]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/bootmem.c
Merge tag 'armsoc-dt64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-bionic-kernel.git] / mm / bootmem.c
1 /*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/kmemleak.h>
16 #include <linux/range.h>
17 #include <linux/bug.h>
18 #include <linux/io.h>
19 #include <linux/bootmem.h>
20
21 #include "internal.h"
22
23 #ifndef CONFIG_NEED_MULTIPLE_NODES
24 struct pglist_data __refdata contig_page_data = {
25 .bdata = &bootmem_node_data[0]
26 };
27 EXPORT_SYMBOL(contig_page_data);
28 #endif
29
30 unsigned long max_low_pfn;
31 unsigned long min_low_pfn;
32 unsigned long max_pfn;
33 unsigned long long max_possible_pfn;
34
35 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
36
37 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
38
39 static int bootmem_debug;
40
41 static int __init bootmem_debug_setup(char *buf)
42 {
43 bootmem_debug = 1;
44 return 0;
45 }
46 early_param("bootmem_debug", bootmem_debug_setup);
47
48 #define bdebug(fmt, args...) ({ \
49 if (unlikely(bootmem_debug)) \
50 pr_info("bootmem::%s " fmt, \
51 __func__, ## args); \
52 })
53
54 static unsigned long __init bootmap_bytes(unsigned long pages)
55 {
56 unsigned long bytes = DIV_ROUND_UP(pages, BITS_PER_BYTE);
57
58 return ALIGN(bytes, sizeof(long));
59 }
60
61 /**
62 * bootmem_bootmap_pages - calculate bitmap size in pages
63 * @pages: number of pages the bitmap has to represent
64 */
65 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
66 {
67 unsigned long bytes = bootmap_bytes(pages);
68
69 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
70 }
71
72 /*
73 * link bdata in order
74 */
75 static void __init link_bootmem(bootmem_data_t *bdata)
76 {
77 bootmem_data_t *ent;
78
79 list_for_each_entry(ent, &bdata_list, list) {
80 if (bdata->node_min_pfn < ent->node_min_pfn) {
81 list_add_tail(&bdata->list, &ent->list);
82 return;
83 }
84 }
85
86 list_add_tail(&bdata->list, &bdata_list);
87 }
88
89 /*
90 * Called once to set up the allocator itself.
91 */
92 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
93 unsigned long mapstart, unsigned long start, unsigned long end)
94 {
95 unsigned long mapsize;
96
97 mminit_validate_memmodel_limits(&start, &end);
98 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
99 bdata->node_min_pfn = start;
100 bdata->node_low_pfn = end;
101 link_bootmem(bdata);
102
103 /*
104 * Initially all pages are reserved - setup_arch() has to
105 * register free RAM areas explicitly.
106 */
107 mapsize = bootmap_bytes(end - start);
108 memset(bdata->node_bootmem_map, 0xff, mapsize);
109
110 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
111 bdata - bootmem_node_data, start, mapstart, end, mapsize);
112
113 return mapsize;
114 }
115
116 /**
117 * init_bootmem_node - register a node as boot memory
118 * @pgdat: node to register
119 * @freepfn: pfn where the bitmap for this node is to be placed
120 * @startpfn: first pfn on the node
121 * @endpfn: first pfn after the node
122 *
123 * Returns the number of bytes needed to hold the bitmap for this node.
124 */
125 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
126 unsigned long startpfn, unsigned long endpfn)
127 {
128 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
129 }
130
131 /**
132 * init_bootmem - register boot memory
133 * @start: pfn where the bitmap is to be placed
134 * @pages: number of available physical pages
135 *
136 * Returns the number of bytes needed to hold the bitmap.
137 */
138 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
139 {
140 max_low_pfn = pages;
141 min_low_pfn = start;
142 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
143 }
144
145 /*
146 * free_bootmem_late - free bootmem pages directly to page allocator
147 * @addr: starting physical address of the range
148 * @size: size of the range in bytes
149 *
150 * This is only useful when the bootmem allocator has already been torn
151 * down, but we are still initializing the system. Pages are given directly
152 * to the page allocator, no bootmem metadata is updated because it is gone.
