]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/bootmem.c
ALSA: hda/realtek - Support HP mute led for output and input
[mirror_ubuntu-bionic-kernel.git] / mm / bootmem.c
1 /*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/memblock.h>
19
20 #include <asm/bug.h>
21 #include <asm/io.h>
22 #include <asm/processor.h>
23
24 #include "internal.h"
25
26 #ifndef CONFIG_NEED_MULTIPLE_NODES
27 struct pglist_data __refdata contig_page_data = {
28 .bdata = &bootmem_node_data[0]
29 };
30 EXPORT_SYMBOL(contig_page_data);
31 #endif
32
33 unsigned long max_low_pfn;
34 unsigned long min_low_pfn;
35 unsigned long max_pfn;
36
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41 static int bootmem_debug;
42
43 static int __init bootmem_debug_setup(char *buf)
44 {
45 bootmem_debug = 1;
46 return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49
50 #define bdebug(fmt, args...) ({ \
51 if (unlikely(bootmem_debug)) \
52 printk(KERN_INFO \
53 "bootmem::%s " fmt, \
54 __func__, ## args); \
55 })
56
57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59 unsigned long bytes = DIV_ROUND_UP(pages, 8);
60
61 return ALIGN(bytes, sizeof(long));
62 }
63
64 /**
65 * bootmem_bootmap_pages - calculate bitmap size in pages
66 * @pages: number of pages the bitmap has to represent
67 */
68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70 unsigned long bytes = bootmap_bytes(pages);
71
72 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74
75 /*
76 * link bdata in order
77 */
78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80 bootmem_data_t *ent;
81
82 list_for_each_entry(ent, &bdata_list, list) {
83 if (bdata->node_min_pfn < ent->node_min_pfn) {
84 list_add_tail(&bdata->list, &ent->list);
85 return;
86 }
87 }
88
89 list_add_tail(&bdata->list, &bdata_list);
90 }
91
92 /*
93 * Called once to set up the allocator itself.
94 */
95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96 unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98 unsigned long mapsize;
99
100 mminit_validate_memmodel_limits(&start, &end);
101 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102 bdata->node_min_pfn = start;
103 bdata->node_low_pfn = end;
104 link_bootmem(bdata);
105
106 /*
107 * Initially all pages are reserved - setup_arch() has to
108 * register free RAM areas explicitly.
109 */
110 mapsize = bootmap_bytes(end - start);
111 memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114 bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116 return mapsize;
117 }
118
119 /**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129 unsigned long startpfn, unsigned long endpfn)
130 {
131 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133
134 /**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143 max_low_pfn = pages;
144 min_low_pfn = start;
145 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147
148 /*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting physical address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system. Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
158 {
159 unsigned long cursor, end;
160
161 kmemleak_free_part(__va(physaddr), size);
162
163 cursor = PFN_UP(physaddr);
164 end = PFN_DOWN(physaddr + size);
165
166 for (; cursor < end; cursor++) {
167 __free_pages_bootmem(pfn_to_page(cursor), 0);
168 totalram_pages++;
169 }
170 }
171
172 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173 {
174 struct page *page;
175 unsigned long *map, start, end, pages, count = 0;
176
177 if (!bdata->node_bootmem_map)
178 return 0;
179
180 map = bdata->node_bootmem_map;
181 start = bdata->node_min_pfn;
182 end = bdata->node_low_pfn;
183
184 bdebug("nid=%td start=%lx end=%lx\n",
185 bdata - bootmem_node_data, start, end);
186
187 while (start < end) {
188 unsigned long idx, vec;
189 unsigned shift;
190
191 idx = start - bdata->node_min_pfn;
192 shift = idx & (BITS_PER_LONG - 1);
193 /*
194 * vec holds at most BITS_PER_LONG map bits,
195 * bit 0 corresponds to start.
196 */
197 vec = ~map[idx / BITS_PER_LONG];
198
199 if (shift) {
200 vec >>= shift;
201 if (end - start >= BITS_PER_LONG)
202 vec |= ~map[idx / BITS_PER_LONG + 1] <<
203 (BITS_PER_LONG - shift);
204 }
205 /*
206 * If we have a properly aligned and fully unreserved
207 * BITS_PER_LONG block of pages in front of us, free
208 * it in one go.
