]> git.proxmox.com Git - mirror_qemu.git/blob - migration/savevm.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / migration / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2009-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "hw/boards.h"
31 #include "net/net.h"
32 #include "migration.h"
33 #include "migration/snapshot.h"
34 #include "migration/vmstate.h"
35 #include "migration/misc.h"
36 #include "migration/register.h"
37 #include "migration/global_state.h"
38 #include "ram.h"
39 #include "qemu-file-channel.h"
40 #include "qemu-file.h"
41 #include "savevm.h"
42 #include "postcopy-ram.h"
43 #include "qapi/error.h"
44 #include "qapi/qapi-commands-migration.h"
45 #include "qapi/qmp/json-writer.h"
46 #include "qapi/qmp/qerror.h"
47 #include "qemu/error-report.h"
48 #include "sysemu/cpus.h"
49 #include "exec/memory.h"
50 #include "exec/target_page.h"
51 #include "trace.h"
52 #include "qemu/iov.h"
53 #include "qemu/main-loop.h"
54 #include "block/snapshot.h"
55 #include "qemu/cutils.h"
56 #include "io/channel-buffer.h"
57 #include "io/channel-file.h"
58 #include "sysemu/replay.h"
59 #include "sysemu/runstate.h"
60 #include "sysemu/sysemu.h"
61 #include "sysemu/xen.h"
62 #include "migration/colo.h"
63 #include "qemu/bitmap.h"
64 #include "net/announce.h"
65 #include "qemu/yank.h"
66
67 const unsigned int postcopy_ram_discard_version;
68
69 /* Subcommands for QEMU_VM_COMMAND */
70 enum qemu_vm_cmd {
71 MIG_CMD_INVALID = 0, /* Must be 0 */
72 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */
73 MIG_CMD_PING, /* Request a PONG on the RP */
74
75 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just
76 warn we might want to do PC */
77 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming
78 pages as it's running. */
79 MIG_CMD_POSTCOPY_RUN, /* Start execution */
80
81 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that
82 were previously sent during
83 precopy but are dirty. */
84 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */
85 MIG_CMD_ENABLE_COLO, /* Enable COLO */
86 MIG_CMD_POSTCOPY_RESUME, /* resume postcopy on dest */
87 MIG_CMD_RECV_BITMAP, /* Request for recved bitmap on dst */
88 MIG_CMD_MAX
89 };
90
91 #define MAX_VM_CMD_PACKAGED_SIZE UINT32_MAX
92 static struct mig_cmd_args {
93 ssize_t len; /* -1 = variable */
94 const char *name;
95 } mig_cmd_args[] = {
96 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" },
97 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" },
98 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" },
99 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" },
100 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" },
101 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" },
102 [MIG_CMD_POSTCOPY_RAM_DISCARD] = {
103 .len = -1, .name = "POSTCOPY_RAM_DISCARD" },
104 [MIG_CMD_POSTCOPY_RESUME] = { .len = 0, .name = "POSTCOPY_RESUME" },
105 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" },
106 [MIG_CMD_RECV_BITMAP] = { .len = -1, .name = "RECV_BITMAP" },
107 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" },
108 };
109
110 /* Note for MIG_CMD_POSTCOPY_ADVISE:
111 * The format of arguments is depending on postcopy mode:
112 * - postcopy RAM only
113 * uint64_t host page size
114 * uint64_t taget page size
115 *
116 * - postcopy RAM and postcopy dirty bitmaps
117 * format is the same as for postcopy RAM only
118 *
119 * - postcopy dirty bitmaps only
120 * Nothing. Command length field is 0.
121 *
122 * Be careful: adding a new postcopy entity with some other parameters should
123 * not break format self-description ability. Good way is to introduce some
124 * generic extendable format with an exception for two old entities.
125 */
126
127 /***********************************************************/
128 /* savevm/loadvm support */
129
130 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
131 int64_t pos, Error **errp)
132 {
133 int ret;
134 QEMUIOVector qiov;
135
136 qemu_iovec_init_external(&qiov, iov, iovcnt);
137 ret = bdrv_writev_vmstate(opaque, &qiov, pos);
138 if (ret < 0) {
139 return ret;
140 }
141
142 return qiov.size;
143 }
144
145 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos,
146 size_t size, Error **errp)
147 {
148 return bdrv_load_vmstate(opaque, buf, pos, size);
149 }
150
151 static int bdrv_fclose(void *opaque, Error **errp)
152 {
153 return bdrv_flush(opaque);
154 }
155
156 static const QEMUFileOps bdrv_read_ops = {
157 .get_buffer = block_get_buffer,
158 .close = bdrv_fclose
159 };
160
161 static const QEMUFileOps bdrv_write_ops = {
162 .writev_buffer = block_writev_buffer,
163 .close = bdrv_fclose
164 };
165
166 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
167 {
168 if (is_writable) {
169 return qemu_fopen_ops(bs, &bdrv_write_ops);
170 }
171 return qemu_fopen_ops(bs, &bdrv_read_ops);
172 }
173
174
175 /* QEMUFile timer support.
176 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c
177 */
178
179 void timer_put(QEMUFile *f, QEMUTimer *ts)
180 {
181 uint64_t expire_time;
182
183 expire_time = timer_expire_time_ns(ts);
184 qemu_put_be64(f, expire_time);
185 }
186
187 void timer_get(QEMUFile *f, QEMUTimer *ts)
188 {
189 uint64_t expire_time;
190
191 expire_time = qemu_get_be64(f);
192 if (expire_time != -1) {
193 timer_mod_ns(ts, expire_time);
194 } else {
195 timer_del(ts);
196 }
197 }
198
199
200 /* VMState timer support.
201 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c
202 */
203
204 static int get_timer(QEMUFile *f, void *pv, size_t size,
205 const VMStateField *field)
206 {
207 QEMUTimer *v = pv;
208 timer_get(f, v);
209 return 0;
210 }
211
212 static int put_timer(QEMUFile *f, void *pv, size_t size,
213 const VMStateField *field, JSONWriter *vmdesc)
214 {
215 QEMUTimer *v = pv;
216 timer_put(f, v);
217
218 return 0;
219 }
220
221 const VMStateInfo vmstate_info_timer = {
222 .name = "timer",
223 .get = get_timer,
224 .put = put_timer,
225 };
226
227
228 typedef struct CompatEntry {
229 char idstr[256];
230 int instance_id;
231 } CompatEntry;
232
233 typedef struct SaveStateEntry {
234 QTAILQ_ENTRY(SaveStateEntry) entry;
235 char idstr[256];
236 uint32_t instance_id;
237 int alias_id;
238 int version_id;
239 /* version id read from the stream */
240 int load_version_id;
241 int section_id;
242 /* section id read from the stream */
243 int load_section_id;
244 const SaveVMHandlers *ops;
245 const VMStateDescription *vmsd;
246 void *opaque;
247 CompatEntry *compat;
248 int is_ram;
249 } SaveStateEntry;
250
251 typedef struct SaveState {
252 QTAILQ_HEAD(, SaveStateEntry) handlers;
253 SaveStateEntry *handler_pri_head[MIG_PRI_MAX + 1];
254 int global_section_id;
255 uint32_t len;
256 const char *name;
257 uint32_t target_page_bits;
258 uint32_t caps_count;
259 MigrationCapability *capabilities;
260 QemuUUID uuid;
261 } SaveState;
262
263 static SaveState savevm_state = {
264 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers),
265 .handler_pri_head = { [MIG_PRI_DEFAULT ... MIG_PRI_MAX] = NULL },
266 .global_section_id = 0,
267 };
268
269 static bool should_validate_capability(int capability)
270 {
271 assert(capability >= 0 && capability < MIGRATION_CAPABILITY__MAX);
272 /* Validate only new capabilities to keep compatibility. */
273 switch (capability) {
274 case MIGRATION_CAPABILITY_X_IGNORE_SHARED:
275 return true;
276 default:
277 return false;
278 }
279 }
280
281 static uint32_t get_validatable_capabilities_count(void)
282 {
283 MigrationState *s = migrate_get_current();
284 uint32_t result = 0;
285 int i;
286 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
287 if (should_validate_capability(i) && s->enabled_capabilities[i]) {
288 result++;
289 }
290 }
291 return result;
292 }
293
294 static int configuration_pre_save(void *opaque)
295 {
296 SaveState *state = opaque;
297 const char *current_name = MACHINE_GET_CLASS(current_machine)->name;
298 MigrationState *s = migrate_get_current();
299 int i, j;
300
301 state->len = strlen(current_name);
302 state->name = current_name;
303 state->target_page_bits = qemu_target_page_bits();
304
305 state->caps_count = get_validatable_capabilities_count();
306 state->capabilities = g_renew(MigrationCapability, state->capabilities,
307 state->caps_count);
308 for (i = j = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
309 if (should_validate_capability(i) && s->enabled_capabilities[i]) {
310 state->capabilities[j++] = i;
311 }
312 }
313 state->uuid = qemu_uuid;
314
315 return 0;
316 }
317
318 static int configuration_pre_load(void *opaque)
319 {
320 SaveState *state = opaque;
321
322 /* If there is no target-page-bits subsection it means the source
323 * predates the variable-target-page-bits support and is using the
324 * minimum possible value for this CPU.
325 */
326 state->target_page_bits = qemu_target_page_bits_min();
327 return 0;
328 }
329
330 static bool configuration_validate_capabilities(SaveState *state)
331 {
332 bool ret = true;
333 MigrationState *s = migrate_get_current();
334 unsigned long *source_caps_bm;
335 int i;
336
337 source_caps_bm = bitmap_new(MIGRATION_CAPABILITY__MAX);
338 for (i = 0; i < state->caps_count; i++) {
339 MigrationCapability capability = state->capabilities[i];
340 set_bit(capability, source_caps_bm);
341 }
342
343 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
344 bool source_state, target_state;
345 if (!should_validate_capability(i)) {
346 continue;
347 }
348 source_state = test_bit(i, source_caps_bm);
349 target_state = s->enabled_capabilities[i];
350 if (source_state != target_state) {
351 error_report("Capability %s is %s, but received capability is %s",
352 MigrationCapability_str(i),
353 target_state ? "on" : "off",
354 source_state ? "on" : "off");
355 ret = false;
356 /* Don't break here to report all failed capabilities */
357 }
358 }
359
360 g_free(source_caps_bm);
361 return ret;
362 }
363
364 static int configuration_post_load(void *opaque, int version_id)
365 {
366 SaveState *state = opaque;
367 const char *current_name = MACHINE_GET_CLASS(current_machine)->name;
368
369 if (strncmp(state->name, current_name, state->len) != 0) {
370 error_report("Machine type received is '%.*s' and local is '%s'",
371 (int) state->len, state->name, current_name);
372 return -EINVAL;
373 }
374
375 if (state->target_page_bits != qemu_target_page_bits()) {
376 error_report("Received TARGET_PAGE_BITS is %d but local is %d",
377 state->target_page_bits, qemu_target_page_bits());
378 return -EINVAL;
379 }
380
381 if (!configuration_validate_capabilities(state)) {
382 return -EINVAL;
383 }
384
385 return 0;
386 }
387
388 static int get_capability(QEMUFile *f, void *pv, size_t size,
389 const VMStateField *field)
390 {
391 MigrationCapability *capability = pv;
392 char capability_str[UINT8_MAX + 1];
393 uint8_t len;
394 int i;
395
396 len = qemu_get_byte(f);
397 qemu_get_buffer(f, (uint8_t *)capability_str, len);
398 capability_str[len] = '\0';
399 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
400 if (!strcmp(MigrationCapability_str(i), capability_str)) {
401 *capability = i;
402 return 0;
403 }
404 }
405 error_report("Received unknown capability %s", capability_str);
406 return -EINVAL;
407 }
408
409 static int put_capability(QEMUFile *f, void *pv, size_t size,
410 const VMStateField *field, JSONWriter *vmdesc)
411 {
412 MigrationCapability *capability = pv;
413 const char *capability_str = MigrationCapability_str(*capability);
414 size_t len = strlen(capability_str);
415 assert(len <= UINT8_MAX);
416
417 qemu_put_byte(f, len);
418 qemu_put_buffer(f, (uint8_t *)capability_str, len);
419 return 0;
420 }
421
422 static const VMStateInfo vmstate_info_capability = {
423 .name = "capability",
424 .get = get_capability,
425 .put = put_capability,
426 };
427
428 /* The target-page-bits subsection is present only if the
429 * target page size is not the same as the default (ie the
430 * minimum page size for a variable-page-size guest CPU).
