * uint64_t taget page size
116 *
117 * - postcopy RAM and postcopy dirty bitmaps
118 * format is the same as for postcopy RAM only
119 *
120 * - postcopy dirty bitmaps only
121 * Nothing. Command length field is 0.
122 *
123 * Be careful: adding a new postcopy entity with some other parameters should
124 * not break format self-description ability. Good way is to introduce some
125 * generic extendable format with an exception for two old entities.
126 */
127
128 static int announce_self_create(uint8_t *buf,
129 uint8_t *mac_addr)
130 {
131 /* Ethernet header. */
132 memset(buf, 0xff, 6); /* destination MAC addr */
133 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
134 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
135
136 /* RARP header. */
137 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
138 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
139 *(buf + 18) = 6; /* hardware addr length (ethernet) */
140 *(buf + 19) = 4; /* protocol addr length (IPv4) */
141 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
142 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
143 memset(buf + 28, 0x00, 4); /* source protocol addr */
144 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
145 memset(buf + 38, 0x00, 4); /* target protocol addr */
146
147 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
148 memset(buf + 42, 0x00, 18);
149
150 return 60; /* len (FCS will be added by hardware) */
151 }
152
153 static void qemu_announce_self_iter(NICState *nic, void *opaque)
154 {
155 uint8_t buf[60];
156 int len;
157
158 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr));
159 len = announce_self_create(buf, nic->conf->macaddr.a);
160
161 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
162 }
163
164
165 static void qemu_announce_self_once(void *opaque)
166 {
167 static int count = SELF_ANNOUNCE_ROUNDS;
168 QEMUTimer *timer = *(QEMUTimer **)opaque;
169
170 qemu_foreach_nic(qemu_announce_self_iter, NULL);
171
172 if (--count) {
173 /* delay 50ms, 150ms, 250ms, ... */
174 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) +
175 self_announce_delay(count));
176 } else {
177 timer_del(timer);
178 timer_free(timer);
179 }
180 }
181
182 void qemu_announce_self(void)
183 {
184 static QEMUTimer *timer;
185 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer);
186 qemu_announce_self_once(&timer);
187 }
188
189 /***********************************************************/
190 /* savevm/loadvm support */
191
192 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
193 int64_t pos)
194 {
195 int ret;
196 QEMUIOVector qiov;
197
198 qemu_iovec_init_external(&qiov, iov, iovcnt);
199 ret = bdrv_writev_vmstate(opaque, &qiov, pos);
200 if (ret < 0) {
201 return ret;
202 }
203
204 return qiov.size;
205 }
206
207 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos,
208 size_t size)
209 {
210 return bdrv_load_vmstate(opaque, buf, pos, size);
211 }
212
213 static int bdrv_fclose(void *opaque)
214 {
215 return bdrv_flush(opaque);
216 }
217
218 static const QEMUFileOps bdrv_read_ops = {
219 .get_buffer = block_get_buffer,
220 .close = bdrv_fclose
221 };
222
223 static const QEMUFileOps bdrv_write_ops = {
224 .writev_buffer = block_writev_buffer,
225 .close = bdrv_fclose
226 };
227
228 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
229 {
230 if (is_writable) {
231 return qemu_fopen_ops(bs, &bdrv_write_ops);
232 }
233 return qemu_fopen_ops(bs, &bdrv_read_ops);
234 }
235
236
237 /* QEMUFile timer support.
238 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c
239 */
240
241 void timer_put(QEMUFile *f, QEMUTimer *ts)
242 {
243 uint64_t expire_time;
244
245 expire_time = timer_expire_time_ns(ts);
246 qemu_put_be64(f, expire_time);
247 }
248
249 void timer_get(QEMUFile *f, QEMUTimer *ts)
250 {
251 uint64_t expire_time;
252
253 expire_time = qemu_get_be64(f);
254 if (expire_time != -1) {
255 timer_mod_ns(ts, expire_time);
256 } else {
257 timer_del(ts);
258 }
259 }
260
261
262 /* VMState timer support.
263 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c
264 */
265
266 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field)
267 {
268 QEMUTimer *v = pv;
269 timer_get(f, v);
270 return 0;
271 }
272
273 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field,
274 QJSON *vmdesc)
275 {
276 QEMUTimer *v = pv;
277 timer_put(f, v);
278
279 return 0;
280 }
281
282 const VMStateInfo vmstate_info_timer = {
283 .name = "timer",
284 .get = get_timer,
285 .put = put_timer,
286 };
287
288
289 typedef struct CompatEntry {
290 char idstr[256];
291 int instance_id;
292 } CompatEntry;
293
294 typedef struct SaveStateEntry {
295 QTAILQ_ENTRY(SaveStateEntry) entry;
296 char idstr[256];
297 int instance_id;
298 int alias_id;
299 int version_id;
300 /* version id read from the stream */
301 int load_version_id;
302 int section_id;
303 /* section id read from the stream */
304 int load_section_id;
305 SaveVMHandlers *ops;
306 const VMStateDescription *vmsd;
307 void *opaque;
308 CompatEntry *compat;
309 int is_ram;
310 } SaveStateEntry;
311
312 typedef struct SaveState {
313 QTAILQ_HEAD(, SaveStateEntry) handlers;
314 int global_section_id;
315 uint32_t len;
316 const char *name;
317 uint32_t target_page_bits;
318 } SaveState;
319
320 static SaveState savevm_state = {
321 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers),
322 .global_section_id = 0,
323 };
324
325 static int configuration_pre_save(void *opaque)
326 {
327 SaveState *state = opaque;
328 const char *current_name = MACHINE_GET_CLASS(current_machine)->name;
329
330 state->len = strlen(current_name);
331 state->name = current_name;
332 state->target_page_bits = qemu_target_page_bits();
333
334 return 0;
335 }
336
337 static int configuration_pre_load(void *opaque)
338 {
339 SaveState *state = opaque;
340
341 /* If there is no target-page-bits subsection it means the source
342 * predates the variable-target-page-bits support and is using the
343 * minimum possible value for this CPU.
344 */
345 state->target_page_bits = qemu_target_page_bits_min();
346 return 0;
347 }
348
349 static int configuration_post_load(void *opaque, int version_id)
350 {
351 SaveState *state = opaque;
352 const char *current_name = MACHINE_GET_CLASS(current_machine)->name;
353
354 if (strncmp(state->name, current_name, state->len) != 0) {
355 error_report("Machine type received is '%.*s' and local is '%s'",
356 (int) state->len, state->name, current_name);
357 return -EINVAL;
358 }
359
360 if (state->target_page_bits != qemu_target_page_bits()) {
361 error_report("Received TARGET_PAGE_BITS is %d but local is %d",
362 state->target_page_bits, qemu_target_page_bits());
363 return -EINVAL;
364 }
365
366 return 0;
367 }
368
369 /* The target-page-bits subsection is present only if the
370 * target page size is not the same as the default (ie the
371 * minimum page size for a variable-page-size guest CPU).
372 * If it is present then it contains the actual target page
373 * bits for the machine, and migration will fail if the
374 * two ends don't agree about it.
375 */
376 static bool vmstate_target_page_bits_needed(void *opaque)
377 {
378 return qemu_target_page_bits()
379 > qemu_target_page_bits_min();
380 }
381
382 static const VMStateDescription vmstate_target_page_bits = {
383 .name = "configuration/target-page-bits",
384 .version_id = 1,
385 .minimum_version_id = 1,
386 .needed = vmstate_target_page_bits_needed,
387 .fields = (VMStateField[]) {
388 VMSTATE_UINT32(target_page_bits, SaveState),
389 VMSTATE_END_OF_LIST()
390 }
391 };
392
393 static const VMStateDescription vmstate_configuration = {
394 .name = "configuration",
395 .version_id = 1,
396 .pre_load = configuration_pre_load,
397 .post_load = configuration_post_load,
398 .pre_save = configuration_pre_save,
399 .fields = (VMStateField[]) {
400 VMSTATE_UINT32(len, SaveState),
401 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len),
402 VMSTATE_END_OF_LIST()
403 },
404 .subsections = (const VMStateDescription*[]) {
405 &vmstate_target_page_bits,
406 NULL
407 }
408 };
409
410 static void dump_vmstate_vmsd(FILE *out_file,
411 const VMStateDescription *vmsd, int indent,
412 bool is_subsection);
413
414 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field,
415 int indent)
416 {
417 fprintf(out_file, "%*s{\n", indent, "");
418 indent += 2;
419 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name);
420 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
421 field->version_id);
422 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "",
423 field->field_exists ? "true" : "false");
424 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size);
425 if (field->vmsd != NULL) {
426 fprintf(out_file, ",\n");
427 dump_vmstate_vmsd(out_file, field->vmsd, indent, false);
428 }
429 fprintf(out_file, "\n%*s}", indent - 2, "");
430 }
431
432 static void dump_vmstate_vmss(FILE *out_file,
433 const VMStateDescription **subsection,
434 int indent)
435 {
436 if (*subsection != NULL) {
437 dump_vmstate_vmsd(out_file, *subsection, indent, true);
438 }
439 }
440
441 static void dump_vmstate_vmsd(FILE *out_file,
442 const VMStateDescription *vmsd, int indent,
443 bool is_subsection)
444 {
445 if (is_subsection) {
446 fprintf(out_file, "%*s{\n", indent, "");
447 } else {
448 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description");
449 }
450 indent += 2;
451 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name);
452 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
453 vmsd->version_id);
454 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "",
455 vmsd->minimum_version_id);
456 if (vmsd->fields != NULL) {
457 const VMStateField *field = vmsd->fields;
458 bool first;
459
460 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, "");
461 first = true;
462 while (field->name != NULL) {
463 if (field->flags & VMS_MUST_EXIST) {