209 */
210 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
211 int order = ilog2(BITS_PER_LONG);
212
213 __free_pages_bootmem(pfn_to_page(start), order);
214 count += BITS_PER_LONG;
215 start += BITS_PER_LONG;
216 } else {
217 unsigned long cur = start;
218
219 start = ALIGN(start + 1, BITS_PER_LONG);
220 while (vec && cur != start) {
221 if (vec & 1) {
222 page = pfn_to_page(cur);
223 __free_pages_bootmem(page, 0);
224 count++;
225 }
226 vec >>= 1;
227 ++cur;
228 }
229 }
230 }
231
232 page = virt_to_page(bdata->node_bootmem_map);
233 pages = bdata->node_low_pfn - bdata->node_min_pfn;
234 pages = bootmem_bootmap_pages(pages);
235 count += pages;
236 while (pages--)
237 __free_pages_bootmem(page++, 0);
238
239 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
240
241 return count;
242 }
243
244 static int reset_managed_pages_done __initdata;
245
246 static inline void __init reset_node_managed_pages(pg_data_t *pgdat)
247 {
248 struct zone *z;
249
250 if (reset_managed_pages_done)
251 return;
252
253 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
254 z->managed_pages = 0;
255 }
256
257 void __init reset_all_zones_managed_pages(void)
258 {
259 struct pglist_data *pgdat;
260
261 for_each_online_pgdat(pgdat)
262 reset_node_managed_pages(pgdat);
263 reset_managed_pages_done = 1;
264 }
265
266 /**
267 * free_all_bootmem - release free pages to the buddy allocator
268 *
269 * Returns the number of pages actually released.
270 */
271 unsigned long __init free_all_bootmem(void)
272 {
273 unsigned long total_pages = 0;
274 bootmem_data_t *bdata;
275
276 reset_all_zones_managed_pages();
277
278 list_for_each_entry(bdata, &bdata_list, list)
279 total_pages += free_all_bootmem_core(bdata);
280
281 totalram_pages += total_pages;
282
283 return total_pages;
284 }
285
286 static void __init __free(bootmem_data_t *bdata,
287 unsigned long sidx, unsigned long eidx)
288 {
289 unsigned long idx;
290
291 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
292 sidx + bdata->node_min_pfn,
293 eidx + bdata->node_min_pfn);
294
295 if (bdata->hint_idx > sidx)
296 bdata->hint_idx = sidx;
297
298 for (idx = sidx; idx < eidx; idx++)
299 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
300 BUG();
301 }
302
303 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
304 unsigned long eidx, int flags)
305 {
306 unsigned long idx;
307 int exclusive = flags & BOOTMEM_EXCLUSIVE;
308
309 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
310 bdata - bootmem_node_data,
311 sidx + bdata->node_min_pfn,
312 eidx + bdata->node_min_pfn,
313 flags);
314
315 for (idx = sidx; idx < eidx; idx++)
316 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
317 if (exclusive) {
318 __free(bdata, sidx, idx);
319 return -EBUSY;
320 }
321 bdebug("silent double reserve of PFN %lx\n",
322 idx + bdata->node_min_pfn);
323 }
324 return 0;
325 }
326
327 static int __init mark_bootmem_node(bootmem_data_t *bdata,
328 unsigned long start, unsigned long end,
329 int reserve, int flags)
330 {
331 unsigned long sidx, eidx;
332
333 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
334 bdata - bootmem_node_data, start, end, reserve, flags);
335
336 BUG_ON(start < bdata->node_min_pfn);
337 BUG_ON(end > bdata->node_low_pfn);
338
339 sidx = start - bdata->node_min_pfn;
340 eidx = end - bdata->node_min_pfn;
341
342 if (reserve)
343 return __reserve(bdata, sidx, eidx, flags);
344 else
345 __free(bdata, sidx, eidx);
346 return 0;
347 }
348
349 static int __init mark_bootmem(unsigned long start, unsigned long end,
350 int reserve, int flags)
351 {
352 unsigned long pos;
353 bootmem_data_t *bdata;
354
355 pos = start;
356 list_for_each_entry(bdata, &bdata_list, list) {
357 int err;
358 unsigned long max;
359
360 if (pos < bdata->node_min_pfn ||
361 pos >= bdata->node_low_pfn) {
362 BUG_ON(pos != start);
363 continue;
364 }
365
366 max = min(bdata->node_low_pfn, end);
367
368 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
369 if (reserve && err) {
370 mark_bootmem(start, pos, 0, 0);
371 return err;
372 }
373
374 if (max == end)
375 return 0;
376 pos = bdata->node_low_pfn;
377 }
378 BUG();
379 }
380
381 /**
382 * free_bootmem_node - mark a page range as usable
383 * @pgdat: node the range resides on
384 * @physaddr: starting address of the range
385 * @size: size of the range in bytes
386 *
387 * Partial pages will be considered reserved and left as they are.