431 * If it is present then it contains the actual target page
432 * bits for the machine, and migration will fail if the
433 * two ends don't agree about it.
434 */
435 static bool vmstate_target_page_bits_needed(void *opaque)
436 {
437 return qemu_target_page_bits()
438 > qemu_target_page_bits_min();
439 }
440
441 static const VMStateDescription vmstate_target_page_bits = {
442 .name = "configuration/target-page-bits",
443 .version_id = 1,
444 .minimum_version_id = 1,
445 .needed = vmstate_target_page_bits_needed,
446 .fields = (VMStateField[]) {
447 VMSTATE_UINT32(target_page_bits, SaveState),
448 VMSTATE_END_OF_LIST()
449 }
450 };
451
452 static bool vmstate_capabilites_needed(void *opaque)
453 {
454 return get_validatable_capabilities_count() > 0;
455 }
456
457 static const VMStateDescription vmstate_capabilites = {
458 .name = "configuration/capabilities",
459 .version_id = 1,
460 .minimum_version_id = 1,
461 .needed = vmstate_capabilites_needed,
462 .fields = (VMStateField[]) {
463 VMSTATE_UINT32_V(caps_count, SaveState, 1),
464 VMSTATE_VARRAY_UINT32_ALLOC(capabilities, SaveState, caps_count, 1,
465 vmstate_info_capability,
466 MigrationCapability),
467 VMSTATE_END_OF_LIST()
468 }
469 };
470
471 static bool vmstate_uuid_needed(void *opaque)
472 {
473 return qemu_uuid_set && migrate_validate_uuid();
474 }
475
476 static int vmstate_uuid_post_load(void *opaque, int version_id)
477 {
478 SaveState *state = opaque;
479 char uuid_src[UUID_FMT_LEN + 1];
480 char uuid_dst[UUID_FMT_LEN + 1];
481
482 if (!qemu_uuid_set) {
483 /*
484 * It's warning because user might not know UUID in some cases,
485 * e.g. load an old snapshot
486 */
487 qemu_uuid_unparse(&state->uuid, uuid_src);
488 warn_report("UUID is received %s, but local uuid isn't set",
489 uuid_src);
490 return 0;
491 }
492 if (!qemu_uuid_is_equal(&state->uuid, &qemu_uuid)) {
493 qemu_uuid_unparse(&state->uuid, uuid_src);
494 qemu_uuid_unparse(&qemu_uuid, uuid_dst);
495 error_report("UUID received is %s and local is %s", uuid_src, uuid_dst);
496 return -EINVAL;
497 }
498 return 0;
499 }
500
501 static const VMStateDescription vmstate_uuid = {
502 .name = "configuration/uuid",
503 .version_id = 1,
504 .minimum_version_id = 1,
505 .needed = vmstate_uuid_needed,
506 .post_load = vmstate_uuid_post_load,
507 .fields = (VMStateField[]) {
508 VMSTATE_UINT8_ARRAY_V(uuid.data, SaveState, sizeof(QemuUUID), 1),
509 VMSTATE_END_OF_LIST()
510 }
511 };
512
513 static const VMStateDescription vmstate_configuration = {
514 .name = "configuration",
515 .version_id = 1,
516 .pre_load = configuration_pre_load,
517 .post_load = configuration_post_load,
518 .pre_save = configuration_pre_save,
519 .fields = (VMStateField[]) {
520 VMSTATE_UINT32(len, SaveState),
521 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len),
522 VMSTATE_END_OF_LIST()
523 },
524 .subsections = (const VMStateDescription *[]) {
525 &vmstate_target_page_bits,
526 &vmstate_capabilites,
527 &vmstate_uuid,
528 NULL
529 }
530 };
531
532 static void dump_vmstate_vmsd(FILE *out_file,
533 const VMStateDescription *vmsd, int indent,
534 bool is_subsection);
535
536 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field,
537 int indent)
538 {
539 fprintf(out_file, "%*s{\n", indent, "");
540 indent += 2;
541 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name);
542 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
543 field->version_id);
544 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "",
545 field->field_exists ? "true" : "false");
546 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size);
547 if (field->vmsd != NULL) {
548 fprintf(out_file, ",\n");
549 dump_vmstate_vmsd(out_file, field->vmsd, indent, false);
550 }
551 fprintf(out_file, "\n%*s}", indent - 2, "");
552 }
553
554 static void dump_vmstate_vmss(FILE *out_file,
555 const VMStateDescription **subsection,
556 int indent)
557 {
558 if (*subsection != NULL) {
559 dump_vmstate_vmsd(out_file, *subsection, indent, true);
560 }
561 }
562
563 static void dump_vmstate_vmsd(FILE *out_file,
564 const VMStateDescription *vmsd, int indent,
565 bool is_subsection)
566 {
567 if (is_subsection) {
568 fprintf(out_file, "%*s{\n", indent, "");
569 } else {
570 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description");
571 }
572 indent += 2;
573 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name);
574 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
575 vmsd->version_id);
576 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "",
577 vmsd->minimum_version_id);
578 if (vmsd->fields != NULL) {
579 const VMStateField *field = vmsd->fields;
580 bool first;
581
582 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, "");
583 first = true;
584 while (field->name != NULL) {
585 if (field->flags & VMS_MUST_EXIST) {
586 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */
587 field++;
588 continue;
589 }
590 if (!first) {
591 fprintf(out_file, ",\n");
592 }
593 dump_vmstate_vmsf(out_file, field, indent + 2);
594 field++;
595 first = false;
596 }
597 fprintf(out_file, "\n%*s]", indent, "");
598 }
599 if (vmsd->subsections != NULL) {
600 const VMStateDescription **subsection = vmsd->subsections;
601 bool first;
602
603 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, "");
604 first = true;
605 while (*subsection != NULL) {
606 if (!first) {
607 fprintf(out_file, ",\n");
608 }
609 dump_vmstate_vmss(out_file, subsection, indent + 2);
610 subsection++;
611 first = false;
612 }
613 fprintf(out_file, "\n%*s]", indent, "");
614 }
615 fprintf(out_file, "\n%*s}", indent - 2, "");
616 }
617
618 static void dump_machine_type(FILE *out_file)
619 {
620 MachineClass *mc;
621
622 mc = MACHINE_GET_CLASS(current_machine);
623
624 fprintf(out_file, " \"vmschkmachine\": {\n");
625 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name);
626 fprintf(out_file, " },\n");
627 }
628
629 void dump_vmstate_json_to_file(FILE *out_file)
630 {
631 GSList *list, *elt;
632 bool first;
633
634 fprintf(out_file, "{\n");
635 dump_machine_type(out_file);
636
637 first = true;
638 list = object_class_get_list(TYPE_DEVICE, true);
639 for (elt = list; elt; elt = elt->next) {
640 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data,
641 TYPE_DEVICE);
642 const char *name;
643 int indent = 2;
644
645 if (!dc->vmsd) {
646 continue;
647 }
648
649 if (!first) {
650 fprintf(out_file, ",\n");
651 }
652 name = object_class_get_name(OBJECT_CLASS(dc));
653 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name);
654 indent += 2;
655 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name);
656 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
657 dc->vmsd->version_id);
658 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "",
659 dc->vmsd->minimum_version_id);
660
661 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false);
662
663 fprintf(out_file, "\n%*s}", indent - 2, "");
664 first = false;
665 }
666 fprintf(out_file, "\n}\n");
667 fclose(out_file);
668 g_slist_free(list);
669 }
670
671 static uint32_t calculate_new_instance_id(const char *idstr)
672 {
673 SaveStateEntry *se;
674 uint32_t instance_id = 0;
675
676 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
677 if (strcmp(idstr, se->idstr) == 0
678 && instance_id <= se->instance_id) {
679 instance_id = se->instance_id + 1;
680 }
681 }
682 /* Make sure we never loop over without being noticed */
683 assert(instance_id != VMSTATE_INSTANCE_ID_ANY);
684 return instance_id;
685 }
686
687 static int calculate_compat_instance_id(const char *idstr)
688 {
689 SaveStateEntry *se;
690 int instance_id = 0;
691
692 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
693 if (!se->compat) {
694 continue;
695 }
696
697 if (strcmp(idstr, se->compat->idstr) == 0
698 && instance_id <= se->compat->instance_id) {
699 instance_id = se->compat->instance_id + 1;
700 }
701 }
702 return instance_id;
703 }
704
705 static inline MigrationPriority save_state_priority(SaveStateEntry *se)
706 {
707 if (se->vmsd) {
708 return se->vmsd->priority;
709 }
710 return MIG_PRI_DEFAULT;
711 }
712
713 static void savevm_state_handler_insert(SaveStateEntry *nse)
714 {
715 MigrationPriority priority = save_state_priority(nse);
716 SaveStateEntry *se;
717 int i;
718
719 assert(priority <= MIG_PRI_MAX);
720
721 for (i = priority - 1; i >= 0; i--) {
722 se = savevm_state.handler_pri_head[i];
723 if (se != NULL) {
724 assert(save_state_priority(se) < priority);
725 break;
726 }
727 }
728
729 if (i >= 0) {
730 QTAILQ_INSERT_BEFORE(se, nse, entry);
731 } else {
732 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry);
733 }
734
735 if (savevm_state.handler_pri_head[priority] == NULL) {
736 savevm_state.handler_pri_head[priority] = nse;
737 }
738 }
739
740 static void savevm_state_handler_remove(SaveStateEntry *se)
741 {
742 SaveStateEntry *next;
743 MigrationPriority priority = save_state_priority(se);
744
745 if (se == savevm_state.handler_pri_head[priority]) {
746 next = QTAILQ_NEXT(se, entry);
747 if (next != NULL && save_state_priority(next) == priority) {
748 savevm_state.handler_pri_head[priority] = next;
749 } else {
750 savevm_state.handler_pri_head[priority] = NULL;
751 }
752 }
753 QTAILQ_REMOVE(&savevm_state.handlers, se, entry);
754 }
755
756 /* TODO: Individual devices generally have very little idea about the rest
757 of the system, so instance_id should be removed/replaced.
758 Meanwhile pass -1 as instance_id if you do not already have a clearly
759 distinguishing id for all instances of your device class. */
760 int register_savevm_live(const char *idstr,
761 uint32_t instance_id,
762 int version_id,
763 const SaveVMHandlers *ops,
764 void *opaque)
765 {
766 SaveStateEntry *se;
767
768 se = g_new0(SaveStateEntry, 1);
769 se->version_id = version_id;
770 se->section_id = savevm_state.global_section_id++;
771 se->ops = ops;
772 se->opaque = opaque;
773 se->vmsd = NULL;
774 /* if this is a live_savem then set is_ram */
775 if (ops->save_setup != NULL) {
776 se->is_ram = 1;
777 }
778
779 pstrcat(se->idstr, sizeof(se->idstr), idstr);
780
781 if (instance_id == VMSTATE_INSTANCE_ID_ANY) {
782 se->instance_id = calculate_new_instance_id(se->idstr);
783 } else {
784 se->instance_id = instance_id;
785 }
786 assert(!se->compat || se->instance_id == 0);
787 savevm_state_handler_insert(se);
788 return 0;
789 }
790
791 void unregister_savevm(VMStateIf *obj, const char *idstr, void *opaque)
792 {
793 SaveStateEntry *se, *new_se;
794 char id[256] = "";
795
796 if (obj) {
797 char *oid = vmstate_if_get_id(obj);
798 if (oid) {
799 pstrcpy(id, sizeof(id), oid);
800 pstrcat(id, sizeof(id), "/");
801 g_free(oid);
802 }
803 }
804 pstrcat(id, sizeof(id), idstr);
805
806 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
807 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
808 savevm_state_handler_remove(se);
809 g_free(se->compat);
810 g_free(se);
811 }
812 }
813 }
814
815 int vmstate_register_with_alias_id(VMStateIf *obj, uint32_t instance_id,
816 const VMStateDescription *vmsd,
817 void *opaque, int alias_id,
818 int required_for_version,
819 Error **errp)
820 {
821 SaveStateEntry *se;
822
823 /* If this triggers, alias support can be dropped for the vmsd. */
824 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
825
826 se = g_new0(SaveStateEntry, 1);
827 se->version_id = vmsd->version_id;
828 se->section_id = savevm_state.global_section_id++;
829 se->opaque = opaque;
830 se->vmsd = vmsd;
831 se->alias_id = alias_id;
832
833 if (obj) {
834 char *id = vmstate_if_get_id(obj);
835 if (id) {
836 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >=
837 sizeof(se->idstr)) {
838 error_setg(errp, "Path too long for VMState (%s)", id);
839 g_free(id);
840 g_free(se);
841
842 return -1;
843 }
844 g_free(id);
845
846 se->compat = g_new0(CompatEntry, 1);
847 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
848 se->compat->instance_id = instance_id == VMSTATE_INSTANCE_ID_ANY ?
