]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/compaction.c
b2977a5d659a51f5eb5f928605329d8643168136
[mirror_ubuntu-jammy-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
21
22 /*
23 * compact_control is used to track pages being migrated and the free pages
24 * they are being migrated to during memory compaction. The free_pfn starts
25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
26 * are moved to the end of a zone during a compaction run and the run
27 * completes when free_pfn <= migrate_pfn
28 */
29 struct compact_control {
30 struct list_head freepages; /* List of free pages to migrate to */
31 struct list_head migratepages; /* List of pages being migrated */
32 unsigned long nr_freepages; /* Number of isolated free pages */
33 unsigned long nr_migratepages; /* Number of pages to migrate */
34 unsigned long free_pfn; /* isolate_freepages search base */
35 unsigned long migrate_pfn; /* isolate_migratepages search base */
36 bool sync; /* Synchronous migration */
37
38 unsigned int order; /* order a direct compactor needs */
39 int migratetype; /* MOVABLE, RECLAIMABLE etc */
40 struct zone *zone;
41 };
42
43 static unsigned long release_freepages(struct list_head *freelist)
44 {
45 struct page *page, *next;
46 unsigned long count = 0;
47
48 list_for_each_entry_safe(page, next, freelist, lru) {
49 list_del(&page->lru);
50 __free_page(page);
51 count++;
52 }
53
54 return count;
55 }
56
57 /* Isolate free pages onto a private freelist. Must hold zone->lock */
58 static unsigned long isolate_freepages_block(struct zone *zone,
59 unsigned long blockpfn,
60 struct list_head *freelist)
61 {
62 unsigned long zone_end_pfn, end_pfn;
63 int nr_scanned = 0, total_isolated = 0;
64 struct page *cursor;
65
66 /* Get the last PFN we should scan for free pages at */
67 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
69
70 /* Find the first usable PFN in the block to initialse page cursor */
71 for (; blockpfn < end_pfn; blockpfn++) {
72 if (pfn_valid_within(blockpfn))
73 break;
74 }
75 cursor = pfn_to_page(blockpfn);
76
77 /* Isolate free pages. This assumes the block is valid */
78 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79 int isolated, i;
80 struct page *page = cursor;
81
82 if (!pfn_valid_within(blockpfn))
83 continue;
84 nr_scanned++;
85
86 if (!PageBuddy(page))
87 continue;
88
89 /* Found a free page, break it into order-0 pages */
90 isolated = split_free_page(page);
91 total_isolated += isolated;
92 for (i = 0; i < isolated; i++) {
93 list_add(&page->lru, freelist);
94 page++;
95 }
96
97 /* If a page was split, advance to the end of it */
98 if (isolated) {
99 blockpfn += isolated - 1;
100 cursor += isolated - 1;
101 }
102 }
103
104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 return total_isolated;
106 }
107
108 /* Returns true if the page is within a block suitable for migration to */
109 static bool suitable_migration_target(struct page *page)
110 {
111
112 int migratetype = get_pageblock_migratetype(page);
113
114 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
115 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
116 return false;
117
118 /* If the page is a large free page, then allow migration */
119 if (PageBuddy(page) && page_order(page) >= pageblock_order)
120 return true;
121
122 /* If the block is MIGRATE_MOVABLE, allow migration */
123 if (migratetype == MIGRATE_MOVABLE)
124 return true;
125
126 /* Otherwise skip the block */
127 return false;
128 }
129
130 /*
131 * Based on information in the current compact_control, find blocks
132 * suitable for isolating free pages from and then isolate them.
133 */
134 static void isolate_freepages(struct zone *zone,
135 struct compact_control *cc)
136 {
137 struct page *page;
138 unsigned long high_pfn, low_pfn, pfn;
139 unsigned long flags;
140 int nr_freepages = cc->nr_freepages;
141 struct list_head *freelist = &cc->freepages;
142
143 /*
144 * Initialise the free scanner. The starting point is where we last
145 * scanned from (or the end of the zone if starting). The low point
146 * is the end of the pageblock the migration scanner is using.