388 *
389 * The range must reside completely on the specified node.
390 */
391 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
392 unsigned long size)
393 {
394 unsigned long start, end;
395
396 kmemleak_free_part(__va(physaddr), size);
397
398 start = PFN_UP(physaddr);
399 end = PFN_DOWN(physaddr + size);
400
401 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
402 }
403
404 /**
405 * free_bootmem - mark a page range as usable
406 * @addr: starting physical address of the range
407 * @size: size of the range in bytes
408 *
409 * Partial pages will be considered reserved and left as they are.
410 *
411 * The range must be contiguous but may span node boundaries.
412 */
413 void __init free_bootmem(unsigned long physaddr, unsigned long size)
414 {
415 unsigned long start, end;
416
417 kmemleak_free_part(__va(physaddr), size);
418
419 start = PFN_UP(physaddr);
420 end = PFN_DOWN(physaddr + size);
421
422 mark_bootmem(start, end, 0, 0);
423 }
424
425 /**
426 * reserve_bootmem_node - mark a page range as reserved
427 * @pgdat: node the range resides on
428 * @physaddr: starting address of the range
429 * @size: size of the range in bytes
430 * @flags: reservation flags (see linux/bootmem.h)
431 *
432 * Partial pages will be reserved.
433 *
434 * The range must reside completely on the specified node.
435 */
436 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
437 unsigned long size, int flags)
438 {
439 unsigned long start, end;
440
441 start = PFN_DOWN(physaddr);
442 end = PFN_UP(physaddr + size);
443
444 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
445 }
446
447 /**
448 * reserve_bootmem - mark a page range as reserved
449 * @addr: starting address of the range
450 * @size: size of the range in bytes
451 * @flags: reservation flags (see linux/bootmem.h)
452 *
453 * Partial pages will be reserved.
454 *
455 * The range must be contiguous but may span node boundaries.
456 */
457 int __init reserve_bootmem(unsigned long addr, unsigned long size,
458 int flags)
459 {
460 unsigned long start, end;
461
462 start = PFN_DOWN(addr);
463 end = PFN_UP(addr + size);
464
465 return mark_bootmem(start, end, 1, flags);
466 }
467
468 static unsigned long __init align_idx(struct bootmem_data *bdata,
469 unsigned long idx, unsigned long step)
470 {
471 unsigned long base = bdata->node_min_pfn;
472
473 /*
474 * Align the index with respect to the node start so that the
475 * combination of both satisfies the requested alignment.
476 */
477
478 return ALIGN(base + idx, step) - base;
479 }
480
481 static unsigned long __init align_off(struct bootmem_data *bdata,
482 unsigned long off, unsigned long align)
483 {
484 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
485
486 /* Same as align_idx for byte offsets */
487
488 return ALIGN(base + off, align) - base;
489 }
490
491 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
492 unsigned long size, unsigned long align,
493 unsigned long goal, unsigned long limit)
494 {
495 unsigned long fallback = 0;
496 unsigned long min, max, start, sidx, midx, step;
497
498 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
499 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
500 align, goal, limit);
501
502 BUG_ON(!size);
503 BUG_ON(align & (align - 1));
504 BUG_ON(limit && goal + size > limit);
505
506 if (!bdata->node_bootmem_map)
507 return NULL;
508
509 min = bdata->node_min_pfn;
510 max = bdata->node_low_pfn;
511
512 goal >>= PAGE_SHIFT;
513 limit >>= PAGE_SHIFT;
514
515 if (limit && max > limit)
516 max = limit;
517 if (max <= min)
518 return NULL;
519
520 step = max(align >> PAGE_SHIFT, 1UL);
521
522 if (goal && min < goal && goal < max)
523 start = ALIGN(goal, step);
524 else
525 start = ALIGN(min, step);
526
527 sidx = start - bdata->node_min_pfn;
528 midx = max - bdata->node_min_pfn;
529
530 if (bdata->hint_idx > sidx) {
531 /*
532 * Handle the valid case of sidx being zero and still
533 * catch the fallback below.
