]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/compaction.c
afs: Fix speculative status fetches
[mirror_ubuntu-hirsute-kernel.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 /*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
78 list_del(&page->lru);
79 __free_page(page);
80 if (pfn > high_pfn)
81 high_pfn = pfn;
82 }
83
84 return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
98
99 post_alloc_hook(page, order, __GFP_MOVABLE);
100 if (order)
101 split_page(page, order);
102
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
107 }
108
109 list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140 VM_BUG_ON_PAGE(!PageLocked(page), page);
141 VM_BUG_ON_PAGE(!PageMovable(page), page);
142 /*
143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 * flag so that VM can catch up released page by driver after isolation.
145 * With it, VM migration doesn't try to put it back.
146 */
147 page->mapping = (void *)((unsigned long)page->mapping &
148 PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154
155 /*
156 * Compaction is deferred when compaction fails to result in a page
157 * allocation success. 1 << compact_defer_shift, compactions are skipped up
158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159 */
160 static void defer_compaction(struct zone *zone, int order)
161 {
162 zone->compact_considered = 0;
163 zone->compact_defer_shift++;
164
165 if (order < zone->compact_order_failed)
166 zone->compact_order_failed = order;
167
168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171 trace_mm_compaction_defer_compaction(zone, order);
172 }
173
174 /* Returns true if compaction should be skipped this time */
175 static bool compaction_deferred(struct zone *zone, int order)
176 {
177 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179 if (order < zone->compact_order_failed)
180 return false;
181
182 /* Avoid possible overflow */
183 if (++zone->compact_considered >= defer_limit) {
184 zone->compact_considered = defer_limit;
185 return false;
186 }
187
188 trace_mm_compaction_deferred(zone, order);
189
190 return true;
191 }
192
193 /*
194 * Update defer tracking counters after successful compaction of given order,
195 * which means an allocation either succeeded (alloc_success == true) or is
196 * expected to succeed.
197 */
198 void compaction_defer_reset(struct zone *zone, int order,
199 bool alloc_success)
200 {
201 if (alloc_success) {
202 zone->compact_considered = 0;
203 zone->compact_defer_shift = 0;
204 }
205 if (order >= zone->compact_order_failed)
206 zone->compact_order_failed = order + 1;
207
208 trace_mm_compaction_defer_reset(zone, order);
209 }
210
211 /* Returns true if restarting compaction after many failures */
212 static bool compaction_restarting(struct zone *zone, int order)
213 {
214 if (order < zone->compact_order_failed)
215 return false;
216
217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223 struct page *page)
224 {
225 if (cc->ignore_skip_hint)
226 return true;
227
228 return !get_pageblock_skip(page);
229 }
230
231 static void reset_cached_positions(struct zone *zone)
232 {
233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 zone->compact_cached_free_pfn =
236 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238
239 /*
240 * Compound pages of >= pageblock_order should consistently be skipped until
241 * released. It is always pointless to compact pages of such order (if they are
242 * migratable), and the pageblocks they occupy cannot contain any free pages.
243 */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 if (!PageCompound(page))
247 return false;
248
249 page = compound_head(page);
250
251 if (compound_order(page) >= pageblock_order)
252 return true;
253
254 return false;
255 }
256
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 bool check_target)
260 {
261 struct page *page = pfn_to_online_page(pfn);
262 struct page *block_page;
263 struct page *end_page;
264 unsigned long block_pfn;
265
266 if (!page)
267 return false;
268 if (zone != page_zone(page))
269 return false;
270 if (pageblock_skip_persistent(page))
271 return false;
272
273 /*
274 * If skip is already cleared do no further checking once the
275 * restart points have been set.
276 */
277 if (check_source && check_target && !get_pageblock_skip(page))
278 return true;
279
280 /*
281 * If clearing skip for the target scanner, do not select a
282 * non-movable pageblock as the starting point.
283 */
284 if (!check_source && check_target &&
285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 return false;
287
288 /* Ensure the start of the pageblock or zone is online and valid */
289 block_pfn = pageblock_start_pfn(pfn);
290 block_pfn = max(block_pfn, zone->zone_start_pfn);
291 block_page = pfn_to_online_page(block_pfn);
292 if (block_page) {
293 page = block_page;
294 pfn = block_pfn;
295 }
296
297 /* Ensure the end of the pageblock or zone is online and valid */
298 block_pfn = pageblock_end_pfn(pfn) - 1;
299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 end_page = pfn_to_online_page(block_pfn);
301 if (!end_page)
302 return false;
303
304 /*
305 * Only clear the hint if a sample indicates there is either a
306 * free page or an LRU page in the block. One or other condition
307 * is necessary for the block to be a migration source/target.
308 */
309 do {
310 if (pfn_valid_within(pfn)) {
311 if (check_source && PageLRU(page)) {
312 clear_pageblock_skip(page);
313 return true;
314 }
315
316 if (check_target && PageBuddy(page)) {
317 clear_pageblock_skip(page);
318 return true;
319 }
320 }
321
322 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 } while (page <= end_page);
325
326 return false;
327 }
328
329 /*
330 * This function is called to clear all cached information on pageblocks that
331 * should be skipped for page isolation when the migrate and free page scanner
332 * meet.
333 */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 unsigned long migrate_pfn = zone->zone_start_pfn;
337 unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 unsigned long reset_migrate = free_pfn;
339 unsigned long reset_free = migrate_pfn;
340 bool source_set = false;
341 bool free_set = false;
342
343 if (!zone->compact_blockskip_flush)
344 return;
345
346 zone->compact_blockskip_flush = false;
347
348 /*
349 * Walk the zone and update pageblock skip information. Source looks
350 * for PageLRU while target looks for PageBuddy. When the scanner
351 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 * is suitable as both source and target.
353 */
354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 free_pfn -= pageblock_nr_pages) {
356 cond_resched();
357
358 /* Update the migrate PFN */
359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 migrate_pfn < reset_migrate) {
361 source_set = true;
362 reset_migrate = migrate_pfn;
363 zone->compact_init_migrate_pfn = reset_migrate;
364 zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 }
367
368 /* Update the free PFN */
369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 free_pfn > reset_free) {
371 free_set = true;
372 reset_free = free_pfn;
373 zone->compact_init_free_pfn = reset_free;
374 zone->compact_cached_free_pfn = reset_free;
375 }
376 }
377
378 /* Leave no distance if no suitable block was reset */
379 if (reset_migrate >= reset_free) {
380 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 zone->compact_cached_free_pfn = free_pfn;
383 }
384 }
385
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 int zoneid;
389
390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 struct zone *zone = &pgdat->node_zones[zoneid];
392 if (!populated_zone(zone))
393 continue;
394
395 /* Only flush if a full compaction finished recently */
396 if (zone->compact_blockskip_flush)
397 __reset_isolation_suitable(zone);
398 }
399 }
400
401 /*
402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403 * locks are not required for read/writers. Returns true if it was already set.
404 */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 unsigned long pfn)
407 {
408 bool skip;
409
410 /* Do no update if skip hint is being ignored */
411 if (cc->ignore_skip_hint)
412 return false;
413
414 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 return false;
416
417 skip = get_pageblock_skip(page);
418 if (!skip && !cc->no_set_skip_hint)
419 set_pageblock_skip(page);
420
421 return skip;
422 }
423
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 struct zone *zone = cc->zone;
427
428 pfn = pageblock_end_pfn(pfn);
429
430 /* Set for isolation rather than compaction */
431 if (cc->no_set_skip_hint)
432 return;
433
434 if (pfn > zone->compact_cached_migrate_pfn[0])
435 zone->compact_cached_migrate_pfn[0] = pfn;
436 if (cc->mode != MIGRATE_ASYNC &&
437 pfn > zone->compact_cached_migrate_pfn[1])
438 zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440
441 /*
442 * If no pages were isolated then mark this pageblock to be skipped in the
443 * future. The information is later cleared by __reset_isolation_suitable().
444 */
445 static void update_pageblock_skip(struct compact_control *cc,
446 struct page *page, unsigned long pfn)
447 {
448 struct zone *zone = cc->zone;
449
450 if (cc->no_set_skip_hint)
451 return;
452
453 if (!page)
454 return;
455
456 set_pageblock_skip(page);
457
458 /* Update where async and sync compaction should restart */
459 if (pfn < zone->compact_cached_free_pfn)
460 zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464 struct page *page)
465 {
466 return true;
467 }
468
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 return false;
472 }
473
474 static inline void update_pageblock_skip(struct compact_control *cc,
475 struct page *page, unsigned long pfn)
476 {
477 }
478
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 unsigned long pfn)
485 {
486 return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489
490 /*
491 * Compaction requires the taking of some coarse locks that are potentially
492 * very heavily contended. For async compaction, trylock and record if the
493 * lock is contended. The lock will still be acquired but compaction will
494 * abort when the current block is finished regardless of success rate.
495 * Sync compaction acquires the lock.
496 *
497 * Always returns true which makes it easier to track lock state in callers.
498 */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 struct compact_control *cc)
501 __acquires(lock)
502 {
503 /* Track if the lock is contended in async mode */
504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 if (spin_trylock_irqsave(lock, *flags))
506 return true;
507
508 cc->contended = true;
509 }
510
511 spin_lock_irqsave(lock, *flags);
512 return true;
513 }
514
515 /*
516 * Compaction requires the taking of some coarse locks that are potentially
517 * very heavily contended. The lock should be periodically unlocked to avoid
518 * having disabled IRQs for a long time, even when there is nobody waiting on
519 * the lock. It might also be that allowing the IRQs will result in
520 * need_resched() becoming true. If scheduling is needed, async compaction
521 * aborts. Sync compaction schedules.
522 * Either compaction type will also abort if a fatal signal is pending.
523 * In either case if the lock was locked, it is dropped and not regained.
524 *
525 * Returns true if compaction should abort due to fatal signal pending, or
526 * async compaction due to need_resched()
527 * Returns false when compaction can continue (sync compaction might have
528 * scheduled)
529 */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 if (*locked) {
534 spin_unlock_irqrestore(lock, flags);
535 *locked = false;
536 }
537
538 if (fatal_signal_pending(current)) {
539 cc->contended = true;
540 return true;
541 }
542
543 cond_resched();
544
545 return false;
546 }
547
548 /*
549 * Isolate free pages onto a private freelist. If @strict is true, will abort
550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551 * (even though it may still end up isolating some pages).