849 calculate_compat_instance_id(vmsd->name) : instance_id;
850 instance_id = VMSTATE_INSTANCE_ID_ANY;
851 }
852 }
853 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
854
855 if (instance_id == VMSTATE_INSTANCE_ID_ANY) {
856 se->instance_id = calculate_new_instance_id(se->idstr);
857 } else {
858 se->instance_id = instance_id;
859 }
860 assert(!se->compat || se->instance_id == 0);
861 savevm_state_handler_insert(se);
862 return 0;
863 }
864
865 void vmstate_unregister(VMStateIf *obj, const VMStateDescription *vmsd,
866 void *opaque)
867 {
868 SaveStateEntry *se, *new_se;
869
870 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
871 if (se->vmsd == vmsd && se->opaque == opaque) {
872 savevm_state_handler_remove(se);
873 g_free(se->compat);
874 g_free(se);
875 }
876 }
877 }
878
879 static int vmstate_load(QEMUFile *f, SaveStateEntry *se)
880 {
881 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)");
882 if (!se->vmsd) { /* Old style */
883 return se->ops->load_state(f, se->opaque, se->load_version_id);
884 }
885 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id);
886 }
887
888 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se,
889 JSONWriter *vmdesc)
890 {
891 int64_t old_offset, size;
892
893 old_offset = qemu_ftell_fast(f);
894 se->ops->save_state(f, se->opaque);
895 size = qemu_ftell_fast(f) - old_offset;
896
897 if (vmdesc) {
898 json_writer_int64(vmdesc, "size", size);
899 json_writer_start_array(vmdesc, "fields");
900 json_writer_start_object(vmdesc, NULL);
901 json_writer_str(vmdesc, "name", "data");
902 json_writer_int64(vmdesc, "size", size);
903 json_writer_str(vmdesc, "type", "buffer");
904 json_writer_end_object(vmdesc);
905 json_writer_end_array(vmdesc);
906 }
907 }
908
909 static int vmstate_save(QEMUFile *f, SaveStateEntry *se,
910 JSONWriter *vmdesc)
911 {
912 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)");
913 if (!se->vmsd) {
914 vmstate_save_old_style(f, se, vmdesc);
915 return 0;
916 }
917 return vmstate_save_state(f, se->vmsd, se->opaque, vmdesc);
918 }
919
920 /*
921 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL)
922 */
923 static void save_section_header(QEMUFile *f, SaveStateEntry *se,
924 uint8_t section_type)
925 {
926 qemu_put_byte(f, section_type);
927 qemu_put_be32(f, se->section_id);
928
929 if (section_type == QEMU_VM_SECTION_FULL ||
930 section_type == QEMU_VM_SECTION_START) {
931 /* ID string */
932 size_t len = strlen(se->idstr);
933 qemu_put_byte(f, len);
934 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
935
936 qemu_put_be32(f, se->instance_id);
937 qemu_put_be32(f, se->version_id);
938 }
939 }
940
941 /*
942 * Write a footer onto device sections that catches cases misformatted device
943 * sections.
944 */
945 static void save_section_footer(QEMUFile *f, SaveStateEntry *se)
946 {
947 if (migrate_get_current()->send_section_footer) {
948 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER);
949 qemu_put_be32(f, se->section_id);
950 }
951 }
952
953 /**
954 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the
955 * command and associated data.
956 *
957 * @f: File to send command on
958 * @command: Command type to send
959 * @len: Length of associated data
960 * @data: Data associated with command.
961 */
962 static void qemu_savevm_command_send(QEMUFile *f,
963 enum qemu_vm_cmd command,
964 uint16_t len,
965 uint8_t *data)
966 {
967 trace_savevm_command_send(command, len);
968 qemu_put_byte(f, QEMU_VM_COMMAND);
969 qemu_put_be16(f, (uint16_t)command);
970 qemu_put_be16(f, len);
971 qemu_put_buffer(f, data, len);
972 qemu_fflush(f);
973 }
974
975 void qemu_savevm_send_colo_enable(QEMUFile *f)
976 {
977 trace_savevm_send_colo_enable();
978 qemu_savevm_command_send(f, MIG_CMD_ENABLE_COLO, 0, NULL);
979 }
980
981 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value)
982 {
983 uint32_t buf;
984
985 trace_savevm_send_ping(value);
986 buf = cpu_to_be32(value);
987 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf);
988 }
989
990 void qemu_savevm_send_open_return_path(QEMUFile *f)
991 {
992 trace_savevm_send_open_return_path();
993 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL);
994 }
995
996 /* We have a buffer of data to send; we don't want that all to be loaded
997 * by the command itself, so the command contains just the length of the
998 * extra buffer that we then send straight after it.
999 * TODO: Must be a better way to organise that
1000 *
1001 * Returns:
1002 * 0 on success
1003 * -ve on error
1004 */
1005 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len)
1006 {
1007 uint32_t tmp;
1008
1009 if (len > MAX_VM_CMD_PACKAGED_SIZE) {
1010 error_report("%s: Unreasonably large packaged state: %zu",
1011 __func__, len);
1012 return -1;
1013 }
1014
1015 tmp = cpu_to_be32(len);
1016
1017 trace_qemu_savevm_send_packaged();
1018 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp);
1019
1020 qemu_put_buffer(f, buf, len);
1021
1022 return 0;
1023 }
1024
1025 /* Send prior to any postcopy transfer */
1026 void qemu_savevm_send_postcopy_advise(QEMUFile *f)
1027 {
1028 if (migrate_postcopy_ram()) {
1029 uint64_t tmp[2];
1030 tmp[0] = cpu_to_be64(ram_pagesize_summary());
1031 tmp[1] = cpu_to_be64(qemu_target_page_size());
1032
1033 trace_qemu_savevm_send_postcopy_advise();
1034 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE,
1035 16, (uint8_t *)tmp);
1036 } else {
1037 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL);
1038 }
1039 }
1040
1041 /* Sent prior to starting the destination running in postcopy, discard pages
1042 * that have already been sent but redirtied on the source.
1043 * CMD_POSTCOPY_RAM_DISCARD consist of:
1044 * byte version (0)
1045 * byte Length of name field (not including 0)
1046 * n x byte RAM block name
1047 * byte 0 terminator (just for safety)
1048 * n x Byte ranges within the named RAMBlock
1049 * be64 Start of the range
1050 * be64 Length
1051 *
1052 * name: RAMBlock name that these entries are part of
1053 * len: Number of page entries
1054 * start_list: 'len' addresses
1055 * length_list: 'len' addresses
1056 *
1057 */
1058 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name,
1059 uint16_t len,
1060 uint64_t *start_list,
1061 uint64_t *length_list)
1062 {
1063 uint8_t *buf;
1064 uint16_t tmplen;
1065 uint16_t t;
1066 size_t name_len = strlen(name);
1067
1068 trace_qemu_savevm_send_postcopy_ram_discard(name, len);
1069 assert(name_len < 256);
1070 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len);
1071 buf[0] = postcopy_ram_discard_version;
1072 buf[1] = name_len;
1073 memcpy(buf + 2, name, name_len);
1074 tmplen = 2 + name_len;
1075 buf[tmplen++] = '\0';
1076
1077 for (t = 0; t < len; t++) {
1078 stq_be_p(buf + tmplen, start_list[t]);
1079 tmplen += 8;
1080 stq_be_p(buf + tmplen, length_list[t]);
1081 tmplen += 8;
1082 }
1083 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf);
1084 g_free(buf);
1085 }
1086
1087 /* Get the destination into a state where it can receive postcopy data. */
1088 void qemu_savevm_send_postcopy_listen(QEMUFile *f)
1089 {
1090 trace_savevm_send_postcopy_listen();
1091 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL);
1092 }
1093
1094 /* Kick the destination into running */
1095 void qemu_savevm_send_postcopy_run(QEMUFile *f)
1096 {
1097 trace_savevm_send_postcopy_run();
1098 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL);
1099 }
1100
1101 void qemu_savevm_send_postcopy_resume(QEMUFile *f)
1102 {
1103 trace_savevm_send_postcopy_resume();
1104 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RESUME, 0, NULL);
1105 }
1106
1107 void qemu_savevm_send_recv_bitmap(QEMUFile *f, char *block_name)
1108 {
1109 size_t len;
1110 char buf[256];
1111
1112 trace_savevm_send_recv_bitmap(block_name);
1113
1114 buf[0] = len = strlen(block_name);
1115 memcpy(buf + 1, block_name, len);
1116
1117 qemu_savevm_command_send(f, MIG_CMD_RECV_BITMAP, len + 1, (uint8_t *)buf);
1118 }
1119
1120 bool qemu_savevm_state_blocked(Error **errp)
1121 {
1122 SaveStateEntry *se;
1123
1124 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1125 if (se->vmsd && se->vmsd->unmigratable) {
1126 error_setg(errp, "State blocked by non-migratable device '%s'",
1127 se->idstr);
1128 return true;
1129 }
1130 }
1131 return false;
1132 }
1133
1134 void qemu_savevm_state_header(QEMUFile *f)
1135 {
1136 trace_savevm_state_header();
1137 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1138 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1139
1140 if (migrate_get_current()->send_configuration) {
1141 qemu_put_byte(f, QEMU_VM_CONFIGURATION);
1142 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0);
1143 }
1144 }
1145
1146 bool qemu_savevm_state_guest_unplug_pending(void)
1147 {
1148 SaveStateEntry *se;
1149
1150 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1151 if (se->vmsd && se->vmsd->dev_unplug_pending &&
1152 se->vmsd->dev_unplug_pending(se->opaque)) {
1153 return true;
1154 }
1155 }
1156
1157 return false;
1158 }
1159
1160 void qemu_savevm_state_setup(QEMUFile *f)
1161 {
1162 SaveStateEntry *se;
1163 Error *local_err = NULL;
1164 int ret;
1165
1166 trace_savevm_state_setup();
1167 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1168 if (!se->ops || !se->ops->save_setup) {
1169 continue;
1170 }
1171 if (se->ops->is_active) {
1172 if (!se->ops->is_active(se->opaque)) {
1173 continue;
1174 }
1175 }
1176 save_section_header(f, se, QEMU_VM_SECTION_START);
1177
1178 ret = se->ops->save_setup(f, se->opaque);
1179 save_section_footer(f, se);
1180 if (ret < 0) {
1181 qemu_file_set_error(f, ret);
1182 break;
1183 }
1184 }
1185
1186 if (precopy_notify(PRECOPY_NOTIFY_SETUP, &local_err)) {
1187 error_report_err(local_err);
1188 }
1189 }
1190
1191 int qemu_savevm_state_resume_prepare(MigrationState *s)
1192 {
1193 SaveStateEntry *se;
1194 int ret;
1195
1196 trace_savevm_state_resume_prepare();
1197
1198 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1199 if (!se->ops || !se->ops->resume_prepare) {
1200 continue;
1201 }
1202 if (se->ops->is_active) {
1203 if (!se->ops->is_active(se->opaque)) {
1204 continue;
1205 }
1206 }
1207 ret = se->ops->resume_prepare(s, se->opaque);
1208 if (ret < 0) {
1209 return ret;
1210 }
1211 }
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * this function has three return values:
1218 * negative: there was one error, and we have -errno.