534 */
535 fallback = sidx + 1;
536 sidx = align_idx(bdata, bdata->hint_idx, step);
537 }
538
539 while (1) {
540 int merge;
541 void *region;
542 unsigned long eidx, i, start_off, end_off;
543 find_block:
544 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
545 sidx = align_idx(bdata, sidx, step);
546 eidx = sidx + PFN_UP(size);
547
548 if (sidx >= midx || eidx > midx)
549 break;
550
551 for (i = sidx; i < eidx; i++)
552 if (test_bit(i, bdata->node_bootmem_map)) {
553 sidx = align_idx(bdata, i, step);
554 if (sidx == i)
555 sidx += step;
556 goto find_block;
557 }
558
559 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
560 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
561 start_off = align_off(bdata, bdata->last_end_off, align);
562 else
563 start_off = PFN_PHYS(sidx);
564
565 merge = PFN_DOWN(start_off) < sidx;
566 end_off = start_off + size;
567
568 bdata->last_end_off = end_off;
569 bdata->hint_idx = PFN_UP(end_off);
570
571 /*
572 * Reserve the area now:
573 */
574 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
575 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
576 BUG();
577
578 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
579 start_off);
580 memset(region, 0, size);
581 /*
582 * The min_count is set to 0 so that bootmem allocated blocks
583 * are never reported as leaks.
584 */
585 kmemleak_alloc(region, size, 0, 0);
586 return region;
587 }
588
589 if (fallback) {
590 sidx = align_idx(bdata, fallback - 1, step);
591 fallback = 0;
592 goto find_block;
593 }
594
595 return NULL;
596 }
597
598 static void * __init alloc_bootmem_core(unsigned long size,
599 unsigned long align,
600 unsigned long goal,
601 unsigned long limit)
602 {
603 bootmem_data_t *bdata;
604 void *region;
605
606 if (WARN_ON_ONCE(slab_is_available()))
607 return kzalloc(size, GFP_NOWAIT);
608
609 list_for_each_entry(bdata, &bdata_list, list) {
610 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
611 continue;
612 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
613 break;
614
615 region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
616 if (region)
617 return region;
618 }
619
620 return NULL;
621 }
622
623 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
624 unsigned long align,
625 unsigned long goal,
626 unsigned long limit)
627 {
628 void *ptr;
629
630 restart:
631 ptr = alloc_bootmem_core(size, align, goal, limit);
632 if (ptr)
633 return ptr;
634 if (goal) {
635 goal = 0;
636 goto restart;
637 }
638
639 return NULL;
640 }
641
642 /**
643 * __alloc_bootmem_nopanic - allocate boot memory without panicking
644 * @size: size of the request in bytes
645 * @align: alignment of the region
646 * @goal: preferred starting address of the region
647 *
648 * The goal is dropped if it can not be satisfied and the allocation will
649 * fall back to memory below @goal.
650 *
651 * Allocation may happen on any node in the system.
652 *
653 * Returns NULL on failure.
654 */
655 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
656 unsigned long goal)
657 {
658 unsigned long limit = 0;
659
660 return ___alloc_bootmem_nopanic(size, align, goal, limit);
661 }
662
663 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
664 unsigned long goal, unsigned long limit)
665 {
666 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
667
668 if (mem)
669 return mem;
670 /*
671 * Whoops, we cannot satisfy the allocation request.
672 */
673 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
674 panic("Out of memory");
675 return NULL;
676 }
677
678 /**
679 * __alloc_bootmem - allocate boot memory
680 * @size: size of the request in bytes
681 * @align: alignment of the region
682 * @goal: preferred starting address of the region
683 *
684 * The goal is dropped if it can not be satisfied and the allocation will
685 * fall back to memory below @goal.
686 *
687 * Allocation may happen on any node in the system.