552 */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 unsigned long *start_pfn,
555 unsigned long end_pfn,
556 struct list_head *freelist,
557 unsigned int stride,
558 bool strict)
559 {
560 int nr_scanned = 0, total_isolated = 0;
561 struct page *cursor;
562 unsigned long flags = 0;
563 bool locked = false;
564 unsigned long blockpfn = *start_pfn;
565 unsigned int order;
566
567 /* Strict mode is for isolation, speed is secondary */
568 if (strict)
569 stride = 1;
570
571 cursor = pfn_to_page(blockpfn);
572
573 /* Isolate free pages. */
574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 int isolated;
576 struct page *page = cursor;
577
578 /*
579 * Periodically drop the lock (if held) regardless of its
580 * contention, to give chance to IRQs. Abort if fatal signal
581 * pending or async compaction detects need_resched()
582 */
583 if (!(blockpfn % SWAP_CLUSTER_MAX)
584 && compact_unlock_should_abort(&cc->zone->lock, flags,
585 &locked, cc))
586 break;
587
588 nr_scanned++;
589 if (!pfn_valid_within(blockpfn))
590 goto isolate_fail;
591
592 /*
593 * For compound pages such as THP and hugetlbfs, we can save
594 * potentially a lot of iterations if we skip them at once.
595 * The check is racy, but we can consider only valid values
596 * and the only danger is skipping too much.
597 */
598 if (PageCompound(page)) {
599 const unsigned int order = compound_order(page);
600
601 if (likely(order < MAX_ORDER)) {
602 blockpfn += (1UL << order) - 1;
603 cursor += (1UL << order) - 1;
604 }
605 goto isolate_fail;
606 }
607
608 if (!PageBuddy(page))
609 goto isolate_fail;
610
611 /*
612 * If we already hold the lock, we can skip some rechecking.
613 * Note that if we hold the lock now, checked_pageblock was
614 * already set in some previous iteration (or strict is true),
615 * so it is correct to skip the suitable migration target
616 * recheck as well.
617 */
618 if (!locked) {
619 locked = compact_lock_irqsave(&cc->zone->lock,
620 &flags, cc);
621
622 /* Recheck this is a buddy page under lock */
623 if (!PageBuddy(page))
624 goto isolate_fail;
625 }
626
627 /* Found a free page, will break it into order-0 pages */
628 order = buddy_order(page);
629 isolated = __isolate_free_page(page, order);
630 if (!isolated)
631 break;
632 set_page_private(page, order);
633
634 total_isolated += isolated;
635 cc->nr_freepages += isolated;
636 list_add_tail(&page->lru, freelist);
637
638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 blockpfn += isolated;
640 break;
641 }
642 /* Advance to the end of split page */
643 blockpfn += isolated - 1;
644 cursor += isolated - 1;
645 continue;
646
647 isolate_fail:
648 if (strict)
649 break;
650 else
651 continue;
652
653 }
654
655 if (locked)
656 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658 /*
659 * There is a tiny chance that we have read bogus compound_order(),
660 * so be careful to not go outside of the pageblock.
661 */
662 if (unlikely(blockpfn > end_pfn))
663 blockpfn = end_pfn;
664
665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 nr_scanned, total_isolated);
667
668 /* Record how far we have got within the block */
669 *start_pfn = blockpfn;
670
671 /*
672 * If strict isolation is requested by CMA then check that all the
673 * pages requested were isolated. If there were any failures, 0 is
674 * returned and CMA will fail.
675 */
676 if (strict && blockpfn < end_pfn)
677 total_isolated = 0;
678
679 cc->total_free_scanned += nr_scanned;
680 if (total_isolated)
681 count_compact_events(COMPACTISOLATED, total_isolated);
682 return total_isolated;
683 }
684
685 /**
686 * isolate_freepages_range() - isolate free pages.
687 * @cc: Compaction control structure.
688 * @start_pfn: The first PFN to start isolating.
689 * @end_pfn: The one-past-last PFN.
690 *
691 * Non-free pages, invalid PFNs, or zone boundaries within the
692 * [start_pfn, end_pfn) range are considered errors, cause function to
693 * undo its actions and return zero.
694 *
695 * Otherwise, function returns one-past-the-last PFN of isolated page
696 * (which may be greater then end_pfn if end fell in a middle of
697 * a free page).
698 */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701 unsigned long start_pfn, unsigned long end_pfn)
702 {
703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 LIST_HEAD(freelist);
705
706 pfn = start_pfn;
707 block_start_pfn = pageblock_start_pfn(pfn);
708 if (block_start_pfn < cc->zone->zone_start_pfn)
709 block_start_pfn = cc->zone->zone_start_pfn;
710 block_end_pfn = pageblock_end_pfn(pfn);
711
712 for (; pfn < end_pfn; pfn += isolated,
713 block_start_pfn = block_end_pfn,
714 block_end_pfn += pageblock_nr_pages) {
715 /* Protect pfn from changing by isolate_freepages_block */
716 unsigned long isolate_start_pfn = pfn;
717
718 block_end_pfn = min(block_end_pfn, end_pfn);
719
720 /*
721 * pfn could pass the block_end_pfn if isolated freepage
722 * is more than pageblock order. In this case, we adjust
723 * scanning range to right one.
724 */
725 if (pfn >= block_end_pfn) {
726 block_start_pfn = pageblock_start_pfn(pfn);
727 block_end_pfn = pageblock_end_pfn(pfn);
728 block_end_pfn = min(block_end_pfn, end_pfn);
729 }
730
731 if (!pageblock_pfn_to_page(block_start_pfn,
732 block_end_pfn, cc->zone))
733 break;
734
735 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 block_end_pfn, &freelist, 0, true);
737
738 /*
739 * In strict mode, isolate_freepages_block() returns 0 if
740 * there are any holes in the block (ie. invalid PFNs or
741 * non-free pages).
742 */
743 if (!isolated)
744 break;
745
746 /*
747 * If we managed to isolate pages, it is always (1 << n) *
748 * pageblock_nr_pages for some non-negative n. (Max order
749 * page may span two pageblocks).
750 */
751 }
752
753 /* __isolate_free_page() does not map the pages */
754 split_map_pages(&freelist);
755
756 if (pfn < end_pfn) {
757 /* Loop terminated early, cleanup. */
758 release_freepages(&freelist);
759 return 0;
760 }
761
762 /* We don't use freelists for anything. */
763 return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769 unsigned long active, inactive, isolated;
770
771 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772 node_page_state(pgdat, NR_INACTIVE_ANON);
773 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774 node_page_state(pgdat, NR_ACTIVE_ANON);
775 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776 node_page_state(pgdat, NR_ISOLATED_ANON);
777
778 return isolated > (inactive + active) / 2;
779 }
780
781 /**
782 * isolate_migratepages_block() - isolate all migrate-able pages within
783 * a single pageblock
784 * @cc: Compaction control structure.
785 * @low_pfn: The first PFN to isolate
786 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
787 * @isolate_mode: Isolation mode to be used.
788 *
789 * Isolate all pages that can be migrated from the range specified by
790 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791 * Returns zero if there is a fatal signal pending, otherwise PFN of the
792 * first page that was not scanned (which may be both less, equal to or more
793 * than end_pfn).
794 *
795 * The pages are isolated on cc->migratepages list (not required to be empty),
796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797 * is neither read nor updated.
798 */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803 pg_data_t *pgdat = cc->zone->zone_pgdat;
804 unsigned long nr_scanned = 0, nr_isolated = 0;
805 struct lruvec *lruvec;
806 unsigned long flags = 0;
807 struct lruvec *locked = NULL;
808 struct page *page = NULL, *valid_page = NULL;
809 unsigned long start_pfn = low_pfn;
810 bool skip_on_failure = false;
811 unsigned long next_skip_pfn = 0;
812 bool skip_updated = false;
813
814 /*
815 * Ensure that there are not too many pages isolated from the LRU
816 * list by either parallel reclaimers or compaction. If there are,
817 * delay for some time until fewer pages are isolated
818 */
819 while (unlikely(too_many_isolated(pgdat))) {
820 /* stop isolation if there are still pages not migrated */
821 if (cc->nr_migratepages)
822 return 0;
823
824 /* async migration should just abort */
825 if (cc->mode == MIGRATE_ASYNC)
826 return 0;
827
828 congestion_wait(BLK_RW_ASYNC, HZ/10);
829
830 if (fatal_signal_pending(current))
831 return 0;
832 }
833
834 cond_resched();
835
836 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837 skip_on_failure = true;
838 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839 }
840
841 /* Time to isolate some pages for migration */
842 for (; low_pfn < end_pfn; low_pfn++) {
843
844 if (skip_on_failure && low_pfn >= next_skip_pfn) {
845 /*
846 * We have isolated all migration candidates in the
847 * previous order-aligned block, and did not skip it due
848 * to failure. We should migrate the pages now and
849 * hopefully succeed compaction.
850 */
851 if (nr_isolated)
852 break;
853
854 /*
855 * We failed to isolate in the previous order-aligned
856 * block. Set the new boundary to the end of the
857 * current block. Note we can't simply increase
858 * next_skip_pfn by 1 << order, as low_pfn might have
859 * been incremented by a higher number due to skipping
860 * a compound or a high-order buddy page in the
861 * previous loop iteration.
862 */
863 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864 }
865
866 /*
867 * Periodically drop the lock (if held) regardless of its
868 * contention, to give chance to IRQs. Abort completely if
869 * a fatal signal is pending.
870 */
871 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
872 if (locked) {
873 unlock_page_lruvec_irqrestore(locked, flags);
874 locked = NULL;
875 }
876
877 if (fatal_signal_pending(current)) {
878 cc->contended = true;
879
880 low_pfn = 0;
881 goto fatal_pending;
882 }
883
884 cond_resched();
885 }
886
887 if (!pfn_valid_within(low_pfn))
888 goto isolate_fail;
889 nr_scanned++;
890
891 page = pfn_to_page(low_pfn);
892
893 /*
894 * Check if the pageblock has already been marked skipped.
895 * Only the aligned PFN is checked as the caller isolates
896 * COMPACT_CLUSTER_MAX at a time so the second call must
897 * not falsely conclude that the block should be skipped.
898 */
899 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
900 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
901 low_pfn = end_pfn;
902 page = NULL;
903 goto isolate_abort;
904 }
905 valid_page = page;
906 }
907
908 /*
909 * Skip if free. We read page order here without zone lock
910 * which is generally unsafe, but the race window is small and
911 * the worst thing that can happen is that we skip some
912 * potential isolation targets.
913 */
914 if (PageBuddy(page)) {
915 unsigned long freepage_order = buddy_order_unsafe(page);
916
917 /*
918 * Without lock, we cannot be sure that what we got is
919 * a valid page order. Consider only values in the
920 * valid order range to prevent low_pfn overflow.
