]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/compaction.c
Merge tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67 }
68
69 static void split_map_pages(struct list_head *list)
70 {
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
80
81 post_alloc_hook(page, order, __GFP_MOVABLE);
82 if (order)
83 split_page(page, order);
84
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
89 }
90
91 list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174 }
175
176 /*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
181 void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183 {
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207 {
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 zone->compact_cached_free_pfn =
219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
226 */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 if (!PageCompound(page))
230 return false;
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
238 }
239
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 bool check_target)
243 {
244 struct page *page = pfn_to_online_page(pfn);
245 struct page *block_page;
246 struct page *end_page;
247 unsigned long block_pfn;
248
249 if (!page)
250 return false;
251 if (zone != page_zone(page))
252 return false;
253 if (pageblock_skip_persistent(page))
254 return false;
255
256 /*
257 * If skip is already cleared do no further checking once the
258 * restart points have been set.
259 */
260 if (check_source && check_target && !get_pageblock_skip(page))
261 return true;
262
263 /*
264 * If clearing skip for the target scanner, do not select a
265 * non-movable pageblock as the starting point.
266 */
267 if (!check_source && check_target &&
268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 return false;
270
271 /* Ensure the start of the pageblock or zone is online and valid */
272 block_pfn = pageblock_start_pfn(pfn);
273 block_pfn = max(block_pfn, zone->zone_start_pfn);
274 block_page = pfn_to_online_page(block_pfn);
275 if (block_page) {
276 page = block_page;
277 pfn = block_pfn;
278 }
279
280 /* Ensure the end of the pageblock or zone is online and valid */
281 block_pfn = pageblock_end_pfn(pfn) - 1;
282 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283 end_page = pfn_to_online_page(block_pfn);
284 if (!end_page)
285 return false;
286
287 /*
288 * Only clear the hint if a sample indicates there is either a
289 * free page or an LRU page in the block. One or other condition
290 * is necessary for the block to be a migration source/target.
291 */
292 do {
293 if (pfn_valid_within(pfn)) {
294 if (check_source && PageLRU(page)) {
295 clear_pageblock_skip(page);
296 return true;
297 }
298
299 if (check_target && PageBuddy(page)) {
300 clear_pageblock_skip(page);
301 return true;
302 }
303 }
304
305 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307 } while (page <= end_page);
308
309 return false;
310 }
311
312 /*
313 * This function is called to clear all cached information on pageblocks that
314 * should be skipped for page isolation when the migrate and free page scanner
315 * meet.
316 */
317 static void __reset_isolation_suitable(struct zone *zone)
318 {
319 unsigned long migrate_pfn = zone->zone_start_pfn;
320 unsigned long free_pfn = zone_end_pfn(zone) - 1;
321 unsigned long reset_migrate = free_pfn;
322 unsigned long reset_free = migrate_pfn;
323 bool source_set = false;
324 bool free_set = false;
325
326 if (!zone->compact_blockskip_flush)
327 return;
328
329 zone->compact_blockskip_flush = false;
330
331 /*
332 * Walk the zone and update pageblock skip information. Source looks
333 * for PageLRU while target looks for PageBuddy. When the scanner
334 * is found, both PageBuddy and PageLRU are checked as the pageblock
335 * is suitable as both source and target.
336 */
337 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338 free_pfn -= pageblock_nr_pages) {
339 cond_resched();
340
341 /* Update the migrate PFN */
342 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343 migrate_pfn < reset_migrate) {
344 source_set = true;
345 reset_migrate = migrate_pfn;
346 zone->compact_init_migrate_pfn = reset_migrate;
347 zone->compact_cached_migrate_pfn[0] = reset_migrate;
348 zone->compact_cached_migrate_pfn[1] = reset_migrate;
349 }
350
351 /* Update the free PFN */
352 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353 free_pfn > reset_free) {
354 free_set = true;
355 reset_free = free_pfn;
356 zone->compact_init_free_pfn = reset_free;
357 zone->compact_cached_free_pfn = reset_free;
358 }
359 }
360
361 /* Leave no distance if no suitable block was reset */
362 if (reset_migrate >= reset_free) {
363 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365 zone->compact_cached_free_pfn = free_pfn;
366 }
367 }
368
369 void reset_isolation_suitable(pg_data_t *pgdat)
370 {
371 int zoneid;
372
373 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374 struct zone *zone = &pgdat->node_zones[zoneid];
375 if (!populated_zone(zone))
376 continue;
377
378 /* Only flush if a full compaction finished recently */
379 if (zone->compact_blockskip_flush)
380 __reset_isolation_suitable(zone);
381 }
382 }
383
384 /*
385 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386 * locks are not required for read/writers. Returns true if it was already set.
387 */
388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389 unsigned long pfn)
390 {
391 bool skip;
392
393 /* Do no update if skip hint is being ignored */
394 if (cc->ignore_skip_hint)
395 return false;
396
397 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398 return false;
399
400 skip = get_pageblock_skip(page);
401 if (!skip && !cc->no_set_skip_hint)
402 set_pageblock_skip(page);
403
404 return skip;
405 }
406
407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408 {
409 struct zone *zone = cc->zone;
410
411 pfn = pageblock_end_pfn(pfn);
412
413 /* Set for isolation rather than compaction */
414 if (cc->no_set_skip_hint)
415 return;
416
417 if (pfn > zone->compact_cached_migrate_pfn[0])
418 zone->compact_cached_migrate_pfn[0] = pfn;
419 if (cc->mode != MIGRATE_ASYNC &&
420 pfn > zone->compact_cached_migrate_pfn[1])
421 zone->compact_cached_migrate_pfn[1] = pfn;
422 }
423
424 /*
425 * If no pages were isolated then mark this pageblock to be skipped in the
426 * future. The information is later cleared by __reset_isolation_suitable().
427 */
428 static void update_pageblock_skip(struct compact_control *cc,
429 struct page *page, unsigned long pfn)
430 {
431 struct zone *zone = cc->zone;
432
433 if (cc->no_set_skip_hint)
434 return;
435
436 if (!page)
437 return;
438
439 set_pageblock_skip(page);
440
441 /* Update where async and sync compaction should restart */
442 if (pfn < zone->compact_cached_free_pfn)
443 zone->compact_cached_free_pfn = pfn;
444 }
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447 struct page *page)
448 {
449 return true;
450 }
451
452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454 return false;
455 }
456
457 static inline void update_pageblock_skip(struct compact_control *cc,
458 struct page *page, unsigned long pfn)
459 {
460 }
461
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467 unsigned long pfn)
468 {
469 return false;
470 }
471 #endif /* CONFIG_COMPACTION */
472
473 /*
474 * Compaction requires the taking of some coarse locks that are potentially
475 * very heavily contended. For async compaction, trylock and record if the
476 * lock is contended. The lock will still be acquired but compaction will
477 * abort when the current block is finished regardless of success rate.
478 * Sync compaction acquires the lock.
479 *
480 * Always returns true which makes it easier to track lock state in callers.
481 */
482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483 struct compact_control *cc)
484 __acquires(lock)
485 {
486 /* Track if the lock is contended in async mode */
487 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
488 if (spin_trylock_irqsave(lock, *flags))
489 return true;
490
491 cc->contended = true;
492 }
493
494 spin_lock_irqsave(lock, *flags);
495 return true;
496 }
497
498 /*
499 * Compaction requires the taking of some coarse locks that are potentially
500 * very heavily contended. The lock should be periodically unlocked to avoid
501 * having disabled IRQs for a long time, even when there is nobody waiting on
502 * the lock. It might also be that allowing the IRQs will result in
503 * need_resched() becoming true. If scheduling is needed, async compaction
504 * aborts. Sync compaction schedules.
505 * Either compaction type will also abort if a fatal signal is pending.
506 * In either case if the lock was locked, it is dropped and not regained.
507 *
508 * Returns true if compaction should abort due to fatal signal pending, or
509 * async compaction due to need_resched()
510 * Returns false when compaction can continue (sync compaction might have
511 * scheduled)
512 */
513 static bool compact_unlock_should_abort(spinlock_t *lock,
514 unsigned long flags, bool *locked, struct compact_control *cc)
515 {
516 if (*locked) {
517 spin_unlock_irqrestore(lock, flags);
518 *locked = false;
519 }
520
521 if (fatal_signal_pending(current)) {
522 cc->contended = true;
523 return true;
524 }
525
526 cond_resched();
527
528 return false;
529 }
530
531 /*
532 * Isolate free pages onto a private freelist. If @strict is true, will abort
533 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
534 * (even though it may still end up isolating some pages).
535 */
536 static unsigned long isolate_freepages_block(struct compact_control *cc,
537 unsigned long *start_pfn,
538 unsigned long end_pfn,
539 struct list_head *freelist,
540 unsigned int stride,
541 bool strict)
542 {
543 int nr_scanned = 0, total_isolated = 0;
544 struct page *cursor;
545 unsigned long flags = 0;
546 bool locked = false;
547 unsigned long blockpfn = *start_pfn;
548 unsigned int order;
549
550 /* Strict mode is for isolation, speed is secondary */
551 if (strict)
552 stride = 1;
553
554 cursor = pfn_to_page(blockpfn);
555
556 /* Isolate free pages. */
557 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
558 int isolated;
559 struct page *page = cursor;
560
561 /*
562 * Periodically drop the lock (if held) regardless of its
563 * contention, to give chance to IRQs. Abort if fatal signal
564 * pending or async compaction detects need_resched()
565 */
566 if (!(blockpfn % SWAP_CLUSTER_MAX)
567 && compact_unlock_should_abort(&cc->zone->lock, flags,
568 &locked, cc))
569 break;
570
571 nr_scanned++;
572 if (!pfn_valid_within(blockpfn))
573 goto isolate_fail;
574
575 /*
576 * For compound pages such as THP and hugetlbfs, we can save
577 * potentially a lot of iterations if we skip them at once.