688 *
689 * The function panics if the request can not be satisfied.
690 */
691 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
692 unsigned long goal)
693 {
694 unsigned long limit = 0;
695
696 return ___alloc_bootmem(size, align, goal, limit);
697 }
698
699 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
700 unsigned long size, unsigned long align,
701 unsigned long goal, unsigned long limit)
702 {
703 void *ptr;
704
705 if (WARN_ON_ONCE(slab_is_available()))
706 return kzalloc(size, GFP_NOWAIT);
707 again:
708
709 /* do not panic in alloc_bootmem_bdata() */
710 if (limit && goal + size > limit)
711 limit = 0;
712
713 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
714 if (ptr)
715 return ptr;
716
717 ptr = alloc_bootmem_core(size, align, goal, limit);
718 if (ptr)
719 return ptr;
720
721 if (goal) {
722 goal = 0;
723 goto again;
724 }
725
726 return NULL;
727 }
728
729 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
730 unsigned long align, unsigned long goal)
731 {
732 if (WARN_ON_ONCE(slab_is_available()))
733 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
734
735 return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
736 }
737
738 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
739 unsigned long align, unsigned long goal,
740 unsigned long limit)
741 {
742 void *ptr;
743
744 ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
745 if (ptr)
746 return ptr;
747
748 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
749 panic("Out of memory");
750 return NULL;
751 }
752
753 /**
754 * __alloc_bootmem_node - allocate boot memory from a specific node
755 * @pgdat: node to allocate from
756 * @size: size of the request in bytes
757 * @align: alignment of the region
758 * @goal: preferred starting address of the region
759 *
760 * The goal is dropped if it can not be satisfied and the allocation will
761 * fall back to memory below @goal.
762 *
763 * Allocation may fall back to any node in the system if the specified node
764 * can not hold the requested memory.
765 *
766 * The function panics if the request can not be satisfied.
767 */
768 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
769 unsigned long align, unsigned long goal)
770 {
771 if (WARN_ON_ONCE(slab_is_available()))
772 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
773
774 return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
775 }
776
777 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
778 unsigned long align, unsigned long goal)
779 {
780 #ifdef MAX_DMA32_PFN
781 unsigned long end_pfn;
782
783 if (WARN_ON_ONCE(slab_is_available()))
784 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
785
786 /* update goal according ...MAX_DMA32_PFN */
787 end_pfn = pgdat_end_pfn(pgdat);
788
789 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
790 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
791 void *ptr;
792 unsigned long new_goal;
793
794 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
795 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
796 new_goal, 0);
797 if (ptr)
798 return ptr;
799 }
800 #endif
801
802 return __alloc_bootmem_node(pgdat, size, align, goal);
803
804 }
805
806 #ifndef ARCH_LOW_ADDRESS_LIMIT
807 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
808 #endif
809
810 /**
811 * __alloc_bootmem_low - allocate low boot memory
812 * @size: size of the request in bytes
813 * @align: alignment of the region
814 * @goal: preferred starting address of the region
815 *
816 * The goal is dropped if it can not be satisfied and the allocation will
817 * fall back to memory below @goal.
818 *
819 * Allocation may happen on any node in the system.
820 *
821 * The function panics if the request can not be satisfied.
822 */
823 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
824 unsigned long goal)
825 {
826 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
827 }
828
829 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
830 unsigned long align,
831 unsigned long goal)
832 {
833 return ___alloc_bootmem_nopanic(size, align, goal,
834 ARCH_LOW_ADDRESS_LIMIT);
835 }
836
837 /**
838 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
839 * @pgdat: node to allocate from
840 * @size: size of the request in bytes
841 * @align: alignment of the region
842 * @goal: preferred starting address of the region
843 *
844 * The goal is dropped if it can not be satisfied and the allocation will
845 * fall back to memory below @goal.
846 *
847 * Allocation may fall back to any node in the system if the specified node
848 * can not hold the requested memory.
849 *
850 * The function panics if the request can not be satisfied.
851 */
852 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
853 unsigned long align, unsigned long goal)
854 {
855 if (WARN_ON_ONCE(slab_is_available()))
856 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
857
858 return ___alloc_bootmem_node(pgdat, size, align,
859 goal, ARCH_LOW_ADDRESS_LIMIT);
860 }