921 */
922 if (freepage_order > 0 && freepage_order < MAX_ORDER)
923 low_pfn += (1UL << freepage_order) - 1;
924 continue;
925 }
926
927 /*
928 * Regardless of being on LRU, compound pages such as THP and
929 * hugetlbfs are not to be compacted unless we are attempting
930 * an allocation much larger than the huge page size (eg CMA).
931 * We can potentially save a lot of iterations if we skip them
932 * at once. The check is racy, but we can consider only valid
933 * values and the only danger is skipping too much.
934 */
935 if (PageCompound(page) && !cc->alloc_contig) {
936 const unsigned int order = compound_order(page);
937
938 if (likely(order < MAX_ORDER))
939 low_pfn += (1UL << order) - 1;
940 goto isolate_fail;
941 }
942
943 /*
944 * Check may be lockless but that's ok as we recheck later.
945 * It's possible to migrate LRU and non-lru movable pages.
946 * Skip any other type of page
947 */
948 if (!PageLRU(page)) {
949 /*
950 * __PageMovable can return false positive so we need
951 * to verify it under page_lock.
952 */
953 if (unlikely(__PageMovable(page)) &&
954 !PageIsolated(page)) {
955 if (locked) {
956 unlock_page_lruvec_irqrestore(locked, flags);
957 locked = NULL;
958 }
959
960 if (!isolate_movable_page(page, isolate_mode))
961 goto isolate_success;
962 }
963
964 goto isolate_fail;
965 }
966
967 /*
968 * Migration will fail if an anonymous page is pinned in memory,
969 * so avoid taking lru_lock and isolating it unnecessarily in an
970 * admittedly racy check.
971 */
972 if (!page_mapping(page) &&
973 page_count(page) > page_mapcount(page))
974 goto isolate_fail;
975
976 /*
977 * Only allow to migrate anonymous pages in GFP_NOFS context
978 * because those do not depend on fs locks.
979 */
980 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
981 goto isolate_fail;
982
983 /*
984 * Be careful not to clear PageLRU until after we're
985 * sure the page is not being freed elsewhere -- the
986 * page release code relies on it.
987 */
988 if (unlikely(!get_page_unless_zero(page)))
989 goto isolate_fail;
990
991 if (__isolate_lru_page_prepare(page, isolate_mode) != 0)
992 goto isolate_fail_put;
993
994 /* Try isolate the page */
995 if (!TestClearPageLRU(page))
996 goto isolate_fail_put;
997
998 rcu_read_lock();
999 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1000
1001 /* If we already hold the lock, we can skip some rechecking */
1002 if (lruvec != locked) {
1003 if (locked)
1004 unlock_page_lruvec_irqrestore(locked, flags);
1005
1006 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1007 locked = lruvec;
1008 rcu_read_unlock();
1009
1010 lruvec_memcg_debug(lruvec, page);
1011
1012 /* Try get exclusive access under lock */
1013 if (!skip_updated) {
1014 skip_updated = true;
1015 if (test_and_set_skip(cc, page, low_pfn))
1016 goto isolate_abort;
1017 }
1018
1019 /*
1020 * Page become compound since the non-locked check,
1021 * and it's on LRU. It can only be a THP so the order
1022 * is safe to read and it's 0 for tail pages.
1023 */
1024 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1025 low_pfn += compound_nr(page) - 1;
1026 SetPageLRU(page);
1027 goto isolate_fail_put;
1028 }
1029 } else
1030 rcu_read_unlock();
1031
1032 /* The whole page is taken off the LRU; skip the tail pages. */
1033 if (PageCompound(page))
1034 low_pfn += compound_nr(page) - 1;
1035
1036 /* Successfully isolated */
1037 del_page_from_lru_list(page, lruvec, page_lru(page));
1038 mod_node_page_state(page_pgdat(page),
1039 NR_ISOLATED_ANON + page_is_file_lru(page),
1040 thp_nr_pages(page));
1041
1042 isolate_success:
1043 list_add(&page->lru, &cc->migratepages);
1044 cc->nr_migratepages += compound_nr(page);
1045 nr_isolated += compound_nr(page);
1046
1047 /*
1048 * Avoid isolating too much unless this block is being
1049 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1050 * or a lock is contended. For contention, isolate quickly to
1051 * potentially remove one source of contention.
1052 */
1053 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1054 !cc->rescan && !cc->contended) {
1055 ++low_pfn;
1056 break;
1057 }
1058
1059 continue;
1060
1061 isolate_fail_put:
1062 /* Avoid potential deadlock in freeing page under lru_lock */
1063 if (locked) {
1064 unlock_page_lruvec_irqrestore(locked, flags);
1065 locked = NULL;
1066 }
1067 put_page(page);
1068
1069 isolate_fail:
1070 if (!skip_on_failure)
1071 continue;
1072
1073 /*
1074 * We have isolated some pages, but then failed. Release them
1075 * instead of migrating, as we cannot form the cc->order buddy
1076 * page anyway.
1077 */
1078 if (nr_isolated) {
1079 if (locked) {
1080 unlock_page_lruvec_irqrestore(locked, flags);
1081 locked = NULL;
1082 }
1083 putback_movable_pages(&cc->migratepages);
1084 cc->nr_migratepages = 0;
1085 nr_isolated = 0;
1086 }
1087
1088 if (low_pfn < next_skip_pfn) {
1089 low_pfn = next_skip_pfn - 1;
1090 /*
1091 * The check near the loop beginning would have updated
1092 * next_skip_pfn too, but this is a bit simpler.
1093 */
1094 next_skip_pfn += 1UL << cc->order;
1095 }
1096 }
1097
1098 /*
1099 * The PageBuddy() check could have potentially brought us outside
1100 * the range to be scanned.
1101 */
1102 if (unlikely(low_pfn > end_pfn))
1103 low_pfn = end_pfn;
1104
1105 page = NULL;
1106
1107 isolate_abort:
1108 if (locked)
1109 unlock_page_lruvec_irqrestore(locked, flags);
1110 if (page) {
1111 SetPageLRU(page);
1112 put_page(page);
1113 }
1114
1115 /*
1116 * Updated the cached scanner pfn once the pageblock has been scanned
1117 * Pages will either be migrated in which case there is no point
1118 * scanning in the near future or migration failed in which case the
1119 * failure reason may persist. The block is marked for skipping if
1120 * there were no pages isolated in the block or if the block is
1121 * rescanned twice in a row.
1122 */
1123 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1124 if (valid_page && !skip_updated)
1125 set_pageblock_skip(valid_page);
1126 update_cached_migrate(cc, low_pfn);
1127 }
1128
1129 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1130 nr_scanned, nr_isolated);
1131
1132 fatal_pending:
1133 cc->total_migrate_scanned += nr_scanned;
1134 if (nr_isolated)
1135 count_compact_events(COMPACTISOLATED, nr_isolated);
1136
1137 return low_pfn;
1138 }
1139
1140 /**
1141 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1142 * @cc: Compaction control structure.
1143 * @start_pfn: The first PFN to start isolating.
1144 * @end_pfn: The one-past-last PFN.
1145 *
1146 * Returns zero if isolation fails fatally due to e.g. pending signal.
1147 * Otherwise, function returns one-past-the-last PFN of isolated page
1148 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1149 */
1150 unsigned long
1151 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1152 unsigned long end_pfn)
1153 {
1154 unsigned long pfn, block_start_pfn, block_end_pfn;
1155
1156 /* Scan block by block. First and last block may be incomplete */
1157 pfn = start_pfn;
1158 block_start_pfn = pageblock_start_pfn(pfn);
1159 if (block_start_pfn < cc->zone->zone_start_pfn)
1160 block_start_pfn = cc->zone->zone_start_pfn;
1161 block_end_pfn = pageblock_end_pfn(pfn);
1162
1163 for (; pfn < end_pfn; pfn = block_end_pfn,
1164 block_start_pfn = block_end_pfn,
1165 block_end_pfn += pageblock_nr_pages) {
1166
1167 block_end_pfn = min(block_end_pfn, end_pfn);
1168
1169 if (!pageblock_pfn_to_page(block_start_pfn,
1170 block_end_pfn, cc->zone))
1171 continue;
1172
1173 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1174 ISOLATE_UNEVICTABLE);
1175
1176 if (!pfn)
1177 break;
1178
1179 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1180 break;
1181 }
1182
1183 return pfn;
1184 }
1185
1186 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1187 #ifdef CONFIG_COMPACTION
1188
1189 static bool suitable_migration_source(struct compact_control *cc,
1190 struct page *page)
1191 {
1192 int block_mt;
1193
1194 if (pageblock_skip_persistent(page))
1195 return false;
1196
1197 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1198 return true;
1199
1200 block_mt = get_pageblock_migratetype(page);
1201
1202 if (cc->migratetype == MIGRATE_MOVABLE)
1203 return is_migrate_movable(block_mt);
1204 else
1205 return block_mt == cc->migratetype;
1206 }
1207
1208 /* Returns true if the page is within a block suitable for migration to */
1209 static bool suitable_migration_target(struct compact_control *cc,
1210 struct page *page)
1211 {
1212 /* If the page is a large free page, then disallow migration */
1213 if (PageBuddy(page)) {
1214 /*
1215 * We are checking page_order without zone->lock taken. But
1216 * the only small danger is that we skip a potentially suitable
1217 * pageblock, so it's not worth to check order for valid range.
1218 */
1219 if (buddy_order_unsafe(page) >= pageblock_order)
1220 return false;
1221 }
1222
1223 if (cc->ignore_block_suitable)
1224 return true;
1225
1226 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1227 if (is_migrate_movable(get_pageblock_migratetype(page)))
1228 return true;
1229
1230 /* Otherwise skip the block */
1231 return false;
1232 }
1233
1234 static inline unsigned int
1235 freelist_scan_limit(struct compact_control *cc)
1236 {
1237 unsigned short shift = BITS_PER_LONG - 1;
1238
1239 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1240 }
1241
1242 /*
1243 * Test whether the free scanner has reached the same or lower pageblock than
1244 * the migration scanner, and compaction should thus terminate.
