]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/bootmem.c
bootmem: revisit bootmem descriptor list handling
[mirror_ubuntu-artful-kernel.git] / mm / bootmem.c
1 /*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/bootmem.h>
14 #include <linux/module.h>
15
16 #include <asm/bug.h>
17 #include <asm/io.h>
18 #include <asm/processor.h>
19
20 #include "internal.h"
21
22 unsigned long max_low_pfn;
23 unsigned long min_low_pfn;
24 unsigned long max_pfn;
25
26 #ifdef CONFIG_CRASH_DUMP
27 /*
28 * If we have booted due to a crash, max_pfn will be a very low value. We need
29 * to know the amount of memory that the previous kernel used.
30 */
31 unsigned long saved_max_pfn;
32 #endif
33
34 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
35
36 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
37
38 static int bootmem_debug;
39
40 static int __init bootmem_debug_setup(char *buf)
41 {
42 bootmem_debug = 1;
43 return 0;
44 }
45 early_param("bootmem_debug", bootmem_debug_setup);
46
47 #define bdebug(fmt, args...) ({ \
48 if (unlikely(bootmem_debug)) \
49 printk(KERN_INFO \
50 "bootmem::%s " fmt, \
51 __FUNCTION__, ## args); \
52 })
53
54 static unsigned long __init bootmap_bytes(unsigned long pages)
55 {
56 unsigned long bytes = (pages + 7) / 8;
57
58 return ALIGN(bytes, sizeof(long));
59 }
60
61 /**
62 * bootmem_bootmap_pages - calculate bitmap size in pages
63 * @pages: number of pages the bitmap has to represent
64 */
65 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
66 {
67 unsigned long bytes = bootmap_bytes(pages);
68
69 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
70 }
71
72 /*
73 * link bdata in order
74 */
75 static void __init link_bootmem(bootmem_data_t *bdata)
76 {
77 struct list_head *iter;
78
79 list_for_each(iter, &bdata_list) {
80 bootmem_data_t *ent;
81
82 ent = list_entry(iter, bootmem_data_t, list);
83 if (bdata->node_boot_start < ent->node_boot_start)
84 break;
85 }
86 list_add_tail(&bdata->list, iter);
87 }
88
89 /*
90 * Called once to set up the allocator itself.
91 */
92 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
93 unsigned long mapstart, unsigned long start, unsigned long end)
94 {
95 unsigned long mapsize;
96
97 mminit_validate_memmodel_limits(&start, &end);
98 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
99 bdata->node_boot_start = PFN_PHYS(start);
100 bdata->node_low_pfn = end;
101 link_bootmem(bdata);
102
103 /*
104 * Initially all pages are reserved - setup_arch() has to
105 * register free RAM areas explicitly.
106 */
107 mapsize = bootmap_bytes(end - start);
108 memset(bdata->node_bootmem_map, 0xff, mapsize);
109
110 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
111 bdata - bootmem_node_data, start, mapstart, end, mapsize);
112
113 return mapsize;
114 }
115
116 /**
117 * init_bootmem_node - register a node as boot memory
118 * @pgdat: node to register
119 * @freepfn: pfn where the bitmap for this node is to be placed
120 * @startpfn: first pfn on the node
121 * @endpfn: first pfn after the node
122 *
123 * Returns the number of bytes needed to hold the bitmap for this node.
124 */
125 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
126 unsigned long startpfn, unsigned long endpfn)
127 {
128 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
129 }
130
131 /**
132 * init_bootmem - register boot memory
133 * @start: pfn where the bitmap is to be placed
134 * @pages: number of available physical pages
135 *
136 * Returns the number of bytes needed to hold the bitmap.
137 */
138 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
139 {
140 max_low_pfn = pages;
141 min_low_pfn = start;
142 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
143 }
144
145 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
146 {
147 struct page *page;
148 unsigned long pfn;
149 unsigned long i, count;
150 unsigned long idx, pages;
151 unsigned long *map;
152 int gofast = 0;
153
154 BUG_ON(!bdata->node_bootmem_map);
155
156 count = 0;
157 /* first extant page of the node */
158 pfn = PFN_DOWN(bdata->node_boot_start);
159 idx = bdata->node_low_pfn - pfn;
160 map = bdata->node_bootmem_map;
161 /*
162 * Check if we are aligned to BITS_PER_LONG pages. If so, we might
163 * be able to free page orders of that size at once.