153 */
154 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
155 {
156 unsigned long cursor, end;
157
158 kmemleak_free_part_phys(physaddr, size);
159
160 cursor = PFN_UP(physaddr);
161 end = PFN_DOWN(physaddr + size);
162
163 for (; cursor < end; cursor++) {
164 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
165 totalram_pages++;
166 }
167 }
168
169 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
170 {
171 struct page *page;
172 unsigned long *map, start, end, pages, cur, count = 0;
173
174 if (!bdata->node_bootmem_map)
175 return 0;
176
177 map = bdata->node_bootmem_map;
178 start = bdata->node_min_pfn;
179 end = bdata->node_low_pfn;
180
181 bdebug("nid=%td start=%lx end=%lx\n",
182 bdata - bootmem_node_data, start, end);
183
184 while (start < end) {
185 unsigned long idx, vec;
186 unsigned shift;
187
188 idx = start - bdata->node_min_pfn;
189 shift = idx & (BITS_PER_LONG - 1);
190 /*
191 * vec holds at most BITS_PER_LONG map bits,
192 * bit 0 corresponds to start.
193 */
194 vec = ~map[idx / BITS_PER_LONG];
195
196 if (shift) {
197 vec >>= shift;
198 if (end - start >= BITS_PER_LONG)
199 vec |= ~map[idx / BITS_PER_LONG + 1] <<
200 (BITS_PER_LONG - shift);
201 }
202 /*
203 * If we have a properly aligned and fully unreserved
204 * BITS_PER_LONG block of pages in front of us, free
205 * it in one go.
206 */
207 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
208 int order = ilog2(BITS_PER_LONG);
209
210 __free_pages_bootmem(pfn_to_page(start), start, order);
211 count += BITS_PER_LONG;
212 start += BITS_PER_LONG;
213 } else {
214 cur = start;
215
216 start = ALIGN(start + 1, BITS_PER_LONG);
217 while (vec && cur != start) {
218 if (vec & 1) {
219 page = pfn_to_page(cur);
220 __free_pages_bootmem(page, cur, 0);
221 count++;
222 }
223 vec >>= 1;
224 ++cur;
225 }
226 }
227 }
228
229 cur = bdata->node_min_pfn;
230 page = virt_to_page(bdata->node_bootmem_map);
231 pages = bdata->node_low_pfn - bdata->node_min_pfn;
232 pages = bootmem_bootmap_pages(pages);
233 count += pages;
234 while (pages--)
235 __free_pages_bootmem(page++, cur++, 0);
236 bdata->node_bootmem_map = NULL;
237
238 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
239
240 return count;
241 }
242
243 static int reset_managed_pages_done __initdata;
244
245 void reset_node_managed_pages(pg_data_t *pgdat)
246 {
247 struct zone *z;
248
249 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
250 z->managed_pages = 0;
251 }
252
253 void __init reset_all_zones_managed_pages(void)
254 {
255 struct pglist_data *pgdat;
256
257 if (reset_managed_pages_done)
258 return;
259
260 for_each_online_pgdat(pgdat)
261 reset_node_managed_pages(pgdat);
262
263 reset_managed_pages_done = 1;
264 }
265
266 /**
267 * free_all_bootmem - release free pages to the buddy allocator
268 *
269 * Returns the number of pages actually released.
270 */
271 unsigned long __init free_all_bootmem(void)
272 {
273 unsigned long total_pages = 0;
274 bootmem_data_t *bdata;
275
276 reset_all_zones_managed_pages();
277
278 list_for_each_entry(bdata, &bdata_list, list)
279 total_pages += free_all_bootmem_core(bdata);
280
281 totalram_pages += total_pages;
282
283 return total_pages;
284 }
285
286 static void __init __free(bootmem_data_t *bdata,
287 unsigned long sidx, unsigned long eidx)
288 {
289 unsigned long idx;
290
291 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
292 sidx + bdata->node_min_pfn,
293 eidx + bdata->node_min_pfn);
294
295 if (WARN_ON(bdata->node_bootmem_map == NULL))
296 return;
297
298 if (bdata->hint_idx > sidx)
299 bdata->hint_idx = sidx;
300
301 for (idx = sidx; idx < eidx; idx++)
302 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
303 BUG();
304 }
305
306 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
307 unsigned long eidx, int flags)
308 {
309 unsigned long idx;
310 int exclusive = flags & BOOTMEM_EXCLUSIVE;
311
312 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
313 bdata - bootmem_node_data,
314 sidx + bdata->node_min_pfn,
315 eidx + bdata->node_min_pfn,
316 flags);
317
318 if (WARN_ON(bdata->node_bootmem_map == NULL))
319 return 0;
320
321 for (idx = sidx; idx < eidx; idx++)
322 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