1245 */
1246 static inline bool compact_scanners_met(struct compact_control *cc)
1247 {
1248 return (cc->free_pfn >> pageblock_order)
1249 <= (cc->migrate_pfn >> pageblock_order);
1250 }
1251
1252 /*
1253 * Used when scanning for a suitable migration target which scans freelists
1254 * in reverse. Reorders the list such as the unscanned pages are scanned
1255 * first on the next iteration of the free scanner
1256 */
1257 static void
1258 move_freelist_head(struct list_head *freelist, struct page *freepage)
1259 {
1260 LIST_HEAD(sublist);
1261
1262 if (!list_is_last(freelist, &freepage->lru)) {
1263 list_cut_before(&sublist, freelist, &freepage->lru);
1264 if (!list_empty(&sublist))
1265 list_splice_tail(&sublist, freelist);
1266 }
1267 }
1268
1269 /*
1270 * Similar to move_freelist_head except used by the migration scanner
1271 * when scanning forward. It's possible for these list operations to
1272 * move against each other if they search the free list exactly in
1273 * lockstep.
1274 */
1275 static void
1276 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1277 {
1278 LIST_HEAD(sublist);
1279
1280 if (!list_is_first(freelist, &freepage->lru)) {
1281 list_cut_position(&sublist, freelist, &freepage->lru);
1282 if (!list_empty(&sublist))
1283 list_splice_tail(&sublist, freelist);
1284 }
1285 }
1286
1287 static void
1288 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1289 {
1290 unsigned long start_pfn, end_pfn;
1291 struct page *page;
1292
1293 /* Do not search around if there are enough pages already */
1294 if (cc->nr_freepages >= cc->nr_migratepages)
1295 return;
1296
1297 /* Minimise scanning during async compaction */
1298 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1299 return;
1300
1301 /* Pageblock boundaries */
1302 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1303 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1304
1305 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1306 if (!page)
1307 return;
1308
1309 /* Scan before */
1310 if (start_pfn != pfn) {
1311 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1312 if (cc->nr_freepages >= cc->nr_migratepages)
1313 return;
1314 }
1315
1316 /* Scan after */
1317 start_pfn = pfn + nr_isolated;
1318 if (start_pfn < end_pfn)
1319 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1320
1321 /* Skip this pageblock in the future as it's full or nearly full */
1322 if (cc->nr_freepages < cc->nr_migratepages)
1323 set_pageblock_skip(page);
1324 }
1325
1326 /* Search orders in round-robin fashion */
1327 static int next_search_order(struct compact_control *cc, int order)
1328 {
1329 order--;
1330 if (order < 0)
1331 order = cc->order - 1;
1332
1333 /* Search wrapped around? */
1334 if (order == cc->search_order) {
1335 cc->search_order--;
1336 if (cc->search_order < 0)
1337 cc->search_order = cc->order - 1;
1338 return -1;
1339 }
1340
1341 return order;
1342 }
1343
1344 static unsigned long
1345 fast_isolate_freepages(struct compact_control *cc)
1346 {
1347 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1348 unsigned int nr_scanned = 0;
1349 unsigned long low_pfn, min_pfn, highest = 0;
1350 unsigned long nr_isolated = 0;
1351 unsigned long distance;
1352 struct page *page = NULL;
1353 bool scan_start = false;
1354 int order;
1355
1356 /* Full compaction passes in a negative order */
1357 if (cc->order <= 0)
1358 return cc->free_pfn;
1359
1360 /*
1361 * If starting the scan, use a deeper search and use the highest
1362 * PFN found if a suitable one is not found.
1363 */
1364 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1365 limit = pageblock_nr_pages >> 1;
1366 scan_start = true;
1367 }
1368
1369 /*
1370 * Preferred point is in the top quarter of the scan space but take
1371 * a pfn from the top half if the search is problematic.
1372 */
1373 distance = (cc->free_pfn - cc->migrate_pfn);
1374 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1375 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1376
1377 if (WARN_ON_ONCE(min_pfn > low_pfn))
1378 low_pfn = min_pfn;
1379
1380 /*
1381 * Search starts from the last successful isolation order or the next
1382 * order to search after a previous failure
1383 */
1384 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1385
1386 for (order = cc->search_order;
1387 !page && order >= 0;
1388 order = next_search_order(cc, order)) {
1389 struct free_area *area = &cc->zone->free_area[order];
1390 struct list_head *freelist;
1391 struct page *freepage;
1392 unsigned long flags;
1393 unsigned int order_scanned = 0;
1394 unsigned long high_pfn = 0;
1395
1396 if (!area->nr_free)
1397 continue;
1398
1399 spin_lock_irqsave(&cc->zone->lock, flags);
1400 freelist = &area->free_list[MIGRATE_MOVABLE];
1401 list_for_each_entry_reverse(freepage, freelist, lru) {
1402 unsigned long pfn;
1403
1404 order_scanned++;
1405 nr_scanned++;
1406 pfn = page_to_pfn(freepage);
1407
1408 if (pfn >= highest)
1409 highest = max(pageblock_start_pfn(pfn),
1410 cc->zone->zone_start_pfn);
1411
1412 if (pfn >= low_pfn) {
1413 cc->fast_search_fail = 0;
1414 cc->search_order = order;
1415 page = freepage;
1416 break;
1417 }
1418
1419 if (pfn >= min_pfn && pfn > high_pfn) {
1420 high_pfn = pfn;
1421
1422 /* Shorten the scan if a candidate is found */
1423 limit >>= 1;
1424 }
1425
1426 if (order_scanned >= limit)
1427 break;
1428 }
1429
1430 /* Use a minimum pfn if a preferred one was not found */
1431 if (!page && high_pfn) {
1432 page = pfn_to_page(high_pfn);
1433
1434 /* Update freepage for the list reorder below */
1435 freepage = page;
1436 }
1437
1438 /* Reorder to so a future search skips recent pages */
1439 move_freelist_head(freelist, freepage);
1440
1441 /* Isolate the page if available */
1442 if (page) {
1443 if (__isolate_free_page(page, order)) {
1444 set_page_private(page, order);
1445 nr_isolated = 1 << order;
1446 cc->nr_freepages += nr_isolated;
1447 list_add_tail(&page->lru, &cc->freepages);
1448 count_compact_events(COMPACTISOLATED, nr_isolated);
1449 } else {
1450 /* If isolation fails, abort the search */
1451 order = cc->search_order + 1;
1452 page = NULL;
1453 }
1454 }
1455
1456 spin_unlock_irqrestore(&cc->zone->lock, flags);
1457
1458 /*
1459 * Smaller scan on next order so the total scan ig related
1460 * to freelist_scan_limit.
1461 */
1462 if (order_scanned >= limit)
1463 limit = min(1U, limit >> 1);
1464 }
1465
1466 if (!page) {
1467 cc->fast_search_fail++;
1468 if (scan_start) {
1469 /*
1470 * Use the highest PFN found above min. If one was
1471 * not found, be pessimistic for direct compaction
1472 * and use the min mark.
1473 */
1474 if (highest) {
1475 page = pfn_to_page(highest);
1476 cc->free_pfn = highest;
1477 } else {
1478 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1479 page = pageblock_pfn_to_page(min_pfn,
1480 min(pageblock_end_pfn(min_pfn),
1481 zone_end_pfn(cc->zone)),
1482 cc->zone);
1483 cc->free_pfn = min_pfn;
1484 }
1485 }
1486 }
1487 }
1488
1489 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1490 highest -= pageblock_nr_pages;
1491 cc->zone->compact_cached_free_pfn = highest;
1492 }
1493
1494 cc->total_free_scanned += nr_scanned;
1495 if (!page)
1496 return cc->free_pfn;
1497
1498 low_pfn = page_to_pfn(page);
1499 fast_isolate_around(cc, low_pfn, nr_isolated);
1500 return low_pfn;
1501 }
1502
1503 /*
1504 * Based on information in the current compact_control, find blocks
1505 * suitable for isolating free pages from and then isolate them.
1506 */
1507 static void isolate_freepages(struct compact_control *cc)
1508 {
1509 struct zone *zone = cc->zone;
1510 struct page *page;
1511 unsigned long block_start_pfn; /* start of current pageblock */
1512 unsigned long isolate_start_pfn; /* exact pfn we start at */
1513 unsigned long block_end_pfn; /* end of current pageblock */
1514 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1515 struct list_head *freelist = &cc->freepages;
1516 unsigned int stride;
1517
1518 /* Try a small search of the free lists for a candidate */
1519 isolate_start_pfn = fast_isolate_freepages(cc);
1520 if (cc->nr_freepages)
1521 goto splitmap;
1522
1523 /*
1524 * Initialise the free scanner. The starting point is where we last
1525 * successfully isolated from, zone-cached value, or the end of the
1526 * zone when isolating for the first time. For looping we also need
1527 * this pfn aligned down to the pageblock boundary, because we do
1528 * block_start_pfn -= pageblock_nr_pages in the for loop.
1529 * For ending point, take care when isolating in last pageblock of a
1530 * zone which ends in the middle of a pageblock.
1531 * The low boundary is the end of the pageblock the migration scanner
1532 * is using.
1533 */
1534 isolate_start_pfn = cc->free_pfn;
1535 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1536 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1537 zone_end_pfn(zone));
1538 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1539 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1540
1541 /*
1542 * Isolate free pages until enough are available to migrate the
1543 * pages on cc->migratepages. We stop searching if the migrate
1544 * and free page scanners meet or enough free pages are isolated.
1545 */
1546 for (; block_start_pfn >= low_pfn;
1547 block_end_pfn = block_start_pfn,
1548 block_start_pfn -= pageblock_nr_pages,
1549 isolate_start_pfn = block_start_pfn) {
1550 unsigned long nr_isolated;
1551
1552 /*
1553 * This can iterate a massively long zone without finding any
1554 * suitable migration targets, so periodically check resched.
1555 */
1556 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1557 cond_resched();
1558
1559 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1560 zone);
1561 if (!page)
1562 continue;
1563
1564 /* Check the block is suitable for migration */
1565 if (!suitable_migration_target(cc, page))
1566 continue;
1567
1568 /* If isolation recently failed, do not retry */
1569 if (!isolation_suitable(cc, page))
1570 continue;
1571
1572 /* Found a block suitable for isolating free pages from. */
1573 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1574 block_end_pfn, freelist, stride, false);
1575
1576 /* Update the skip hint if the full pageblock was scanned */
1577 if (isolate_start_pfn == block_end_pfn)
1578 update_pageblock_skip(cc, page, block_start_pfn);
1579
1580 /* Are enough freepages isolated? */
1581 if (cc->nr_freepages >= cc->nr_migratepages) {
1582 if (isolate_start_pfn >= block_end_pfn) {
1583 /*
1584 * Restart at previous pageblock if more
1585 * freepages can be isolated next time.
1586 */
1587 isolate_start_pfn =
1588 block_start_pfn - pageblock_nr_pages;
1589 }
1590 break;
1591 } else if (isolate_start_pfn < block_end_pfn) {
1592 /*
1593 * If isolation failed early, do not continue
1594 * needlessly.