164 */
165 if (!(pfn & (BITS_PER_LONG-1)))
166 gofast = 1;
167
168 for (i = 0; i < idx; ) {
169 unsigned long v = ~map[i / BITS_PER_LONG];
170
171 if (gofast && v == ~0UL) {
172 int order;
173
174 page = pfn_to_page(pfn);
175 count += BITS_PER_LONG;
176 order = ffs(BITS_PER_LONG) - 1;
177 __free_pages_bootmem(page, order);
178 i += BITS_PER_LONG;
179 page += BITS_PER_LONG;
180 } else if (v) {
181 unsigned long m;
182
183 page = pfn_to_page(pfn);
184 for (m = 1; m && i < idx; m<<=1, page++, i++) {
185 if (v & m) {
186 count++;
187 __free_pages_bootmem(page, 0);
188 }
189 }
190 } else {
191 i += BITS_PER_LONG;
192 }
193 pfn += BITS_PER_LONG;
194 }
195
196 /*
197 * Now free the allocator bitmap itself, it's not
198 * needed anymore:
199 */
200 page = virt_to_page(bdata->node_bootmem_map);
201 pages = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
202 idx = bootmem_bootmap_pages(pages);
203 for (i = 0; i < idx; i++, page++)
204 __free_pages_bootmem(page, 0);
205 count += i;
206 bdata->node_bootmem_map = NULL;
207
208 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
209
210 return count;
211 }
212
213 /**
214 * free_all_bootmem_node - release a node's free pages to the buddy allocator
215 * @pgdat: node to be released
216 *
217 * Returns the number of pages actually released.
218 */
219 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
220 {
221 register_page_bootmem_info_node(pgdat);
222 return free_all_bootmem_core(pgdat->bdata);
223 }
224
225 /**
226 * free_all_bootmem - release free pages to the buddy allocator
227 *
228 * Returns the number of pages actually released.
229 */
230 unsigned long __init free_all_bootmem(void)
231 {
232 return free_all_bootmem_core(NODE_DATA(0)->bdata);
233 }
234
235 static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
236 unsigned long size)
237 {
238 unsigned long sidx, eidx;
239 unsigned long i;
240
241 BUG_ON(!size);
242
243 /* out range */
244 if (addr + size < bdata->node_boot_start ||
245 PFN_DOWN(addr) > bdata->node_low_pfn)
246 return;
247 /*
248 * round down end of usable mem, partially free pages are
249 * considered reserved.
250 */
251
252 if (addr >= bdata->node_boot_start && addr < bdata->last_success)
253 bdata->last_success = addr;
254
255 /*
256 * Round up to index to the range.
257 */
258 if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start))
259 sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
260 else
261 sidx = 0;
262
263 eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
264 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
265 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
266
267 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
268 sidx + PFN_DOWN(bdata->node_boot_start),
269 eidx + PFN_DOWN(bdata->node_boot_start));
270
271 for (i = sidx; i < eidx; i++) {
272 if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
273 BUG();
274 }
275 }
276
277 /**
278 * free_bootmem_node - mark a page range as usable
279 * @pgdat: node the range resides on
280 * @physaddr: starting address of the range
281 * @size: size of the range in bytes
282 *
283 * Partial pages will be considered reserved and left as they are.
284 *
285 * Only physical pages that actually reside on @pgdat are marked.
286 */
287 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
288 unsigned long size)
289 {
290 free_bootmem_core(pgdat->bdata, physaddr, size);
291 }
292
293 /**
294 * free_bootmem - mark a page range as usable
295 * @addr: starting address of the range
296 * @size: size of the range in bytes
297 *
298 * Partial pages will be considered reserved and left as they are.
299 *
300 * All physical pages within the range are marked, no matter what
301 * node they reside on.
302 */
303 void __init free_bootmem(unsigned long addr, unsigned long size)
304 {
305 bootmem_data_t *bdata;
306 list_for_each_entry(bdata, &bdata_list, list)
307 free_bootmem_core(bdata, addr, size);
308 }
309
310 /*
311 * Marks a particular physical memory range as unallocatable. Usable RAM
312 * might be used for boot-time allocations - or it might get added
313 * to the free page pool later on.
314 */
315 static int __init can_reserve_bootmem_core(bootmem_data_t *bdata,
316 unsigned long addr, unsigned long size, int flags)
317 {
318 unsigned long sidx, eidx;
319 unsigned long i;
320
321 BUG_ON(!size);
322
323 /* out of range, don't hold other */
324 if (addr + size < bdata->node_boot_start ||
325 PFN_DOWN(addr) > bdata->node_low_pfn)
326 return 0;
327
328 /*
329 * Round up to index to the range.