578 * The check is racy, but we can consider only valid values
579 * and the only danger is skipping too much.
580 */
581 if (PageCompound(page)) {
582 const unsigned int order = compound_order(page);
583
584 if (likely(order < MAX_ORDER)) {
585 blockpfn += (1UL << order) - 1;
586 cursor += (1UL << order) - 1;
587 }
588 goto isolate_fail;
589 }
590
591 if (!PageBuddy(page))
592 goto isolate_fail;
593
594 /*
595 * If we already hold the lock, we can skip some rechecking.
596 * Note that if we hold the lock now, checked_pageblock was
597 * already set in some previous iteration (or strict is true),
598 * so it is correct to skip the suitable migration target
599 * recheck as well.
600 */
601 if (!locked) {
602 locked = compact_lock_irqsave(&cc->zone->lock,
603 &flags, cc);
604
605 /* Recheck this is a buddy page under lock */
606 if (!PageBuddy(page))
607 goto isolate_fail;
608 }
609
610 /* Found a free page, will break it into order-0 pages */
611 order = page_order(page);
612 isolated = __isolate_free_page(page, order);
613 if (!isolated)
614 break;
615 set_page_private(page, order);
616
617 total_isolated += isolated;
618 cc->nr_freepages += isolated;
619 list_add_tail(&page->lru, freelist);
620
621 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622 blockpfn += isolated;
623 break;
624 }
625 /* Advance to the end of split page */
626 blockpfn += isolated - 1;
627 cursor += isolated - 1;
628 continue;
629
630 isolate_fail:
631 if (strict)
632 break;
633 else
634 continue;
635
636 }
637
638 if (locked)
639 spin_unlock_irqrestore(&cc->zone->lock, flags);
640
641 /*
642 * There is a tiny chance that we have read bogus compound_order(),
643 * so be careful to not go outside of the pageblock.
644 */
645 if (unlikely(blockpfn > end_pfn))
646 blockpfn = end_pfn;
647
648 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649 nr_scanned, total_isolated);
650
651 /* Record how far we have got within the block */
652 *start_pfn = blockpfn;
653
654 /*
655 * If strict isolation is requested by CMA then check that all the
656 * pages requested were isolated. If there were any failures, 0 is
657 * returned and CMA will fail.
658 */
659 if (strict && blockpfn < end_pfn)
660 total_isolated = 0;
661
662 cc->total_free_scanned += nr_scanned;
663 if (total_isolated)
664 count_compact_events(COMPACTISOLATED, total_isolated);
665 return total_isolated;
666 }
667
668 /**
669 * isolate_freepages_range() - isolate free pages.
670 * @cc: Compaction control structure.
671 * @start_pfn: The first PFN to start isolating.
672 * @end_pfn: The one-past-last PFN.
673 *
674 * Non-free pages, invalid PFNs, or zone boundaries within the
675 * [start_pfn, end_pfn) range are considered errors, cause function to
676 * undo its actions and return zero.
677 *
678 * Otherwise, function returns one-past-the-last PFN of isolated page
679 * (which may be greater then end_pfn if end fell in a middle of
680 * a free page).
681 */
682 unsigned long
683 isolate_freepages_range(struct compact_control *cc,
684 unsigned long start_pfn, unsigned long end_pfn)
685 {
686 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
687 LIST_HEAD(freelist);
688
689 pfn = start_pfn;
690 block_start_pfn = pageblock_start_pfn(pfn);
691 if (block_start_pfn < cc->zone->zone_start_pfn)
692 block_start_pfn = cc->zone->zone_start_pfn;
693 block_end_pfn = pageblock_end_pfn(pfn);
694
695 for (; pfn < end_pfn; pfn += isolated,
696 block_start_pfn = block_end_pfn,
697 block_end_pfn += pageblock_nr_pages) {
698 /* Protect pfn from changing by isolate_freepages_block */
699 unsigned long isolate_start_pfn = pfn;
700
701 block_end_pfn = min(block_end_pfn, end_pfn);
702
703 /*
704 * pfn could pass the block_end_pfn if isolated freepage
705 * is more than pageblock order. In this case, we adjust
706 * scanning range to right one.
707 */
708 if (pfn >= block_end_pfn) {
709 block_start_pfn = pageblock_start_pfn(pfn);
710 block_end_pfn = pageblock_end_pfn(pfn);
711 block_end_pfn = min(block_end_pfn, end_pfn);
712 }
713
714 if (!pageblock_pfn_to_page(block_start_pfn,
715 block_end_pfn, cc->zone))
716 break;
717
718 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
719 block_end_pfn, &freelist, 0, true);
720
721 /*
722 * In strict mode, isolate_freepages_block() returns 0 if
723 * there are any holes in the block (ie. invalid PFNs or
724 * non-free pages).
725 */
726 if (!isolated)
727 break;
728
729 /*
730 * If we managed to isolate pages, it is always (1 << n) *
731 * pageblock_nr_pages for some non-negative n. (Max order
732 * page may span two pageblocks).
733 */
734 }
735
736 /* __isolate_free_page() does not map the pages */
737 split_map_pages(&freelist);
738
739 if (pfn < end_pfn) {
740 /* Loop terminated early, cleanup. */
741 release_freepages(&freelist);
742 return 0;
743 }
744
745 /* We don't use freelists for anything. */
746 return pfn;
747 }
748
749 /* Similar to reclaim, but different enough that they don't share logic */
750 static bool too_many_isolated(pg_data_t *pgdat)
751 {
752 unsigned long active, inactive, isolated;
753
754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 node_page_state(pgdat, NR_INACTIVE_ANON);
756 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 node_page_state(pgdat, NR_ACTIVE_ANON);
758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 node_page_state(pgdat, NR_ISOLATED_ANON);
760
761 return isolated > (inactive + active) / 2;
762 }
763
764 /**
765 * isolate_migratepages_block() - isolate all migrate-able pages within
766 * a single pageblock
767 * @cc: Compaction control structure.
768 * @low_pfn: The first PFN to isolate
769 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
770 * @isolate_mode: Isolation mode to be used.
771 *
772 * Isolate all pages that can be migrated from the range specified by
773 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
774 * Returns zero if there is a fatal signal pending, otherwise PFN of the
775 * first page that was not scanned (which may be both less, equal to or more
776 * than end_pfn).
777 *
778 * The pages are isolated on cc->migratepages list (not required to be empty),
779 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
780 * is neither read nor updated.
781 */
782 static unsigned long
783 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
784 unsigned long end_pfn, isolate_mode_t isolate_mode)
785 {
786 pg_data_t *pgdat = cc->zone->zone_pgdat;
787 unsigned long nr_scanned = 0, nr_isolated = 0;
788 struct lruvec *lruvec;
789 unsigned long flags = 0;
790 bool locked = false;
791 struct page *page = NULL, *valid_page = NULL;
792 unsigned long start_pfn = low_pfn;
793 bool skip_on_failure = false;
794 unsigned long next_skip_pfn = 0;
795 bool skip_updated = false;
796
797 /*
798 * Ensure that there are not too many pages isolated from the LRU
799 * list by either parallel reclaimers or compaction. If there are,
800 * delay for some time until fewer pages are isolated
801 */
802 while (unlikely(too_many_isolated(pgdat))) {
803 /* async migration should just abort */
804 if (cc->mode == MIGRATE_ASYNC)
805 return 0;
806
807 congestion_wait(BLK_RW_ASYNC, HZ/10);
808
809 if (fatal_signal_pending(current))
810 return 0;
811 }
812
813 cond_resched();
814
815 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
816 skip_on_failure = true;
817 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
818 }
819
820 /* Time to isolate some pages for migration */
821 for (; low_pfn < end_pfn; low_pfn++) {
822
823 if (skip_on_failure && low_pfn >= next_skip_pfn) {
824 /*
825 * We have isolated all migration candidates in the
826 * previous order-aligned block, and did not skip it due
827 * to failure. We should migrate the pages now and
828 * hopefully succeed compaction.
829 */
830 if (nr_isolated)
831 break;
832
833 /*
834 * We failed to isolate in the previous order-aligned
835 * block. Set the new boundary to the end of the
836 * current block. Note we can't simply increase
837 * next_skip_pfn by 1 << order, as low_pfn might have
838 * been incremented by a higher number due to skipping
839 * a compound or a high-order buddy page in the
840 * previous loop iteration.
841 */
842 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
843 }
844
845 /*
846 * Periodically drop the lock (if held) regardless of its
847 * contention, to give chance to IRQs. Abort completely if
848 * a fatal signal is pending.
849 */
850 if (!(low_pfn % SWAP_CLUSTER_MAX)
851 && compact_unlock_should_abort(&pgdat->lru_lock,
852 flags, &locked, cc)) {
853 low_pfn = 0;
854 goto fatal_pending;
855 }
856
857 if (!pfn_valid_within(low_pfn))
858 goto isolate_fail;
859 nr_scanned++;
860
861 page = pfn_to_page(low_pfn);
862
863 /*
864 * Check if the pageblock has already been marked skipped.
865 * Only the aligned PFN is checked as the caller isolates
866 * COMPACT_CLUSTER_MAX at a time so the second call must
867 * not falsely conclude that the block should be skipped.
868 */
869 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
870 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
871 low_pfn = end_pfn;
872 goto isolate_abort;
873 }
874 valid_page = page;
875 }
876
877 /*
878 * Skip if free. We read page order here without zone lock
879 * which is generally unsafe, but the race window is small and
880 * the worst thing that can happen is that we skip some
881 * potential isolation targets.