1595 */
1596 break;
1597 }
1598
1599 /* Adjust stride depending on isolation */
1600 if (nr_isolated) {
1601 stride = 1;
1602 continue;
1603 }
1604 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1605 }
1606
1607 /*
1608 * Record where the free scanner will restart next time. Either we
1609 * broke from the loop and set isolate_start_pfn based on the last
1610 * call to isolate_freepages_block(), or we met the migration scanner
1611 * and the loop terminated due to isolate_start_pfn < low_pfn
1612 */
1613 cc->free_pfn = isolate_start_pfn;
1614
1615 splitmap:
1616 /* __isolate_free_page() does not map the pages */
1617 split_map_pages(freelist);
1618 }
1619
1620 /*
1621 * This is a migrate-callback that "allocates" freepages by taking pages
1622 * from the isolated freelists in the block we are migrating to.
1623 */
1624 static struct page *compaction_alloc(struct page *migratepage,
1625 unsigned long data)
1626 {
1627 struct compact_control *cc = (struct compact_control *)data;
1628 struct page *freepage;
1629
1630 if (list_empty(&cc->freepages)) {
1631 isolate_freepages(cc);
1632
1633 if (list_empty(&cc->freepages))
1634 return NULL;
1635 }
1636
1637 freepage = list_entry(cc->freepages.next, struct page, lru);
1638 list_del(&freepage->lru);
1639 cc->nr_freepages--;
1640
1641 return freepage;
1642 }
1643
1644 /*
1645 * This is a migrate-callback that "frees" freepages back to the isolated
1646 * freelist. All pages on the freelist are from the same zone, so there is no
1647 * special handling needed for NUMA.
1648 */
1649 static void compaction_free(struct page *page, unsigned long data)
1650 {
1651 struct compact_control *cc = (struct compact_control *)data;
1652
1653 list_add(&page->lru, &cc->freepages);
1654 cc->nr_freepages++;
1655 }
1656
1657 /* possible outcome of isolate_migratepages */
1658 typedef enum {
1659 ISOLATE_ABORT, /* Abort compaction now */
1660 ISOLATE_NONE, /* No pages isolated, continue scanning */
1661 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1662 } isolate_migrate_t;
1663
1664 /*
1665 * Allow userspace to control policy on scanning the unevictable LRU for
1666 * compactable pages.
1667 */
1668 #ifdef CONFIG_PREEMPT_RT
1669 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1670 #else
1671 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1672 #endif
1673
1674 static inline void
1675 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1676 {
1677 if (cc->fast_start_pfn == ULONG_MAX)
1678 return;
1679
1680 if (!cc->fast_start_pfn)
1681 cc->fast_start_pfn = pfn;
1682
1683 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1684 }
1685
1686 static inline unsigned long
1687 reinit_migrate_pfn(struct compact_control *cc)
1688 {
1689 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1690 return cc->migrate_pfn;
1691
1692 cc->migrate_pfn = cc->fast_start_pfn;
1693 cc->fast_start_pfn = ULONG_MAX;
1694
1695 return cc->migrate_pfn;
1696 }
1697
1698 /*
1699 * Briefly search the free lists for a migration source that already has
1700 * some free pages to reduce the number of pages that need migration
1701 * before a pageblock is free.
1702 */
1703 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1704 {
1705 unsigned int limit = freelist_scan_limit(cc);
1706 unsigned int nr_scanned = 0;
1707 unsigned long distance;
1708 unsigned long pfn = cc->migrate_pfn;
1709 unsigned long high_pfn;
1710 int order;
1711 bool found_block = false;
1712
1713 /* Skip hints are relied on to avoid repeats on the fast search */
1714 if (cc->ignore_skip_hint)
1715 return pfn;
1716
1717 /*
1718 * If the migrate_pfn is not at the start of a zone or the start
1719 * of a pageblock then assume this is a continuation of a previous
1720 * scan restarted due to COMPACT_CLUSTER_MAX.
1721 */
1722 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1723 return pfn;
1724
1725 /*
1726 * For smaller orders, just linearly scan as the number of pages
1727 * to migrate should be relatively small and does not necessarily
1728 * justify freeing up a large block for a small allocation.
1729 */
1730 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1731 return pfn;
1732
1733 /*
1734 * Only allow kcompactd and direct requests for movable pages to
1735 * quickly clear out a MOVABLE pageblock for allocation. This
1736 * reduces the risk that a large movable pageblock is freed for
1737 * an unmovable/reclaimable small allocation.
1738 */
1739 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1740 return pfn;
1741
1742 /*
1743 * When starting the migration scanner, pick any pageblock within the
1744 * first half of the search space. Otherwise try and pick a pageblock
1745 * within the first eighth to reduce the chances that a migration
1746 * target later becomes a source.
1747 */
1748 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1749 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1750 distance >>= 2;
1751 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1752
1753 for (order = cc->order - 1;
1754 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1755 order--) {
1756 struct free_area *area = &cc->zone->free_area[order];
1757 struct list_head *freelist;
1758 unsigned long flags;
1759 struct page *freepage;
1760
1761 if (!area->nr_free)
1762 continue;
1763
1764 spin_lock_irqsave(&cc->zone->lock, flags);
1765 freelist = &area->free_list[MIGRATE_MOVABLE];
1766 list_for_each_entry(freepage, freelist, lru) {
1767 unsigned long free_pfn;
1768
1769 if (nr_scanned++ >= limit) {
1770 move_freelist_tail(freelist, freepage);
1771 break;
1772 }
1773
1774 free_pfn = page_to_pfn(freepage);
1775 if (free_pfn < high_pfn) {
1776 /*
1777 * Avoid if skipped recently. Ideally it would
1778 * move to the tail but even safe iteration of
1779 * the list assumes an entry is deleted, not
1780 * reordered.
1781 */
1782 if (get_pageblock_skip(freepage))
1783 continue;
1784
1785 /* Reorder to so a future search skips recent pages */
1786 move_freelist_tail(freelist, freepage);
1787
1788 update_fast_start_pfn(cc, free_pfn);
1789 pfn = pageblock_start_pfn(free_pfn);
1790 cc->fast_search_fail = 0;
1791 found_block = true;
1792 set_pageblock_skip(freepage);
1793 break;
1794 }
1795 }
1796 spin_unlock_irqrestore(&cc->zone->lock, flags);
1797 }
1798
1799 cc->total_migrate_scanned += nr_scanned;
1800
1801 /*
1802 * If fast scanning failed then use a cached entry for a page block
1803 * that had free pages as the basis for starting a linear scan.
1804 */
1805 if (!found_block) {
1806 cc->fast_search_fail++;
1807 pfn = reinit_migrate_pfn(cc);
1808 }
1809 return pfn;
1810 }
1811
1812 /*
1813 * Isolate all pages that can be migrated from the first suitable block,
1814 * starting at the block pointed to by the migrate scanner pfn within
1815 * compact_control.
1816 */
1817 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1818 {
1819 unsigned long block_start_pfn;
1820 unsigned long block_end_pfn;
1821 unsigned long low_pfn;
1822 struct page *page;
1823 const isolate_mode_t isolate_mode =
1824 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1825 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1826 bool fast_find_block;
1827
1828 /*
1829 * Start at where we last stopped, or beginning of the zone as
1830 * initialized by compact_zone(). The first failure will use
1831 * the lowest PFN as the starting point for linear scanning.
1832 */
1833 low_pfn = fast_find_migrateblock(cc);
1834 block_start_pfn = pageblock_start_pfn(low_pfn);
1835 if (block_start_pfn < cc->zone->zone_start_pfn)
1836 block_start_pfn = cc->zone->zone_start_pfn;
1837
1838 /*
1839 * fast_find_migrateblock marks a pageblock skipped so to avoid
1840 * the isolation_suitable check below, check whether the fast
1841 * search was successful.
1842 */
1843 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1844
1845 /* Only scan within a pageblock boundary */
1846 block_end_pfn = pageblock_end_pfn(low_pfn);
1847
1848 /*
1849 * Iterate over whole pageblocks until we find the first suitable.
1850 * Do not cross the free scanner.
1851 */
1852 for (; block_end_pfn <= cc->free_pfn;
1853 fast_find_block = false,
1854 low_pfn = block_end_pfn,
1855 block_start_pfn = block_end_pfn,
1856 block_end_pfn += pageblock_nr_pages) {
1857
1858 /*
1859 * This can potentially iterate a massively long zone with
1860 * many pageblocks unsuitable, so periodically check if we
1861 * need to schedule.
1862 */
1863 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1864 cond_resched();
1865
1866 page = pageblock_pfn_to_page(block_start_pfn,
1867 block_end_pfn, cc->zone);
1868 if (!page)
1869 continue;
1870
1871 /*
1872 * If isolation recently failed, do not retry. Only check the
1873 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1874 * to be visited multiple times. Assume skip was checked
1875 * before making it "skip" so other compaction instances do
1876 * not scan the same block.
1877 */
1878 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1879 !fast_find_block && !isolation_suitable(cc, page))
1880 continue;
1881
1882 /*
1883 * For async compaction, also only scan in MOVABLE blocks
1884 * without huge pages. Async compaction is optimistic to see
1885 * if the minimum amount of work satisfies the allocation.
1886 * The cached PFN is updated as it's possible that all
1887 * remaining blocks between source and target are unsuitable
1888 * and the compaction scanners fail to meet.
1889 */
1890 if (!suitable_migration_source(cc, page)) {
1891 update_cached_migrate(cc, block_end_pfn);
1892 continue;
1893 }
1894
1895 /* Perform the isolation */
1896 low_pfn = isolate_migratepages_block(cc, low_pfn,
1897 block_end_pfn, isolate_mode);
1898
1899 if (!low_pfn)
1900 return ISOLATE_ABORT;
1901
1902 /*
1903 * Either we isolated something and proceed with migration. Or
1904 * we failed and compact_zone should decide if we should
1905 * continue or not.
1906 */
1907 break;
1908 }
1909
1910 /* Record where migration scanner will be restarted. */
1911 cc->migrate_pfn = low_pfn;
1912
1913 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1914 }
1915
1916 /*
1917 * order == -1 is expected when compacting via
1918 * /proc/sys/vm/compact_memory
1919 */
1920 static inline bool is_via_compact_memory(int order)
1921 {
1922 return order == -1;
1923 }
1924
1925 static bool kswapd_is_running(pg_data_t *pgdat)
1926 {
1927 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1928 }
1929
1930 /*
1931 * A zone's fragmentation score is the external fragmentation wrt to the
1932 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1933 * in the range [0, 100].