464 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */
465 field++;
466 continue;
467 }
468 if (!first) {
469 fprintf(out_file, ",\n");
470 }
471 dump_vmstate_vmsf(out_file, field, indent + 2);
472 field++;
473 first = false;
474 }
475 fprintf(out_file, "\n%*s]", indent, "");
476 }
477 if (vmsd->subsections != NULL) {
478 const VMStateDescription **subsection = vmsd->subsections;
479 bool first;
480
481 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, "");
482 first = true;
483 while (*subsection != NULL) {
484 if (!first) {
485 fprintf(out_file, ",\n");
486 }
487 dump_vmstate_vmss(out_file, subsection, indent + 2);
488 subsection++;
489 first = false;
490 }
491 fprintf(out_file, "\n%*s]", indent, "");
492 }
493 fprintf(out_file, "\n%*s}", indent - 2, "");
494 }
495
496 static void dump_machine_type(FILE *out_file)
497 {
498 MachineClass *mc;
499
500 mc = MACHINE_GET_CLASS(current_machine);
501
502 fprintf(out_file, " \"vmschkmachine\": {\n");
503 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name);
504 fprintf(out_file, " },\n");
505 }
506
507 void dump_vmstate_json_to_file(FILE *out_file)
508 {
509 GSList *list, *elt;
510 bool first;
511
512 fprintf(out_file, "{\n");
513 dump_machine_type(out_file);
514
515 first = true;
516 list = object_class_get_list(TYPE_DEVICE, true);
517 for (elt = list; elt; elt = elt->next) {
518 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data,
519 TYPE_DEVICE);
520 const char *name;
521 int indent = 2;
522
523 if (!dc->vmsd) {
524 continue;
525 }
526
527 if (!first) {
528 fprintf(out_file, ",\n");
529 }
530 name = object_class_get_name(OBJECT_CLASS(dc));
531 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name);
532 indent += 2;
533 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name);
534 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
535 dc->vmsd->version_id);
536 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "",
537 dc->vmsd->minimum_version_id);
538
539 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false);
540
541 fprintf(out_file, "\n%*s}", indent - 2, "");
542 first = false;
543 }
544 fprintf(out_file, "\n}\n");
545 fclose(out_file);
546 }
547
548 static int calculate_new_instance_id(const char *idstr)
549 {
550 SaveStateEntry *se;
551 int instance_id = 0;
552
553 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
554 if (strcmp(idstr, se->idstr) == 0
555 && instance_id <= se->instance_id) {
556 instance_id = se->instance_id + 1;
557 }
558 }
559 return instance_id;
560 }
561
562 static int calculate_compat_instance_id(const char *idstr)
563 {
564 SaveStateEntry *se;
565 int instance_id = 0;
566
567 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
568 if (!se->compat) {
569 continue;
570 }
571
572 if (strcmp(idstr, se->compat->idstr) == 0
573 && instance_id <= se->compat->instance_id) {
574 instance_id = se->compat->instance_id + 1;
575 }
576 }
577 return instance_id;
578 }
579
580 static inline MigrationPriority save_state_priority(SaveStateEntry *se)
581 {
582 if (se->vmsd) {
583 return se->vmsd->priority;
584 }
585 return MIG_PRI_DEFAULT;
586 }
587
588 static void savevm_state_handler_insert(SaveStateEntry *nse)
589 {
590 MigrationPriority priority = save_state_priority(nse);
591 SaveStateEntry *se;
592
593 assert(priority <= MIG_PRI_MAX);
594
595 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
596 if (save_state_priority(se) < priority) {
597 break;
598 }
599 }
600
601 if (se) {
602 QTAILQ_INSERT_BEFORE(se, nse, entry);
603 } else {
604 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry);
605 }
606 }
607
608 /* TODO: Individual devices generally have very little idea about the rest
609 of the system, so instance_id should be removed/replaced.
610 Meanwhile pass -1 as instance_id if you do not already have a clearly
611 distinguishing id for all instances of your device class. */
612 int register_savevm_live(DeviceState *dev,
613 const char *idstr,
614 int instance_id,
615 int version_id,
616 SaveVMHandlers *ops,
617 void *opaque)
618 {
619 SaveStateEntry *se;
620
621 se = g_new0(SaveStateEntry, 1);
622 se->version_id = version_id;
623 se->section_id = savevm_state.global_section_id++;
624 se->ops = ops;
625 se->opaque = opaque;
626 se->vmsd = NULL;
627 /* if this is a live_savem then set is_ram */
628 if (ops->save_setup != NULL) {
629 se->is_ram = 1;
630 }
631
632 if (dev) {
633 char *id = qdev_get_dev_path(dev);
634 if (id) {
635 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >=
636 sizeof(se->idstr)) {
637 error_report("Path too long for VMState (%s)", id);
638 g_free(id);
639 g_free(se);
640
641 return -1;
642 }
643 g_free(id);
644
645 se->compat = g_new0(CompatEntry, 1);
646 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
647 se->compat->instance_id = instance_id == -1 ?
648 calculate_compat_instance_id(idstr) : instance_id;
649 instance_id = -1;
650 }
651 }
652 pstrcat(se->idstr, sizeof(se->idstr), idstr);
653
654 if (instance_id == -1) {
655 se->instance_id = calculate_new_instance_id(se->idstr);
656 } else {
657 se->instance_id = instance_id;
658 }
659 assert(!se->compat || se->instance_id == 0);
660 savevm_state_handler_insert(se);
661 return 0;
662 }
663
664 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
665 {
666 SaveStateEntry *se, *new_se;
667 char id[256] = "";
668
669 if (dev) {
670 char *path = qdev_get_dev_path(dev);
671 if (path) {
672 pstrcpy(id, sizeof(id), path);
673 pstrcat(id, sizeof(id), "/");
674 g_free(path);
675 }
676 }
677 pstrcat(id, sizeof(id), idstr);
678
679 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
680 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
681 QTAILQ_REMOVE(&savevm_state.handlers, se, entry);
682 g_free(se->compat);
683 g_free(se);
684 }
685 }
686 }
687
688 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
689 const VMStateDescription *vmsd,
690 void *opaque, int alias_id,
691 int required_for_version,
692 Error **errp)
693 {
694 SaveStateEntry *se;
695
696 /* If this triggers, alias support can be dropped for the vmsd. */
697 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
698
699 se = g_new0(SaveStateEntry, 1);
700 se->version_id = vmsd->version_id;
701 se->section_id = savevm_state.global_section_id++;
702 se->opaque = opaque;
703 se->vmsd = vmsd;
704 se->alias_id = alias_id;
705
706 if (dev) {
707 char *id = qdev_get_dev_path(dev);
708 if (id) {
709 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >=
710 sizeof(se->idstr)) {
711 error_setg(errp, "Path too long for VMState (%s)", id);
712 g_free(id);
713 g_free(se);
714
715 return -1;
716 }
717 g_free(id);
718
719 se->compat = g_new0(CompatEntry, 1);
720 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
721 se->compat->instance_id = instance_id == -1 ?
722 calculate_compat_instance_id(vmsd->name) : instance_id;
723 instance_id = -1;
724 }
725 }
726 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
727
728 if (instance_id == -1) {
729 se->instance_id = calculate_new_instance_id(se->idstr);
730 } else {
731 se->instance_id = instance_id;
732 }
733 assert(!se->compat || se->instance_id == 0);
734 savevm_state_handler_insert(se);
735 return 0;
736 }
737
738 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
739 void *opaque)
740 {
741 SaveStateEntry *se, *new_se;
742
743 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
744 if (se->vmsd == vmsd && se->opaque == opaque) {
745 QTAILQ_REMOVE(&savevm_state.handlers, se, entry);
746 g_free(se->compat);
747 g_free(se);
748 }
749 }
750 }
751
752 static int vmstate_load(QEMUFile *f, SaveStateEntry *se)
753 {
754 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)");
755 if (!se->vmsd) { /* Old style */
756 return se->ops->load_state(f, se->opaque, se->load_version_id);
757 }
758 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id);
759 }
760
761 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc)
762 {
763 int64_t old_offset, size;
764
765 old_offset = qemu_ftell_fast(f);
766 se->ops->save_state(f, se->opaque);
767 size = qemu_ftell_fast(f) - old_offset;
768
769 if (vmdesc) {
770 json_prop_int(vmdesc, "size", size);
771 json_start_array(vmdesc, "fields");
772 json_start_object(vmdesc, NULL);
773 json_prop_str(vmdesc, "name", "data");
774 json_prop_int(vmdesc, "size", size);
775 json_prop_str(vmdesc, "type", "buffer");
776 json_end_object(vmdesc);
777 json_end_array(vmdesc);
778 }
779 }
780
781 static int vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc)
782 {
783 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)");
784 if (!se->vmsd) {
785 vmstate_save_old_style(f, se, vmdesc);
786 return 0;
787 }
788 return vmstate_save_state(f, se->vmsd, se->opaque, vmdesc);
789 }
790
791 /*
792 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL)
793 */
794 static void save_section_header(QEMUFile *f, SaveStateEntry *se,
795 uint8_t section_type)
796 {
797 qemu_put_byte(f, section_type);
798 qemu_put_be32(f, se->section_id);
799
800 if (section_type == QEMU_VM_SECTION_FULL ||
801 section_type == QEMU_VM_SECTION_START) {
802 /* ID string */
803 size_t len = strlen(se->idstr);
804 qemu_put_byte(f, len);
805 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
806
807 qemu_put_be32(f, se->instance_id);
808 qemu_put_be32(f, se->version_id);
809 }
810 }
811
812 /*
813 * Write a footer onto device sections that catches cases misformatted device
814 * sections.
815 */
816 static void save_section_footer(QEMUFile *f, SaveStateEntry *se)
817 {
818 if (migrate_get_current()->send_section_footer) {
819 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER);
820 qemu_put_be32(f, se->section_id);
821 }
822 }
823
824 /**
825 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the
826 * command and associated data.
827 *
828 * @f: File to send command on
829 * @command: Command type to send
830 * @len: Length of associated data
831 * @data: Data associated with command.