882 */
883 if (PageBuddy(page)) {
884 unsigned long freepage_order = page_order_unsafe(page);
885
886 /*
887 * Without lock, we cannot be sure that what we got is
888 * a valid page order. Consider only values in the
889 * valid order range to prevent low_pfn overflow.
890 */
891 if (freepage_order > 0 && freepage_order < MAX_ORDER)
892 low_pfn += (1UL << freepage_order) - 1;
893 continue;
894 }
895
896 /*
897 * Regardless of being on LRU, compound pages such as THP and
898 * hugetlbfs are not to be compacted unless we are attempting
899 * an allocation much larger than the huge page size (eg CMA).
900 * We can potentially save a lot of iterations if we skip them
901 * at once. The check is racy, but we can consider only valid
902 * values and the only danger is skipping too much.
903 */
904 if (PageCompound(page) && !cc->alloc_contig) {
905 const unsigned int order = compound_order(page);
906
907 if (likely(order < MAX_ORDER))
908 low_pfn += (1UL << order) - 1;
909 goto isolate_fail;
910 }
911
912 /*
913 * Check may be lockless but that's ok as we recheck later.
914 * It's possible to migrate LRU and non-lru movable pages.
915 * Skip any other type of page
916 */
917 if (!PageLRU(page)) {
918 /*
919 * __PageMovable can return false positive so we need
920 * to verify it under page_lock.
921 */
922 if (unlikely(__PageMovable(page)) &&
923 !PageIsolated(page)) {
924 if (locked) {
925 spin_unlock_irqrestore(&pgdat->lru_lock,
926 flags);
927 locked = false;
928 }
929
930 if (!isolate_movable_page(page, isolate_mode))
931 goto isolate_success;
932 }
933
934 goto isolate_fail;
935 }
936
937 /*
938 * Migration will fail if an anonymous page is pinned in memory,
939 * so avoid taking lru_lock and isolating it unnecessarily in an
940 * admittedly racy check.
941 */
942 if (!page_mapping(page) &&
943 page_count(page) > page_mapcount(page))
944 goto isolate_fail;
945
946 /*
947 * Only allow to migrate anonymous pages in GFP_NOFS context
948 * because those do not depend on fs locks.
949 */
950 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
951 goto isolate_fail;
952
953 /* If we already hold the lock, we can skip some rechecking */
954 if (!locked) {
955 locked = compact_lock_irqsave(&pgdat->lru_lock,
956 &flags, cc);
957
958 /* Try get exclusive access under lock */
959 if (!skip_updated) {
960 skip_updated = true;
961 if (test_and_set_skip(cc, page, low_pfn))
962 goto isolate_abort;
963 }
964
965 /* Recheck PageLRU and PageCompound under lock */
966 if (!PageLRU(page))
967 goto isolate_fail;
968
969 /*
970 * Page become compound since the non-locked check,
971 * and it's on LRU. It can only be a THP so the order
972 * is safe to read and it's 0 for tail pages.
973 */
974 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
975 low_pfn += compound_nr(page) - 1;
976 goto isolate_fail;
977 }
978 }
979
980 lruvec = mem_cgroup_page_lruvec(page, pgdat);
981
982 /* Try isolate the page */
983 if (__isolate_lru_page(page, isolate_mode) != 0)
984 goto isolate_fail;
985
986 /* The whole page is taken off the LRU; skip the tail pages. */
987 if (PageCompound(page))
988 low_pfn += compound_nr(page) - 1;
989
990 /* Successfully isolated */
991 del_page_from_lru_list(page, lruvec, page_lru(page));
992 mod_node_page_state(page_pgdat(page),
993 NR_ISOLATED_ANON + page_is_file_lru(page),
994 hpage_nr_pages(page));
995
996 isolate_success:
997 list_add(&page->lru, &cc->migratepages);
998 cc->nr_migratepages++;
999 nr_isolated++;
1000
1001 /*
1002 * Avoid isolating too much unless this block is being
1003 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1004 * or a lock is contended. For contention, isolate quickly to
1005 * potentially remove one source of contention.
1006 */
1007 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1008 !cc->rescan && !cc->contended) {
1009 ++low_pfn;
1010 break;
1011 }
1012
1013 continue;
1014 isolate_fail:
1015 if (!skip_on_failure)
1016 continue;
1017
1018 /*
1019 * We have isolated some pages, but then failed. Release them
1020 * instead of migrating, as we cannot form the cc->order buddy
1021 * page anyway.
1022 */
1023 if (nr_isolated) {
1024 if (locked) {
1025 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1026 locked = false;
1027 }
1028 putback_movable_pages(&cc->migratepages);
1029 cc->nr_migratepages = 0;
1030 nr_isolated = 0;
1031 }
1032
1033 if (low_pfn < next_skip_pfn) {
1034 low_pfn = next_skip_pfn - 1;
1035 /*
1036 * The check near the loop beginning would have updated
1037 * next_skip_pfn too, but this is a bit simpler.
1038 */
1039 next_skip_pfn += 1UL << cc->order;
1040 }
1041 }
1042
1043 /*
1044 * The PageBuddy() check could have potentially brought us outside
1045 * the range to be scanned.
1046 */
1047 if (unlikely(low_pfn > end_pfn))
1048 low_pfn = end_pfn;
1049
1050 isolate_abort:
1051 if (locked)
1052 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1053
1054 /*
1055 * Updated the cached scanner pfn once the pageblock has been scanned
1056 * Pages will either be migrated in which case there is no point
1057 * scanning in the near future or migration failed in which case the
1058 * failure reason may persist. The block is marked for skipping if
1059 * there were no pages isolated in the block or if the block is
1060 * rescanned twice in a row.
1061 */
1062 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1063 if (valid_page && !skip_updated)
1064 set_pageblock_skip(valid_page);
1065 update_cached_migrate(cc, low_pfn);
1066 }
1067
1068 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1069 nr_scanned, nr_isolated);
1070
1071 fatal_pending:
1072 cc->total_migrate_scanned += nr_scanned;
1073 if (nr_isolated)
1074 count_compact_events(COMPACTISOLATED, nr_isolated);
1075
1076 return low_pfn;
1077 }
1078
1079 /**
1080 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1081 * @cc: Compaction control structure.
1082 * @start_pfn: The first PFN to start isolating.
1083 * @end_pfn: The one-past-last PFN.
1084 *
1085 * Returns zero if isolation fails fatally due to e.g. pending signal.
1086 * Otherwise, function returns one-past-the-last PFN of isolated page
1087 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1088 */
1089 unsigned long
1090 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1091 unsigned long end_pfn)
1092 {
1093 unsigned long pfn, block_start_pfn, block_end_pfn;
1094
1095 /* Scan block by block. First and last block may be incomplete */
1096 pfn = start_pfn;
1097 block_start_pfn = pageblock_start_pfn(pfn);
1098 if (block_start_pfn < cc->zone->zone_start_pfn)
1099 block_start_pfn = cc->zone->zone_start_pfn;
1100 block_end_pfn = pageblock_end_pfn(pfn);
1101
1102 for (; pfn < end_pfn; pfn = block_end_pfn,
1103 block_start_pfn = block_end_pfn,
1104 block_end_pfn += pageblock_nr_pages) {
1105
1106 block_end_pfn = min(block_end_pfn, end_pfn);
1107
1108 if (!pageblock_pfn_to_page(block_start_pfn,
1109 block_end_pfn, cc->zone))
1110 continue;
1111
1112 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1113 ISOLATE_UNEVICTABLE);
1114
1115 if (!pfn)
1116 break;
1117
1118 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1119 break;
1120 }
1121
1122 return pfn;
1123 }
1124
1125 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1126 #ifdef CONFIG_COMPACTION
1127
1128 static bool suitable_migration_source(struct compact_control *cc,
1129 struct page *page)
1130 {
1131 int block_mt;
1132
1133 if (pageblock_skip_persistent(page))
1134 return false;
1135
1136 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1137 return true;
1138
1139 block_mt = get_pageblock_migratetype(page);
1140
1141 if (cc->migratetype == MIGRATE_MOVABLE)
1142 return is_migrate_movable(block_mt);
1143 else
1144 return block_mt == cc->migratetype;
1145 }
1146
1147 /* Returns true if the page is within a block suitable for migration to */
1148 static bool suitable_migration_target(struct compact_control *cc,
1149 struct page *page)
1150 {
1151 /* If the page is a large free page, then disallow migration */
1152 if (PageBuddy(page)) {
1153 /*
1154 * We are checking page_order without zone->lock taken. But
1155 * the only small danger is that we skip a potentially suitable
1156 * pageblock, so it's not worth to check order for valid range.
1157 */
1158 if (page_order_unsafe(page) >= pageblock_order)
1159 return false;
1160 }
1161
1162 if (cc->ignore_block_suitable)
1163 return true;
1164
1165 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1166 if (is_migrate_movable(get_pageblock_migratetype(page)))
1167 return true;
1168
1169 /* Otherwise skip the block */
1170 return false;
1171 }
1172
1173 static inline unsigned int
1174 freelist_scan_limit(struct compact_control *cc)
1175 {
1176 unsigned short shift = BITS_PER_LONG - 1;
1177
1178 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1179 }
1180
1181 /*
1182 * Test whether the free scanner has reached the same or lower pageblock than
1183 * the migration scanner, and compaction should thus terminate.