323 if (exclusive) {
324 __free(bdata, sidx, idx);
325 return -EBUSY;
326 }
327 bdebug("silent double reserve of PFN %lx\n",
328 idx + bdata->node_min_pfn);
329 }
330 return 0;
331 }
332
333 static int __init mark_bootmem_node(bootmem_data_t *bdata,
334 unsigned long start, unsigned long end,
335 int reserve, int flags)
336 {
337 unsigned long sidx, eidx;
338
339 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
340 bdata - bootmem_node_data, start, end, reserve, flags);
341
342 BUG_ON(start < bdata->node_min_pfn);
343 BUG_ON(end > bdata->node_low_pfn);
344
345 sidx = start - bdata->node_min_pfn;
346 eidx = end - bdata->node_min_pfn;
347
348 if (reserve)
349 return __reserve(bdata, sidx, eidx, flags);
350 else
351 __free(bdata, sidx, eidx);
352 return 0;
353 }
354
355 static int __init mark_bootmem(unsigned long start, unsigned long end,
356 int reserve, int flags)
357 {
358 unsigned long pos;
359 bootmem_data_t *bdata;
360
361 pos = start;
362 list_for_each_entry(bdata, &bdata_list, list) {
363 int err;
364 unsigned long max;
365
366 if (pos < bdata->node_min_pfn ||
367 pos >= bdata->node_low_pfn) {
368 BUG_ON(pos != start);
369 continue;
370 }
371
372 max = min(bdata->node_low_pfn, end);
373
374 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
375 if (reserve && err) {
376 mark_bootmem(start, pos, 0, 0);
377 return err;
378 }
379
380 if (max == end)
381 return 0;
382 pos = bdata->node_low_pfn;
383 }
384 BUG();
385 }
386
387 /**
388 * free_bootmem_node - mark a page range as usable
389 * @pgdat: node the range resides on
390 * @physaddr: starting address of the range
391 * @size: size of the range in bytes
392 *
393 * Partial pages will be considered reserved and left as they are.
394 *
395 * The range must reside completely on the specified node.
396 */
397 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
398 unsigned long size)
399 {
400 unsigned long start, end;
401
402 kmemleak_free_part_phys(physaddr, size);
403
404 start = PFN_UP(physaddr);
405 end = PFN_DOWN(physaddr + size);
406
407 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
408 }
409
410 /**
411 * free_bootmem - mark a page range as usable
412 * @addr: starting physical address of the range
413 * @size: size of the range in bytes
414 *
415 * Partial pages will be considered reserved and left as they are.
416 *
417 * The range must be contiguous but may span node boundaries.
418 */
419 void __init free_bootmem(unsigned long physaddr, unsigned long size)
420 {
421 unsigned long start, end;
422
423 kmemleak_free_part_phys(physaddr, size);
424
425 start = PFN_UP(physaddr);
426 end = PFN_DOWN(physaddr + size);
427
428 mark_bootmem(start, end, 0, 0);
429 }
430
431 /**
432 * reserve_bootmem_node - mark a page range as reserved
433 * @pgdat: node the range resides on
434 * @physaddr: starting address of the range
435 * @size: size of the range in bytes
436 * @flags: reservation flags (see linux/bootmem.h)
437 *
438 * Partial pages will be reserved.
439 *
440 * The range must reside completely on the specified node.
441 */
442 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
443 unsigned long size, int flags)
444 {
445 unsigned long start, end;
446
447 start = PFN_DOWN(physaddr);
448 end = PFN_UP(physaddr + size);
449
450 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
451 }
452
453 /**
454 * reserve_bootmem - mark a page range as reserved
455 * @addr: starting address of the range
456 * @size: size of the range in bytes
457 * @flags: reservation flags (see linux/bootmem.h)
458 *
459 * Partial pages will be reserved.
460 *
461 * The range must be contiguous but may span node boundaries.
462 */
463 int __init reserve_bootmem(unsigned long addr, unsigned long size,
464 int flags)
465 {
466 unsigned long start, end;
467
468 start = PFN_DOWN(addr);
469 end = PFN_UP(addr + size);
470
471 return mark_bootmem(start, end, 1, flags);
472 }
473
474 static unsigned long __init align_idx(struct bootmem_data *bdata,
475 unsigned long idx, unsigned long step)
476 {
477 unsigned long base = bdata->node_min_pfn;
478
479 /*
480 * Align the index with respect to the node start so that the
481 * combination of both satisfies the requested alignment.