832 */
833 static void qemu_savevm_command_send(QEMUFile *f,
834 enum qemu_vm_cmd command,
835 uint16_t len,
836 uint8_t *data)
837 {
838 trace_savevm_command_send(command, len);
839 qemu_put_byte(f, QEMU_VM_COMMAND);
840 qemu_put_be16(f, (uint16_t)command);
841 qemu_put_be16(f, len);
842 qemu_put_buffer(f, data, len);
843 qemu_fflush(f);
844 }
845
846 void qemu_savevm_send_colo_enable(QEMUFile *f)
847 {
848 trace_savevm_send_colo_enable();
849 qemu_savevm_command_send(f, MIG_CMD_ENABLE_COLO, 0, NULL);
850 }
851
852 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value)
853 {
854 uint32_t buf;
855
856 trace_savevm_send_ping(value);
857 buf = cpu_to_be32(value);
858 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf);
859 }
860
861 void qemu_savevm_send_open_return_path(QEMUFile *f)
862 {
863 trace_savevm_send_open_return_path();
864 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL);
865 }
866
867 /* We have a buffer of data to send; we don't want that all to be loaded
868 * by the command itself, so the command contains just the length of the
869 * extra buffer that we then send straight after it.
870 * TODO: Must be a better way to organise that
871 *
872 * Returns:
873 * 0 on success
874 * -ve on error
875 */
876 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len)
877 {
878 uint32_t tmp;
879
880 if (len > MAX_VM_CMD_PACKAGED_SIZE) {
881 error_report("%s: Unreasonably large packaged state: %zu",
882 __func__, len);
883 return -1;
884 }
885
886 tmp = cpu_to_be32(len);
887
888 trace_qemu_savevm_send_packaged();
889 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp);
890
891 qemu_put_buffer(f, buf, len);
892
893 return 0;
894 }
895
896 /* Send prior to any postcopy transfer */
897 void qemu_savevm_send_postcopy_advise(QEMUFile *f)
898 {
899 if (migrate_postcopy_ram()) {
900 uint64_t tmp[2];
901 tmp[0] = cpu_to_be64(ram_pagesize_summary());
902 tmp[1] = cpu_to_be64(qemu_target_page_size());
903
904 trace_qemu_savevm_send_postcopy_advise();
905 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE,
906 16, (uint8_t *)tmp);
907 } else {
908 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL);
909 }
910 }
911
912 /* Sent prior to starting the destination running in postcopy, discard pages
913 * that have already been sent but redirtied on the source.
914 * CMD_POSTCOPY_RAM_DISCARD consist of:
915 * byte version (0)
916 * byte Length of name field (not including 0)
917 * n x byte RAM block name
918 * byte 0 terminator (just for safety)
919 * n x Byte ranges within the named RAMBlock
920 * be64 Start of the range
921 * be64 Length
922 *
923 * name: RAMBlock name that these entries are part of
924 * len: Number of page entries
925 * start_list: 'len' addresses
926 * length_list: 'len' addresses
927 *
928 */
929 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name,
930 uint16_t len,
931 uint64_t *start_list,
932 uint64_t *length_list)
933 {
934 uint8_t *buf;
935 uint16_t tmplen;
936 uint16_t t;
937 size_t name_len = strlen(name);
938
939 trace_qemu_savevm_send_postcopy_ram_discard(name, len);
940 assert(name_len < 256);
941 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len);
942 buf[0] = postcopy_ram_discard_version;
943 buf[1] = name_len;
944 memcpy(buf + 2, name, name_len);
945 tmplen = 2 + name_len;
946 buf[tmplen++] = '\0';
947
948 for (t = 0; t < len; t++) {
949 stq_be_p(buf + tmplen, start_list[t]);
950 tmplen += 8;
951 stq_be_p(buf + tmplen, length_list[t]);
952 tmplen += 8;
953 }
954 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf);
955 g_free(buf);
956 }
957
958 /* Get the destination into a state where it can receive postcopy data. */
959 void qemu_savevm_send_postcopy_listen(QEMUFile *f)
960 {
961 trace_savevm_send_postcopy_listen();
962 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL);
963 }
964
965 /* Kick the destination into running */
966 void qemu_savevm_send_postcopy_run(QEMUFile *f)
967 {
968 trace_savevm_send_postcopy_run();
969 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL);
970 }
971
972 void qemu_savevm_send_postcopy_resume(QEMUFile *f)
973 {
974 trace_savevm_send_postcopy_resume();
975 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RESUME, 0, NULL);
976 }
977
978 void qemu_savevm_send_recv_bitmap(QEMUFile *f, char *block_name)
979 {
980 size_t len;
981 char buf[256];
982
983 trace_savevm_send_recv_bitmap(block_name);
984
985 buf[0] = len = strlen(block_name);
986 memcpy(buf + 1, block_name, len);
987
988 qemu_savevm_command_send(f, MIG_CMD_RECV_BITMAP, len + 1, (uint8_t *)buf);
989 }
990
991 bool qemu_savevm_state_blocked(Error **errp)
992 {
993 SaveStateEntry *se;
994
995 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
996 if (se->vmsd && se->vmsd->unmigratable) {
997 error_setg(errp, "State blocked by non-migratable device '%s'",
998 se->idstr);
999 return true;
1000 }
1001 }
1002 return false;
1003 }
1004
1005 void qemu_savevm_state_header(QEMUFile *f)
1006 {
1007 trace_savevm_state_header();
1008 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1009 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1010
1011 if (migrate_get_current()->send_configuration) {
1012 qemu_put_byte(f, QEMU_VM_CONFIGURATION);
1013 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0);
1014 }
1015 }
1016
1017 void qemu_savevm_state_setup(QEMUFile *f)
1018 {
1019 SaveStateEntry *se;
1020 int ret;
1021
1022 trace_savevm_state_setup();
1023 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1024 if (!se->ops || !se->ops->save_setup) {
1025 continue;
1026 }
1027 if (se->ops && se->ops->is_active) {
1028 if (!se->ops->is_active(se->opaque)) {
1029 continue;
1030 }
1031 }
1032 save_section_header(f, se, QEMU_VM_SECTION_START);
1033
1034 ret = se->ops->save_setup(f, se->opaque);
1035 save_section_footer(f, se);
1036 if (ret < 0) {
1037 qemu_file_set_error(f, ret);
1038 break;
1039 }
1040 }
1041 }
1042
1043 int qemu_savevm_state_resume_prepare(MigrationState *s)
1044 {
1045 SaveStateEntry *se;
1046 int ret;
1047
1048 trace_savevm_state_resume_prepare();
1049
1050 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1051 if (!se->ops || !se->ops->resume_prepare) {
1052 continue;
1053 }
1054 if (se->ops && se->ops->is_active) {
1055 if (!se->ops->is_active(se->opaque)) {
1056 continue;
1057 }
1058 }
1059 ret = se->ops->resume_prepare(s, se->opaque);
1060 if (ret < 0) {
1061 return ret;
1062 }
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * this function has three return values:
1070 * negative: there was one error, and we have -errno.
1071 * 0 : We haven't finished, caller have to go again
1072 * 1 : We have finished, we can go to complete phase
1073 */
1074 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy)
1075 {
1076 SaveStateEntry *se;
1077 int ret = 1;
1078
1079 trace_savevm_state_iterate();
1080 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1081 if (!se->ops || !se->ops->save_live_iterate) {
1082 continue;
1083 }
1084 if (se->ops && se->ops->is_active) {
1085 if (!se->ops->is_active(se->opaque)) {
1086 continue;
1087 }
1088 }
1089 if (se->ops && se->ops->is_active_iterate) {
1090 if (!se->ops->is_active_iterate(se->opaque)) {
1091 continue;
1092 }
1093 }
1094 /*
1095 * In the postcopy phase, any device that doesn't know how to
1096 * do postcopy should have saved it's state in the _complete
1097 * call that's already run, it might get confused if we call
1098 * iterate afterwards.
1099 */
1100 if (postcopy &&
1101 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) {
1102 continue;
1103 }
1104 if (qemu_file_rate_limit(f)) {
1105 return 0;
1106 }
1107 trace_savevm_section_start(se->idstr, se->section_id);
1108
1109 save_section_header(f, se, QEMU_VM_SECTION_PART);
1110
1111 ret = se->ops->save_live_iterate(f, se->opaque);
1112 trace_savevm_section_end(se->idstr, se->section_id, ret);
1113 save_section_footer(f, se);
1114
1115 if (ret < 0) {
1116 qemu_file_set_error(f, ret);
1117 }
1118 if (ret <= 0) {
1119 /* Do not proceed to the next vmstate before this one reported
1120 completion of the current stage. This serializes the migration
1121 and reduces the probability that a faster changing state is
1122 synchronized over and over again. */
1123 break;
1124 }
1125 }
1126 return ret;
1127 }
1128
1129 static bool should_send_vmdesc(void)
1130 {
1131 MachineState *machine = MACHINE(qdev_get_machine());
1132 bool in_postcopy = migration_in_postcopy();
1133 return !machine->suppress_vmdesc && !in_postcopy;
1134 }
1135
1136 /*
1137 * Calls the save_live_complete_postcopy methods
1138 * causing the last few pages to be sent immediately and doing any associated
1139 * cleanup.
1140 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete
1141 * all the other devices, but that happens at the point we switch to postcopy.