1184 */
1185 static inline bool compact_scanners_met(struct compact_control *cc)
1186 {
1187 return (cc->free_pfn >> pageblock_order)
1188 <= (cc->migrate_pfn >> pageblock_order);
1189 }
1190
1191 /*
1192 * Used when scanning for a suitable migration target which scans freelists
1193 * in reverse. Reorders the list such as the unscanned pages are scanned
1194 * first on the next iteration of the free scanner
1195 */
1196 static void
1197 move_freelist_head(struct list_head *freelist, struct page *freepage)
1198 {
1199 LIST_HEAD(sublist);
1200
1201 if (!list_is_last(freelist, &freepage->lru)) {
1202 list_cut_before(&sublist, freelist, &freepage->lru);
1203 if (!list_empty(&sublist))
1204 list_splice_tail(&sublist, freelist);
1205 }
1206 }
1207
1208 /*
1209 * Similar to move_freelist_head except used by the migration scanner
1210 * when scanning forward. It's possible for these list operations to
1211 * move against each other if they search the free list exactly in
1212 * lockstep.
1213 */
1214 static void
1215 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1216 {
1217 LIST_HEAD(sublist);
1218
1219 if (!list_is_first(freelist, &freepage->lru)) {
1220 list_cut_position(&sublist, freelist, &freepage->lru);
1221 if (!list_empty(&sublist))
1222 list_splice_tail(&sublist, freelist);
1223 }
1224 }
1225
1226 static void
1227 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1228 {
1229 unsigned long start_pfn, end_pfn;
1230 struct page *page = pfn_to_page(pfn);
1231
1232 /* Do not search around if there are enough pages already */
1233 if (cc->nr_freepages >= cc->nr_migratepages)
1234 return;
1235
1236 /* Minimise scanning during async compaction */
1237 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1238 return;
1239
1240 /* Pageblock boundaries */
1241 start_pfn = pageblock_start_pfn(pfn);
1242 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1243
1244 /* Scan before */
1245 if (start_pfn != pfn) {
1246 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1247 if (cc->nr_freepages >= cc->nr_migratepages)
1248 return;
1249 }
1250
1251 /* Scan after */
1252 start_pfn = pfn + nr_isolated;
1253 if (start_pfn < end_pfn)
1254 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1255
1256 /* Skip this pageblock in the future as it's full or nearly full */
1257 if (cc->nr_freepages < cc->nr_migratepages)
1258 set_pageblock_skip(page);
1259 }
1260
1261 /* Search orders in round-robin fashion */
1262 static int next_search_order(struct compact_control *cc, int order)
1263 {
1264 order--;
1265 if (order < 0)
1266 order = cc->order - 1;
1267
1268 /* Search wrapped around? */
1269 if (order == cc->search_order) {
1270 cc->search_order--;
1271 if (cc->search_order < 0)
1272 cc->search_order = cc->order - 1;
1273 return -1;
1274 }
1275
1276 return order;
1277 }
1278
1279 static unsigned long
1280 fast_isolate_freepages(struct compact_control *cc)
1281 {
1282 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1283 unsigned int nr_scanned = 0;
1284 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1285 unsigned long nr_isolated = 0;
1286 unsigned long distance;
1287 struct page *page = NULL;
1288 bool scan_start = false;
1289 int order;
1290
1291 /* Full compaction passes in a negative order */
1292 if (cc->order <= 0)
1293 return cc->free_pfn;
1294
1295 /*
1296 * If starting the scan, use a deeper search and use the highest
1297 * PFN found if a suitable one is not found.
1298 */
1299 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1300 limit = pageblock_nr_pages >> 1;
1301 scan_start = true;
1302 }
1303
1304 /*
1305 * Preferred point is in the top quarter of the scan space but take
1306 * a pfn from the top half if the search is problematic.
1307 */
1308 distance = (cc->free_pfn - cc->migrate_pfn);
1309 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1310 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1311
1312 if (WARN_ON_ONCE(min_pfn > low_pfn))
1313 low_pfn = min_pfn;
1314
1315 /*
1316 * Search starts from the last successful isolation order or the next
1317 * order to search after a previous failure
1318 */
1319 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1320
1321 for (order = cc->search_order;
1322 !page && order >= 0;
1323 order = next_search_order(cc, order)) {
1324 struct free_area *area = &cc->zone->free_area[order];
1325 struct list_head *freelist;
1326 struct page *freepage;
1327 unsigned long flags;
1328 unsigned int order_scanned = 0;
1329
1330 if (!area->nr_free)
1331 continue;
1332
1333 spin_lock_irqsave(&cc->zone->lock, flags);
1334 freelist = &area->free_list[MIGRATE_MOVABLE];
1335 list_for_each_entry_reverse(freepage, freelist, lru) {
1336 unsigned long pfn;
1337
1338 order_scanned++;
1339 nr_scanned++;
1340 pfn = page_to_pfn(freepage);
1341
1342 if (pfn >= highest)
1343 highest = pageblock_start_pfn(pfn);
1344
1345 if (pfn >= low_pfn) {
1346 cc->fast_search_fail = 0;
1347 cc->search_order = order;
1348 page = freepage;
1349 break;
1350 }
1351
1352 if (pfn >= min_pfn && pfn > high_pfn) {
1353 high_pfn = pfn;
1354
1355 /* Shorten the scan if a candidate is found */
1356 limit >>= 1;
1357 }
1358
1359 if (order_scanned >= limit)
1360 break;
1361 }
1362
1363 /* Use a minimum pfn if a preferred one was not found */
1364 if (!page && high_pfn) {
1365 page = pfn_to_page(high_pfn);
1366
1367 /* Update freepage for the list reorder below */
1368 freepage = page;
1369 }
1370
1371 /* Reorder to so a future search skips recent pages */
1372 move_freelist_head(freelist, freepage);
1373
1374 /* Isolate the page if available */
1375 if (page) {
1376 if (__isolate_free_page(page, order)) {
1377 set_page_private(page, order);
1378 nr_isolated = 1 << order;
1379 cc->nr_freepages += nr_isolated;
1380 list_add_tail(&page->lru, &cc->freepages);
1381 count_compact_events(COMPACTISOLATED, nr_isolated);
1382 } else {
1383 /* If isolation fails, abort the search */
1384 order = cc->search_order + 1;
1385 page = NULL;
1386 }
1387 }
1388
1389 spin_unlock_irqrestore(&cc->zone->lock, flags);
1390
1391 /*
1392 * Smaller scan on next order so the total scan ig related
1393 * to freelist_scan_limit.
1394 */
1395 if (order_scanned >= limit)
1396 limit = min(1U, limit >> 1);
1397 }
1398
1399 if (!page) {
1400 cc->fast_search_fail++;
1401 if (scan_start) {
1402 /*
1403 * Use the highest PFN found above min. If one was
1404 * not found, be pessimistic for direct compaction
1405 * and use the min mark.
1406 */
1407 if (highest) {
1408 page = pfn_to_page(highest);
1409 cc->free_pfn = highest;
1410 } else {
1411 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1412 page = pageblock_pfn_to_page(min_pfn,
1413 pageblock_end_pfn(min_pfn),
1414 cc->zone);
1415 cc->free_pfn = min_pfn;
1416 }
1417 }
1418 }
1419 }
1420
1421 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1422 highest -= pageblock_nr_pages;
1423 cc->zone->compact_cached_free_pfn = highest;
1424 }
1425
1426 cc->total_free_scanned += nr_scanned;
1427 if (!page)
1428 return cc->free_pfn;
1429
1430 low_pfn = page_to_pfn(page);
1431 fast_isolate_around(cc, low_pfn, nr_isolated);
1432 return low_pfn;
1433 }
1434
1435 /*
1436 * Based on information in the current compact_control, find blocks
1437 * suitable for isolating free pages from and then isolate them.
1438 */
1439 static void isolate_freepages(struct compact_control *cc)
1440 {
1441 struct zone *zone = cc->zone;
1442 struct page *page;
1443 unsigned long block_start_pfn; /* start of current pageblock */
1444 unsigned long isolate_start_pfn; /* exact pfn we start at */
1445 unsigned long block_end_pfn; /* end of current pageblock */
1446 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1447 struct list_head *freelist = &cc->freepages;
1448 unsigned int stride;
1449
1450 /* Try a small search of the free lists for a candidate */
1451 isolate_start_pfn = fast_isolate_freepages(cc);
1452 if (cc->nr_freepages)
1453 goto splitmap;
1454
1455 /*
1456 * Initialise the free scanner. The starting point is where we last
1457 * successfully isolated from, zone-cached value, or the end of the
1458 * zone when isolating for the first time. For looping we also need
1459 * this pfn aligned down to the pageblock boundary, because we do
1460 * block_start_pfn -= pageblock_nr_pages in the for loop.
1461 * For ending point, take care when isolating in last pageblock of a
1462 * a zone which ends in the middle of a pageblock.
1463 * The low boundary is the end of the pageblock the migration scanner
1464 * is using.
1465 */
1466 isolate_start_pfn = cc->free_pfn;
1467 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1468 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1469 zone_end_pfn(zone));
1470 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1471 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1472
1473 /*
1474 * Isolate free pages until enough are available to migrate the
1475 * pages on cc->migratepages. We stop searching if the migrate
1476 * and free page scanners meet or enough free pages are isolated.
1477 */
1478 for (; block_start_pfn >= low_pfn;
1479 block_end_pfn = block_start_pfn,
1480 block_start_pfn -= pageblock_nr_pages,
1481 isolate_start_pfn = block_start_pfn) {
1482 unsigned long nr_isolated;
1483
1484 /*
1485 * This can iterate a massively long zone without finding any
1486 * suitable migration targets, so periodically check resched.