482 */
483
484 return ALIGN(base + idx, step) - base;
485 }
486
487 static unsigned long __init align_off(struct bootmem_data *bdata,
488 unsigned long off, unsigned long align)
489 {
490 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
491
492 /* Same as align_idx for byte offsets */
493
494 return ALIGN(base + off, align) - base;
495 }
496
497 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
498 unsigned long size, unsigned long align,
499 unsigned long goal, unsigned long limit)
500 {
501 unsigned long fallback = 0;
502 unsigned long min, max, start, sidx, midx, step;
503
504 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
505 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
506 align, goal, limit);
507
508 BUG_ON(!size);
509 BUG_ON(align & (align - 1));
510 BUG_ON(limit && goal + size > limit);
511
512 if (!bdata->node_bootmem_map)
513 return NULL;
514
515 min = bdata->node_min_pfn;
516 max = bdata->node_low_pfn;
517
518 goal >>= PAGE_SHIFT;
519 limit >>= PAGE_SHIFT;
520
521 if (limit && max > limit)
522 max = limit;
523 if (max <= min)
524 return NULL;
525
526 step = max(align >> PAGE_SHIFT, 1UL);
527
528 if (goal && min < goal && goal < max)
529 start = ALIGN(goal, step);
530 else
531 start = ALIGN(min, step);
532
533 sidx = start - bdata->node_min_pfn;
534 midx = max - bdata->node_min_pfn;
535
536 if (bdata->hint_idx > sidx) {
537 /*
538 * Handle the valid case of sidx being zero and still
539 * catch the fallback below.
540 */
541 fallback = sidx + 1;
542 sidx = align_idx(bdata, bdata->hint_idx, step);
543 }
544
545 while (1) {
546 int merge;
547 void *region;
548 unsigned long eidx, i, start_off, end_off;
549 find_block:
550 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
551 sidx = align_idx(bdata, sidx, step);
552 eidx = sidx + PFN_UP(size);
553
554 if (sidx >= midx || eidx > midx)
555 break;
556
557 for (i = sidx; i < eidx; i++)
558 if (test_bit(i, bdata->node_bootmem_map)) {
559 sidx = align_idx(bdata, i, step);
560 if (sidx == i)
561 sidx += step;
562 goto find_block;
563 }
564
565 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
566 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
567 start_off = align_off(bdata, bdata->last_end_off, align);
568 else
569 start_off = PFN_PHYS(sidx);
570
571 merge = PFN_DOWN(start_off) < sidx;
572 end_off = start_off + size;
573
574 bdata->last_end_off = end_off;
575 bdata->hint_idx = PFN_UP(end_off);
576
577 /*
578 * Reserve the area now:
579 */
580 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
581 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
582 BUG();
583
584 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
585 start_off);
586 memset(region, 0, size);
587 /*
588 * The min_count is set to 0 so that bootmem allocated blocks
589 * are never reported as leaks.
590 */
591 kmemleak_alloc(region, size, 0, 0);
592 return region;
593 }
594
595 if (fallback) {
596 sidx = align_idx(bdata, fallback - 1, step);
597 fallback = 0;
598 goto find_block;
599 }
600
601 return NULL;
602 }
603
604 static void * __init alloc_bootmem_core(unsigned long size,
605 unsigned long align,
606 unsigned long goal,
607 unsigned long limit)
608 {
609 bootmem_data_t *bdata;
610 void *region;
611
612 if (WARN_ON_ONCE(slab_is_available()))
613 return kzalloc(size, GFP_NOWAIT);
614
615 list_for_each_entry(bdata, &bdata_list, list) {
616 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
617 continue;
618 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
619 break;
620
621 region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
622 if (region)
623 return region;
624 }
625
626 return NULL;
627 }
628
629 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
630 unsigned long align,
631 unsigned long goal,
632 unsigned long limit)
633 {
634 void *ptr;
635
636 restart:
637 ptr = alloc_bootmem_core(size, align, goal, limit);
638 if (ptr)
639 return ptr;
640 if (goal) {
641 goal = 0;
642 goto restart;
643 }
644
645 return NULL;
646 }
647
648 /**
649 * __alloc_bootmem_nopanic - allocate boot memory without panicking
650 * @size: size of the request in bytes
651 * @align: alignment of the region
652 * @goal: preferred starting address of the region
653 *
654 * The goal is dropped if it can not be satisfied and the allocation will
655 * fall back to memory below @goal.
656 *
657 * Allocation may happen on any node in the system.
658 *
659 * Returns NULL on failure.
660 */
661 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
662 unsigned long goal)
663 {
664 unsigned long limit = 0;
665
666 return ___alloc_bootmem_nopanic(size, align, goal, limit);
667 }
668
669 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
670 unsigned long goal, unsigned long limit)
671 {
672 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
673
674 if (mem)
675 return mem;
676 /*
677 * Whoops, we cannot satisfy the allocation request.