330 */
331 if (addr > bdata->node_boot_start)
332 sidx= PFN_DOWN(addr - bdata->node_boot_start);
333 else
334 sidx = 0;
335
336 eidx = PFN_UP(addr + size - bdata->node_boot_start);
337 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
338 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
339
340 for (i = sidx; i < eidx; i++) {
341 if (test_bit(i, bdata->node_bootmem_map)) {
342 if (flags & BOOTMEM_EXCLUSIVE)
343 return -EBUSY;
344 }
345 }
346
347 return 0;
348
349 }
350
351 static void __init reserve_bootmem_core(bootmem_data_t *bdata,
352 unsigned long addr, unsigned long size, int flags)
353 {
354 unsigned long sidx, eidx;
355 unsigned long i;
356
357 BUG_ON(!size);
358
359 /* out of range */
360 if (addr + size < bdata->node_boot_start ||
361 PFN_DOWN(addr) > bdata->node_low_pfn)
362 return;
363
364 /*
365 * Round up to index to the range.
366 */
367 if (addr > bdata->node_boot_start)
368 sidx= PFN_DOWN(addr - bdata->node_boot_start);
369 else
370 sidx = 0;
371
372 eidx = PFN_UP(addr + size - bdata->node_boot_start);
373 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
374 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
375
376 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
377 bdata - bootmem_node_data,
378 sidx + PFN_DOWN(bdata->node_boot_start),
379 eidx + PFN_DOWN(bdata->node_boot_start),
380 flags);
381
382 for (i = sidx; i < eidx; i++)
383 if (test_and_set_bit(i, bdata->node_bootmem_map))
384 bdebug("hm, page %lx reserved twice.\n",
385 PFN_DOWN(bdata->node_boot_start) + i);
386 }
387
388 /**
389 * reserve_bootmem_node - mark a page range as reserved
390 * @pgdat: node the range resides on
391 * @physaddr: starting address of the range
392 * @size: size of the range in bytes
393 * @flags: reservation flags (see linux/bootmem.h)
394 *
395 * Partial pages will be reserved.
396 *
397 * Only physical pages that actually reside on @pgdat are marked.
398 */
399 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
400 unsigned long size, int flags)
401 {
402 int ret;
403
404 ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
405 if (ret < 0)
406 return -ENOMEM;
407 reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
408 return 0;
409 }
410
411 #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
412 /**
413 * reserve_bootmem - mark a page range as usable
414 * @addr: starting address of the range
415 * @size: size of the range in bytes
416 * @flags: reservation flags (see linux/bootmem.h)
417 *
418 * Partial pages will be reserved.
419 *
420 * All physical pages within the range are marked, no matter what
421 * node they reside on.
422 */
423 int __init reserve_bootmem(unsigned long addr, unsigned long size,
424 int flags)
425 {
426 bootmem_data_t *bdata;
427 int ret;
428
429 list_for_each_entry(bdata, &bdata_list, list) {
430 ret = can_reserve_bootmem_core(bdata, addr, size, flags);
431 if (ret < 0)
432 return ret;
433 }
434 list_for_each_entry(bdata, &bdata_list, list)
435 reserve_bootmem_core(bdata, addr, size, flags);
436
437 return 0;
438 }
439 #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
440
441 /*
442 * We 'merge' subsequent allocations to save space. We might 'lose'
443 * some fraction of a page if allocations cannot be satisfied due to
444 * size constraints on boxes where there is physical RAM space
445 * fragmentation - in these cases (mostly large memory boxes) this
446 * is not a problem.
447 *
448 * On low memory boxes we get it right in 100% of the cases.
449 *
450 * alignment has to be a power of 2 value.
451 *
452 * NOTE: This function is _not_ reentrant.
453 */
454 static void * __init
455 alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
456 unsigned long align, unsigned long goal, unsigned long limit)
457 {
458 unsigned long areasize, preferred;
459 unsigned long i, start = 0, incr, eidx, end_pfn;
460 void *ret;
461 unsigned long node_boot_start;
462 void *node_bootmem_map;
463
464 if (!size) {
465 printk("alloc_bootmem_core(): zero-sized request\n");
466 BUG();
467 }
468 BUG_ON(align & (align-1));
469
470 /* on nodes without memory - bootmem_map is NULL */
471 if (!bdata->node_bootmem_map)
472 return NULL;
473
474 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
475 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
476 align, goal, limit);
477
478 /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */
479 node_boot_start = bdata->node_boot_start;
480 node_bootmem_map = bdata->node_bootmem_map;
481 if (align) {
482 node_boot_start = ALIGN(bdata->node_boot_start, align);
483 if (node_boot_start > bdata->node_boot_start)
484 node_bootmem_map = (unsigned long *)bdata->node_bootmem_map +
485 PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG;
486 }
487
488 if (limit && node_boot_start >= limit)
489 return NULL;
490
491 end_pfn = bdata->node_low_pfn;
492 limit = PFN_DOWN(limit);
493 if (limit && end_pfn > limit)
494 end_pfn = limit;
495
496 eidx = end_pfn - PFN_DOWN(node_boot_start);
497
498 /*
499 * We try to allocate bootmem pages above 'goal'
500 * first, then we try to allocate lower pages.