1219 * 0 : We haven't finished, caller have to go again
1220 * 1 : We have finished, we can go to complete phase
1221 */
1222 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy)
1223 {
1224 SaveStateEntry *se;
1225 int ret = 1;
1226
1227 trace_savevm_state_iterate();
1228 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1229 if (!se->ops || !se->ops->save_live_iterate) {
1230 continue;
1231 }
1232 if (se->ops->is_active &&
1233 !se->ops->is_active(se->opaque)) {
1234 continue;
1235 }
1236 if (se->ops->is_active_iterate &&
1237 !se->ops->is_active_iterate(se->opaque)) {
1238 continue;
1239 }
1240 /*
1241 * In the postcopy phase, any device that doesn't know how to
1242 * do postcopy should have saved it's state in the _complete
1243 * call that's already run, it might get confused if we call
1244 * iterate afterwards.
1245 */
1246 if (postcopy &&
1247 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) {
1248 continue;
1249 }
1250 if (qemu_file_rate_limit(f)) {
1251 return 0;
1252 }
1253 trace_savevm_section_start(se->idstr, se->section_id);
1254
1255 save_section_header(f, se, QEMU_VM_SECTION_PART);
1256
1257 ret = se->ops->save_live_iterate(f, se->opaque);
1258 trace_savevm_section_end(se->idstr, se->section_id, ret);
1259 save_section_footer(f, se);
1260
1261 if (ret < 0) {
1262 error_report("failed to save SaveStateEntry with id(name): %d(%s)",
1263 se->section_id, se->idstr);
1264 qemu_file_set_error(f, ret);
1265 }
1266 if (ret <= 0) {
1267 /* Do not proceed to the next vmstate before this one reported
1268 completion of the current stage. This serializes the migration
1269 and reduces the probability that a faster changing state is
1270 synchronized over and over again. */
1271 break;
1272 }
1273 }
1274 return ret;
1275 }
1276
1277 static bool should_send_vmdesc(void)
1278 {
1279 MachineState *machine = MACHINE(qdev_get_machine());
1280 bool in_postcopy = migration_in_postcopy();
1281 return !machine->suppress_vmdesc && !in_postcopy;
1282 }
1283
1284 /*
1285 * Calls the save_live_complete_postcopy methods
1286 * causing the last few pages to be sent immediately and doing any associated
1287 * cleanup.
1288 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete
1289 * all the other devices, but that happens at the point we switch to postcopy.
1290 */
1291 void qemu_savevm_state_complete_postcopy(QEMUFile *f)
1292 {
1293 SaveStateEntry *se;
1294 int ret;
1295
1296 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1297 if (!se->ops || !se->ops->save_live_complete_postcopy) {
1298 continue;
1299 }
1300 if (se->ops->is_active) {
1301 if (!se->ops->is_active(se->opaque)) {
1302 continue;
1303 }
1304 }
1305 trace_savevm_section_start(se->idstr, se->section_id);
1306 /* Section type */
1307 qemu_put_byte(f, QEMU_VM_SECTION_END);
1308 qemu_put_be32(f, se->section_id);
1309
1310 ret = se->ops->save_live_complete_postcopy(f, se->opaque);
1311 trace_savevm_section_end(se->idstr, se->section_id, ret);
1312 save_section_footer(f, se);
1313 if (ret < 0) {
1314 qemu_file_set_error(f, ret);
1315 return;
1316 }
1317 }
1318
1319 qemu_put_byte(f, QEMU_VM_EOF);
1320 qemu_fflush(f);
1321 }
1322
1323 static
1324 int qemu_savevm_state_complete_precopy_iterable(QEMUFile *f, bool in_postcopy)
1325 {
1326 SaveStateEntry *se;
1327 int ret;
1328
1329 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1330 if (!se->ops ||
1331 (in_postcopy && se->ops->has_postcopy &&
1332 se->ops->has_postcopy(se->opaque)) ||
1333 !se->ops->save_live_complete_precopy) {
1334 continue;
1335 }
1336
1337 if (se->ops->is_active) {
1338 if (!se->ops->is_active(se->opaque)) {
1339 continue;
1340 }
1341 }
1342 trace_savevm_section_start(se->idstr, se->section_id);
1343
1344 save_section_header(f, se, QEMU_VM_SECTION_END);
1345
1346 ret = se->ops->save_live_complete_precopy(f, se->opaque);
1347 trace_savevm_section_end(se->idstr, se->section_id, ret);
1348 save_section_footer(f, se);
1349 if (ret < 0) {
1350 qemu_file_set_error(f, ret);
1351 return -1;
1352 }
1353 }
1354
1355 return 0;
1356 }
1357
1358 static
1359 int qemu_savevm_state_complete_precopy_non_iterable(QEMUFile *f,
1360 bool in_postcopy,
1361 bool inactivate_disks)
1362 {
1363 g_autoptr(JSONWriter) vmdesc = NULL;
1364 int vmdesc_len;
1365 SaveStateEntry *se;
1366 int ret;
1367
1368 vmdesc = json_writer_new(false);
1369 json_writer_start_object(vmdesc, NULL);
1370 json_writer_int64(vmdesc, "page_size", qemu_target_page_size());
1371 json_writer_start_array(vmdesc, "devices");
1372 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1373
1374 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1375 continue;
1376 }
1377 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) {
1378 trace_savevm_section_skip(se->idstr, se->section_id);
1379 continue;
1380 }
1381
1382 trace_savevm_section_start(se->idstr, se->section_id);
1383
1384 json_writer_start_object(vmdesc, NULL);
1385 json_writer_str(vmdesc, "name", se->idstr);
1386 json_writer_int64(vmdesc, "instance_id", se->instance_id);
1387
1388 save_section_header(f, se, QEMU_VM_SECTION_FULL);
1389 ret = vmstate_save(f, se, vmdesc);
1390 if (ret) {
1391 qemu_file_set_error(f, ret);
1392 return ret;
1393 }
1394 trace_savevm_section_end(se->idstr, se->section_id, 0);
1395 save_section_footer(f, se);
1396
1397 json_writer_end_object(vmdesc);
1398 }
1399
1400 if (inactivate_disks) {
1401 /* Inactivate before sending QEMU_VM_EOF so that the
1402 * bdrv_invalidate_cache_all() on the other end won't fail. */
1403 ret = bdrv_inactivate_all();
1404 if (ret) {
1405 error_report("%s: bdrv_inactivate_all() failed (%d)",
1406 __func__, ret);
1407 qemu_file_set_error(f, ret);
1408 return ret;
1409 }
1410 }
1411 if (!in_postcopy) {
1412 /* Postcopy stream will still be going */
1413 qemu_put_byte(f, QEMU_VM_EOF);
1414 }
1415
1416 json_writer_end_array(vmdesc);
1417 json_writer_end_object(vmdesc);
1418 vmdesc_len = strlen(json_writer_get(vmdesc));
1419
1420 if (should_send_vmdesc()) {
1421 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION);
1422 qemu_put_be32(f, vmdesc_len);
1423 qemu_put_buffer(f, (uint8_t *)json_writer_get(vmdesc), vmdesc_len);
1424 }
1425
1426 return 0;
1427 }
1428
1429 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only,
1430 bool inactivate_disks)
1431 {
1432 int ret;
1433 Error *local_err = NULL;
1434 bool in_postcopy = migration_in_postcopy();
1435
1436 if (precopy_notify(PRECOPY_NOTIFY_COMPLETE, &local_err)) {
1437 error_report_err(local_err);
1438 }
1439
1440 trace_savevm_state_complete_precopy();
1441
1442 cpu_synchronize_all_states();
1443
1444 if (!in_postcopy || iterable_only) {
1445 ret = qemu_savevm_state_complete_precopy_iterable(f, in_postcopy);
1446 if (ret) {
1447 return ret;
1448 }
1449 }
1450
1451 if (iterable_only) {
1452 goto flush;
1453 }
1454
1455 ret = qemu_savevm_state_complete_precopy_non_iterable(f, in_postcopy,
1456 inactivate_disks);
1457 if (ret) {
1458 return ret;
1459 }
1460
1461 flush:
1462 qemu_fflush(f);
1463 return 0;
1464 }
1465
1466 /* Give an estimate of the amount left to be transferred,
1467 * the result is split into the amount for units that can and
1468 * for units that can't do postcopy.
1469 */
1470 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size,
1471 uint64_t *res_precopy_only,
1472 uint64_t *res_compatible,
1473 uint64_t *res_postcopy_only)
1474 {
1475 SaveStateEntry *se;
1476
1477 *res_precopy_only = 0;
1478 *res_compatible = 0;
1479 *res_postcopy_only = 0;
1480
1481
1482 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1483 if (!se->ops || !se->ops->save_live_pending) {
1484 continue;
1485 }
1486 if (se->ops->is_active) {
1487 if (!se->ops->is_active(se->opaque)) {
1488 continue;
1489 }
1490 }
1491 se->ops->save_live_pending(f, se->opaque, threshold_size,
1492 res_precopy_only, res_compatible,
1493 res_postcopy_only);
1494 }
1495 }
1496
1497 void qemu_savevm_state_cleanup(void)
1498 {
1499 SaveStateEntry *se;
1500 Error *local_err = NULL;
1501
1502 if (precopy_notify(PRECOPY_NOTIFY_CLEANUP, &local_err)) {
1503 error_report_err(local_err);
1504 }
1505
1506 trace_savevm_state_cleanup();
1507 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1508 if (se->ops && se->ops->save_cleanup) {
1509 se->ops->save_cleanup(se->opaque);
1510 }
1511 }
1512 }
1513
1514 static int qemu_savevm_state(QEMUFile *f, Error **errp)
1515 {
1516 int ret;
1517 MigrationState *ms = migrate_get_current();
1518 MigrationStatus status;
1519
1520 if (migration_is_running(ms->state)) {
1521 error_setg(errp, QERR_MIGRATION_ACTIVE);
1522 return -EINVAL;
1523 }
1524
1525 if (migrate_use_block()) {
1526 error_setg(errp, "Block migration and snapshots are incompatible");
1527 return -EINVAL;
1528 }
1529
1530 migrate_init(ms);
1531 memset(&ram_counters, 0, sizeof(ram_counters));
1532 ms->to_dst_file = f;
1533
1534 qemu_mutex_unlock_iothread();
1535 qemu_savevm_state_header(f);
1536 qemu_savevm_state_setup(f);
1537 qemu_mutex_lock_iothread();
1538
1539 while (qemu_file_get_error(f) == 0) {
1540 if (qemu_savevm_state_iterate(f, false) > 0) {
1541 break;
1542 }
1543 }
1544
1545 ret = qemu_file_get_error(f);
1546 if (ret == 0) {
1547 qemu_savevm_state_complete_precopy(f, false, false);
1548 ret = qemu_file_get_error(f);
1549 }
1550 qemu_savevm_state_cleanup();
1551 if (ret != 0) {
1552 error_setg_errno(errp, -ret, "Error while writing VM state");
1553 }
1554
1555 if (ret != 0) {
1556 status = MIGRATION_STATUS_FAILED;
1557 } else {
1558 status = MIGRATION_STATUS_COMPLETED;
1559 }
1560 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status);
1561
1562 /* f is outer parameter, it should not stay in global migration state after
1563 * this function finished */
1564 ms->to_dst_file = NULL;
1565
1566 return ret;
1567 }
1568
1569 void qemu_savevm_live_state(QEMUFile *f)
1570 {
1571 /* save QEMU_VM_SECTION_END section */
1572 qemu_savevm_state_complete_precopy(f, true, false);
1573 qemu_put_byte(f, QEMU_VM_EOF);
1574 }
1575
1576 int qemu_save_device_state(QEMUFile *f)
1577 {
1578 SaveStateEntry *se;
1579
1580 if (!migration_in_colo_state()) {
1581 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1582 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1583 }
1584 cpu_synchronize_all_states();
1585
1586 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1587 int ret;
1588
1589 if (se->is_ram) {
1590 continue;
1591 }
1592 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1593 continue;
1594 }
1595 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) {
1596 continue;
1597 }
1598
1599 save_section_header(f, se, QEMU_VM_SECTION_FULL);
1600
1601 ret = vmstate_save(f, se, NULL);
1602 if (ret) {
1603 return ret;
1604 }
1605
1606 save_section_footer(f, se);
1607 }
1608
1609 qemu_put_byte(f, QEMU_VM_EOF);
1610
1611 return qemu_file_get_error(f);
1612 }
1613
1614 static SaveStateEntry *find_se(const char *idstr, uint32_t instance_id)
1615 {
1616 SaveStateEntry *se;
1617
1618 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1619 if (!strcmp(se->idstr, idstr) &&
1620 (instance_id == se->instance_id ||
1621 instance_id == se->alias_id))
1622 return se;
1623 /* Migrating from an older version? */
1624 if (strstr(se->idstr, idstr) && se->compat) {
1625 if (!strcmp(se->compat->idstr, idstr) &&
1626 (instance_id == se->compat->instance_id ||
1627 instance_id == se->alias_id))
1628 return se;
1629 }
1630 }
1631 return NULL;
1632 }
1633
1634 enum LoadVMExitCodes {
1635 /* Allow a command to quit all layers of nested loadvm loops */
1636 LOADVM_QUIT = 1,
1637 };
1638
1639 /* ------ incoming postcopy messages ------ */
1640 /* 'advise' arrives before any transfers just to tell us that a postcopy
1641 * *might* happen - it might be skipped if precopy transferred everything
1642 * quickly.