1487 */
1488 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1489 cond_resched();
1490
1491 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1492 zone);
1493 if (!page)
1494 continue;
1495
1496 /* Check the block is suitable for migration */
1497 if (!suitable_migration_target(cc, page))
1498 continue;
1499
1500 /* If isolation recently failed, do not retry */
1501 if (!isolation_suitable(cc, page))
1502 continue;
1503
1504 /* Found a block suitable for isolating free pages from. */
1505 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1506 block_end_pfn, freelist, stride, false);
1507
1508 /* Update the skip hint if the full pageblock was scanned */
1509 if (isolate_start_pfn == block_end_pfn)
1510 update_pageblock_skip(cc, page, block_start_pfn);
1511
1512 /* Are enough freepages isolated? */
1513 if (cc->nr_freepages >= cc->nr_migratepages) {
1514 if (isolate_start_pfn >= block_end_pfn) {
1515 /*
1516 * Restart at previous pageblock if more
1517 * freepages can be isolated next time.
1518 */
1519 isolate_start_pfn =
1520 block_start_pfn - pageblock_nr_pages;
1521 }
1522 break;
1523 } else if (isolate_start_pfn < block_end_pfn) {
1524 /*
1525 * If isolation failed early, do not continue
1526 * needlessly.
1527 */
1528 break;
1529 }
1530
1531 /* Adjust stride depending on isolation */
1532 if (nr_isolated) {
1533 stride = 1;
1534 continue;
1535 }
1536 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1537 }
1538
1539 /*
1540 * Record where the free scanner will restart next time. Either we
1541 * broke from the loop and set isolate_start_pfn based on the last
1542 * call to isolate_freepages_block(), or we met the migration scanner
1543 * and the loop terminated due to isolate_start_pfn < low_pfn
1544 */
1545 cc->free_pfn = isolate_start_pfn;
1546
1547 splitmap:
1548 /* __isolate_free_page() does not map the pages */
1549 split_map_pages(freelist);
1550 }
1551
1552 /*
1553 * This is a migrate-callback that "allocates" freepages by taking pages
1554 * from the isolated freelists in the block we are migrating to.
1555 */
1556 static struct page *compaction_alloc(struct page *migratepage,
1557 unsigned long data)
1558 {
1559 struct compact_control *cc = (struct compact_control *)data;
1560 struct page *freepage;
1561
1562 if (list_empty(&cc->freepages)) {
1563 isolate_freepages(cc);
1564
1565 if (list_empty(&cc->freepages))
1566 return NULL;
1567 }
1568
1569 freepage = list_entry(cc->freepages.next, struct page, lru);
1570 list_del(&freepage->lru);
1571 cc->nr_freepages--;
1572
1573 return freepage;
1574 }
1575
1576 /*
1577 * This is a migrate-callback that "frees" freepages back to the isolated
1578 * freelist. All pages on the freelist are from the same zone, so there is no
1579 * special handling needed for NUMA.
1580 */
1581 static void compaction_free(struct page *page, unsigned long data)
1582 {
1583 struct compact_control *cc = (struct compact_control *)data;
1584
1585 list_add(&page->lru, &cc->freepages);
1586 cc->nr_freepages++;
1587 }
1588
1589 /* possible outcome of isolate_migratepages */
1590 typedef enum {
1591 ISOLATE_ABORT, /* Abort compaction now */
1592 ISOLATE_NONE, /* No pages isolated, continue scanning */
1593 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1594 } isolate_migrate_t;
1595
1596 /*
1597 * Allow userspace to control policy on scanning the unevictable LRU for
1598 * compactable pages.
1599 */
1600 #ifdef CONFIG_PREEMPT_RT
1601 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1602 #else
1603 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1604 #endif
1605
1606 static inline void
1607 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1608 {
1609 if (cc->fast_start_pfn == ULONG_MAX)
1610 return;
1611
1612 if (!cc->fast_start_pfn)
1613 cc->fast_start_pfn = pfn;
1614
1615 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1616 }
1617
1618 static inline unsigned long
1619 reinit_migrate_pfn(struct compact_control *cc)
1620 {
1621 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1622 return cc->migrate_pfn;
1623
1624 cc->migrate_pfn = cc->fast_start_pfn;
1625 cc->fast_start_pfn = ULONG_MAX;
1626
1627 return cc->migrate_pfn;
1628 }
1629
1630 /*
1631 * Briefly search the free lists for a migration source that already has
1632 * some free pages to reduce the number of pages that need migration
1633 * before a pageblock is free.
1634 */
1635 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1636 {
1637 unsigned int limit = freelist_scan_limit(cc);
1638 unsigned int nr_scanned = 0;
1639 unsigned long distance;
1640 unsigned long pfn = cc->migrate_pfn;
1641 unsigned long high_pfn;
1642 int order;
1643
1644 /* Skip hints are relied on to avoid repeats on the fast search */
1645 if (cc->ignore_skip_hint)
1646 return pfn;
1647
1648 /*
1649 * If the migrate_pfn is not at the start of a zone or the start
1650 * of a pageblock then assume this is a continuation of a previous
1651 * scan restarted due to COMPACT_CLUSTER_MAX.
1652 */
1653 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1654 return pfn;
1655
1656 /*
1657 * For smaller orders, just linearly scan as the number of pages
1658 * to migrate should be relatively small and does not necessarily
1659 * justify freeing up a large block for a small allocation.
1660 */
1661 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1662 return pfn;
1663
1664 /*
1665 * Only allow kcompactd and direct requests for movable pages to
1666 * quickly clear out a MOVABLE pageblock for allocation. This
1667 * reduces the risk that a large movable pageblock is freed for
1668 * an unmovable/reclaimable small allocation.
1669 */
1670 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1671 return pfn;
1672
1673 /*
1674 * When starting the migration scanner, pick any pageblock within the
1675 * first half of the search space. Otherwise try and pick a pageblock
1676 * within the first eighth to reduce the chances that a migration
1677 * target later becomes a source.
1678 */
1679 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1680 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1681 distance >>= 2;
1682 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1683
1684 for (order = cc->order - 1;
1685 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1686 order--) {
1687 struct free_area *area = &cc->zone->free_area[order];
1688 struct list_head *freelist;
1689 unsigned long flags;
1690 struct page *freepage;
1691
1692 if (!area->nr_free)
1693 continue;
1694
1695 spin_lock_irqsave(&cc->zone->lock, flags);
1696 freelist = &area->free_list[MIGRATE_MOVABLE];
1697 list_for_each_entry(freepage, freelist, lru) {
1698 unsigned long free_pfn;
1699
1700 nr_scanned++;
1701 free_pfn = page_to_pfn(freepage);
1702 if (free_pfn < high_pfn) {
1703 /*
1704 * Avoid if skipped recently. Ideally it would
1705 * move to the tail but even safe iteration of
1706 * the list assumes an entry is deleted, not
1707 * reordered.
1708 */
1709 if (get_pageblock_skip(freepage)) {
1710 if (list_is_last(freelist, &freepage->lru))
1711 break;
1712
1713 continue;
1714 }
1715
1716 /* Reorder to so a future search skips recent pages */
1717 move_freelist_tail(freelist, freepage);
1718
1719 update_fast_start_pfn(cc, free_pfn);
1720 pfn = pageblock_start_pfn(free_pfn);
1721 cc->fast_search_fail = 0;
1722 set_pageblock_skip(freepage);
1723 break;
1724 }
1725
1726 if (nr_scanned >= limit) {
1727 cc->fast_search_fail++;
1728 move_freelist_tail(freelist, freepage);
1729 break;
1730 }
1731 }
1732 spin_unlock_irqrestore(&cc->zone->lock, flags);
1733 }
1734
1735 cc->total_migrate_scanned += nr_scanned;
1736
1737 /*
1738 * If fast scanning failed then use a cached entry for a page block
1739 * that had free pages as the basis for starting a linear scan.
1740 */
1741 if (pfn == cc->migrate_pfn)
1742 pfn = reinit_migrate_pfn(cc);
1743
1744 return pfn;
1745 }
1746
1747 /*
1748 * Isolate all pages that can be migrated from the first suitable block,
1749 * starting at the block pointed to by the migrate scanner pfn within
1750 * compact_control.
1751 */
1752 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1753 {
1754 unsigned long block_start_pfn;
1755 unsigned long block_end_pfn;
1756 unsigned long low_pfn;
1757 struct page *page;
1758 const isolate_mode_t isolate_mode =
1759 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1760 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1761 bool fast_find_block;
1762
1763 /*
1764 * Start at where we last stopped, or beginning of the zone as
1765 * initialized by compact_zone(). The first failure will use
1766 * the lowest PFN as the starting point for linear scanning.
1767 */
1768 low_pfn = fast_find_migrateblock(cc);
1769 block_start_pfn = pageblock_start_pfn(low_pfn);
1770 if (block_start_pfn < cc->zone->zone_start_pfn)
1771 block_start_pfn = cc->zone->zone_start_pfn;
1772
1773 /*
1774 * fast_find_migrateblock marks a pageblock skipped so to avoid
1775 * the isolation_suitable check below, check whether the fast
1776 * search was successful.
1777 */
1778 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1779
1780 /* Only scan within a pageblock boundary */
1781 block_end_pfn = pageblock_end_pfn(low_pfn);
1782
1783 /*
1784 * Iterate over whole pageblocks until we find the first suitable.
1785 * Do not cross the free scanner.
1786 */
1787 for (; block_end_pfn <= cc->free_pfn;
1788 fast_find_block = false,
1789 low_pfn = block_end_pfn,
1790 block_start_pfn = block_end_pfn,
1791 block_end_pfn += pageblock_nr_pages) {
1792
1793 /*
1794 * This can potentially iterate a massively long zone with
1795 * many pageblocks unsuitable, so periodically check if we
1796 * need to schedule.
1797 */
1798 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1799 cond_resched();
1800
1801 page = pageblock_pfn_to_page(block_start_pfn,
1802 block_end_pfn, cc->zone);
1803 if (!page)
1804 continue;
1805
1806 /*
1807 * If isolation recently failed, do not retry. Only check the
1808 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1809 * to be visited multiple times. Assume skip was checked
1810 * before making it "skip" so other compaction instances do
1811 * not scan the same block.