1142 */
1143 void qemu_savevm_state_complete_postcopy(QEMUFile *f)
1144 {
1145 SaveStateEntry *se;
1146 int ret;
1147
1148 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1149 if (!se->ops || !se->ops->save_live_complete_postcopy) {
1150 continue;
1151 }
1152 if (se->ops && se->ops->is_active) {
1153 if (!se->ops->is_active(se->opaque)) {
1154 continue;
1155 }
1156 }
1157 trace_savevm_section_start(se->idstr, se->section_id);
1158 /* Section type */
1159 qemu_put_byte(f, QEMU_VM_SECTION_END);
1160 qemu_put_be32(f, se->section_id);
1161
1162 ret = se->ops->save_live_complete_postcopy(f, se->opaque);
1163 trace_savevm_section_end(se->idstr, se->section_id, ret);
1164 save_section_footer(f, se);
1165 if (ret < 0) {
1166 qemu_file_set_error(f, ret);
1167 return;
1168 }
1169 }
1170
1171 qemu_put_byte(f, QEMU_VM_EOF);
1172 qemu_fflush(f);
1173 }
1174
1175 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only,
1176 bool inactivate_disks)
1177 {
1178 QJSON *vmdesc;
1179 int vmdesc_len;
1180 SaveStateEntry *se;
1181 int ret;
1182 bool in_postcopy = migration_in_postcopy();
1183
1184 trace_savevm_state_complete_precopy();
1185
1186 cpu_synchronize_all_states();
1187
1188 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1189 if (!se->ops ||
1190 (in_postcopy && se->ops->has_postcopy &&
1191 se->ops->has_postcopy(se->opaque)) ||
1192 (in_postcopy && !iterable_only) ||
1193 !se->ops->save_live_complete_precopy) {
1194 continue;
1195 }
1196
1197 if (se->ops && se->ops->is_active) {
1198 if (!se->ops->is_active(se->opaque)) {
1199 continue;
1200 }
1201 }
1202 trace_savevm_section_start(se->idstr, se->section_id);
1203
1204 save_section_header(f, se, QEMU_VM_SECTION_END);
1205
1206 ret = se->ops->save_live_complete_precopy(f, se->opaque);
1207 trace_savevm_section_end(se->idstr, se->section_id, ret);
1208 save_section_footer(f, se);
1209 if (ret < 0) {
1210 qemu_file_set_error(f, ret);
1211 return -1;
1212 }
1213 }
1214
1215 if (iterable_only) {
1216 return 0;
1217 }
1218
1219 vmdesc = qjson_new();
1220 json_prop_int(vmdesc, "page_size", qemu_target_page_size());
1221 json_start_array(vmdesc, "devices");
1222 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1223
1224 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1225 continue;
1226 }
1227 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) {
1228 trace_savevm_section_skip(se->idstr, se->section_id);
1229 continue;
1230 }
1231
1232 trace_savevm_section_start(se->idstr, se->section_id);
1233
1234 json_start_object(vmdesc, NULL);
1235 json_prop_str(vmdesc, "name", se->idstr);
1236 json_prop_int(vmdesc, "instance_id", se->instance_id);
1237
1238 save_section_header(f, se, QEMU_VM_SECTION_FULL);
1239 ret = vmstate_save(f, se, vmdesc);
1240 if (ret) {
1241 qemu_file_set_error(f, ret);
1242 return ret;
1243 }
1244 trace_savevm_section_end(se->idstr, se->section_id, 0);
1245 save_section_footer(f, se);
1246
1247 json_end_object(vmdesc);
1248 }
1249
1250 if (inactivate_disks) {
1251 /* Inactivate before sending QEMU_VM_EOF so that the
1252 * bdrv_invalidate_cache_all() on the other end won't fail. */
1253 ret = bdrv_inactivate_all();
1254 if (ret) {
1255 error_report("%s: bdrv_inactivate_all() failed (%d)",
1256 __func__, ret);
1257 qemu_file_set_error(f, ret);
1258 return ret;
1259 }
1260 }
1261 if (!in_postcopy) {
1262 /* Postcopy stream will still be going */
1263 qemu_put_byte(f, QEMU_VM_EOF);
1264 }
1265
1266 json_end_array(vmdesc);
1267 qjson_finish(vmdesc);
1268 vmdesc_len = strlen(qjson_get_str(vmdesc));
1269
1270 if (should_send_vmdesc()) {
1271 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION);
1272 qemu_put_be32(f, vmdesc_len);
1273 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len);
1274 }
1275 qjson_destroy(vmdesc);
1276
1277 qemu_fflush(f);
1278 return 0;
1279 }
1280
1281 /* Give an estimate of the amount left to be transferred,
1282 * the result is split into the amount for units that can and
1283 * for units that can't do postcopy.
1284 */
1285 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size,
1286 uint64_t *res_precopy_only,
1287 uint64_t *res_compatible,
1288 uint64_t *res_postcopy_only)
1289 {
1290 SaveStateEntry *se;
1291
1292 *res_precopy_only = 0;
1293 *res_compatible = 0;
1294 *res_postcopy_only = 0;
1295
1296
1297 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1298 if (!se->ops || !se->ops->save_live_pending) {
1299 continue;
1300 }
1301 if (se->ops && se->ops->is_active) {
1302 if (!se->ops->is_active(se->opaque)) {
1303 continue;
1304 }
1305 }
1306 se->ops->save_live_pending(f, se->opaque, threshold_size,
1307 res_precopy_only, res_compatible,
1308 res_postcopy_only);
1309 }
1310 }
1311
1312 void qemu_savevm_state_cleanup(void)
1313 {
1314 SaveStateEntry *se;
1315
1316 trace_savevm_state_cleanup();
1317 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1318 if (se->ops && se->ops->save_cleanup) {
1319 se->ops->save_cleanup(se->opaque);
1320 }
1321 }
1322 }
1323
1324 static int qemu_savevm_state(QEMUFile *f, Error **errp)
1325 {
1326 int ret;
1327 MigrationState *ms = migrate_get_current();
1328 MigrationStatus status;
1329
1330 if (migration_is_setup_or_active(ms->state) ||
1331 ms->state == MIGRATION_STATUS_CANCELLING ||
1332 ms->state == MIGRATION_STATUS_COLO) {
1333 error_setg(errp, QERR_MIGRATION_ACTIVE);
1334 return -EINVAL;
1335 }
1336
1337 if (migration_is_blocked(errp)) {
1338 return -EINVAL;
1339 }
1340
1341 if (migrate_use_block()) {
1342 error_setg(errp, "Block migration and snapshots are incompatible");
1343 return -EINVAL;
1344 }
1345
1346 migrate_init(ms);
1347 ms->to_dst_file = f;
1348
1349 qemu_mutex_unlock_iothread();
1350 qemu_savevm_state_header(f);
1351 qemu_savevm_state_setup(f);
1352 qemu_mutex_lock_iothread();
1353
1354 while (qemu_file_get_error(f) == 0) {
1355 if (qemu_savevm_state_iterate(f, false) > 0) {
1356 break;
1357 }
1358 }
1359
1360 ret = qemu_file_get_error(f);
1361 if (ret == 0) {
1362 qemu_savevm_state_complete_precopy(f, false, false);
1363 ret = qemu_file_get_error(f);
1364 }
1365 qemu_savevm_state_cleanup();
1366 if (ret != 0) {
1367 error_setg_errno(errp, -ret, "Error while writing VM state");
1368 }
1369
1370 if (ret != 0) {
1371 status = MIGRATION_STATUS_FAILED;
1372 } else {
1373 status = MIGRATION_STATUS_COMPLETED;
1374 }
1375 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status);
1376
1377 /* f is outer parameter, it should not stay in global migration state after
1378 * this function finished */
1379 ms->to_dst_file = NULL;
1380
1381 return ret;
1382 }
1383
1384 void qemu_savevm_live_state(QEMUFile *f)
1385 {
1386 /* save QEMU_VM_SECTION_END section */
1387 qemu_savevm_state_complete_precopy(f, true, false);
1388 qemu_put_byte(f, QEMU_VM_EOF);
1389 }
1390
1391 int qemu_save_device_state(QEMUFile *f)
1392 {
1393 SaveStateEntry *se;
1394
1395 if (!migration_in_colo_state()) {
1396 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1397 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1398 }
1399 cpu_synchronize_all_states();
1400
1401 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1402 int ret;
1403
1404 if (se->is_ram) {
1405 continue;
1406 }
1407 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1408 continue;
1409 }
1410 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) {
1411 continue;
1412 }
1413
1414 save_section_header(f, se, QEMU_VM_SECTION_FULL);
1415
1416 ret = vmstate_save(f, se, NULL);
1417 if (ret) {
1418 return ret;
1419 }
1420
1421 save_section_footer(f, se);
1422 }
1423
1424 qemu_put_byte(f, QEMU_VM_EOF);
1425
1426 return qemu_file_get_error(f);
1427 }
1428
1429 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1430 {
1431 SaveStateEntry *se;
1432
1433 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1434 if (!strcmp(se->idstr, idstr) &&
1435 (instance_id == se->instance_id ||
1436 instance_id == se->alias_id))
1437 return se;
1438 /* Migrating from an older version? */
1439 if (strstr(se->idstr, idstr) && se->compat) {
1440 if (!strcmp(se->compat->idstr, idstr) &&
1441 (instance_id == se->compat->instance_id ||
1442 instance_id == se->alias_id))
1443 return se;
1444 }
1445 }
1446 return NULL;
1447 }
1448
1449 enum LoadVMExitCodes {
1450 /* Allow a command to quit all layers of nested loadvm loops */
1451 LOADVM_QUIT = 1,
1452 };
1453
1454 /* ------ incoming postcopy messages ------ */
1455 /* 'advise' arrives before any transfers just to tell us that a postcopy
1456 * *might* happen - it might be skipped if precopy transferred everything
1457 * quickly.
1458 */
1459 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis,
1460 uint16_t len)
1461 {
1462 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE);
1463 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps;
1464 Error *local_err = NULL;
1465
1466 trace_loadvm_postcopy_handle_advise();
1467 if (ps != POSTCOPY_INCOMING_NONE) {
1468 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps);
1469 return -1;
1470 }
1471
1472 switch (len) {
1473 case 0:
1474 if (migrate_postcopy_ram()) {
1475 error_report("RAM postcopy is enabled but have 0 byte advise");
1476 return -EINVAL;
1477 }
1478 return 0;
1479 case 8 + 8:
1480 if (!migrate_postcopy_ram()) {
1481 error_report("RAM postcopy is disabled but have 16 byte advise");
1482 return -EINVAL;
1483 }
1484 break;
1485 default:
1486 error_report("CMD_POSTCOPY_ADVISE invalid length (%d)", len);
1487 return -EINVAL;
1488 }
1489
1490 if (!postcopy_ram_supported_by_host(mis)) {
1491 postcopy_state_set(POSTCOPY_INCOMING_NONE);
1492 return -1;
1493 }
1494
1495 remote_pagesize_summary = qemu_get_be64(mis->from_src_file);
1496 local_pagesize_summary = ram_pagesize_summary();
1497
1498 if (remote_pagesize_summary != local_pagesize_summary) {
1499 /*
1500 * This detects two potential causes of mismatch:
1501 * a) A mismatch in host page sizes
1502 * Some combinations of mismatch are probably possible but it gets
1503 * a bit more complicated. In particular we need to place whole
1504 * host pages on the dest at once, and we need to ensure that we
1505 * handle dirtying to make sure we never end up sending part of
1506 * a hostpage on it's own.