1643 */
1644 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis,
1645 uint16_t len)
1646 {
1647 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE);
1648 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps;
1649 Error *local_err = NULL;
1650
1651 trace_loadvm_postcopy_handle_advise();
1652 if (ps != POSTCOPY_INCOMING_NONE) {
1653 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps);
1654 return -1;
1655 }
1656
1657 switch (len) {
1658 case 0:
1659 if (migrate_postcopy_ram()) {
1660 error_report("RAM postcopy is enabled but have 0 byte advise");
1661 return -EINVAL;
1662 }
1663 return 0;
1664 case 8 + 8:
1665 if (!migrate_postcopy_ram()) {
1666 error_report("RAM postcopy is disabled but have 16 byte advise");
1667 return -EINVAL;
1668 }
1669 break;
1670 default:
1671 error_report("CMD_POSTCOPY_ADVISE invalid length (%d)", len);
1672 return -EINVAL;
1673 }
1674
1675 if (!postcopy_ram_supported_by_host(mis)) {
1676 postcopy_state_set(POSTCOPY_INCOMING_NONE);
1677 return -1;
1678 }
1679
1680 remote_pagesize_summary = qemu_get_be64(mis->from_src_file);
1681 local_pagesize_summary = ram_pagesize_summary();
1682
1683 if (remote_pagesize_summary != local_pagesize_summary) {
1684 /*
1685 * This detects two potential causes of mismatch:
1686 * a) A mismatch in host page sizes
1687 * Some combinations of mismatch are probably possible but it gets
1688 * a bit more complicated. In particular we need to place whole
1689 * host pages on the dest at once, and we need to ensure that we
1690 * handle dirtying to make sure we never end up sending part of
1691 * a hostpage on it's own.
1692 * b) The use of different huge page sizes on source/destination
1693 * a more fine grain test is performed during RAM block migration
1694 * but this test here causes a nice early clear failure, and
1695 * also fails when passed to an older qemu that doesn't
1696 * do huge pages.
1697 */
1698 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64
1699 " d=%" PRIx64 ")",
1700 remote_pagesize_summary, local_pagesize_summary);
1701 return -1;
1702 }
1703
1704 remote_tps = qemu_get_be64(mis->from_src_file);
1705 if (remote_tps != qemu_target_page_size()) {
1706 /*
1707 * Again, some differences could be dealt with, but for now keep it
1708 * simple.
1709 */
1710 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)",
1711 (int)remote_tps, qemu_target_page_size());
1712 return -1;
1713 }
1714
1715 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_ADVISE, &local_err)) {
1716 error_report_err(local_err);
1717 return -1;
1718 }
1719
1720 if (ram_postcopy_incoming_init(mis)) {
1721 return -1;
1722 }
1723
1724 return 0;
1725 }
1726
1727 /* After postcopy we will be told to throw some pages away since they're
1728 * dirty and will have to be demand fetched. Must happen before CPU is
1729 * started.
1730 * There can be 0..many of these messages, each encoding multiple pages.
1731 */
1732 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis,
1733 uint16_t len)
1734 {
1735 int tmp;
1736 char ramid[256];
1737 PostcopyState ps = postcopy_state_get();
1738
1739 trace_loadvm_postcopy_ram_handle_discard();
1740
1741 switch (ps) {
1742 case POSTCOPY_INCOMING_ADVISE:
1743 /* 1st discard */
1744 tmp = postcopy_ram_prepare_discard(mis);
1745 if (tmp) {
1746 return tmp;
1747 }
1748 break;
1749
1750 case POSTCOPY_INCOMING_DISCARD:
1751 /* Expected state */
1752 break;
1753
1754 default:
1755 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)",
1756 ps);
1757 return -1;
1758 }
1759 /* We're expecting a
1760 * Version (0)
1761 * a RAM ID string (length byte, name, 0 term)
1762 * then at least 1 16 byte chunk
1763 */
1764 if (len < (1 + 1 + 1 + 1 + 2 * 8)) {
1765 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len);
1766 return -1;
1767 }
1768
1769 tmp = qemu_get_byte(mis->from_src_file);
1770 if (tmp != postcopy_ram_discard_version) {
1771 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp);
1772 return -1;
1773 }
1774
1775 if (!qemu_get_counted_string(mis->from_src_file, ramid)) {
1776 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID");
1777 return -1;
1778 }
1779 tmp = qemu_get_byte(mis->from_src_file);
1780 if (tmp != 0) {
1781 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp);
1782 return -1;
1783 }
1784
1785 len -= 3 + strlen(ramid);
1786 if (len % 16) {
1787 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len);
1788 return -1;
1789 }
1790 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len);
1791 while (len) {
1792 uint64_t start_addr, block_length;
1793 start_addr = qemu_get_be64(mis->from_src_file);
1794 block_length = qemu_get_be64(mis->from_src_file);
1795
1796 len -= 16;
1797 int ret = ram_discard_range(ramid, start_addr, block_length);
1798 if (ret) {
1799 return ret;
1800 }
1801 }
1802 trace_loadvm_postcopy_ram_handle_discard_end();
1803
1804 return 0;
1805 }
1806
1807 /*
1808 * Triggered by a postcopy_listen command; this thread takes over reading
1809 * the input stream, leaving the main thread free to carry on loading the rest
1810 * of the device state (from RAM).
1811 * (TODO:This could do with being in a postcopy file - but there again it's
1812 * just another input loop, not that postcopy specific)
1813 */
1814 static void *postcopy_ram_listen_thread(void *opaque)
1815 {
1816 MigrationIncomingState *mis = migration_incoming_get_current();
1817 QEMUFile *f = mis->from_src_file;
1818 int load_res;
1819 MigrationState *migr = migrate_get_current();
1820
1821 object_ref(OBJECT(migr));
1822
1823 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE,
1824 MIGRATION_STATUS_POSTCOPY_ACTIVE);
1825 qemu_sem_post(&mis->listen_thread_sem);
1826 trace_postcopy_ram_listen_thread_start();
1827
1828 rcu_register_thread();
1829 /*
1830 * Because we're a thread and not a coroutine we can't yield
1831 * in qemu_file, and thus we must be blocking now.
1832 */
1833 qemu_file_set_blocking(f, true);
1834 load_res = qemu_loadvm_state_main(f, mis);
1835
1836 /*
1837 * This is tricky, but, mis->from_src_file can change after it
1838 * returns, when postcopy recovery happened. In the future, we may
1839 * want a wrapper for the QEMUFile handle.
1840 */
1841 f = mis->from_src_file;
1842
1843 /* And non-blocking again so we don't block in any cleanup */
1844 qemu_file_set_blocking(f, false);
1845
1846 trace_postcopy_ram_listen_thread_exit();
1847 if (load_res < 0) {
1848 qemu_file_set_error(f, load_res);
1849 dirty_bitmap_mig_cancel_incoming();
1850 if (postcopy_state_get() == POSTCOPY_INCOMING_RUNNING &&
1851 !migrate_postcopy_ram() && migrate_dirty_bitmaps())
1852 {
1853 error_report("%s: loadvm failed during postcopy: %d. All states "
1854 "are migrated except dirty bitmaps. Some dirty "
1855 "bitmaps may be lost, and present migrated dirty "
1856 "bitmaps are correctly migrated and valid.",
1857 __func__, load_res);
1858 load_res = 0; /* prevent further exit() */
1859 } else {
1860 error_report("%s: loadvm failed: %d", __func__, load_res);
1861 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
1862 MIGRATION_STATUS_FAILED);
1863 }
1864 }
1865 if (load_res >= 0) {
1866 /*
1867 * This looks good, but it's possible that the device loading in the
1868 * main thread hasn't finished yet, and so we might not be in 'RUN'
1869 * state yet; wait for the end of the main thread.
1870 */
1871 qemu_event_wait(&mis->main_thread_load_event);
1872 }
1873 postcopy_ram_incoming_cleanup(mis);
1874
1875 if (load_res < 0) {
1876 /*
1877 * If something went wrong then we have a bad state so exit;
1878 * depending how far we got it might be possible at this point
1879 * to leave the guest running and fire MCEs for pages that never
1880 * arrived as a desperate recovery step.
1881 */
1882 rcu_unregister_thread();
1883 exit(EXIT_FAILURE);
1884 }
1885
1886 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
1887 MIGRATION_STATUS_COMPLETED);
1888 /*
1889 * If everything has worked fine, then the main thread has waited
1890 * for us to start, and we're the last use of the mis.
1891 * (If something broke then qemu will have to exit anyway since it's
1892 * got a bad migration state).
1893 */
1894 migration_incoming_state_destroy();
1895 qemu_loadvm_state_cleanup();
1896
1897 rcu_unregister_thread();
1898 mis->have_listen_thread = false;
1899 postcopy_state_set(POSTCOPY_INCOMING_END);
1900
1901 object_unref(OBJECT(migr));
1902
1903 return NULL;
1904 }
1905
1906 /* After this message we must be able to immediately receive postcopy data */
1907 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis)
1908 {
1909 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING);
1910 trace_loadvm_postcopy_handle_listen();
1911 Error *local_err = NULL;
1912
1913 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) {
1914 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps);
1915 return -1;
1916 }
1917 if (ps == POSTCOPY_INCOMING_ADVISE) {
1918 /*
1919 * A rare case, we entered listen without having to do any discards,
1920 * so do the setup that's normally done at the time of the 1st discard.
1921 */
1922 if (migrate_postcopy_ram()) {
1923 postcopy_ram_prepare_discard(mis);
1924 }
1925 }
1926
1927 /*
1928 * Sensitise RAM - can now generate requests for blocks that don't exist
1929 * However, at this point the CPU shouldn't be running, and the IO
1930 * shouldn't be doing anything yet so don't actually expect requests
1931 */
1932 if (migrate_postcopy_ram()) {
1933 if (postcopy_ram_incoming_setup(mis)) {
1934 postcopy_ram_incoming_cleanup(mis);
1935 return -1;
1936 }
1937 }
1938
1939 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_LISTEN, &local_err)) {
1940 error_report_err(local_err);
1941 return -1;
1942 }
1943
1944 mis->have_listen_thread = true;
1945 /* Start up the listening thread and wait for it to signal ready */
1946 qemu_sem_init(&mis->listen_thread_sem, 0);
1947 qemu_thread_create(&mis->listen_thread, "postcopy/listen",
1948 postcopy_ram_listen_thread, NULL,
1949 QEMU_THREAD_DETACHED);
1950 qemu_sem_wait(&mis->listen_thread_sem);
1951 qemu_sem_destroy(&mis->listen_thread_sem);
1952
1953 return 0;
1954 }
1955
1956 static void loadvm_postcopy_handle_run_bh(void *opaque)
1957 {
1958 Error *local_err = NULL;
1959 MigrationIncomingState *mis = opaque;
1960
1961 /* TODO we should move all of this lot into postcopy_ram.c or a shared code
1962 * in migration.c
1963 */
1964 cpu_synchronize_all_post_init();
1965
1966 qemu_announce_self(&mis->announce_timer, migrate_announce_params());
1967
1968 /* Make sure all file formats flush their mutable metadata.