1812 */
1813 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1814 !fast_find_block && !isolation_suitable(cc, page))
1815 continue;
1816
1817 /*
1818 * For async compaction, also only scan in MOVABLE blocks
1819 * without huge pages. Async compaction is optimistic to see
1820 * if the minimum amount of work satisfies the allocation.
1821 * The cached PFN is updated as it's possible that all
1822 * remaining blocks between source and target are unsuitable
1823 * and the compaction scanners fail to meet.
1824 */
1825 if (!suitable_migration_source(cc, page)) {
1826 update_cached_migrate(cc, block_end_pfn);
1827 continue;
1828 }
1829
1830 /* Perform the isolation */
1831 low_pfn = isolate_migratepages_block(cc, low_pfn,
1832 block_end_pfn, isolate_mode);
1833
1834 if (!low_pfn)
1835 return ISOLATE_ABORT;
1836
1837 /*
1838 * Either we isolated something and proceed with migration. Or
1839 * we failed and compact_zone should decide if we should
1840 * continue or not.
1841 */
1842 break;
1843 }
1844
1845 /* Record where migration scanner will be restarted. */
1846 cc->migrate_pfn = low_pfn;
1847
1848 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1849 }
1850
1851 /*
1852 * order == -1 is expected when compacting via
1853 * /proc/sys/vm/compact_memory
1854 */
1855 static inline bool is_via_compact_memory(int order)
1856 {
1857 return order == -1;
1858 }
1859
1860 static enum compact_result __compact_finished(struct compact_control *cc)
1861 {
1862 unsigned int order;
1863 const int migratetype = cc->migratetype;
1864 int ret;
1865
1866 /* Compaction run completes if the migrate and free scanner meet */
1867 if (compact_scanners_met(cc)) {
1868 /* Let the next compaction start anew. */
1869 reset_cached_positions(cc->zone);
1870
1871 /*
1872 * Mark that the PG_migrate_skip information should be cleared
1873 * by kswapd when it goes to sleep. kcompactd does not set the
1874 * flag itself as the decision to be clear should be directly
1875 * based on an allocation request.
1876 */
1877 if (cc->direct_compaction)
1878 cc->zone->compact_blockskip_flush = true;
1879
1880 if (cc->whole_zone)
1881 return COMPACT_COMPLETE;
1882 else
1883 return COMPACT_PARTIAL_SKIPPED;
1884 }
1885
1886 if (is_via_compact_memory(cc->order))
1887 return COMPACT_CONTINUE;
1888
1889 /*
1890 * Always finish scanning a pageblock to reduce the possibility of
1891 * fallbacks in the future. This is particularly important when
1892 * migration source is unmovable/reclaimable but it's not worth
1893 * special casing.
1894 */
1895 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1896 return COMPACT_CONTINUE;
1897
1898 /* Direct compactor: Is a suitable page free? */
1899 ret = COMPACT_NO_SUITABLE_PAGE;
1900 for (order = cc->order; order < MAX_ORDER; order++) {
1901 struct free_area *area = &cc->zone->free_area[order];
1902 bool can_steal;
1903
1904 /* Job done if page is free of the right migratetype */
1905 if (!free_area_empty(area, migratetype))
1906 return COMPACT_SUCCESS;
1907
1908 #ifdef CONFIG_CMA
1909 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1910 if (migratetype == MIGRATE_MOVABLE &&
1911 !free_area_empty(area, MIGRATE_CMA))
1912 return COMPACT_SUCCESS;
1913 #endif
1914 /*
1915 * Job done if allocation would steal freepages from
1916 * other migratetype buddy lists.
1917 */
1918 if (find_suitable_fallback(area, order, migratetype,
1919 true, &can_steal) != -1) {
1920
1921 /* movable pages are OK in any pageblock */
1922 if (migratetype == MIGRATE_MOVABLE)
1923 return COMPACT_SUCCESS;
1924
1925 /*
1926 * We are stealing for a non-movable allocation. Make
1927 * sure we finish compacting the current pageblock
1928 * first so it is as free as possible and we won't
1929 * have to steal another one soon. This only applies
1930 * to sync compaction, as async compaction operates
1931 * on pageblocks of the same migratetype.
1932 */
1933 if (cc->mode == MIGRATE_ASYNC ||
1934 IS_ALIGNED(cc->migrate_pfn,
1935 pageblock_nr_pages)) {
1936 return COMPACT_SUCCESS;
1937 }
1938
1939 ret = COMPACT_CONTINUE;
1940 break;
1941 }
1942 }
1943
1944 if (cc->contended || fatal_signal_pending(current))
1945 ret = COMPACT_CONTENDED;
1946
1947 return ret;
1948 }
1949
1950 static enum compact_result compact_finished(struct compact_control *cc)
1951 {
1952 int ret;
1953
1954 ret = __compact_finished(cc);
1955 trace_mm_compaction_finished(cc->zone, cc->order, ret);
1956 if (ret == COMPACT_NO_SUITABLE_PAGE)
1957 ret = COMPACT_CONTINUE;
1958
1959 return ret;
1960 }
1961
1962 /*
1963 * compaction_suitable: Is this suitable to run compaction on this zone now?
1964 * Returns
1965 * COMPACT_SKIPPED - If there are too few free pages for compaction
1966 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1967 * COMPACT_CONTINUE - If compaction should run now
1968 */
1969 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1970 unsigned int alloc_flags,
1971 int highest_zoneidx,
1972 unsigned long wmark_target)
1973 {
1974 unsigned long watermark;
1975
1976 if (is_via_compact_memory(order))
1977 return COMPACT_CONTINUE;
1978
1979 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1980 /*
1981 * If watermarks for high-order allocation are already met, there
1982 * should be no need for compaction at all.
1983 */
1984 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
1985 alloc_flags))
1986 return COMPACT_SUCCESS;
1987
1988 /*
1989 * Watermarks for order-0 must be met for compaction to be able to
1990 * isolate free pages for migration targets. This means that the
1991 * watermark and alloc_flags have to match, or be more pessimistic than
1992 * the check in __isolate_free_page(). We don't use the direct
1993 * compactor's alloc_flags, as they are not relevant for freepage
1994 * isolation. We however do use the direct compactor's highest_zoneidx
1995 * to skip over zones where lowmem reserves would prevent allocation
1996 * even if compaction succeeds.
1997 * For costly orders, we require low watermark instead of min for
1998 * compaction to proceed to increase its chances.
1999 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2000 * suitable migration targets
2001 */
2002 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2003 low_wmark_pages(zone) : min_wmark_pages(zone);
2004 watermark += compact_gap(order);
2005 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2006 ALLOC_CMA, wmark_target))
2007 return COMPACT_SKIPPED;
2008
2009 return COMPACT_CONTINUE;
2010 }
2011
2012 enum compact_result compaction_suitable(struct zone *zone, int order,
2013 unsigned int alloc_flags,
2014 int highest_zoneidx)
2015 {
2016 enum compact_result ret;
2017 int fragindex;
2018
2019 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2020 zone_page_state(zone, NR_FREE_PAGES));
2021 /*
2022 * fragmentation index determines if allocation failures are due to
2023 * low memory or external fragmentation
2024 *
2025 * index of -1000 would imply allocations might succeed depending on
2026 * watermarks, but we already failed the high-order watermark check
2027 * index towards 0 implies failure is due to lack of memory
2028 * index towards 1000 implies failure is due to fragmentation
2029 *
2030 * Only compact if a failure would be due to fragmentation. Also
2031 * ignore fragindex for non-costly orders where the alternative to
2032 * a successful reclaim/compaction is OOM. Fragindex and the
2033 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2034 * excessive compaction for costly orders, but it should not be at the
2035 * expense of system stability.
2036 */
2037 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2038 fragindex = fragmentation_index(zone, order);
2039 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2040 ret = COMPACT_NOT_SUITABLE_ZONE;
2041 }
2042
2043 trace_mm_compaction_suitable(zone, order, ret);
2044 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2045 ret = COMPACT_SKIPPED;
2046
2047 return ret;
2048 }
2049
2050 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2051 int alloc_flags)
2052 {
2053 struct zone *zone;
2054 struct zoneref *z;
2055
2056 /*
2057 * Make sure at least one zone would pass __compaction_suitable if we continue
2058 * retrying the reclaim.
2059 */
2060 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2061 ac->highest_zoneidx, ac->nodemask) {
2062 unsigned long available;
2063 enum compact_result compact_result;
2064
2065 /*
2066 * Do not consider all the reclaimable memory because we do not
2067 * want to trash just for a single high order allocation which
2068 * is even not guaranteed to appear even if __compaction_suitable
2069 * is happy about the watermark check.
2070 */
2071 available = zone_reclaimable_pages(zone) / order;
2072 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2073 compact_result = __compaction_suitable(zone, order, alloc_flags,
2074 ac->highest_zoneidx, available);
2075 if (compact_result != COMPACT_SKIPPED)
2076 return true;
2077 }
2078
2079 return false;
2080 }
2081
2082 static enum compact_result
2083 compact_zone(struct compact_control *cc, struct capture_control *capc)
2084 {
2085 enum compact_result ret;
2086 unsigned long start_pfn = cc->zone->zone_start_pfn;
2087 unsigned long end_pfn = zone_end_pfn(cc->zone);
2088 unsigned long last_migrated_pfn;
2089 const bool sync = cc->mode != MIGRATE_ASYNC;
2090 bool update_cached;
2091
2092 /*
2093 * These counters track activities during zone compaction. Initialize
2094 * them before compacting a new zone.