1507 * b) The use of different huge page sizes on source/destination
1508 * a more fine grain test is performed during RAM block migration
1509 * but this test here causes a nice early clear failure, and
1510 * also fails when passed to an older qemu that doesn't
1511 * do huge pages.
1512 */
1513 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64
1514 " d=%" PRIx64 ")",
1515 remote_pagesize_summary, local_pagesize_summary);
1516 return -1;
1517 }
1518
1519 remote_tps = qemu_get_be64(mis->from_src_file);
1520 if (remote_tps != qemu_target_page_size()) {
1521 /*
1522 * Again, some differences could be dealt with, but for now keep it
1523 * simple.
1524 */
1525 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)",
1526 (int)remote_tps, qemu_target_page_size());
1527 return -1;
1528 }
1529
1530 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_ADVISE, &local_err)) {
1531 error_report_err(local_err);
1532 return -1;
1533 }
1534
1535 if (ram_postcopy_incoming_init(mis)) {
1536 return -1;
1537 }
1538
1539 postcopy_state_set(POSTCOPY_INCOMING_ADVISE);
1540
1541 return 0;
1542 }
1543
1544 /* After postcopy we will be told to throw some pages away since they're
1545 * dirty and will have to be demand fetched. Must happen before CPU is
1546 * started.
1547 * There can be 0..many of these messages, each encoding multiple pages.
1548 */
1549 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis,
1550 uint16_t len)
1551 {
1552 int tmp;
1553 char ramid[256];
1554 PostcopyState ps = postcopy_state_get();
1555
1556 trace_loadvm_postcopy_ram_handle_discard();
1557
1558 switch (ps) {
1559 case POSTCOPY_INCOMING_ADVISE:
1560 /* 1st discard */
1561 tmp = postcopy_ram_prepare_discard(mis);
1562 if (tmp) {
1563 return tmp;
1564 }
1565 break;
1566
1567 case POSTCOPY_INCOMING_DISCARD:
1568 /* Expected state */
1569 break;
1570
1571 default:
1572 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)",
1573 ps);
1574 return -1;
1575 }
1576 /* We're expecting a
1577 * Version (0)
1578 * a RAM ID string (length byte, name, 0 term)
1579 * then at least 1 16 byte chunk
1580 */
1581 if (len < (1 + 1 + 1 + 1 + 2 * 8)) {
1582 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len);
1583 return -1;
1584 }
1585
1586 tmp = qemu_get_byte(mis->from_src_file);
1587 if (tmp != postcopy_ram_discard_version) {
1588 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp);
1589 return -1;
1590 }
1591
1592 if (!qemu_get_counted_string(mis->from_src_file, ramid)) {
1593 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID");
1594 return -1;
1595 }
1596 tmp = qemu_get_byte(mis->from_src_file);
1597 if (tmp != 0) {
1598 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp);
1599 return -1;
1600 }
1601
1602 len -= 3 + strlen(ramid);
1603 if (len % 16) {
1604 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len);
1605 return -1;
1606 }
1607 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len);
1608 while (len) {
1609 uint64_t start_addr, block_length;
1610 start_addr = qemu_get_be64(mis->from_src_file);
1611 block_length = qemu_get_be64(mis->from_src_file);
1612
1613 len -= 16;
1614 int ret = ram_discard_range(ramid, start_addr, block_length);
1615 if (ret) {
1616 return ret;
1617 }
1618 }
1619 trace_loadvm_postcopy_ram_handle_discard_end();
1620
1621 return 0;
1622 }
1623
1624 /*
1625 * Triggered by a postcopy_listen command; this thread takes over reading
1626 * the input stream, leaving the main thread free to carry on loading the rest
1627 * of the device state (from RAM).
1628 * (TODO:This could do with being in a postcopy file - but there again it's
1629 * just another input loop, not that postcopy specific)
1630 */
1631 static void *postcopy_ram_listen_thread(void *opaque)
1632 {
1633 MigrationIncomingState *mis = migration_incoming_get_current();
1634 QEMUFile *f = mis->from_src_file;
1635 int load_res;
1636
1637 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE,
1638 MIGRATION_STATUS_POSTCOPY_ACTIVE);
1639 qemu_sem_post(&mis->listen_thread_sem);
1640 trace_postcopy_ram_listen_thread_start();
1641
1642 rcu_register_thread();
1643 /*
1644 * Because we're a thread and not a coroutine we can't yield
1645 * in qemu_file, and thus we must be blocking now.
1646 */
1647 qemu_file_set_blocking(f, true);
1648 load_res = qemu_loadvm_state_main(f, mis);
1649
1650 /*
1651 * This is tricky, but, mis->from_src_file can change after it
1652 * returns, when postcopy recovery happened. In the future, we may
1653 * want a wrapper for the QEMUFile handle.
1654 */
1655 f = mis->from_src_file;
1656
1657 /* And non-blocking again so we don't block in any cleanup */
1658 qemu_file_set_blocking(f, false);
1659
1660 trace_postcopy_ram_listen_thread_exit();
1661 if (load_res < 0) {
1662 error_report("%s: loadvm failed: %d", __func__, load_res);
1663 qemu_file_set_error(f, load_res);
1664 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
1665 MIGRATION_STATUS_FAILED);
1666 } else {
1667 /*
1668 * This looks good, but it's possible that the device loading in the
1669 * main thread hasn't finished yet, and so we might not be in 'RUN'
1670 * state yet; wait for the end of the main thread.
1671 */
1672 qemu_event_wait(&mis->main_thread_load_event);
1673 }
1674 postcopy_ram_incoming_cleanup(mis);
1675
1676 if (load_res < 0) {
1677 /*
1678 * If something went wrong then we have a bad state so exit;
1679 * depending how far we got it might be possible at this point
1680 * to leave the guest running and fire MCEs for pages that never
1681 * arrived as a desperate recovery step.
1682 */
1683 rcu_unregister_thread();
1684 exit(EXIT_FAILURE);
1685 }
1686
1687 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
1688 MIGRATION_STATUS_COMPLETED);
1689 /*
1690 * If everything has worked fine, then the main thread has waited
1691 * for us to start, and we're the last use of the mis.
1692 * (If something broke then qemu will have to exit anyway since it's
1693 * got a bad migration state).
1694 */
1695 migration_incoming_state_destroy();
1696 qemu_loadvm_state_cleanup();
1697
1698 rcu_unregister_thread();
1699 mis->have_listen_thread = false;
1700 return NULL;
1701 }
1702
1703 /* After this message we must be able to immediately receive postcopy data */
1704 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis)
1705 {
1706 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING);
1707 trace_loadvm_postcopy_handle_listen();
1708 Error *local_err = NULL;
1709
1710 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) {
1711 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps);
1712 return -1;
1713 }
1714 if (ps == POSTCOPY_INCOMING_ADVISE) {
1715 /*
1716 * A rare case, we entered listen without having to do any discards,
1717 * so do the setup that's normally done at the time of the 1st discard.
1718 */
1719 if (migrate_postcopy_ram()) {
1720 postcopy_ram_prepare_discard(mis);
1721 }
1722 }
1723
1724 /*
1725 * Sensitise RAM - can now generate requests for blocks that don't exist
1726 * However, at this point the CPU shouldn't be running, and the IO
1727 * shouldn't be doing anything yet so don't actually expect requests
1728 */
1729 if (migrate_postcopy_ram()) {
1730 if (postcopy_ram_enable_notify(mis)) {
1731 return -1;
1732 }
1733 }
1734
1735 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_LISTEN, &local_err)) {
1736 error_report_err(local_err);
1737 return -1;
1738 }
1739
1740 if (mis->have_listen_thread) {
1741 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread");
1742 return -1;
1743 }
1744
1745 mis->have_listen_thread = true;
1746 /* Start up the listening thread and wait for it to signal ready */
1747 qemu_sem_init(&mis->listen_thread_sem, 0);
1748 qemu_thread_create(&mis->listen_thread, "postcopy/listen",
1749 postcopy_ram_listen_thread, NULL,
1750 QEMU_THREAD_DETACHED);
1751 qemu_sem_wait(&mis->listen_thread_sem);
1752 qemu_sem_destroy(&mis->listen_thread_sem);
1753
1754 return 0;
1755 }
1756
1757
1758 typedef struct {
1759 QEMUBH *bh;
1760 } HandleRunBhData;
1761
1762 static void loadvm_postcopy_handle_run_bh(void *opaque)
1763 {
1764 Error *local_err = NULL;
1765 HandleRunBhData *data = opaque;
1766
1767 /* TODO we should move all of this lot into postcopy_ram.c or a shared code
1768 * in migration.c
1769 */
1770 cpu_synchronize_all_post_init();
1771
1772 qemu_announce_self();
1773
1774 /* Make sure all file formats flush their mutable metadata.
1775 * If we get an error here, just don't restart the VM yet. */
1776 bdrv_invalidate_cache_all(&local_err);
1777 if (local_err) {
1778 error_report_err(local_err);
1779 local_err = NULL;
1780 autostart = false;
1781 }
1782
1783 trace_loadvm_postcopy_handle_run_cpu_sync();
1784 cpu_synchronize_all_post_init();
1785
1786 trace_loadvm_postcopy_handle_run_vmstart();
1787
1788 dirty_bitmap_mig_before_vm_start();
1789
1790 if (autostart) {
1791 /* Hold onto your hats, starting the CPU */
1792 vm_start();
1793 } else {
1794 /* leave it paused and let management decide when to start the CPU */
1795 runstate_set(RUN_STATE_PAUSED);
1796 }
1797
1798 qemu_bh_delete(data->bh);
1799 g_free(data);
1800 }
1801
1802 /* After all discards we can start running and asking for pages */
1803 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis)
1804 {
1805 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING);
1806 HandleRunBhData *data;
1807
1808 trace_loadvm_postcopy_handle_run();
1809 if (ps != POSTCOPY_INCOMING_LISTENING) {
1810 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps);
1811 return -1;
1812 }
1813
1814 data = g_new(HandleRunBhData, 1);
1815 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data);
1816 qemu_bh_schedule(data->bh);
1817
1818 /* We need to finish reading the stream from the package
1819 * and also stop reading anything more from the stream that loaded the
1820 * package (since it's now being read by the listener thread).