1969 * If we get an error here, just don't restart the VM yet. */
1970 bdrv_invalidate_cache_all(&local_err);
1971 if (local_err) {
1972 error_report_err(local_err);
1973 local_err = NULL;
1974 autostart = false;
1975 }
1976
1977 trace_loadvm_postcopy_handle_run_cpu_sync();
1978
1979 trace_loadvm_postcopy_handle_run_vmstart();
1980
1981 dirty_bitmap_mig_before_vm_start();
1982
1983 if (autostart) {
1984 /* Hold onto your hats, starting the CPU */
1985 vm_start();
1986 } else {
1987 /* leave it paused and let management decide when to start the CPU */
1988 runstate_set(RUN_STATE_PAUSED);
1989 }
1990
1991 qemu_bh_delete(mis->bh);
1992 }
1993
1994 /* After all discards we can start running and asking for pages */
1995 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis)
1996 {
1997 PostcopyState ps = postcopy_state_get();
1998
1999 trace_loadvm_postcopy_handle_run();
2000 if (ps != POSTCOPY_INCOMING_LISTENING) {
2001 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps);
2002 return -1;
2003 }
2004
2005 postcopy_state_set(POSTCOPY_INCOMING_RUNNING);
2006 mis->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, mis);
2007 qemu_bh_schedule(mis->bh);
2008
2009 /* We need to finish reading the stream from the package
2010 * and also stop reading anything more from the stream that loaded the
2011 * package (since it's now being read by the listener thread).
2012 * LOADVM_QUIT will quit all the layers of nested loadvm loops.
2013 */
2014 return LOADVM_QUIT;
2015 }
2016
2017 /* We must be with page_request_mutex held */
2018 static gboolean postcopy_sync_page_req(gpointer key, gpointer value,
2019 gpointer data)
2020 {
2021 MigrationIncomingState *mis = data;
2022 void *host_addr = (void *) key;
2023 ram_addr_t rb_offset;
2024 RAMBlock *rb;
2025 int ret;
2026
2027 rb = qemu_ram_block_from_host(host_addr, true, &rb_offset);
2028 if (!rb) {
2029 /*
2030 * This should _never_ happen. However be nice for a migrating VM to
2031 * not crash/assert. Post an error (note: intended to not use *_once
2032 * because we do want to see all the illegal addresses; and this can
2033 * never be triggered by the guest so we're safe) and move on next.
2034 */
2035 error_report("%s: illegal host addr %p", __func__, host_addr);
2036 /* Try the next entry */
2037 return FALSE;
2038 }
2039
2040 ret = migrate_send_rp_message_req_pages(mis, rb, rb_offset);
2041 if (ret) {
2042 /* Please refer to above comment. */
2043 error_report("%s: send rp message failed for addr %p",
2044 __func__, host_addr);
2045 return FALSE;
2046 }
2047
2048 trace_postcopy_page_req_sync(host_addr);
2049
2050 return FALSE;
2051 }
2052
2053 static void migrate_send_rp_req_pages_pending(MigrationIncomingState *mis)
2054 {
2055 WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) {
2056 g_tree_foreach(mis->page_requested, postcopy_sync_page_req, mis);
2057 }
2058 }
2059
2060 static int loadvm_postcopy_handle_resume(MigrationIncomingState *mis)
2061 {
2062 if (mis->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
2063 error_report("%s: illegal resume received", __func__);
2064 /* Don't fail the load, only for this. */
2065 return 0;
2066 }
2067
2068 /*
2069 * Reset the last_rb before we resend any page req to source again, since
2070 * the source should have it reset already.
2071 */
2072 mis->last_rb = NULL;
2073
2074 /*
2075 * This means source VM is ready to resume the postcopy migration.
2076 */
2077 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_RECOVER,
2078 MIGRATION_STATUS_POSTCOPY_ACTIVE);
2079
2080 trace_loadvm_postcopy_handle_resume();
2081
2082 /* Tell source that "we are ready" */
2083 migrate_send_rp_resume_ack(mis, MIGRATION_RESUME_ACK_VALUE);
2084
2085 /*
2086 * After a postcopy recovery, the source should have lost the postcopy
2087 * queue, or potentially the requested pages could have been lost during
2088 * the network down phase. Let's re-sync with the source VM by re-sending
2089 * all the pending pages that we eagerly need, so these threads won't get
2090 * blocked too long due to the recovery.
2091 *
2092 * Without this procedure, the faulted destination VM threads (waiting for
2093 * page requests right before the postcopy is interrupted) can keep hanging
2094 * until the pages are sent by the source during the background copying of
2095 * pages, or another thread faulted on the same address accidentally.
2096 */
2097 migrate_send_rp_req_pages_pending(mis);
2098
2099 /*
2100 * It's time to switch state and release the fault thread to continue
2101 * service page faults. Note that this should be explicitly after the
2102 * above call to migrate_send_rp_req_pages_pending(). In short:
2103 * migrate_send_rp_message_req_pages() is not thread safe, yet.
2104 */
2105 qemu_sem_post(&mis->postcopy_pause_sem_fault);
2106
2107 return 0;
2108 }
2109
2110 /**
2111 * Immediately following this command is a blob of data containing an embedded
2112 * chunk of migration stream; read it and load it.
2113 *
2114 * @mis: Incoming state
2115 * @length: Length of packaged data to read
2116 *
2117 * Returns: Negative values on error
2118 *
2119 */
2120 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis)
2121 {
2122 int ret;
2123 size_t length;
2124 QIOChannelBuffer *bioc;
2125
2126 length = qemu_get_be32(mis->from_src_file);
2127 trace_loadvm_handle_cmd_packaged(length);
2128
2129 if (length > MAX_VM_CMD_PACKAGED_SIZE) {
2130 error_report("Unreasonably large packaged state: %zu", length);
2131 return -1;
2132 }
2133
2134 bioc = qio_channel_buffer_new(length);
2135 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer");
2136 ret = qemu_get_buffer(mis->from_src_file,
2137 bioc->data,
2138 length);
2139 if (ret != length) {
2140 object_unref(OBJECT(bioc));
2141 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu",
2142 ret, length);
2143 return (ret < 0) ? ret : -EAGAIN;
2144 }
2145 bioc->usage += length;
2146 trace_loadvm_handle_cmd_packaged_received(ret);
2147
2148 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc));
2149
2150 ret = qemu_loadvm_state_main(packf, mis);
2151 trace_loadvm_handle_cmd_packaged_main(ret);
2152 qemu_fclose(packf);
2153 object_unref(OBJECT(bioc));
2154
2155 return ret;
2156 }
2157
2158 /*
2159 * Handle request that source requests for recved_bitmap on
2160 * destination. Payload format:
2161 *
2162 * len (1 byte) + ramblock_name (<255 bytes)
2163 */
2164 static int loadvm_handle_recv_bitmap(MigrationIncomingState *mis,
2165 uint16_t len)
2166 {
2167 QEMUFile *file = mis->from_src_file;
2168 RAMBlock *rb;
2169 char block_name[256];
2170 size_t cnt;
2171
2172 cnt = qemu_get_counted_string(file, block_name);
2173 if (!cnt) {
2174 error_report("%s: failed to read block name", __func__);
2175 return -EINVAL;
2176 }
2177
2178 /* Validate before using the data */
2179 if (qemu_file_get_error(file)) {
2180 return qemu_file_get_error(file);
2181 }
2182
2183 if (len != cnt + 1) {
2184 error_report("%s: invalid payload length (%d)", __func__, len);
2185 return -EINVAL;
2186 }
2187
2188 rb = qemu_ram_block_by_name(block_name);
2189 if (!rb) {
2190 error_report("%s: block '%s' not found", __func__, block_name);
2191 return -EINVAL;
2192 }
2193
2194 migrate_send_rp_recv_bitmap(mis, block_name);
2195
2196 trace_loadvm_handle_recv_bitmap(block_name);
2197
2198 return 0;
2199 }
2200
2201 static int loadvm_process_enable_colo(MigrationIncomingState *mis)
2202 {
2203 int ret = migration_incoming_enable_colo();
2204
2205 if (!ret) {
2206 ret = colo_init_ram_cache();
2207 if (ret) {
2208 migration_incoming_disable_colo();
2209 }
2210 }
2211 return ret;
2212 }
2213
2214 /*
2215 * Process an incoming 'QEMU_VM_COMMAND'
2216 * 0 just a normal return
2217 * LOADVM_QUIT All good, but exit the loop
2218 * <0 Error
2219 */
2220 static int loadvm_process_command(QEMUFile *f)
2221 {
2222 MigrationIncomingState *mis = migration_incoming_get_current();
2223 uint16_t cmd;
2224 uint16_t len;
2225 uint32_t tmp32;
2226
2227 cmd = qemu_get_be16(f);
2228 len = qemu_get_be16(f);
2229
2230 /* Check validity before continue processing of cmds */
2231 if (qemu_file_get_error(f)) {
2232 return qemu_file_get_error(f);
2233 }
2234
2235 trace_loadvm_process_command(cmd, len);
2236 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) {
2237 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len);
2238 return -EINVAL;
2239 }
2240
2241 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) {
2242 error_report("%s received with bad length - expecting %zu, got %d",
2243 mig_cmd_args[cmd].name,
2244 (size_t)mig_cmd_args[cmd].len, len);
2245 return -ERANGE;
2246 }
2247
2248 switch (cmd) {
2249 case MIG_CMD_OPEN_RETURN_PATH:
2250 if (mis->to_src_file) {
2251 error_report("CMD_OPEN_RETURN_PATH called when RP already open");
2252 /* Not really a problem, so don't give up */
2253 return 0;
2254 }
2255 mis->to_src_file = qemu_file_get_return_path(f);
2256 if (!mis->to_src_file) {
2257 error_report("CMD_OPEN_RETURN_PATH failed");
2258 return -1;
2259 }
2260 break;
2261
2262 case MIG_CMD_PING:
2263 tmp32 = qemu_get_be32(f);
2264 trace_loadvm_process_command_ping(tmp32);
2265 if (!mis->to_src_file) {
2266 error_report("CMD_PING (0x%x) received with no return path",
2267 tmp32);
2268 return -1;
2269 }
2270 migrate_send_rp_pong(mis, tmp32);
2271 break;
2272
2273 case MIG_CMD_PACKAGED:
2274 return loadvm_handle_cmd_packaged(mis);
2275
2276 case MIG_CMD_POSTCOPY_ADVISE:
2277 return loadvm_postcopy_handle_advise(mis, len);
2278
2279 case MIG_CMD_POSTCOPY_LISTEN:
2280 return loadvm_postcopy_handle_listen(mis);
2281
2282 case MIG_CMD_POSTCOPY_RUN:
2283 return loadvm_postcopy_handle_run(mis);
2284
2285 case MIG_CMD_POSTCOPY_RAM_DISCARD:
2286 return loadvm_postcopy_ram_handle_discard(mis, len);
2287
2288 case MIG_CMD_POSTCOPY_RESUME:
2289 return loadvm_postcopy_handle_resume(mis);
2290
2291 case MIG_CMD_RECV_BITMAP:
2292 return loadvm_handle_recv_bitmap(mis, len);
2293
2294 case MIG_CMD_ENABLE_COLO:
2295 return loadvm_process_enable_colo(mis);
2296 }
2297
2298 return 0;
2299 }
2300
2301 /*
2302 * Read a footer off the wire and check that it matches the expected section
2303 *
2304 * Returns: true if the footer was good