501 */
502 preferred = 0;
503 if (goal && PFN_DOWN(goal) < end_pfn) {
504 if (goal > node_boot_start)
505 preferred = goal - node_boot_start;
506
507 if (bdata->last_success > node_boot_start &&
508 bdata->last_success - node_boot_start >= preferred)
509 if (!limit || (limit && limit > bdata->last_success))
510 preferred = bdata->last_success - node_boot_start;
511 }
512
513 preferred = PFN_DOWN(ALIGN(preferred, align));
514 areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
515 incr = align >> PAGE_SHIFT ? : 1;
516
517 restart_scan:
518 for (i = preferred; i < eidx;) {
519 unsigned long j;
520
521 i = find_next_zero_bit(node_bootmem_map, eidx, i);
522 i = ALIGN(i, incr);
523 if (i >= eidx)
524 break;
525 if (test_bit(i, node_bootmem_map)) {
526 i += incr;
527 continue;
528 }
529 for (j = i + 1; j < i + areasize; ++j) {
530 if (j >= eidx)
531 goto fail_block;
532 if (test_bit(j, node_bootmem_map))
533 goto fail_block;
534 }
535 start = i;
536 goto found;
537 fail_block:
538 i = ALIGN(j, incr);
539 if (i == j)
540 i += incr;
541 }
542
543 if (preferred > 0) {
544 preferred = 0;
545 goto restart_scan;
546 }
547 return NULL;
548
549 found:
550 bdata->last_success = PFN_PHYS(start) + node_boot_start;
551 BUG_ON(start >= eidx);
552
553 /*
554 * Is the next page of the previous allocation-end the start
555 * of this allocation's buffer? If yes then we can 'merge'
556 * the previous partial page with this allocation.
557 */
558 if (align < PAGE_SIZE &&
559 bdata->last_offset && bdata->last_pos+1 == start) {
560 unsigned long offset, remaining_size;
561 offset = ALIGN(bdata->last_offset, align);
562 BUG_ON(offset > PAGE_SIZE);
563 remaining_size = PAGE_SIZE - offset;
564 if (size < remaining_size) {
565 areasize = 0;
566 /* last_pos unchanged */
567 bdata->last_offset = offset + size;
568 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
569 offset + node_boot_start);
570 } else {
571 remaining_size = size - remaining_size;
572 areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
573 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
574 offset + node_boot_start);
575 bdata->last_pos = start + areasize - 1;
576 bdata->last_offset = remaining_size;
577 }
578 bdata->last_offset &= ~PAGE_MASK;
579 } else {
580 bdata->last_pos = start + areasize - 1;
581 bdata->last_offset = size & ~PAGE_MASK;
582 ret = phys_to_virt(start * PAGE_SIZE + node_boot_start);
583 }
584
585 bdebug("nid=%td start=%lx end=%lx\n",
586 bdata - bootmem_node_data,
587 start + PFN_DOWN(bdata->node_boot_start),
588 start + areasize + PFN_DOWN(bdata->node_boot_start));
589
590 /*
591 * Reserve the area now:
592 */
593 for (i = start; i < start + areasize; i++)
594 if (unlikely(test_and_set_bit(i, node_bootmem_map)))
595 BUG();
596 memset(ret, 0, size);
597 return ret;
598 }
599
600 /**
601 * __alloc_bootmem_nopanic - allocate boot memory without panicking
602 * @size: size of the request in bytes
603 * @align: alignment of the region
604 * @goal: preferred starting address of the region
605 *
606 * The goal is dropped if it can not be satisfied and the allocation will
607 * fall back to memory below @goal.
608 *
609 * Allocation may happen on any node in the system.
610 *
611 * Returns NULL on failure.
612 */
613 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
614 unsigned long goal)
615 {
616 bootmem_data_t *bdata;
617 void *ptr;
618
619 list_for_each_entry(bdata, &bdata_list, list) {
620 ptr = alloc_bootmem_core(bdata, size, align, goal, 0);
621 if (ptr)
622 return ptr;
623 }
624 return NULL;
625 }
626
627 /**
628 * __alloc_bootmem - allocate boot memory
629 * @size: size of the request in bytes
630 * @align: alignment of the region
631 * @goal: preferred starting address of the region
632 *
633 * The goal is dropped if it can not be satisfied and the allocation will
634 * fall back to memory below @goal.