1821 * LOADVM_QUIT will quit all the layers of nested loadvm loops.
1822 */
1823 return LOADVM_QUIT;
1824 }
1825
1826 static int loadvm_postcopy_handle_resume(MigrationIncomingState *mis)
1827 {
1828 if (mis->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
1829 error_report("%s: illegal resume received", __func__);
1830 /* Don't fail the load, only for this. */
1831 return 0;
1832 }
1833
1834 /*
1835 * This means source VM is ready to resume the postcopy migration.
1836 * It's time to switch state and release the fault thread to
1837 * continue service page faults.
1838 */
1839 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_RECOVER,
1840 MIGRATION_STATUS_POSTCOPY_ACTIVE);
1841 qemu_sem_post(&mis->postcopy_pause_sem_fault);
1842
1843 trace_loadvm_postcopy_handle_resume();
1844
1845 /* Tell source that "we are ready" */
1846 migrate_send_rp_resume_ack(mis, MIGRATION_RESUME_ACK_VALUE);
1847
1848 return 0;
1849 }
1850
1851 /**
1852 * Immediately following this command is a blob of data containing an embedded
1853 * chunk of migration stream; read it and load it.
1854 *
1855 * @mis: Incoming state
1856 * @length: Length of packaged data to read
1857 *
1858 * Returns: Negative values on error
1859 *
1860 */
1861 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis)
1862 {
1863 int ret;
1864 size_t length;
1865 QIOChannelBuffer *bioc;
1866
1867 length = qemu_get_be32(mis->from_src_file);
1868 trace_loadvm_handle_cmd_packaged(length);
1869
1870 if (length > MAX_VM_CMD_PACKAGED_SIZE) {
1871 error_report("Unreasonably large packaged state: %zu", length);
1872 return -1;
1873 }
1874
1875 bioc = qio_channel_buffer_new(length);
1876 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer");
1877 ret = qemu_get_buffer(mis->from_src_file,
1878 bioc->data,
1879 length);
1880 if (ret != length) {
1881 object_unref(OBJECT(bioc));
1882 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu",
1883 ret, length);
1884 return (ret < 0) ? ret : -EAGAIN;
1885 }
1886 bioc->usage += length;
1887 trace_loadvm_handle_cmd_packaged_received(ret);
1888
1889 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc));
1890
1891 ret = qemu_loadvm_state_main(packf, mis);
1892 trace_loadvm_handle_cmd_packaged_main(ret);
1893 qemu_fclose(packf);
1894 object_unref(OBJECT(bioc));
1895
1896 return ret;
1897 }
1898
1899 /*
1900 * Handle request that source requests for recved_bitmap on
1901 * destination. Payload format:
1902 *
1903 * len (1 byte) + ramblock_name (<255 bytes)
1904 */
1905 static int loadvm_handle_recv_bitmap(MigrationIncomingState *mis,
1906 uint16_t len)
1907 {
1908 QEMUFile *file = mis->from_src_file;
1909 RAMBlock *rb;
1910 char block_name[256];
1911 size_t cnt;
1912
1913 cnt = qemu_get_counted_string(file, block_name);
1914 if (!cnt) {
1915 error_report("%s: failed to read block name", __func__);
1916 return -EINVAL;
1917 }
1918
1919 /* Validate before using the data */
1920 if (qemu_file_get_error(file)) {
1921 return qemu_file_get_error(file);
1922 }
1923
1924 if (len != cnt + 1) {
1925 error_report("%s: invalid payload length (%d)", __func__, len);
1926 return -EINVAL;
1927 }
1928
1929 rb = qemu_ram_block_by_name(block_name);
1930 if (!rb) {
1931 error_report("%s: block '%s' not found", __func__, block_name);
1932 return -EINVAL;
1933 }
1934
1935 migrate_send_rp_recv_bitmap(mis, block_name);
1936
1937 trace_loadvm_handle_recv_bitmap(block_name);
1938
1939 return 0;
1940 }
1941
1942 static int loadvm_process_enable_colo(MigrationIncomingState *mis)
1943 {
1944 migration_incoming_enable_colo();
1945 return colo_init_ram_cache();
1946 }
1947
1948 /*
1949 * Process an incoming 'QEMU_VM_COMMAND'
1950 * 0 just a normal return
1951 * LOADVM_QUIT All good, but exit the loop
1952 * <0 Error
1953 */
1954 static int loadvm_process_command(QEMUFile *f)
1955 {
1956 MigrationIncomingState *mis = migration_incoming_get_current();
1957 uint16_t cmd;
1958 uint16_t len;
1959 uint32_t tmp32;
1960
1961 cmd = qemu_get_be16(f);
1962 len = qemu_get_be16(f);
1963
1964 /* Check validity before continue processing of cmds */
1965 if (qemu_file_get_error(f)) {
1966 return qemu_file_get_error(f);
1967 }
1968
1969 trace_loadvm_process_command(cmd, len);
1970 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) {
1971 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len);
1972 return -EINVAL;
1973 }
1974
1975 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) {
1976 error_report("%s received with bad length - expecting %zu, got %d",
1977 mig_cmd_args[cmd].name,
1978 (size_t)mig_cmd_args[cmd].len, len);
1979 return -ERANGE;
1980 }
1981
1982 switch (cmd) {
1983 case MIG_CMD_OPEN_RETURN_PATH:
1984 if (mis->to_src_file) {
1985 error_report("CMD_OPEN_RETURN_PATH called when RP already open");
1986 /* Not really a problem, so don't give up */
1987 return 0;
1988 }
1989 mis->to_src_file = qemu_file_get_return_path(f);
1990 if (!mis->to_src_file) {
1991 error_report("CMD_OPEN_RETURN_PATH failed");
1992 return -1;
1993 }
1994 break;
1995
1996 case MIG_CMD_PING:
1997 tmp32 = qemu_get_be32(f);
1998 trace_loadvm_process_command_ping(tmp32);
1999 if (!mis->to_src_file) {
2000 error_report("CMD_PING (0x%x) received with no return path",
2001 tmp32);
2002 return -1;
2003 }
2004 migrate_send_rp_pong(mis, tmp32);
2005 break;
2006
2007 case MIG_CMD_PACKAGED:
2008 return loadvm_handle_cmd_packaged(mis);
2009
2010 case MIG_CMD_POSTCOPY_ADVISE:
2011 return loadvm_postcopy_handle_advise(mis, len);
2012
2013 case MIG_CMD_POSTCOPY_LISTEN:
2014 return loadvm_postcopy_handle_listen(mis);
2015
2016 case MIG_CMD_POSTCOPY_RUN:
2017 return loadvm_postcopy_handle_run(mis);
2018
2019 case MIG_CMD_POSTCOPY_RAM_DISCARD:
2020 return loadvm_postcopy_ram_handle_discard(mis, len);
2021
2022 case MIG_CMD_POSTCOPY_RESUME:
2023 return loadvm_postcopy_handle_resume(mis);
2024
2025 case MIG_CMD_RECV_BITMAP:
2026 return loadvm_handle_recv_bitmap(mis, len);
2027
2028 case MIG_CMD_ENABLE_COLO:
2029 return loadvm_process_enable_colo(mis);
2030 }
2031
2032 return 0;
2033 }
2034
2035 /*
2036 * Read a footer off the wire and check that it matches the expected section
2037 *
2038 * Returns: true if the footer was good
2039 * false if there is a problem (and calls error_report to say why)
2040 */
2041 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se)
2042 {
2043 int ret;
2044 uint8_t read_mark;
2045 uint32_t read_section_id;
2046
2047 if (!migrate_get_current()->send_section_footer) {
2048 /* No footer to check */
2049 return true;
2050 }
2051
2052 read_mark = qemu_get_byte(f);
2053
2054 ret = qemu_file_get_error(f);
2055 if (ret) {
2056 error_report("%s: Read section footer failed: %d",
2057 __func__, ret);
2058 return false;
2059 }
2060
2061 if (read_mark != QEMU_VM_SECTION_FOOTER) {
2062 error_report("Missing section footer for %s", se->idstr);
2063 return false;
2064 }
2065
2066 read_section_id = qemu_get_be32(f);
2067 if (read_section_id != se->load_section_id) {
2068 error_report("Mismatched section id in footer for %s -"
2069 " read 0x%x expected 0x%x",
2070 se->idstr, read_section_id, se->load_section_id);
2071 return false;
2072 }
2073
2074 /* All good */
2075 return true;
2076 }
2077
2078 static int
2079 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis)
2080 {
2081 uint32_t instance_id, version_id, section_id;
2082 SaveStateEntry *se;
2083 char idstr[256];
2084 int ret;
2085
2086 /* Read section start */
2087 section_id = qemu_get_be32(f);
2088 if (!qemu_get_counted_string(f, idstr)) {
2089 error_report("Unable to read ID string for section %u",
2090 section_id);
2091 return -EINVAL;
2092 }
2093 instance_id = qemu_get_be32(f);
2094 version_id = qemu_get_be32(f);
2095
2096 ret = qemu_file_get_error(f);
2097 if (ret) {
2098 error_report("%s: Failed to read instance/version ID: %d",
2099 __func__, ret);
2100 return ret;
2101 }
2102
2103 trace_qemu_loadvm_state_section_startfull(section_id, idstr,
2104 instance_id, version_id);