2095 */
2096 cc->total_migrate_scanned = 0;
2097 cc->total_free_scanned = 0;
2098 cc->nr_migratepages = 0;
2099 cc->nr_freepages = 0;
2100 INIT_LIST_HEAD(&cc->freepages);
2101 INIT_LIST_HEAD(&cc->migratepages);
2102
2103 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2104 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2105 cc->highest_zoneidx);
2106 /* Compaction is likely to fail */
2107 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2108 return ret;
2109
2110 /* huh, compaction_suitable is returning something unexpected */
2111 VM_BUG_ON(ret != COMPACT_CONTINUE);
2112
2113 /*
2114 * Clear pageblock skip if there were failures recently and compaction
2115 * is about to be retried after being deferred.
2116 */
2117 if (compaction_restarting(cc->zone, cc->order))
2118 __reset_isolation_suitable(cc->zone);
2119
2120 /*
2121 * Setup to move all movable pages to the end of the zone. Used cached
2122 * information on where the scanners should start (unless we explicitly
2123 * want to compact the whole zone), but check that it is initialised
2124 * by ensuring the values are within zone boundaries.
2125 */
2126 cc->fast_start_pfn = 0;
2127 if (cc->whole_zone) {
2128 cc->migrate_pfn = start_pfn;
2129 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2130 } else {
2131 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2132 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2133 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2134 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2135 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2136 }
2137 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2138 cc->migrate_pfn = start_pfn;
2139 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2140 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2141 }
2142
2143 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2144 cc->whole_zone = true;
2145 }
2146
2147 last_migrated_pfn = 0;
2148
2149 /*
2150 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2151 * the basis that some migrations will fail in ASYNC mode. However,
2152 * if the cached PFNs match and pageblocks are skipped due to having
2153 * no isolation candidates, then the sync state does not matter.
2154 * Until a pageblock with isolation candidates is found, keep the
2155 * cached PFNs in sync to avoid revisiting the same blocks.
2156 */
2157 update_cached = !sync &&
2158 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2159
2160 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2161 cc->free_pfn, end_pfn, sync);
2162
2163 migrate_prep_local();
2164
2165 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2166 int err;
2167 unsigned long start_pfn = cc->migrate_pfn;
2168
2169 /*
2170 * Avoid multiple rescans which can happen if a page cannot be
2171 * isolated (dirty/writeback in async mode) or if the migrated
2172 * pages are being allocated before the pageblock is cleared.
2173 * The first rescan will capture the entire pageblock for
2174 * migration. If it fails, it'll be marked skip and scanning
2175 * will proceed as normal.
2176 */
2177 cc->rescan = false;
2178 if (pageblock_start_pfn(last_migrated_pfn) ==
2179 pageblock_start_pfn(start_pfn)) {
2180 cc->rescan = true;
2181 }
2182
2183 switch (isolate_migratepages(cc)) {
2184 case ISOLATE_ABORT:
2185 ret = COMPACT_CONTENDED;
2186 putback_movable_pages(&cc->migratepages);
2187 cc->nr_migratepages = 0;
2188 goto out;
2189 case ISOLATE_NONE:
2190 if (update_cached) {
2191 cc->zone->compact_cached_migrate_pfn[1] =
2192 cc->zone->compact_cached_migrate_pfn[0];
2193 }
2194
2195 /*
2196 * We haven't isolated and migrated anything, but
2197 * there might still be unflushed migrations from
2198 * previous cc->order aligned block.
2199 */
2200 goto check_drain;
2201 case ISOLATE_SUCCESS:
2202 update_cached = false;
2203 last_migrated_pfn = start_pfn;
2204 ;
2205 }
2206
2207 err = migrate_pages(&cc->migratepages, compaction_alloc,
2208 compaction_free, (unsigned long)cc, cc->mode,
2209 MR_COMPACTION);
2210
2211 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2212 &cc->migratepages);
2213
2214 /* All pages were either migrated or will be released */
2215 cc->nr_migratepages = 0;
2216 if (err) {
2217 putback_movable_pages(&cc->migratepages);
2218 /*
2219 * migrate_pages() may return -ENOMEM when scanners meet
2220 * and we want compact_finished() to detect it
2221 */
2222 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2223 ret = COMPACT_CONTENDED;
2224 goto out;
2225 }
2226 /*
2227 * We failed to migrate at least one page in the current
2228 * order-aligned block, so skip the rest of it.
2229 */
2230 if (cc->direct_compaction &&
2231 (cc->mode == MIGRATE_ASYNC)) {
2232 cc->migrate_pfn = block_end_pfn(
2233 cc->migrate_pfn - 1, cc->order);
2234 /* Draining pcplists is useless in this case */
2235 last_migrated_pfn = 0;
2236 }
2237 }
2238
2239 check_drain:
2240 /*
2241 * Has the migration scanner moved away from the previous
2242 * cc->order aligned block where we migrated from? If yes,
2243 * flush the pages that were freed, so that they can merge and
2244 * compact_finished() can detect immediately if allocation
2245 * would succeed.
2246 */
2247 if (cc->order > 0 && last_migrated_pfn) {
2248 unsigned long current_block_start =
2249 block_start_pfn(cc->migrate_pfn, cc->order);
2250
2251 if (last_migrated_pfn < current_block_start) {
2252 lru_add_drain_cpu_zone(cc->zone);
2253 /* No more flushing until we migrate again */
2254 last_migrated_pfn = 0;
2255 }
2256 }
2257
2258 /* Stop if a page has been captured */
2259 if (capc && capc->page) {
2260 ret = COMPACT_SUCCESS;
2261 break;
2262 }
2263 }
2264
2265 out:
2266 /*
2267 * Release free pages and update where the free scanner should restart,
2268 * so we don't leave any returned pages behind in the next attempt.
2269 */
2270 if (cc->nr_freepages > 0) {
2271 unsigned long free_pfn = release_freepages(&cc->freepages);
2272
2273 cc->nr_freepages = 0;
2274 VM_BUG_ON(free_pfn == 0);
2275 /* The cached pfn is always the first in a pageblock */
2276 free_pfn = pageblock_start_pfn(free_pfn);
2277 /*
2278 * Only go back, not forward. The cached pfn might have been
2279 * already reset to zone end in compact_finished()
2280 */
2281 if (free_pfn > cc->zone->compact_cached_free_pfn)
2282 cc->zone->compact_cached_free_pfn = free_pfn;
2283 }
2284
2285 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2286 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2287
2288 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2289 cc->free_pfn, end_pfn, sync, ret);
2290
2291 return ret;
2292 }
2293
2294 static enum compact_result compact_zone_order(struct zone *zone, int order,
2295 gfp_t gfp_mask, enum compact_priority prio,
2296 unsigned int alloc_flags, int highest_zoneidx,
2297 struct page **capture)
2298 {
2299 enum compact_result ret;
2300 struct compact_control cc = {
2301 .order = order,
2302 .search_order = order,
2303 .gfp_mask = gfp_mask,
2304 .zone = zone,
2305 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2306 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2307 .alloc_flags = alloc_flags,
2308 .highest_zoneidx = highest_zoneidx,
2309 .direct_compaction = true,
2310 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2311 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2312 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2313 };
2314 struct capture_control capc = {
2315 .cc = &cc,
2316 .page = NULL,
2317 };
2318
2319 /*
2320 * Make sure the structs are really initialized before we expose the
2321 * capture control, in case we are interrupted and the interrupt handler
2322 * frees a page.
2323 */
2324 barrier();
2325 WRITE_ONCE(current->capture_control, &capc);
2326
2327 ret = compact_zone(&cc, &capc);
2328
2329 VM_BUG_ON(!list_empty(&cc.freepages));
2330 VM_BUG_ON(!list_empty(&cc.migratepages));
2331
2332 /*
2333 * Make sure we hide capture control first before we read the captured
2334 * page pointer, otherwise an interrupt could free and capture a page
2335 * and we would leak it.
2336 */
2337 WRITE_ONCE(current->capture_control, NULL);
2338 *capture = READ_ONCE(capc.page);
2339
2340 return ret;
2341 }
2342
2343 int sysctl_extfrag_threshold = 500;
2344
2345 /**
2346 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2347 * @gfp_mask: The GFP mask of the current allocation
2348 * @order: The order of the current allocation
2349 * @alloc_flags: The allocation flags of the current allocation
2350 * @ac: The context of current allocation
2351 * @prio: Determines how hard direct compaction should try to succeed
2352 * @capture: Pointer to free page created by compaction will be stored here
2353 *
2354 * This is the main entry point for direct page compaction.
2355 */
2356 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2357 unsigned int alloc_flags, const struct alloc_context *ac,
2358 enum compact_priority prio, struct page **capture)
2359 {
2360 int may_perform_io = gfp_mask & __GFP_IO;
2361 struct zoneref *z;
2362 struct zone *zone;
2363 enum compact_result rc = COMPACT_SKIPPED;
2364
2365 /*
2366 * Check if the GFP flags allow compaction - GFP_NOIO is really
2367 * tricky context because the migration might require IO
2368 */
2369 if (!may_perform_io)
2370 return COMPACT_SKIPPED;
2371
2372 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2373
2374 /* Compact each zone in the list */
2375 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2376 ac->highest_zoneidx, ac->nodemask) {
2377 enum compact_result status;
2378
2379 if (prio > MIN_COMPACT_PRIORITY
2380 && compaction_deferred(zone, order)) {
2381 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2382 continue;
2383 }
2384
2385 status = compact_zone_order(zone, order, gfp_mask, prio,
2386 alloc_flags, ac->highest_zoneidx, capture);
2387 rc = max(status, rc);
2388
2389 /* The allocation should succeed, stop compacting */
2390 if (status == COMPACT_SUCCESS) {
2391 /*
2392 * We think the allocation will succeed in this zone,
2393 * but it is not certain, hence the false. The caller
2394 * will repeat this with true if allocation indeed
2395 * succeeds in this zone.