1934 *
1935 * The scaling factor ensures that proactive compaction focuses on larger
1936 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1937 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1938 * and thus never exceeds the high threshold for proactive compaction.
1939 */
1940 static unsigned int fragmentation_score_zone(struct zone *zone)
1941 {
1942 unsigned long score;
1943
1944 score = zone->present_pages *
1945 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1946 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1947 }
1948
1949 /*
1950 * The per-node proactive (background) compaction process is started by its
1951 * corresponding kcompactd thread when the node's fragmentation score
1952 * exceeds the high threshold. The compaction process remains active till
1953 * the node's score falls below the low threshold, or one of the back-off
1954 * conditions is met.
1955 */
1956 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1957 {
1958 unsigned int score = 0;
1959 int zoneid;
1960
1961 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1962 struct zone *zone;
1963
1964 zone = &pgdat->node_zones[zoneid];
1965 score += fragmentation_score_zone(zone);
1966 }
1967
1968 return score;
1969 }
1970
1971 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1972 {
1973 unsigned int wmark_low;
1974
1975 /*
1976 * Cap the low watermak to avoid excessive compaction
1977 * activity in case a user sets the proactivess tunable
1978 * close to 100 (maximum).
1979 */
1980 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1981 return low ? wmark_low : min(wmark_low + 10, 100U);
1982 }
1983
1984 static bool should_proactive_compact_node(pg_data_t *pgdat)
1985 {
1986 int wmark_high;
1987
1988 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1989 return false;
1990
1991 wmark_high = fragmentation_score_wmark(pgdat, false);
1992 return fragmentation_score_node(pgdat) > wmark_high;
1993 }
1994
1995 static enum compact_result __compact_finished(struct compact_control *cc)
1996 {
1997 unsigned int order;
1998 const int migratetype = cc->migratetype;
1999 int ret;
2000
2001 /* Compaction run completes if the migrate and free scanner meet */
2002 if (compact_scanners_met(cc)) {
2003 /* Let the next compaction start anew. */
2004 reset_cached_positions(cc->zone);
2005
2006 /*
2007 * Mark that the PG_migrate_skip information should be cleared
2008 * by kswapd when it goes to sleep. kcompactd does not set the
2009 * flag itself as the decision to be clear should be directly
2010 * based on an allocation request.
2011 */
2012 if (cc->direct_compaction)
2013 cc->zone->compact_blockskip_flush = true;
2014
2015 if (cc->whole_zone)
2016 return COMPACT_COMPLETE;
2017 else
2018 return COMPACT_PARTIAL_SKIPPED;
2019 }
2020
2021 if (cc->proactive_compaction) {
2022 int score, wmark_low;
2023 pg_data_t *pgdat;
2024
2025 pgdat = cc->zone->zone_pgdat;
2026 if (kswapd_is_running(pgdat))
2027 return COMPACT_PARTIAL_SKIPPED;
2028
2029 score = fragmentation_score_zone(cc->zone);
2030 wmark_low = fragmentation_score_wmark(pgdat, true);
2031
2032 if (score > wmark_low)
2033 ret = COMPACT_CONTINUE;
2034 else
2035 ret = COMPACT_SUCCESS;
2036
2037 goto out;
2038 }
2039
2040 if (is_via_compact_memory(cc->order))
2041 return COMPACT_CONTINUE;
2042
2043 /*
2044 * Always finish scanning a pageblock to reduce the possibility of
2045 * fallbacks in the future. This is particularly important when
2046 * migration source is unmovable/reclaimable but it's not worth
2047 * special casing.
2048 */
2049 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2050 return COMPACT_CONTINUE;
2051
2052 /* Direct compactor: Is a suitable page free? */
2053 ret = COMPACT_NO_SUITABLE_PAGE;
2054 for (order = cc->order; order < MAX_ORDER; order++) {
2055 struct free_area *area = &cc->zone->free_area[order];
2056 bool can_steal;
2057
2058 /* Job done if page is free of the right migratetype */
2059 if (!free_area_empty(area, migratetype))
2060 return COMPACT_SUCCESS;
2061
2062 #ifdef CONFIG_CMA
2063 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2064 if (migratetype == MIGRATE_MOVABLE &&
2065 !free_area_empty(area, MIGRATE_CMA))
2066 return COMPACT_SUCCESS;
2067 #endif
2068 /*
2069 * Job done if allocation would steal freepages from
2070 * other migratetype buddy lists.
2071 */
2072 if (find_suitable_fallback(area, order, migratetype,
2073 true, &can_steal) != -1) {
2074
2075 /* movable pages are OK in any pageblock */
2076 if (migratetype == MIGRATE_MOVABLE)
2077 return COMPACT_SUCCESS;
2078
2079 /*
2080 * We are stealing for a non-movable allocation. Make
2081 * sure we finish compacting the current pageblock
2082 * first so it is as free as possible and we won't
2083 * have to steal another one soon. This only applies
2084 * to sync compaction, as async compaction operates
2085 * on pageblocks of the same migratetype.
2086 */
2087 if (cc->mode == MIGRATE_ASYNC ||
2088 IS_ALIGNED(cc->migrate_pfn,
2089 pageblock_nr_pages)) {
2090 return COMPACT_SUCCESS;
2091 }
2092
2093 ret = COMPACT_CONTINUE;
2094 break;
2095 }
2096 }
2097
2098 out:
2099 if (cc->contended || fatal_signal_pending(current))
2100 ret = COMPACT_CONTENDED;
2101
2102 return ret;
2103 }
2104
2105 static enum compact_result compact_finished(struct compact_control *cc)
2106 {
2107 int ret;
2108
2109 ret = __compact_finished(cc);
2110 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2111 if (ret == COMPACT_NO_SUITABLE_PAGE)
2112 ret = COMPACT_CONTINUE;
2113
2114 return ret;
2115 }
2116
2117 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2118 unsigned int alloc_flags,
2119 int highest_zoneidx,
2120 unsigned long wmark_target)
2121 {
2122 unsigned long watermark;
2123
2124 if (is_via_compact_memory(order))
2125 return COMPACT_CONTINUE;
2126
2127 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2128 /*
2129 * If watermarks for high-order allocation are already met, there
2130 * should be no need for compaction at all.
2131 */
2132 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2133 alloc_flags))
2134 return COMPACT_SUCCESS;
2135
2136 /*
2137 * Watermarks for order-0 must be met for compaction to be able to
2138 * isolate free pages for migration targets. This means that the
2139 * watermark and alloc_flags have to match, or be more pessimistic than
2140 * the check in __isolate_free_page(). We don't use the direct
2141 * compactor's alloc_flags, as they are not relevant for freepage
2142 * isolation. We however do use the direct compactor's highest_zoneidx
2143 * to skip over zones where lowmem reserves would prevent allocation
2144 * even if compaction succeeds.
2145 * For costly orders, we require low watermark instead of min for
2146 * compaction to proceed to increase its chances.
2147 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2148 * suitable migration targets
2149 */
2150 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2151 low_wmark_pages(zone) : min_wmark_pages(zone);
2152 watermark += compact_gap(order);
2153 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2154 ALLOC_CMA, wmark_target))
2155 return COMPACT_SKIPPED;
2156
2157 return COMPACT_CONTINUE;
2158 }
2159
2160 /*
2161 * compaction_suitable: Is this suitable to run compaction on this zone now?
2162 * Returns
2163 * COMPACT_SKIPPED - If there are too few free pages for compaction
2164 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2165 * COMPACT_CONTINUE - If compaction should run now
2166 */
2167 enum compact_result compaction_suitable(struct zone *zone, int order,
2168 unsigned int alloc_flags,
2169 int highest_zoneidx)
2170 {
2171 enum compact_result ret;
2172 int fragindex;
2173
2174 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2175 zone_page_state(zone, NR_FREE_PAGES));
2176 /*
2177 * fragmentation index determines if allocation failures are due to
2178 * low memory or external fragmentation
2179 *
2180 * index of -1000 would imply allocations might succeed depending on
2181 * watermarks, but we already failed the high-order watermark check
2182 * index towards 0 implies failure is due to lack of memory
2183 * index towards 1000 implies failure is due to fragmentation
2184 *
2185 * Only compact if a failure would be due to fragmentation. Also
2186 * ignore fragindex for non-costly orders where the alternative to
2187 * a successful reclaim/compaction is OOM. Fragindex and the
2188 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2189 * excessive compaction for costly orders, but it should not be at the
2190 * expense of system stability.
2191 */
2192 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2193 fragindex = fragmentation_index(zone, order);
2194 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2195 ret = COMPACT_NOT_SUITABLE_ZONE;
2196 }
2197
2198 trace_mm_compaction_suitable(zone, order, ret);
2199 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2200 ret = COMPACT_SKIPPED;
2201
2202 return ret;
2203 }
2204
2205 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2206 int alloc_flags)
2207 {
2208 struct zone *zone;
2209 struct zoneref *z;
2210
2211 /*
2212 * Make sure at least one zone would pass __compaction_suitable if we continue
2213 * retrying the reclaim.
2214 */
2215 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2216 ac->highest_zoneidx, ac->nodemask) {
2217 unsigned long available;
2218 enum compact_result compact_result;
2219
2220 /*
2221 * Do not consider all the reclaimable memory because we do not
2222 * want to trash just for a single high order allocation which
2223 * is even not guaranteed to appear even if __compaction_suitable
2224 * is happy about the watermark check.
2225 */
2226 available = zone_reclaimable_pages(zone) / order;
2227 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2228 compact_result = __compaction_suitable(zone, order, alloc_flags,
2229 ac->highest_zoneidx, available);
2230 if (compact_result != COMPACT_SKIPPED)
2231 return true;
2232 }
2233
2234 return false;
2235 }
2236
2237 static enum compact_result
2238 compact_zone(struct compact_control *cc, struct capture_control *capc)
2239 {
2240 enum compact_result ret;
2241 unsigned long start_pfn = cc->zone->zone_start_pfn;
2242 unsigned long end_pfn = zone_end_pfn(cc->zone);
2243 unsigned long last_migrated_pfn;
2244 const bool sync = cc->mode != MIGRATE_ASYNC;
2245 bool update_cached;
2246
2247 /*
2248 * These counters track activities during zone compaction. Initialize
2249 * them before compacting a new zone.