2105 /* Find savevm section */
2106 se = find_se(idstr, instance_id);
2107 if (se == NULL) {
2108 error_report("Unknown savevm section or instance '%s' %d. "
2109 "Make sure that your current VM setup matches your "
2110 "saved VM setup, including any hotplugged devices",
2111 idstr, instance_id);
2112 return -EINVAL;
2113 }
2114
2115 /* Validate version */
2116 if (version_id > se->version_id) {
2117 error_report("savevm: unsupported version %d for '%s' v%d",
2118 version_id, idstr, se->version_id);
2119 return -EINVAL;
2120 }
2121 se->load_version_id = version_id;
2122 se->load_section_id = section_id;
2123
2124 /* Validate if it is a device's state */
2125 if (xen_enabled() && se->is_ram) {
2126 error_report("loadvm: %s RAM loading not allowed on Xen", idstr);
2127 return -EINVAL;
2128 }
2129
2130 ret = vmstate_load(f, se);
2131 if (ret < 0) {
2132 error_report("error while loading state for instance 0x%x of"
2133 " device '%s'", instance_id, idstr);
2134 return ret;
2135 }
2136 if (!check_section_footer(f, se)) {
2137 return -EINVAL;
2138 }
2139
2140 return 0;
2141 }
2142
2143 static int
2144 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis)
2145 {
2146 uint32_t section_id;
2147 SaveStateEntry *se;
2148 int ret;
2149
2150 section_id = qemu_get_be32(f);
2151
2152 ret = qemu_file_get_error(f);
2153 if (ret) {
2154 error_report("%s: Failed to read section ID: %d",
2155 __func__, ret);
2156 return ret;
2157 }
2158
2159 trace_qemu_loadvm_state_section_partend(section_id);
2160 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2161 if (se->load_section_id == section_id) {
2162 break;
2163 }
2164 }
2165 if (se == NULL) {
2166 error_report("Unknown savevm section %d", section_id);
2167 return -EINVAL;
2168 }
2169
2170 ret = vmstate_load(f, se);
2171 if (ret < 0) {
2172 error_report("error while loading state section id %d(%s)",
2173 section_id, se->idstr);
2174 return ret;
2175 }
2176 if (!check_section_footer(f, se)) {
2177 return -EINVAL;
2178 }
2179
2180 return 0;
2181 }
2182
2183 static int qemu_loadvm_state_setup(QEMUFile *f)
2184 {
2185 SaveStateEntry *se;
2186 int ret;
2187
2188 trace_loadvm_state_setup();
2189 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2190 if (!se->ops || !se->ops->load_setup) {
2191 continue;
2192 }
2193 if (se->ops && se->ops->is_active) {
2194 if (!se->ops->is_active(se->opaque)) {
2195 continue;
2196 }
2197 }
2198
2199 ret = se->ops->load_setup(f, se->opaque);
2200 if (ret < 0) {
2201 qemu_file_set_error(f, ret);
2202 error_report("Load state of device %s failed", se->idstr);
2203 return ret;
2204 }
2205 }
2206 return 0;
2207 }
2208
2209 void qemu_loadvm_state_cleanup(void)
2210 {
2211 SaveStateEntry *se;
2212
2213 trace_loadvm_state_cleanup();
2214 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2215 if (se->ops && se->ops->load_cleanup) {
2216 se->ops->load_cleanup(se->opaque);
2217 }
2218 }
2219 }
2220
2221 /* Return true if we should continue the migration, or false. */
2222 static bool postcopy_pause_incoming(MigrationIncomingState *mis)
2223 {
2224 trace_postcopy_pause_incoming();
2225
2226 /* Clear the triggered bit to allow one recovery */
2227 mis->postcopy_recover_triggered = false;
2228
2229 assert(mis->from_src_file);
2230 qemu_file_shutdown(mis->from_src_file);
2231 qemu_fclose(mis->from_src_file);
2232 mis->from_src_file = NULL;
2233
2234 assert(mis->to_src_file);
2235 qemu_file_shutdown(mis->to_src_file);
2236 qemu_mutex_lock(&mis->rp_mutex);
2237 qemu_fclose(mis->to_src_file);
2238 mis->to_src_file = NULL;
2239 qemu_mutex_unlock(&mis->rp_mutex);
2240
2241 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
2242 MIGRATION_STATUS_POSTCOPY_PAUSED);
2243
2244 /* Notify the fault thread for the invalidated file handle */
2245 postcopy_fault_thread_notify(mis);
2246
2247 error_report("Detected IO failure for postcopy. "
2248 "Migration paused.");
2249
2250 while (mis->state == MIGRATION_STATUS_POSTCOPY_PAUSED) {
2251 qemu_sem_wait(&mis->postcopy_pause_sem_dst);
2252 }
2253
2254 trace_postcopy_pause_incoming_continued();
2255
2256 return true;
2257 }
2258
2259 int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis)
2260 {
2261 uint8_t section_type;
2262 int ret = 0;
2263
2264 retry:
2265 while (true) {
2266 section_type = qemu_get_byte(f);
2267
2268 if (qemu_file_get_error(f)) {
2269 ret = qemu_file_get_error(f);
2270 break;
2271 }
2272
2273 trace_qemu_loadvm_state_section(section_type);
2274 switch (section_type) {
2275 case QEMU_VM_SECTION_START:
2276 case QEMU_VM_SECTION_FULL:
2277 ret = qemu_loadvm_section_start_full(f, mis);
2278 if (ret < 0) {
2279 goto out;
2280 }
2281 break;
2282 case QEMU_VM_SECTION_PART:
2283 case QEMU_VM_SECTION_END:
2284 ret = qemu_loadvm_section_part_end(f, mis);
2285 if (ret < 0) {
2286 goto out;
2287 }
2288 break;
2289 case QEMU_VM_COMMAND:
2290 ret = loadvm_process_command(f);
2291 trace_qemu_loadvm_state_section_command(ret);
2292 if ((ret < 0) || (ret & LOADVM_QUIT)) {
2293 goto out;
2294 }
2295 break;
2296 case QEMU_VM_EOF:
2297 /* This is the end of migration */
2298 goto out;
2299 default:
2300 error_report("Unknown savevm section type %d", section_type);
2301 ret = -EINVAL;
2302 goto out;
2303 }
2304 }
2305
2306 out:
2307 if (ret < 0) {
2308 qemu_file_set_error(f, ret);
2309
2310 /*
2311 * If we are during an active postcopy, then we pause instead
2312 * of bail out to at least keep the VM's dirty data. Note
2313 * that POSTCOPY_INCOMING_LISTENING stage is still not enough,
2314 * during which we're still receiving device states and we
2315 * still haven't yet started the VM on destination.
2316 */
2317 if (postcopy_state_get() == POSTCOPY_INCOMING_RUNNING &&
2318 postcopy_pause_incoming(mis)) {
2319 /* Reset f to point to the newly created channel */
2320 f = mis->from_src_file;
2321 goto retry;
2322 }
2323 }
2324 return ret;
2325 }
2326
2327 int qemu_loadvm_state(QEMUFile *f)
2328 {
2329 MigrationIncomingState *mis = migration_incoming_get_current();
2330 Error *local_err = NULL;
2331 unsigned int v;
2332 int ret;
2333
2334 if (qemu_savevm_state_blocked(&local_err)) {
2335 error_report_err(local_err);
2336 return -EINVAL;
2337 }
2338
2339 v = qemu_get_be32(f);
2340 if (v != QEMU_VM_FILE_MAGIC) {
2341 error_report("Not a migration stream");
2342 return -EINVAL;
2343 }
2344
2345 v = qemu_get_be32(f);
2346 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2347 error_report("SaveVM v2 format is obsolete and don't work anymore");
2348 return -ENOTSUP;
2349 }
2350 if (v != QEMU_VM_FILE_VERSION) {
2351 error_report("Unsupported migration stream version");
2352 return -ENOTSUP;
2353 }
2354
2355 if (qemu_loadvm_state_setup(f) != 0) {
2356 return -EINVAL;
2357 }
2358
2359 if (migrate_get_current()->send_configuration) {
2360 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) {
2361 error_report("Configuration section missing");
2362 qemu_loadvm_state_cleanup();
2363 return -EINVAL;
2364 }
2365 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0);
2366
2367 if (ret) {
2368 qemu_loadvm_state_cleanup();
2369 return ret;
2370 }
2371 }
2372
2373 cpu_synchronize_all_pre_loadvm();
2374
2375 ret = qemu_loadvm_state_main(f, mis);
2376 qemu_event_set(&mis->main_thread_load_event);
2377
2378 trace_qemu_loadvm_state_post_main(ret);
2379
2380 if (mis->have_listen_thread) {
2381 /* Listen thread still going, can't clean up yet */
2382 return ret;
2383 }
2384
2385 if (ret == 0) {
2386 ret = qemu_file_get_error(f);
2387 }
2388
2389 /*
2390 * Try to read in the VMDESC section as well, so that dumping tools that
2391 * intercept our migration stream have the chance to see it.
2392 */
2393
2394 /* We've got to be careful; if we don't read the data and just shut the fd
2395 * then the sender can error if we close while it's still sending.
2396 * We also mustn't read data that isn't there; some transports (RDMA)
2397 * will stall waiting for that data when the source has already closed.