2305 * false if there is a problem (and calls error_report to say why)
2306 */
2307 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se)
2308 {
2309 int ret;
2310 uint8_t read_mark;
2311 uint32_t read_section_id;
2312
2313 if (!migrate_get_current()->send_section_footer) {
2314 /* No footer to check */
2315 return true;
2316 }
2317
2318 read_mark = qemu_get_byte(f);
2319
2320 ret = qemu_file_get_error(f);
2321 if (ret) {
2322 error_report("%s: Read section footer failed: %d",
2323 __func__, ret);
2324 return false;
2325 }
2326
2327 if (read_mark != QEMU_VM_SECTION_FOOTER) {
2328 error_report("Missing section footer for %s", se->idstr);
2329 return false;
2330 }
2331
2332 read_section_id = qemu_get_be32(f);
2333 if (read_section_id != se->load_section_id) {
2334 error_report("Mismatched section id in footer for %s -"
2335 " read 0x%x expected 0x%x",
2336 se->idstr, read_section_id, se->load_section_id);
2337 return false;
2338 }
2339
2340 /* All good */
2341 return true;
2342 }
2343
2344 static int
2345 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis)
2346 {
2347 uint32_t instance_id, version_id, section_id;
2348 SaveStateEntry *se;
2349 char idstr[256];
2350 int ret;
2351
2352 /* Read section start */
2353 section_id = qemu_get_be32(f);
2354 if (!qemu_get_counted_string(f, idstr)) {
2355 error_report("Unable to read ID string for section %u",
2356 section_id);
2357 return -EINVAL;
2358 }
2359 instance_id = qemu_get_be32(f);
2360 version_id = qemu_get_be32(f);
2361
2362 ret = qemu_file_get_error(f);
2363 if (ret) {
2364 error_report("%s: Failed to read instance/version ID: %d",
2365 __func__, ret);
2366 return ret;
2367 }
2368
2369 trace_qemu_loadvm_state_section_startfull(section_id, idstr,
2370 instance_id, version_id);
2371 /* Find savevm section */
2372 se = find_se(idstr, instance_id);
2373 if (se == NULL) {
2374 error_report("Unknown savevm section or instance '%s' %"PRIu32". "
2375 "Make sure that your current VM setup matches your "
2376 "saved VM setup, including any hotplugged devices",
2377 idstr, instance_id);
2378 return -EINVAL;
2379 }
2380
2381 /* Validate version */
2382 if (version_id > se->version_id) {
2383 error_report("savevm: unsupported version %d for '%s' v%d",
2384 version_id, idstr, se->version_id);
2385 return -EINVAL;
2386 }
2387 se->load_version_id = version_id;
2388 se->load_section_id = section_id;
2389
2390 /* Validate if it is a device's state */
2391 if (xen_enabled() && se->is_ram) {
2392 error_report("loadvm: %s RAM loading not allowed on Xen", idstr);
2393 return -EINVAL;
2394 }
2395
2396 ret = vmstate_load(f, se);
2397 if (ret < 0) {
2398 error_report("error while loading state for instance 0x%"PRIx32" of"
2399 " device '%s'", instance_id, idstr);
2400 return ret;
2401 }
2402 if (!check_section_footer(f, se)) {
2403 return -EINVAL;
2404 }
2405
2406 return 0;
2407 }
2408
2409 static int
2410 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis)
2411 {
2412 uint32_t section_id;
2413 SaveStateEntry *se;
2414 int ret;
2415
2416 section_id = qemu_get_be32(f);
2417
2418 ret = qemu_file_get_error(f);
2419 if (ret) {
2420 error_report("%s: Failed to read section ID: %d",
2421 __func__, ret);
2422 return ret;
2423 }
2424
2425 trace_qemu_loadvm_state_section_partend(section_id);
2426 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2427 if (se->load_section_id == section_id) {
2428 break;
2429 }
2430 }
2431 if (se == NULL) {
2432 error_report("Unknown savevm section %d", section_id);
2433 return -EINVAL;
2434 }
2435
2436 ret = vmstate_load(f, se);
2437 if (ret < 0) {
2438 error_report("error while loading state section id %d(%s)",
2439 section_id, se->idstr);
2440 return ret;
2441 }
2442 if (!check_section_footer(f, se)) {
2443 return -EINVAL;
2444 }
2445
2446 return 0;
2447 }
2448
2449 static int qemu_loadvm_state_header(QEMUFile *f)
2450 {
2451 unsigned int v;
2452 int ret;
2453
2454 v = qemu_get_be32(f);
2455 if (v != QEMU_VM_FILE_MAGIC) {
2456 error_report("Not a migration stream");
2457 return -EINVAL;
2458 }
2459
2460 v = qemu_get_be32(f);
2461 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2462 error_report("SaveVM v2 format is obsolete and don't work anymore");
2463 return -ENOTSUP;
2464 }
2465 if (v != QEMU_VM_FILE_VERSION) {
2466 error_report("Unsupported migration stream version");
2467 return -ENOTSUP;
2468 }
2469
2470 if (migrate_get_current()->send_configuration) {
2471 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) {
2472 error_report("Configuration section missing");
2473 qemu_loadvm_state_cleanup();
2474 return -EINVAL;
2475 }
2476 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0);
2477
2478 if (ret) {
2479 qemu_loadvm_state_cleanup();
2480 return ret;
2481 }
2482 }
2483 return 0;
2484 }
2485
2486 static int qemu_loadvm_state_setup(QEMUFile *f)
2487 {
2488 SaveStateEntry *se;
2489 int ret;
2490
2491 trace_loadvm_state_setup();
2492 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2493 if (!se->ops || !se->ops->load_setup) {
2494 continue;
2495 }
2496 if (se->ops->is_active) {
2497 if (!se->ops->is_active(se->opaque)) {
2498 continue;
2499 }
2500 }
2501
2502 ret = se->ops->load_setup(f, se->opaque);
2503 if (ret < 0) {
2504 qemu_file_set_error(f, ret);
2505 error_report("Load state of device %s failed", se->idstr);
2506 return ret;
2507 }
2508 }
2509 return 0;
2510 }
2511
2512 void qemu_loadvm_state_cleanup(void)
2513 {
2514 SaveStateEntry *se;
2515
2516 trace_loadvm_state_cleanup();
2517 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2518 if (se->ops && se->ops->load_cleanup) {
2519 se->ops->load_cleanup(se->opaque);
2520 }
2521 }
2522 }
2523
2524 /* Return true if we should continue the migration, or false. */
2525 static bool postcopy_pause_incoming(MigrationIncomingState *mis)
2526 {
2527 trace_postcopy_pause_incoming();
2528
2529 assert(migrate_postcopy_ram());
2530
2531 /* Clear the triggered bit to allow one recovery */
2532 mis->postcopy_recover_triggered = false;
2533
2534 assert(mis->from_src_file);
2535 qemu_file_shutdown(mis->from_src_file);
2536 qemu_fclose(mis->from_src_file);
2537 mis->from_src_file = NULL;
2538
2539 assert(mis->to_src_file);
2540 qemu_file_shutdown(mis->to_src_file);
2541 qemu_mutex_lock(&mis->rp_mutex);
2542 qemu_fclose(mis->to_src_file);
2543 mis->to_src_file = NULL;
2544 qemu_mutex_unlock(&mis->rp_mutex);
2545
2546 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
2547 MIGRATION_STATUS_POSTCOPY_PAUSED);
2548
2549 /* Notify the fault thread for the invalidated file handle */
2550 postcopy_fault_thread_notify(mis);
2551
2552 error_report("Detected IO failure for postcopy. "
2553 "Migration paused.");
2554
2555 while (mis->state == MIGRATION_STATUS_POSTCOPY_PAUSED) {
2556 qemu_sem_wait(&mis->postcopy_pause_sem_dst);
2557 }
2558
2559 trace_postcopy_pause_incoming_continued();
2560
2561 return true;
2562 }
2563
2564 int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis)
2565 {
2566 uint8_t section_type;
2567 int ret = 0;
2568
2569 retry:
2570 while (true) {
2571 section_type = qemu_get_byte(f);
2572
2573 if (qemu_file_get_error(f)) {
2574 ret = qemu_file_get_error(f);
2575 break;
2576 }
2577
2578 trace_qemu_loadvm_state_section(section_type);
2579 switch (section_type) {
2580 case QEMU_VM_SECTION_START:
2581 case QEMU_VM_SECTION_FULL:
2582 ret = qemu_loadvm_section_start_full(f, mis);
2583 if (ret < 0) {
2584 goto out;
2585 }
2586 break;
2587 case QEMU_VM_SECTION_PART:
2588 case QEMU_VM_SECTION_END:
2589 ret = qemu_loadvm_section_part_end(f, mis);
2590 if (ret < 0) {
2591 goto out;
2592 }
2593 break;
2594 case QEMU_VM_COMMAND:
2595 ret = loadvm_process_command(f);
2596 trace_qemu_loadvm_state_section_command(ret);
2597 if ((ret < 0) || (ret == LOADVM_QUIT)) {
2598 goto out;
2599 }
2600 break;
2601 case QEMU_VM_EOF:
2602 /* This is the end of migration */
2603 goto out;
2604 default:
2605 error_report("Unknown savevm section type %d", section_type);
2606 ret = -EINVAL;
2607 goto out;
2608 }
2609 }
2610
2611 out:
2612 if (ret < 0) {
2613 qemu_file_set_error(f, ret);
2614
2615 /* Cancel bitmaps incoming regardless of recovery */
2616 dirty_bitmap_mig_cancel_incoming();
2617
2618 /*
2619 * If we are during an active postcopy, then we pause instead
2620 * of bail out to at least keep the VM's dirty data. Note
2621 * that POSTCOPY_INCOMING_LISTENING stage is still not enough,
2622 * during which we're still receiving device states and we
2623 * still haven't yet started the VM on destination.
2624 *
2625 * Only RAM postcopy supports recovery. Still, if RAM postcopy is
2626 * enabled, canceled bitmaps postcopy will not affect RAM postcopy
2627 * recovering.
2628 */
2629 if (postcopy_state_get() == POSTCOPY_INCOMING_RUNNING &&
2630 migrate_postcopy_ram() && postcopy_pause_incoming(mis)) {
2631 /* Reset f to point to the newly created channel */
2632 f = mis->from_src_file;
2633 goto retry;
2634 }
2635 }
2636 return ret;
2637 }
2638
2639 int qemu_loadvm_state(QEMUFile *f)
2640 {
2641 MigrationIncomingState *mis = migration_incoming_get_current();
2642 Error *local_err = NULL;
2643 int ret;
2644
2645 if (qemu_savevm_state_blocked(&local_err)) {
2646 error_report_err(local_err);
2647 return -EINVAL;
2648 }
2649
2650 ret = qemu_loadvm_state_header(f);
2651 if (ret) {
2652 return ret;
2653 }
2654
2655 if (qemu_loadvm_state_setup(f) != 0) {
2656 return -EINVAL;
2657 }
2658
2659 cpu_synchronize_all_pre_loadvm();
2660
2661 ret = qemu_loadvm_state_main(f, mis);
2662 qemu_event_set(&mis->main_thread_load_event);
2663
2664 trace_qemu_loadvm_state_post_main(ret);
2665
2666 if (mis->have_listen_thread) {
2667 /* Listen thread still going, can't clean up yet */
2668 return ret;
2669 }
2670
2671 if (ret == 0) {
2672 ret = qemu_file_get_error(f);
2673 }
2674
2675 /*
2676 * Try to read in the VMDESC section as well, so that dumping tools that
2677 * intercept our migration stream have the chance to see it.
2678 */
2679
2680 /* We've got to be careful; if we don't read the data and just shut the fd
2681 * then the sender can error if we close while it's still sending.
2682 * We also mustn't read data that isn't there; some transports (RDMA)
2683 * will stall waiting for that data when the source has already closed.