2250 */
2251 cc->total_migrate_scanned = 0;
2252 cc->total_free_scanned = 0;
2253 cc->nr_migratepages = 0;
2254 cc->nr_freepages = 0;
2255 INIT_LIST_HEAD(&cc->freepages);
2256 INIT_LIST_HEAD(&cc->migratepages);
2257
2258 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2259 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2260 cc->highest_zoneidx);
2261 /* Compaction is likely to fail */
2262 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2263 return ret;
2264
2265 /* huh, compaction_suitable is returning something unexpected */
2266 VM_BUG_ON(ret != COMPACT_CONTINUE);
2267
2268 /*
2269 * Clear pageblock skip if there were failures recently and compaction
2270 * is about to be retried after being deferred.
2271 */
2272 if (compaction_restarting(cc->zone, cc->order))
2273 __reset_isolation_suitable(cc->zone);
2274
2275 /*
2276 * Setup to move all movable pages to the end of the zone. Used cached
2277 * information on where the scanners should start (unless we explicitly
2278 * want to compact the whole zone), but check that it is initialised
2279 * by ensuring the values are within zone boundaries.
2280 */
2281 cc->fast_start_pfn = 0;
2282 if (cc->whole_zone) {
2283 cc->migrate_pfn = start_pfn;
2284 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2285 } else {
2286 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2287 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2288 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2289 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2290 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2291 }
2292 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2293 cc->migrate_pfn = start_pfn;
2294 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2295 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2296 }
2297
2298 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2299 cc->whole_zone = true;
2300 }
2301
2302 last_migrated_pfn = 0;
2303
2304 /*
2305 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2306 * the basis that some migrations will fail in ASYNC mode. However,
2307 * if the cached PFNs match and pageblocks are skipped due to having
2308 * no isolation candidates, then the sync state does not matter.
2309 * Until a pageblock with isolation candidates is found, keep the
2310 * cached PFNs in sync to avoid revisiting the same blocks.
2311 */
2312 update_cached = !sync &&
2313 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2314
2315 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2316 cc->free_pfn, end_pfn, sync);
2317
2318 migrate_prep_local();
2319
2320 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2321 int err;
2322 unsigned long iteration_start_pfn = cc->migrate_pfn;
2323
2324 /*
2325 * Avoid multiple rescans which can happen if a page cannot be
2326 * isolated (dirty/writeback in async mode) or if the migrated
2327 * pages are being allocated before the pageblock is cleared.
2328 * The first rescan will capture the entire pageblock for
2329 * migration. If it fails, it'll be marked skip and scanning
2330 * will proceed as normal.
2331 */
2332 cc->rescan = false;
2333 if (pageblock_start_pfn(last_migrated_pfn) ==
2334 pageblock_start_pfn(iteration_start_pfn)) {
2335 cc->rescan = true;
2336 }
2337
2338 switch (isolate_migratepages(cc)) {
2339 case ISOLATE_ABORT:
2340 ret = COMPACT_CONTENDED;
2341 putback_movable_pages(&cc->migratepages);
2342 cc->nr_migratepages = 0;
2343 goto out;
2344 case ISOLATE_NONE:
2345 if (update_cached) {
2346 cc->zone->compact_cached_migrate_pfn[1] =
2347 cc->zone->compact_cached_migrate_pfn[0];
2348 }
2349
2350 /*
2351 * We haven't isolated and migrated anything, but
2352 * there might still be unflushed migrations from
2353 * previous cc->order aligned block.
2354 */
2355 goto check_drain;
2356 case ISOLATE_SUCCESS:
2357 update_cached = false;
2358 last_migrated_pfn = iteration_start_pfn;
2359 }
2360
2361 err = migrate_pages(&cc->migratepages, compaction_alloc,
2362 compaction_free, (unsigned long)cc, cc->mode,
2363 MR_COMPACTION);
2364
2365 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2366 &cc->migratepages);
2367
2368 /* All pages were either migrated or will be released */
2369 cc->nr_migratepages = 0;
2370 if (err) {
2371 putback_movable_pages(&cc->migratepages);
2372 /*
2373 * migrate_pages() may return -ENOMEM when scanners meet
2374 * and we want compact_finished() to detect it
2375 */
2376 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2377 ret = COMPACT_CONTENDED;
2378 goto out;
2379 }
2380 /*
2381 * We failed to migrate at least one page in the current
2382 * order-aligned block, so skip the rest of it.
2383 */
2384 if (cc->direct_compaction &&
2385 (cc->mode == MIGRATE_ASYNC)) {
2386 cc->migrate_pfn = block_end_pfn(
2387 cc->migrate_pfn - 1, cc->order);
2388 /* Draining pcplists is useless in this case */
2389 last_migrated_pfn = 0;
2390 }
2391 }
2392
2393 check_drain:
2394 /*
2395 * Has the migration scanner moved away from the previous
2396 * cc->order aligned block where we migrated from? If yes,
2397 * flush the pages that were freed, so that they can merge and
2398 * compact_finished() can detect immediately if allocation
2399 * would succeed.
2400 */
2401 if (cc->order > 0 && last_migrated_pfn) {
2402 unsigned long current_block_start =
2403 block_start_pfn(cc->migrate_pfn, cc->order);
2404
2405 if (last_migrated_pfn < current_block_start) {
2406 lru_add_drain_cpu_zone(cc->zone);
2407 /* No more flushing until we migrate again */
2408 last_migrated_pfn = 0;
2409 }
2410 }
2411
2412 /* Stop if a page has been captured */
2413 if (capc && capc->page) {
2414 ret = COMPACT_SUCCESS;
2415 break;
2416 }
2417 }
2418
2419 out:
2420 /*
2421 * Release free pages and update where the free scanner should restart,
2422 * so we don't leave any returned pages behind in the next attempt.
2423 */
2424 if (cc->nr_freepages > 0) {
2425 unsigned long free_pfn = release_freepages(&cc->freepages);
2426
2427 cc->nr_freepages = 0;
2428 VM_BUG_ON(free_pfn == 0);
2429 /* The cached pfn is always the first in a pageblock */
2430 free_pfn = pageblock_start_pfn(free_pfn);
2431 /*
2432 * Only go back, not forward. The cached pfn might have been
2433 * already reset to zone end in compact_finished()
2434 */
2435 if (free_pfn > cc->zone->compact_cached_free_pfn)
2436 cc->zone->compact_cached_free_pfn = free_pfn;
2437 }
2438
2439 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2440 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2441
2442 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2443 cc->free_pfn, end_pfn, sync, ret);
2444
2445 return ret;
2446 }
2447
2448 static enum compact_result compact_zone_order(struct zone *zone, int order,
2449 gfp_t gfp_mask, enum compact_priority prio,
2450 unsigned int alloc_flags, int highest_zoneidx,
2451 struct page **capture)
2452 {
2453 enum compact_result ret;
2454 struct compact_control cc = {
2455 .order = order,
2456 .search_order = order,
2457 .gfp_mask = gfp_mask,
2458 .zone = zone,
2459 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2460 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2461 .alloc_flags = alloc_flags,
2462 .highest_zoneidx = highest_zoneidx,
2463 .direct_compaction = true,
2464 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2465 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2466 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2467 };
2468 struct capture_control capc = {
2469 .cc = &cc,
2470 .page = NULL,
2471 };
2472
2473 /*
2474 * Make sure the structs are really initialized before we expose the
2475 * capture control, in case we are interrupted and the interrupt handler
2476 * frees a page.
2477 */
2478 barrier();
2479 WRITE_ONCE(current->capture_control, &capc);
2480
2481 ret = compact_zone(&cc, &capc);
2482
2483 VM_BUG_ON(!list_empty(&cc.freepages));
2484 VM_BUG_ON(!list_empty(&cc.migratepages));
2485
2486 /*
2487 * Make sure we hide capture control first before we read the captured
2488 * page pointer, otherwise an interrupt could free and capture a page
2489 * and we would leak it.
2490 */
2491 WRITE_ONCE(current->capture_control, NULL);
2492 *capture = READ_ONCE(capc.page);
2493
2494 return ret;
2495 }
2496
2497 int sysctl_extfrag_threshold = 500;
2498
2499 /**
2500 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2501 * @gfp_mask: The GFP mask of the current allocation
2502 * @order: The order of the current allocation
2503 * @alloc_flags: The allocation flags of the current allocation
2504 * @ac: The context of current allocation
2505 * @prio: Determines how hard direct compaction should try to succeed
2506 * @capture: Pointer to free page created by compaction will be stored here
2507 *
2508 * This is the main entry point for direct page compaction.
2509 */
2510 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2511 unsigned int alloc_flags, const struct alloc_context *ac,
2512 enum compact_priority prio, struct page **capture)
2513 {
2514 int may_perform_io = gfp_mask & __GFP_IO;
2515 struct zoneref *z;
2516 struct zone *zone;
2517 enum compact_result rc = COMPACT_SKIPPED;
2518
2519 /*
2520 * Check if the GFP flags allow compaction - GFP_NOIO is really
2521 * tricky context because the migration might require IO
2522 */
2523 if (!may_perform_io)
2524 return COMPACT_SKIPPED;
2525
2526 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2527
2528 /* Compact each zone in the list */
2529 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2530 ac->highest_zoneidx, ac->nodemask) {
2531 enum compact_result status;
2532
2533 if (prio > MIN_COMPACT_PRIORITY
2534 && compaction_deferred(zone, order)) {
2535 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2536 continue;
2537 }
2538
2539 status = compact_zone_order(zone, order, gfp_mask, prio,
2540 alloc_flags, ac->highest_zoneidx, capture);
2541 rc = max(status, rc);
2542
2543 /* The allocation should succeed, stop compacting */
2544 if (status == COMPACT_SUCCESS) {
2545 /*
2546 * We think the allocation will succeed in this zone,
2547 * but it is not certain, hence the false. The caller
2548 * will repeat this with true if allocation indeed
2549 * succeeds in this zone.
2550 */
2551 compaction_defer_reset(zone, order, false);
2552
2553 break;
2554 }
2555
2556 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2557 status == COMPACT_PARTIAL_SKIPPED))
2558 /*
2559 * We think that allocation won't succeed in this zone
2560 * so we defer compaction there. If it ends up
2561 * succeeding after all, it will be reset.
2562 */
2563 defer_compaction(zone, order);
2564
2565 /*
2566 * We might have stopped compacting due to need_resched() in
2567 * async compaction, or due to a fatal signal detected. In that
2568 * case do not try further zones
2569 */
2570 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2571 || fatal_signal_pending(current))
2572 break;
2573 }
2574
2575 return rc;
2576 }
2577
2578 /*
2579 * Compact all zones within a node till each zone's fragmentation score
2580 * reaches within proactive compaction thresholds (as determined by the
2581 * proactiveness tunable).
2582 *
2583 * It is possible that the function returns before reaching score targets
2584 * due to various back-off conditions, such as, contention on per-node or
2585 * per-zone locks.