2398 */
2399 if (ret == 0 && should_send_vmdesc()) {
2400 uint8_t *buf;
2401 uint32_t size;
2402 uint8_t section_type = qemu_get_byte(f);
2403
2404 if (section_type != QEMU_VM_VMDESCRIPTION) {
2405 error_report("Expected vmdescription section, but got %d",
2406 section_type);
2407 /*
2408 * It doesn't seem worth failing at this point since
2409 * we apparently have an otherwise valid VM state
2410 */
2411 } else {
2412 buf = g_malloc(0x1000);
2413 size = qemu_get_be32(f);
2414
2415 while (size > 0) {
2416 uint32_t read_chunk = MIN(size, 0x1000);
2417 qemu_get_buffer(f, buf, read_chunk);
2418 size -= read_chunk;
2419 }
2420 g_free(buf);
2421 }
2422 }
2423
2424 qemu_loadvm_state_cleanup();
2425 cpu_synchronize_all_post_init();
2426
2427 return ret;
2428 }
2429
2430 int qemu_load_device_state(QEMUFile *f)
2431 {
2432 MigrationIncomingState *mis = migration_incoming_get_current();
2433 int ret;
2434
2435 /* Load QEMU_VM_SECTION_FULL section */
2436 ret = qemu_loadvm_state_main(f, mis);
2437 if (ret < 0) {
2438 error_report("Failed to load device state: %d", ret);
2439 return ret;
2440 }
2441
2442 cpu_synchronize_all_post_init();
2443 return 0;
2444 }
2445
2446 int save_snapshot(const char *name, Error **errp)
2447 {
2448 BlockDriverState *bs, *bs1;
2449 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2450 int ret = -1;
2451 QEMUFile *f;
2452 int saved_vm_running;
2453 uint64_t vm_state_size;
2454 qemu_timeval tv;
2455 struct tm tm;
2456 AioContext *aio_context;
2457
2458 if (!replay_can_snapshot()) {
2459 error_setg(errp, "Record/replay does not allow making snapshot "
2460 "right now. Try once more later.");
2461 return ret;
2462 }
2463
2464 if (!bdrv_all_can_snapshot(&bs)) {
2465 error_setg(errp, "Device '%s' is writable but does not support "
2466 "snapshots", bdrv_get_device_name(bs));
2467 return ret;
2468 }
2469
2470 /* Delete old snapshots of the same name */
2471 if (name) {
2472 ret = bdrv_all_delete_snapshot(name, &bs1, errp);
2473 if (ret < 0) {
2474 error_prepend(errp, "Error while deleting snapshot on device "
2475 "'%s': ", bdrv_get_device_name(bs1));
2476 return ret;
2477 }
2478 }
2479
2480 bs = bdrv_all_find_vmstate_bs();
2481 if (bs == NULL) {
2482 error_setg(errp, "No block device can accept snapshots");
2483 return ret;
2484 }
2485 aio_context = bdrv_get_aio_context(bs);
2486
2487 saved_vm_running = runstate_is_running();
2488
2489 ret = global_state_store();
2490 if (ret) {
2491 error_setg(errp, "Error saving global state");
2492 return ret;
2493 }
2494 vm_stop(RUN_STATE_SAVE_VM);
2495
2496 bdrv_drain_all_begin();
2497
2498 aio_context_acquire(aio_context);
2499
2500 memset(sn, 0, sizeof(*sn));
2501
2502 /* fill auxiliary fields */
2503 qemu_gettimeofday(&tv);
2504 sn->date_sec = tv.tv_sec;
2505 sn->date_nsec = tv.tv_usec * 1000;
2506 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2507
2508 if (name) {
2509 ret = bdrv_snapshot_find(bs, old_sn, name);
2510 if (ret >= 0) {
2511 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2512 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2513 } else {
2514 pstrcpy(sn->name, sizeof(sn->name), name);
2515 }
2516 } else {
2517 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2518 localtime_r((const time_t *)&tv.tv_sec, &tm);
2519 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2520 }
2521
2522 /* save the VM state */
2523 f = qemu_fopen_bdrv(bs, 1);
2524 if (!f) {
2525 error_setg(errp, "Could not open VM state file");
2526 goto the_end;
2527 }
2528 ret = qemu_savevm_state(f, errp);
2529 vm_state_size = qemu_ftell(f);
2530 qemu_fclose(f);
2531 if (ret < 0) {
2532 goto the_end;
2533 }
2534
2535 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext
2536 * for itself. BDRV_POLL_WHILE() does not support nested locking because
2537 * it only releases the lock once. Therefore synchronous I/O will deadlock
2538 * unless we release the AioContext before bdrv_all_create_snapshot().
2539 */
2540 aio_context_release(aio_context);
2541 aio_context = NULL;
2542
2543 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs);
2544 if (ret < 0) {
2545 error_setg(errp, "Error while creating snapshot on '%s'",
2546 bdrv_get_device_name(bs));
2547 goto the_end;
2548 }
2549
2550 ret = 0;
2551
2552 the_end:
2553 if (aio_context) {
2554 aio_context_release(aio_context);
2555 }
2556
2557 bdrv_drain_all_end();
2558
2559 if (saved_vm_running) {
2560 vm_start();
2561 }
2562 return ret;
2563 }
2564
2565 void qmp_xen_save_devices_state(const char *filename, bool has_live, bool live,
2566 Error **errp)
2567 {
2568 QEMUFile *f;
2569 QIOChannelFile *ioc;
2570 int saved_vm_running;
2571 int ret;
2572
2573 if (!has_live) {
2574 /* live default to true so old version of Xen tool stack can have a
2575 * successfull live migration */
2576 live = true;
2577 }
2578
2579 saved_vm_running = runstate_is_running();
2580 vm_stop(RUN_STATE_SAVE_VM);
2581 global_state_store_running();
2582
2583 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp);
2584 if (!ioc) {
2585 goto the_end;
2586 }
2587 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state");
2588 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc));
2589 object_unref(OBJECT(ioc));
2590 ret = qemu_save_device_state(f);
2591 if (ret < 0 || qemu_fclose(f) < 0) {
2592 error_setg(errp, QERR_IO_ERROR);
2593 } else {
2594 /* libxl calls the QMP command "stop" before calling
2595 * "xen-save-devices-state" and in case of migration failure, libxl
2596 * would call "cont".
2597 * So call bdrv_inactivate_all (release locks) here to let the other
2598 * side of the migration take controle of the images.
2599 */
2600 if (live && !saved_vm_running) {
2601 ret = bdrv_inactivate_all();
2602 if (ret) {
2603 error_setg(errp, "%s: bdrv_inactivate_all() failed (%d)",
2604 __func__, ret);
2605 }
2606 }
2607 }
2608
2609 the_end:
2610 if (saved_vm_running) {
2611 vm_start();
2612 }
2613 }
2614
2615 void qmp_xen_load_devices_state(const char *filename, Error **errp)
2616 {
2617 QEMUFile *f;
2618 QIOChannelFile *ioc;
2619 int ret;
2620
2621 /* Guest must be paused before loading the device state; the RAM state
2622 * will already have been loaded by xc
2623 */
2624 if (runstate_is_running()) {
2625 error_setg(errp, "Cannot update device state while vm is running");
2626 return;
2627 }
2628 vm_stop(RUN_STATE_RESTORE_VM);
2629
2630 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp);
2631 if (!ioc) {
2632 return;
2633 }
2634 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state");
2635 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc));
2636 object_unref(OBJECT(ioc));
2637
2638 ret = qemu_loadvm_state(f);
2639 qemu_fclose(f);
2640 if (ret < 0) {
2641 error_setg(errp, QERR_IO_ERROR);
2642 }
2643 migration_incoming_state_destroy();
2644 }
2645
2646 int load_snapshot(const char *name, Error **errp)
2647 {
2648 BlockDriverState *bs, *bs_vm_state;
2649 QEMUSnapshotInfo sn;
2650 QEMUFile *f;
2651 int ret;
2652 AioContext *aio_context;
2653 MigrationIncomingState *mis = migration_incoming_get_current();
2654
2655 if (!replay_can_snapshot()) {
2656 error_setg(errp, "Record/replay does not allow loading snapshot "
2657 "right now. Try once more later.");
2658 return -EINVAL;
2659 }
2660
2661 if (!bdrv_all_can_snapshot(&bs)) {
2662 error_setg(errp,
2663 "Device '%s' is writable but does not support snapshots",
2664 bdrv_get_device_name(bs));
2665 return -ENOTSUP;
2666 }
2667 ret = bdrv_all_find_snapshot(name, &bs);
2668 if (ret < 0) {
2669 error_setg(errp,
2670 "Device '%s' does not have the requested snapshot '%s'",
2671 bdrv_get_device_name(bs), name);
2672 return ret;
2673 }
2674
2675 bs_vm_state = bdrv_all_find_vmstate_bs();
2676 if (!bs_vm_state) {
2677 error_setg(errp, "No block device supports snapshots");
2678 return -ENOTSUP;
2679 }
2680 aio_context = bdrv_get_aio_context(bs_vm_state);
2681
2682 /* Don't even try to load empty VM states */
2683 aio_context_acquire(aio_context);
2684 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2685 aio_context_release(aio_context);
2686 if (ret < 0) {
2687 return ret;
2688 } else if (sn.vm_state_size == 0) {
2689 error_setg(errp, "This is a disk-only snapshot. Revert to it "
2690 " offline using qemu-img");
2691 return -EINVAL;
2692 }
2693
2694 /* Flush all IO requests so they don't interfere with the new state. */
2695 bdrv_drain_all_begin();
2696
2697 ret = bdrv_all_goto_snapshot(name, &bs, errp);
2698 if (ret < 0) {
2699 error_prepend(errp, "Could not load snapshot '%s' on '%s': ",
2700 name, bdrv_get_device_name(bs));
2701 goto err_drain;
2702 }
2703
2704 /* restore the VM state */
2705 f = qemu_fopen_bdrv(bs_vm_state, 0);
2706 if (!f) {
2707 error_setg(errp, "Could not open VM state file");
2708 ret = -EINVAL;
2709 goto err_drain;
2710 }
2711
2712 qemu_system_reset(SHUTDOWN_CAUSE_NONE);
2713 mis->from_src_file = f;
2714
2715 aio_context_acquire(aio_context);
2716 ret = qemu_loadvm_state(f);
2717 migration_incoming_state_destroy();
2718 aio_context_release(aio_context);
2719
2720 bdrv_drain_all_end();
2721
2722 if (ret < 0) {
2723 error_setg(errp, "Error %d while loading VM state", ret);
2724 return ret;
2725 }
2726
2727 return 0;
2728
2729 err_drain:
2730 bdrv_drain_all_end();
2731 return ret;
2732 }
2733
2734 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2735 {
2736 qemu_ram_set_idstr(mr->ram_block,
2737 memory_region_name(mr), dev);
2738 qemu_ram_set_migratable(mr->ram_block);
2739 }
2740
2741 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2742 {
2743 qemu_ram_unset_idstr(mr->ram_block);
2744 qemu_ram_unset_migratable(mr->ram_block);
2745 }
2746
2747 void vmstate_register_ram_global(MemoryRegion *mr)
2748 {
2749 vmstate_register_ram(mr, NULL);
2750 }
2751
2752 bool vmstate_check_only_migratable(const VMStateDescription *vmsd)
2753 {
2754 /* check needed if --only-migratable is specified */
2755 if (!migrate_get_current()->only_migratable) {
2756 return true;
2757 }
2758
2759 return !(vmsd && vmsd->unmigratable);
2760 }