2684 */
2685 if (ret == 0 && should_send_vmdesc()) {
2686 uint8_t *buf;
2687 uint32_t size;
2688 uint8_t section_type = qemu_get_byte(f);
2689
2690 if (section_type != QEMU_VM_VMDESCRIPTION) {
2691 error_report("Expected vmdescription section, but got %d",
2692 section_type);
2693 /*
2694 * It doesn't seem worth failing at this point since
2695 * we apparently have an otherwise valid VM state
2696 */
2697 } else {
2698 buf = g_malloc(0x1000);
2699 size = qemu_get_be32(f);
2700
2701 while (size > 0) {
2702 uint32_t read_chunk = MIN(size, 0x1000);
2703 qemu_get_buffer(f, buf, read_chunk);
2704 size -= read_chunk;
2705 }
2706 g_free(buf);
2707 }
2708 }
2709
2710 qemu_loadvm_state_cleanup();
2711 cpu_synchronize_all_post_init();
2712
2713 return ret;
2714 }
2715
2716 int qemu_load_device_state(QEMUFile *f)
2717 {
2718 MigrationIncomingState *mis = migration_incoming_get_current();
2719 int ret;
2720
2721 /* Load QEMU_VM_SECTION_FULL section */
2722 ret = qemu_loadvm_state_main(f, mis);
2723 if (ret < 0) {
2724 error_report("Failed to load device state: %d", ret);
2725 return ret;
2726 }
2727
2728 cpu_synchronize_all_post_init();
2729 return 0;
2730 }
2731
2732 int save_snapshot(const char *name, Error **errp)
2733 {
2734 BlockDriverState *bs, *bs1;
2735 QEMUSnapshotInfo sn1, *sn = &sn1;
2736 int ret = -1, ret2;
2737 QEMUFile *f;
2738 int saved_vm_running;
2739 uint64_t vm_state_size;
2740 qemu_timeval tv;
2741 struct tm tm;
2742 AioContext *aio_context;
2743
2744 if (migration_is_blocked(errp)) {
2745 return ret;
2746 }
2747
2748 if (!replay_can_snapshot()) {
2749 error_setg(errp, "Record/replay does not allow making snapshot "
2750 "right now. Try once more later.");
2751 return ret;
2752 }
2753
2754 if (!bdrv_all_can_snapshot(&bs)) {
2755 error_setg(errp, "Device '%s' is writable but does not support "
2756 "snapshots", bdrv_get_device_or_node_name(bs));
2757 return ret;
2758 }
2759
2760 /* Delete old snapshots of the same name */
2761 if (name) {
2762 ret = bdrv_all_delete_snapshot(name, &bs1, errp);
2763 if (ret < 0) {
2764 error_prepend(errp, "Error while deleting snapshot on device "
2765 "'%s': ", bdrv_get_device_or_node_name(bs1));
2766 return ret;
2767 }
2768 }
2769
2770 bs = bdrv_all_find_vmstate_bs();
2771 if (bs == NULL) {
2772 error_setg(errp, "No block device can accept snapshots");
2773 return ret;
2774 }
2775 aio_context = bdrv_get_aio_context(bs);
2776
2777 saved_vm_running = runstate_is_running();
2778
2779 ret = global_state_store();
2780 if (ret) {
2781 error_setg(errp, "Error saving global state");
2782 return ret;
2783 }
2784 vm_stop(RUN_STATE_SAVE_VM);
2785
2786 bdrv_drain_all_begin();
2787
2788 aio_context_acquire(aio_context);
2789
2790 memset(sn, 0, sizeof(*sn));
2791
2792 /* fill auxiliary fields */
2793 qemu_gettimeofday(&tv);
2794 sn->date_sec = tv.tv_sec;
2795 sn->date_nsec = tv.tv_usec * 1000;
2796 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2797 if (replay_mode != REPLAY_MODE_NONE) {
2798 sn->icount = replay_get_current_icount();
2799 } else {
2800 sn->icount = -1ULL;
2801 }
2802
2803 if (name) {
2804 pstrcpy(sn->name, sizeof(sn->name), name);
2805 } else {
2806 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2807 localtime_r((const time_t *)&tv.tv_sec, &tm);
2808 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2809 }
2810
2811 /* save the VM state */
2812 f = qemu_fopen_bdrv(bs, 1);
2813 if (!f) {
2814 error_setg(errp, "Could not open VM state file");
2815 goto the_end;
2816 }
2817 ret = qemu_savevm_state(f, errp);
2818 vm_state_size = qemu_ftell(f);
2819 ret2 = qemu_fclose(f);
2820 if (ret < 0) {
2821 goto the_end;
2822 }
2823 if (ret2 < 0) {
2824 ret = ret2;
2825 goto the_end;
2826 }
2827
2828 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext
2829 * for itself. BDRV_POLL_WHILE() does not support nested locking because
2830 * it only releases the lock once. Therefore synchronous I/O will deadlock
2831 * unless we release the AioContext before bdrv_all_create_snapshot().
2832 */
2833 aio_context_release(aio_context);
2834 aio_context = NULL;
2835
2836 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs);
2837 if (ret < 0) {
2838 error_setg(errp, "Error while creating snapshot on '%s'",
2839 bdrv_get_device_or_node_name(bs));
2840 bdrv_all_delete_snapshot(sn->name, &bs, NULL);
2841 goto the_end;
2842 }
2843
2844 ret = 0;
2845
2846 the_end:
2847 if (aio_context) {
2848 aio_context_release(aio_context);
2849 }
2850
2851 bdrv_drain_all_end();
2852
2853 if (saved_vm_running) {
2854 vm_start();
2855 }
2856 return ret;
2857 }
2858
2859 void qmp_xen_save_devices_state(const char *filename, bool has_live, bool live,
2860 Error **errp)
2861 {
2862 QEMUFile *f;
2863 QIOChannelFile *ioc;
2864 int saved_vm_running;
2865 int ret;
2866
2867 if (!has_live) {
2868 /* live default to true so old version of Xen tool stack can have a
2869 * successful live migration */
2870 live = true;
2871 }
2872
2873 saved_vm_running = runstate_is_running();
2874 vm_stop(RUN_STATE_SAVE_VM);
2875 global_state_store_running();
2876
2877 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT | O_TRUNC,
2878 0660, errp);
2879 if (!ioc) {
2880 goto the_end;
2881 }
2882 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state");
2883 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc));
2884 object_unref(OBJECT(ioc));
2885 ret = qemu_save_device_state(f);
2886 if (ret < 0 || qemu_fclose(f) < 0) {
2887 error_setg(errp, QERR_IO_ERROR);
2888 } else {
2889 /* libxl calls the QMP command "stop" before calling
2890 * "xen-save-devices-state" and in case of migration failure, libxl
2891 * would call "cont".
2892 * So call bdrv_inactivate_all (release locks) here to let the other
2893 * side of the migration take control of the images.
2894 */
2895 if (live && !saved_vm_running) {
2896 ret = bdrv_inactivate_all();
2897 if (ret) {
2898 error_setg(errp, "%s: bdrv_inactivate_all() failed (%d)",
2899 __func__, ret);
2900 }
2901 }
2902 }
2903
2904 the_end:
2905 if (saved_vm_running) {
2906 vm_start();
2907 }
2908 }
2909
2910 void qmp_xen_load_devices_state(const char *filename, Error **errp)
2911 {
2912 QEMUFile *f;
2913 QIOChannelFile *ioc;
2914 int ret;
2915
2916 /* Guest must be paused before loading the device state; the RAM state
2917 * will already have been loaded by xc
2918 */
2919 if (runstate_is_running()) {
2920 error_setg(errp, "Cannot update device state while vm is running");
2921 return;
2922 }
2923 vm_stop(RUN_STATE_RESTORE_VM);
2924
2925 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp);
2926 if (!ioc) {
2927 return;
2928 }
2929 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state");
2930 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc));
2931 object_unref(OBJECT(ioc));
2932
2933 ret = qemu_loadvm_state(f);
2934 qemu_fclose(f);
2935 if (ret < 0) {
2936 error_setg(errp, QERR_IO_ERROR);
2937 }
2938 migration_incoming_state_destroy();
2939 }
2940
2941 int load_snapshot(const char *name, Error **errp)
2942 {
2943 BlockDriverState *bs, *bs_vm_state;
2944 QEMUSnapshotInfo sn;
2945 QEMUFile *f;
2946 int ret;
2947 AioContext *aio_context;
2948 MigrationIncomingState *mis = migration_incoming_get_current();
2949
2950 if (!bdrv_all_can_snapshot(&bs)) {
2951 error_setg(errp,
2952 "Device '%s' is writable but does not support snapshots",
2953 bdrv_get_device_or_node_name(bs));
2954 return -ENOTSUP;
2955 }
2956 ret = bdrv_all_find_snapshot(name, &bs);
2957 if (ret < 0) {
2958 error_setg(errp,
2959 "Device '%s' does not have the requested snapshot '%s'",
2960 bdrv_get_device_or_node_name(bs), name);
2961 return ret;
2962 }
2963
2964 bs_vm_state = bdrv_all_find_vmstate_bs();
2965 if (!bs_vm_state) {
2966 error_setg(errp, "No block device supports snapshots");
2967 return -ENOTSUP;
2968 }
2969 aio_context = bdrv_get_aio_context(bs_vm_state);
2970
2971 /* Don't even try to load empty VM states */
2972 aio_context_acquire(aio_context);
2973 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2974 aio_context_release(aio_context);
2975 if (ret < 0) {
2976 return ret;
2977 } else if (sn.vm_state_size == 0) {
2978 error_setg(errp, "This is a disk-only snapshot. Revert to it "
2979 " offline using qemu-img");
2980 return -EINVAL;
2981 }
2982
2983 /*
2984 * Flush the record/replay queue. Now the VM state is going
2985 * to change. Therefore we don't need to preserve its consistency
2986 */
2987 replay_flush_events();
2988
2989 /* Flush all IO requests so they don't interfere with the new state. */
2990 bdrv_drain_all_begin();
2991
2992 ret = bdrv_all_goto_snapshot(name, &bs, errp);
2993 if (ret < 0) {
2994 error_prepend(errp, "Could not load snapshot '%s' on '%s': ",
2995 name, bdrv_get_device_or_node_name(bs));
2996 goto err_drain;
2997 }
2998
2999 /* restore the VM state */
3000 f = qemu_fopen_bdrv(bs_vm_state, 0);
3001 if (!f) {
3002 error_setg(errp, "Could not open VM state file");
3003 ret = -EINVAL;
3004 goto err_drain;
3005 }
3006
3007 qemu_system_reset(SHUTDOWN_CAUSE_NONE);
3008 mis->from_src_file = f;
3009
3010 if (!yank_register_instance(MIGRATION_YANK_INSTANCE, errp)) {
3011 ret = -EINVAL;
3012 goto err_drain;
3013 }
3014 aio_context_acquire(aio_context);
3015 ret = qemu_loadvm_state(f);
3016 migration_incoming_state_destroy();
3017 aio_context_release(aio_context);
3018
3019 bdrv_drain_all_end();
3020
3021 if (ret < 0) {
3022 error_setg(errp, "Error %d while loading VM state", ret);
3023 return ret;
3024 }
3025
3026 return 0;
3027
3028 err_drain:
3029 bdrv_drain_all_end();
3030 return ret;
3031 }
3032
3033 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
3034 {
3035 qemu_ram_set_idstr(mr->ram_block,
3036 memory_region_name(mr), dev);
3037 qemu_ram_set_migratable(mr->ram_block);
3038 }
3039
3040 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
3041 {
3042 qemu_ram_unset_idstr(mr->ram_block);
3043 qemu_ram_unset_migratable(mr->ram_block);
3044 }
3045
3046 void vmstate_register_ram_global(MemoryRegion *mr)
3047 {
3048 vmstate_register_ram(mr, NULL);
3049 }
3050
3051 bool vmstate_check_only_migratable(const VMStateDescription *vmsd)
3052 {
3053 /* check needed if --only-migratable is specified */
3054 if (!only_migratable) {
3055 return true;
3056 }
3057
3058 return !(vmsd && vmsd->unmigratable);
3059 }