2586 */
2587 static void proactive_compact_node(pg_data_t *pgdat)
2588 {
2589 int zoneid;
2590 struct zone *zone;
2591 struct compact_control cc = {
2592 .order = -1,
2593 .mode = MIGRATE_SYNC_LIGHT,
2594 .ignore_skip_hint = true,
2595 .whole_zone = true,
2596 .gfp_mask = GFP_KERNEL,
2597 .proactive_compaction = true,
2598 };
2599
2600 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2601 zone = &pgdat->node_zones[zoneid];
2602 if (!populated_zone(zone))
2603 continue;
2604
2605 cc.zone = zone;
2606
2607 compact_zone(&cc, NULL);
2608
2609 VM_BUG_ON(!list_empty(&cc.freepages));
2610 VM_BUG_ON(!list_empty(&cc.migratepages));
2611 }
2612 }
2613
2614 /* Compact all zones within a node */
2615 static void compact_node(int nid)
2616 {
2617 pg_data_t *pgdat = NODE_DATA(nid);
2618 int zoneid;
2619 struct zone *zone;
2620 struct compact_control cc = {
2621 .order = -1,
2622 .mode = MIGRATE_SYNC,
2623 .ignore_skip_hint = true,
2624 .whole_zone = true,
2625 .gfp_mask = GFP_KERNEL,
2626 };
2627
2628
2629 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2630
2631 zone = &pgdat->node_zones[zoneid];
2632 if (!populated_zone(zone))
2633 continue;
2634
2635 cc.zone = zone;
2636
2637 compact_zone(&cc, NULL);
2638
2639 VM_BUG_ON(!list_empty(&cc.freepages));
2640 VM_BUG_ON(!list_empty(&cc.migratepages));
2641 }
2642 }
2643
2644 /* Compact all nodes in the system */
2645 static void compact_nodes(void)
2646 {
2647 int nid;
2648
2649 /* Flush pending updates to the LRU lists */
2650 lru_add_drain_all();
2651
2652 for_each_online_node(nid)
2653 compact_node(nid);
2654 }
2655
2656 /* The written value is actually unused, all memory is compacted */
2657 int sysctl_compact_memory;
2658
2659 /*
2660 * Tunable for proactive compaction. It determines how
2661 * aggressively the kernel should compact memory in the
2662 * background. It takes values in the range [0, 100].
2663 */
2664 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2665
2666 /*
2667 * This is the entry point for compacting all nodes via
2668 * /proc/sys/vm/compact_memory
2669 */
2670 int sysctl_compaction_handler(struct ctl_table *table, int write,
2671 void *buffer, size_t *length, loff_t *ppos)
2672 {
2673 if (write)
2674 compact_nodes();
2675
2676 return 0;
2677 }
2678
2679 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2680 static ssize_t sysfs_compact_node(struct device *dev,
2681 struct device_attribute *attr,
2682 const char *buf, size_t count)
2683 {
2684 int nid = dev->id;
2685
2686 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2687 /* Flush pending updates to the LRU lists */
2688 lru_add_drain_all();
2689
2690 compact_node(nid);
2691 }
2692
2693 return count;
2694 }
2695 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2696
2697 int compaction_register_node(struct node *node)
2698 {
2699 return device_create_file(&node->dev, &dev_attr_compact);
2700 }
2701
2702 void compaction_unregister_node(struct node *node)
2703 {
2704 return device_remove_file(&node->dev, &dev_attr_compact);
2705 }
2706 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2707
2708 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2709 {
2710 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2711 }
2712
2713 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2714 {
2715 int zoneid;
2716 struct zone *zone;
2717 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2718
2719 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2720 zone = &pgdat->node_zones[zoneid];
2721
2722 if (!populated_zone(zone))
2723 continue;
2724
2725 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2726 highest_zoneidx) == COMPACT_CONTINUE)
2727 return true;
2728 }
2729
2730 return false;
2731 }
2732
2733 static void kcompactd_do_work(pg_data_t *pgdat)
2734 {
2735 /*
2736 * With no special task, compact all zones so that a page of requested
2737 * order is allocatable.
2738 */
2739 int zoneid;
2740 struct zone *zone;
2741 struct compact_control cc = {
2742 .order = pgdat->kcompactd_max_order,
2743 .search_order = pgdat->kcompactd_max_order,
2744 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2745 .mode = MIGRATE_SYNC_LIGHT,
2746 .ignore_skip_hint = false,
2747 .gfp_mask = GFP_KERNEL,
2748 };
2749 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2750 cc.highest_zoneidx);
2751 count_compact_event(KCOMPACTD_WAKE);
2752
2753 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2754 int status;
2755
2756 zone = &pgdat->node_zones[zoneid];
2757 if (!populated_zone(zone))
2758 continue;
2759
2760 if (compaction_deferred(zone, cc.order))
2761 continue;
2762
2763 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2764 COMPACT_CONTINUE)
2765 continue;
2766
2767 if (kthread_should_stop())
2768 return;
2769
2770 cc.zone = zone;
2771 status = compact_zone(&cc, NULL);
2772
2773 if (status == COMPACT_SUCCESS) {
2774 compaction_defer_reset(zone, cc.order, false);
2775 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2776 /*
2777 * Buddy pages may become stranded on pcps that could
2778 * otherwise coalesce on the zone's free area for
2779 * order >= cc.order. This is ratelimited by the
2780 * upcoming deferral.
2781 */
2782 drain_all_pages(zone);
2783
2784 /*
2785 * We use sync migration mode here, so we defer like
2786 * sync direct compaction does.
2787 */
2788 defer_compaction(zone, cc.order);
2789 }
2790
2791 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2792 cc.total_migrate_scanned);
2793 count_compact_events(KCOMPACTD_FREE_SCANNED,
2794 cc.total_free_scanned);
2795
2796 VM_BUG_ON(!list_empty(&cc.freepages));
2797 VM_BUG_ON(!list_empty(&cc.migratepages));
2798 }
2799
2800 /*
2801 * Regardless of success, we are done until woken up next. But remember
2802 * the requested order/highest_zoneidx in case it was higher/tighter
2803 * than our current ones
2804 */
2805 if (pgdat->kcompactd_max_order <= cc.order)
2806 pgdat->kcompactd_max_order = 0;
2807 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2808 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2809 }
2810
2811 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2812 {
2813 if (!order)
2814 return;
2815
2816 if (pgdat->kcompactd_max_order < order)
2817 pgdat->kcompactd_max_order = order;
2818
2819 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2820 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2821
2822 /*
2823 * Pairs with implicit barrier in wait_event_freezable()
2824 * such that wakeups are not missed.
2825 */
2826 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2827 return;
2828
2829 if (!kcompactd_node_suitable(pgdat))
2830 return;
2831
2832 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2833 highest_zoneidx);
2834 wake_up_interruptible(&pgdat->kcompactd_wait);
2835 }
2836
2837 /*
2838 * The background compaction daemon, started as a kernel thread
2839 * from the init process.
2840 */
2841 static int kcompactd(void *p)
2842 {
2843 pg_data_t *pgdat = (pg_data_t*)p;
2844 struct task_struct *tsk = current;
2845 unsigned int proactive_defer = 0;
2846
2847 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2848
2849 if (!cpumask_empty(cpumask))
2850 set_cpus_allowed_ptr(tsk, cpumask);
2851
2852 set_freezable();
2853
2854 pgdat->kcompactd_max_order = 0;
2855 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2856
2857 while (!kthread_should_stop()) {
2858 unsigned long pflags;
2859
2860 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2861 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2862 kcompactd_work_requested(pgdat),
2863 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2864
2865 psi_memstall_enter(&pflags);
2866 kcompactd_do_work(pgdat);
2867 psi_memstall_leave(&pflags);
2868 continue;
2869 }
2870
2871 /* kcompactd wait timeout */
2872 if (should_proactive_compact_node(pgdat)) {
2873 unsigned int prev_score, score;
2874
2875 if (proactive_defer) {
2876 proactive_defer--;
2877 continue;
2878 }
2879 prev_score = fragmentation_score_node(pgdat);
2880 proactive_compact_node(pgdat);
2881 score = fragmentation_score_node(pgdat);
2882 /*
2883 * Defer proactive compaction if the fragmentation
2884 * score did not go down i.e. no progress made.
2885 */
2886 proactive_defer = score < prev_score ?
2887 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2888 }
2889 }
2890
2891 return 0;
2892 }
2893
2894 /*
2895 * This kcompactd start function will be called by init and node-hot-add.
2896 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2897 */
2898 int kcompactd_run(int nid)
2899 {
2900 pg_data_t *pgdat = NODE_DATA(nid);
2901 int ret = 0;
2902
2903 if (pgdat->kcompactd)
2904 return 0;
2905
2906 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2907 if (IS_ERR(pgdat->kcompactd)) {
2908 pr_err("Failed to start kcompactd on node %d\n", nid);
2909 ret = PTR_ERR(pgdat->kcompactd);
2910 pgdat->kcompactd = NULL;
2911 }
2912 return ret;
2913 }
2914
2915 /*
2916 * Called by memory hotplug when all memory in a node is offlined. Caller must
2917 * hold mem_hotplug_begin/end().
2918 */
2919 void kcompactd_stop(int nid)
2920 {
2921 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2922
2923 if (kcompactd) {
2924 kthread_stop(kcompactd);
2925 NODE_DATA(nid)->kcompactd = NULL;
2926 }
2927 }
2928
2929 /*
2930 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2931 * not required for correctness. So if the last cpu in a node goes
2932 * away, we get changed to run anywhere: as the first one comes back,
2933 * restore their cpu bindings.
2934 */
2935 static int kcompactd_cpu_online(unsigned int cpu)
2936 {
2937 int nid;
2938
2939 for_each_node_state(nid, N_MEMORY) {
2940 pg_data_t *pgdat = NODE_DATA(nid);
2941 const struct cpumask *mask;
2942
2943 mask = cpumask_of_node(pgdat->node_id);
2944
2945 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2946 /* One of our CPUs online: restore mask */
2947 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2948 }
2949 return 0;
2950 }
2951
2952 static int __init kcompactd_init(void)
2953 {
2954 int nid;
2955 int ret;
2956
2957 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2958 "mm/compaction:online",
2959 kcompactd_cpu_online, NULL);
2960 if (ret < 0) {
2961 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2962 return ret;
2963 }
2964
2965 for_each_node_state(nid, N_MEMORY)
2966 kcompactd_run(nid);
2967 return 0;
2968 }
2969 subsys_initcall(kcompactd_init)
2970
2971 #endif /* CONFIG_COMPACTION */