635 *
636 * Allocation may happen on any node in the system.
637 *
638 * The function panics if the request can not be satisfied.
639 */
640 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
641 unsigned long goal)
642 {
643 void *mem = __alloc_bootmem_nopanic(size,align,goal);
644
645 if (mem)
646 return mem;
647 /*
648 * Whoops, we cannot satisfy the allocation request.
649 */
650 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
651 panic("Out of memory");
652 return NULL;
653 }
654
655 /**
656 * __alloc_bootmem_node - allocate boot memory from a specific node
657 * @pgdat: node to allocate from
658 * @size: size of the request in bytes
659 * @align: alignment of the region
660 * @goal: preferred starting address of the region
661 *
662 * The goal is dropped if it can not be satisfied and the allocation will
663 * fall back to memory below @goal.
664 *
665 * Allocation may fall back to any node in the system if the specified node
666 * can not hold the requested memory.
667 *
668 * The function panics if the request can not be satisfied.
669 */
670 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
671 unsigned long align, unsigned long goal)
672 {
673 void *ptr;
674
675 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
676 if (ptr)
677 return ptr;
678
679 return __alloc_bootmem(size, align, goal);
680 }
681
682 #ifdef CONFIG_SPARSEMEM
683 /**
684 * alloc_bootmem_section - allocate boot memory from a specific section
685 * @size: size of the request in bytes
686 * @section_nr: sparse map section to allocate from
687 *
688 * Return NULL on failure.
689 */
690 void * __init alloc_bootmem_section(unsigned long size,
691 unsigned long section_nr)
692 {
693 void *ptr;
694 unsigned long limit, goal, start_nr, end_nr, pfn;
695 struct pglist_data *pgdat;
696
697 pfn = section_nr_to_pfn(section_nr);
698 goal = PFN_PHYS(pfn);
699 limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1;
700 pgdat = NODE_DATA(early_pfn_to_nid(pfn));
701 ptr = alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal,
702 limit);
703
704 if (!ptr)
705 return NULL;
706
707 start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr)));
708 end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size));
709 if (start_nr != section_nr || end_nr != section_nr) {
710 printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n",
711 section_nr);
712 free_bootmem_core(pgdat->bdata, __pa(ptr), size);
713 ptr = NULL;
714 }
715
716 return ptr;
717 }
718 #endif
719
720 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
721 unsigned long align, unsigned long goal)
722 {
723 void *ptr;
724
725 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
726 if (ptr)
727 return ptr;
728
729 return __alloc_bootmem_nopanic(size, align, goal);
730 }
731
732 #ifndef ARCH_LOW_ADDRESS_LIMIT
733 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
734 #endif
735
736 /**
737 * __alloc_bootmem_low - allocate low boot memory
738 * @size: size of the request in bytes
739 * @align: alignment of the region
740 * @goal: preferred starting address of the region
741 *
742 * The goal is dropped if it can not be satisfied and the allocation will
743 * fall back to memory below @goal.
744 *
745 * Allocation may happen on any node in the system.
746 *
747 * The function panics if the request can not be satisfied.
748 */
749 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
750 unsigned long goal)
751 {
752 bootmem_data_t *bdata;
753 void *ptr;
754
755 list_for_each_entry(bdata, &bdata_list, list) {
756 ptr = alloc_bootmem_core(bdata, size, align, goal,
757 ARCH_LOW_ADDRESS_LIMIT);
758 if (ptr)
759 return ptr;
760 }
761
762 /*
763 * Whoops, we cannot satisfy the allocation request.
764 */
765 printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
766 panic("Out of low memory");
767 return NULL;
768 }
769
770 /**
771 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
772 * @pgdat: node to allocate from
773 * @size: size of the request in bytes
774 * @align: alignment of the region
775 * @goal: preferred starting address of the region
776 *
777 * The goal is dropped if it can not be satisfied and the allocation will
778 * fall back to memory below @goal.
779 *
780 * Allocation may fall back to any node in the system if the specified node
781 * can not hold the requested memory.
782 *
783 * The function panics if the request can not be satisfied.
784 */
785 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
786 unsigned long align, unsigned long goal)
787 {
788 return alloc_bootmem_core(pgdat->bdata, size, align, goal,
789 ARCH_LOW_ADDRESS_LIMIT);
790 }