2396 */
2397 compaction_defer_reset(zone, order, false);
2398
2399 break;
2400 }
2401
2402 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2403 status == COMPACT_PARTIAL_SKIPPED))
2404 /*
2405 * We think that allocation won't succeed in this zone
2406 * so we defer compaction there. If it ends up
2407 * succeeding after all, it will be reset.
2408 */
2409 defer_compaction(zone, order);
2410
2411 /*
2412 * We might have stopped compacting due to need_resched() in
2413 * async compaction, or due to a fatal signal detected. In that
2414 * case do not try further zones
2415 */
2416 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2417 || fatal_signal_pending(current))
2418 break;
2419 }
2420
2421 return rc;
2422 }
2423
2424
2425 /* Compact all zones within a node */
2426 static void compact_node(int nid)
2427 {
2428 pg_data_t *pgdat = NODE_DATA(nid);
2429 int zoneid;
2430 struct zone *zone;
2431 struct compact_control cc = {
2432 .order = -1,
2433 .mode = MIGRATE_SYNC,
2434 .ignore_skip_hint = true,
2435 .whole_zone = true,
2436 .gfp_mask = GFP_KERNEL,
2437 };
2438
2439
2440 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2441
2442 zone = &pgdat->node_zones[zoneid];
2443 if (!populated_zone(zone))
2444 continue;
2445
2446 cc.zone = zone;
2447
2448 compact_zone(&cc, NULL);
2449
2450 VM_BUG_ON(!list_empty(&cc.freepages));
2451 VM_BUG_ON(!list_empty(&cc.migratepages));
2452 }
2453 }
2454
2455 /* Compact all nodes in the system */
2456 static void compact_nodes(void)
2457 {
2458 int nid;
2459
2460 /* Flush pending updates to the LRU lists */
2461 lru_add_drain_all();
2462
2463 for_each_online_node(nid)
2464 compact_node(nid);
2465 }
2466
2467 /* The written value is actually unused, all memory is compacted */
2468 int sysctl_compact_memory;
2469
2470 /*
2471 * This is the entry point for compacting all nodes via
2472 * /proc/sys/vm/compact_memory
2473 */
2474 int sysctl_compaction_handler(struct ctl_table *table, int write,
2475 void *buffer, size_t *length, loff_t *ppos)
2476 {
2477 if (write)
2478 compact_nodes();
2479
2480 return 0;
2481 }
2482
2483 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2484 static ssize_t sysfs_compact_node(struct device *dev,
2485 struct device_attribute *attr,
2486 const char *buf, size_t count)
2487 {
2488 int nid = dev->id;
2489
2490 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2491 /* Flush pending updates to the LRU lists */
2492 lru_add_drain_all();
2493
2494 compact_node(nid);
2495 }
2496
2497 return count;
2498 }
2499 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2500
2501 int compaction_register_node(struct node *node)
2502 {
2503 return device_create_file(&node->dev, &dev_attr_compact);
2504 }
2505
2506 void compaction_unregister_node(struct node *node)
2507 {
2508 return device_remove_file(&node->dev, &dev_attr_compact);
2509 }
2510 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2511
2512 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2513 {
2514 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2515 }
2516
2517 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2518 {
2519 int zoneid;
2520 struct zone *zone;
2521 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2522
2523 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2524 zone = &pgdat->node_zones[zoneid];
2525
2526 if (!populated_zone(zone))
2527 continue;
2528
2529 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2530 highest_zoneidx) == COMPACT_CONTINUE)
2531 return true;
2532 }
2533
2534 return false;
2535 }
2536
2537 static void kcompactd_do_work(pg_data_t *pgdat)
2538 {
2539 /*
2540 * With no special task, compact all zones so that a page of requested
2541 * order is allocatable.
2542 */
2543 int zoneid;
2544 struct zone *zone;
2545 struct compact_control cc = {
2546 .order = pgdat->kcompactd_max_order,
2547 .search_order = pgdat->kcompactd_max_order,
2548 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2549 .mode = MIGRATE_SYNC_LIGHT,
2550 .ignore_skip_hint = false,
2551 .gfp_mask = GFP_KERNEL,
2552 };
2553 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2554 cc.highest_zoneidx);
2555 count_compact_event(KCOMPACTD_WAKE);
2556
2557 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2558 int status;
2559
2560 zone = &pgdat->node_zones[zoneid];
2561 if (!populated_zone(zone))
2562 continue;
2563
2564 if (compaction_deferred(zone, cc.order))
2565 continue;
2566
2567 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2568 COMPACT_CONTINUE)
2569 continue;
2570
2571 if (kthread_should_stop())
2572 return;
2573
2574 cc.zone = zone;
2575 status = compact_zone(&cc, NULL);
2576
2577 if (status == COMPACT_SUCCESS) {
2578 compaction_defer_reset(zone, cc.order, false);
2579 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2580 /*
2581 * Buddy pages may become stranded on pcps that could
2582 * otherwise coalesce on the zone's free area for
2583 * order >= cc.order. This is ratelimited by the
2584 * upcoming deferral.
2585 */
2586 drain_all_pages(zone);
2587
2588 /*
2589 * We use sync migration mode here, so we defer like
2590 * sync direct compaction does.
2591 */
2592 defer_compaction(zone, cc.order);
2593 }
2594
2595 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2596 cc.total_migrate_scanned);
2597 count_compact_events(KCOMPACTD_FREE_SCANNED,
2598 cc.total_free_scanned);
2599
2600 VM_BUG_ON(!list_empty(&cc.freepages));
2601 VM_BUG_ON(!list_empty(&cc.migratepages));
2602 }
2603
2604 /*
2605 * Regardless of success, we are done until woken up next. But remember
2606 * the requested order/highest_zoneidx in case it was higher/tighter
2607 * than our current ones
2608 */
2609 if (pgdat->kcompactd_max_order <= cc.order)
2610 pgdat->kcompactd_max_order = 0;
2611 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2612 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2613 }
2614
2615 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2616 {
2617 if (!order)
2618 return;
2619
2620 if (pgdat->kcompactd_max_order < order)
2621 pgdat->kcompactd_max_order = order;
2622
2623 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2624 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2625
2626 /*
2627 * Pairs with implicit barrier in wait_event_freezable()
2628 * such that wakeups are not missed.
2629 */
2630 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2631 return;
2632
2633 if (!kcompactd_node_suitable(pgdat))
2634 return;
2635
2636 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2637 highest_zoneidx);
2638 wake_up_interruptible(&pgdat->kcompactd_wait);
2639 }
2640
2641 /*
2642 * The background compaction daemon, started as a kernel thread
2643 * from the init process.
2644 */
2645 static int kcompactd(void *p)
2646 {
2647 pg_data_t *pgdat = (pg_data_t*)p;
2648 struct task_struct *tsk = current;
2649
2650 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2651
2652 if (!cpumask_empty(cpumask))
2653 set_cpus_allowed_ptr(tsk, cpumask);
2654
2655 set_freezable();
2656
2657 pgdat->kcompactd_max_order = 0;
2658 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2659
2660 while (!kthread_should_stop()) {
2661 unsigned long pflags;
2662
2663 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2664 wait_event_freezable(pgdat->kcompactd_wait,
2665 kcompactd_work_requested(pgdat));
2666
2667 psi_memstall_enter(&pflags);
2668 kcompactd_do_work(pgdat);
2669 psi_memstall_leave(&pflags);
2670 }
2671
2672 return 0;
2673 }
2674
2675 /*
2676 * This kcompactd start function will be called by init and node-hot-add.
2677 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2678 */
2679 int kcompactd_run(int nid)
2680 {
2681 pg_data_t *pgdat = NODE_DATA(nid);
2682 int ret = 0;
2683
2684 if (pgdat->kcompactd)
2685 return 0;
2686
2687 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2688 if (IS_ERR(pgdat->kcompactd)) {
2689 pr_err("Failed to start kcompactd on node %d\n", nid);
2690 ret = PTR_ERR(pgdat->kcompactd);
2691 pgdat->kcompactd = NULL;
2692 }
2693 return ret;
2694 }
2695
2696 /*
2697 * Called by memory hotplug when all memory in a node is offlined. Caller must
2698 * hold mem_hotplug_begin/end().
2699 */
2700 void kcompactd_stop(int nid)
2701 {
2702 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2703
2704 if (kcompactd) {
2705 kthread_stop(kcompactd);
2706 NODE_DATA(nid)->kcompactd = NULL;
2707 }
2708 }
2709
2710 /*
2711 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2712 * not required for correctness. So if the last cpu in a node goes
2713 * away, we get changed to run anywhere: as the first one comes back,
2714 * restore their cpu bindings.
2715 */
2716 static int kcompactd_cpu_online(unsigned int cpu)
2717 {
2718 int nid;
2719
2720 for_each_node_state(nid, N_MEMORY) {
2721 pg_data_t *pgdat = NODE_DATA(nid);
2722 const struct cpumask *mask;
2723
2724 mask = cpumask_of_node(pgdat->node_id);
2725
2726 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2727 /* One of our CPUs online: restore mask */
2728 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2729 }
2730 return 0;
2731 }
2732
2733 static int __init kcompactd_init(void)
2734 {
2735 int nid;
2736 int ret;
2737
2738 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2739 "mm/compaction:online",
2740 kcompactd_cpu_online, NULL);
2741 if (ret < 0) {
2742 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2743 return ret;
2744 }
2745
2746 for_each_node_state(nid, N_MEMORY)
2747 kcompactd_run(nid);
2748 return 0;
2749 }
2750 subsys_initcall(kcompactd_init)
2751
2752 #endif /* CONFIG_COMPACTION */