678 */
679 pr_alert("bootmem alloc of %lu bytes failed!\n", size);
680 panic("Out of memory");
681 return NULL;
682 }
683
684 /**
685 * __alloc_bootmem - allocate boot memory
686 * @size: size of the request in bytes
687 * @align: alignment of the region
688 * @goal: preferred starting address of the region
689 *
690 * The goal is dropped if it can not be satisfied and the allocation will
691 * fall back to memory below @goal.
692 *
693 * Allocation may happen on any node in the system.
694 *
695 * The function panics if the request can not be satisfied.
696 */
697 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
698 unsigned long goal)
699 {
700 unsigned long limit = 0;
701
702 return ___alloc_bootmem(size, align, goal, limit);
703 }
704
705 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
706 unsigned long size, unsigned long align,
707 unsigned long goal, unsigned long limit)
708 {
709 void *ptr;
710
711 if (WARN_ON_ONCE(slab_is_available()))
712 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
713 again:
714
715 /* do not panic in alloc_bootmem_bdata() */
716 if (limit && goal + size > limit)
717 limit = 0;
718
719 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
720 if (ptr)
721 return ptr;
722
723 ptr = alloc_bootmem_core(size, align, goal, limit);
724 if (ptr)
725 return ptr;
726
727 if (goal) {
728 goal = 0;
729 goto again;
730 }
731
732 return NULL;
733 }
734
735 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
736 unsigned long align, unsigned long goal)
737 {
738 return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
739 }
740
741 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
742 unsigned long align, unsigned long goal,
743 unsigned long limit)
744 {
745 void *ptr;
746
747 ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
748 if (ptr)
749 return ptr;
750
751 pr_alert("bootmem alloc of %lu bytes failed!\n", size);
752 panic("Out of memory");
753 return NULL;
754 }
755
756 /**
757 * __alloc_bootmem_node - allocate boot memory from a specific node
758 * @pgdat: node to allocate from
759 * @size: size of the request in bytes
760 * @align: alignment of the region
761 * @goal: preferred starting address of the region
762 *
763 * The goal is dropped if it can not be satisfied and the allocation will
764 * fall back to memory below @goal.
765 *
766 * Allocation may fall back to any node in the system if the specified node
767 * can not hold the requested memory.
768 *
769 * The function panics if the request can not be satisfied.
770 */
771 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
772 unsigned long align, unsigned long goal)
773 {
774 if (WARN_ON_ONCE(slab_is_available()))
775 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
776
777 return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
778 }
779
780 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
781 unsigned long align, unsigned long goal)
782 {
783 #ifdef MAX_DMA32_PFN
784 unsigned long end_pfn;
785
786 if (WARN_ON_ONCE(slab_is_available()))
787 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
788
789 /* update goal according ...MAX_DMA32_PFN */
790 end_pfn = pgdat_end_pfn(pgdat);
791
792 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
793 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
794 void *ptr;
795 unsigned long new_goal;
796
797 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
798 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
799 new_goal, 0);
800 if (ptr)
801 return ptr;
802 }
803 #endif
804
805 return __alloc_bootmem_node(pgdat, size, align, goal);
806
807 }
808
809 /**
810 * __alloc_bootmem_low - allocate low boot memory
811 * @size: size of the request in bytes
812 * @align: alignment of the region
813 * @goal: preferred starting address of the region
814 *
815 * The goal is dropped if it can not be satisfied and the allocation will
816 * fall back to memory below @goal.
817 *
818 * Allocation may happen on any node in the system.
819 *
820 * The function panics if the request can not be satisfied.
821 */
822 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
823 unsigned long goal)
824 {
825 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
826 }
827
828 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
829 unsigned long align,
830 unsigned long goal)
831 {
832 return ___alloc_bootmem_nopanic(size, align, goal,
833 ARCH_LOW_ADDRESS_LIMIT);
834 }
835
836 /**
837 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
838 * @pgdat: node to allocate from
839 * @size: size of the request in bytes
840 * @align: alignment of the region
841 * @goal: preferred starting address of the region
842 *
843 * The goal is dropped if it can not be satisfied and the allocation will
844 * fall back to memory below @goal.
845 *
846 * Allocation may fall back to any node in the system if the specified node
847 * can not hold the requested memory.
848 *
849 * The function panics if the request can not be satisfied.
850 */
851 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
852 unsigned long align, unsigned long goal)
853 {
854 if (WARN_ON_ONCE(slab_is_available()))
855 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
856
857 return ___alloc_bootmem_node(pgdat, size, align,
858 goal, ARCH_LOW_ADDRESS_LIMIT);
859 }