147 */
148 pfn = cc->free_pfn;
149 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
150
151 /*
152 * Take care that if the migration scanner is at the end of the zone
153 * that the free scanner does not accidentally move to the next zone
154 * in the next isolation cycle.
155 */
156 high_pfn = min(low_pfn, pfn);
157
158 /*
159 * Isolate free pages until enough are available to migrate the
160 * pages on cc->migratepages. We stop searching if the migrate
161 * and free page scanners meet or enough free pages are isolated.
162 */
163 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
164 pfn -= pageblock_nr_pages) {
165 unsigned long isolated;
166
167 if (!pfn_valid(pfn))
168 continue;
169
170 /*
171 * Check for overlapping nodes/zones. It's possible on some
172 * configurations to have a setup like
173 * node0 node1 node0
174 * i.e. it's possible that all pages within a zones range of
175 * pages do not belong to a single zone.
176 */
177 page = pfn_to_page(pfn);
178 if (page_zone(page) != zone)
179 continue;
180
181 /* Check the block is suitable for migration */
182 if (!suitable_migration_target(page))
183 continue;
184
185 /*
186 * Found a block suitable for isolating free pages from. Now
187 * we disabled interrupts, double check things are ok and
188 * isolate the pages. This is to minimise the time IRQs
189 * are disabled
190 */
191 isolated = 0;
192 spin_lock_irqsave(&zone->lock, flags);
193 if (suitable_migration_target(page)) {
194 isolated = isolate_freepages_block(zone, pfn, freelist);
195 nr_freepages += isolated;
196 }
197 spin_unlock_irqrestore(&zone->lock, flags);
198
199 /*
200 * Record the highest PFN we isolated pages from. When next
201 * looking for free pages, the search will restart here as
202 * page migration may have returned some pages to the allocator
203 */
204 if (isolated)
205 high_pfn = max(high_pfn, pfn);
206 }
207
208 /* split_free_page does not map the pages */
209 list_for_each_entry(page, freelist, lru) {
210 arch_alloc_page(page, 0);
211 kernel_map_pages(page, 1, 1);
212 }
213
214 cc->free_pfn = high_pfn;
215 cc->nr_freepages = nr_freepages;
216 }
217
218 /* Update the number of anon and file isolated pages in the zone */
219 static void acct_isolated(struct zone *zone, struct compact_control *cc)
220 {
221 struct page *page;
222 unsigned int count[2] = { 0, };
223
224 list_for_each_entry(page, &cc->migratepages, lru)
225 count[!!page_is_file_cache(page)]++;
226
227 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
228 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
229 }
230
231 /* Similar to reclaim, but different enough that they don't share logic */
232 static bool too_many_isolated(struct zone *zone)
233 {
234 unsigned long active, inactive, isolated;
235
236 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
237 zone_page_state(zone, NR_INACTIVE_ANON);
238 active = zone_page_state(zone, NR_ACTIVE_FILE) +
239 zone_page_state(zone, NR_ACTIVE_ANON);
240 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
241 zone_page_state(zone, NR_ISOLATED_ANON);
242
243 return isolated > (inactive + active) / 2;
244 }
245
246 /* possible outcome of isolate_migratepages */
247 typedef enum {
248 ISOLATE_ABORT, /* Abort compaction now */
249 ISOLATE_NONE, /* No pages isolated, continue scanning */
250 ISOLATE_SUCCESS, /* Pages isolated, migrate */
251 } isolate_migrate_t;
252
253 /*
254 * Isolate all pages that can be migrated from the block pointed to by
255 * the migrate scanner within compact_control.
256 */
257 static isolate_migrate_t isolate_migratepages(struct zone *zone,
258 struct compact_control *cc)
259 {
260 unsigned long low_pfn, end_pfn;
261 unsigned long last_pageblock_nr = 0, pageblock_nr;
262 unsigned long nr_scanned = 0, nr_isolated = 0;
263 struct list_head *migratelist = &cc->migratepages;
264
265 /* Do not scan outside zone boundaries */
266 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
267
268 /* Only scan within a pageblock boundary */
269 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
270
271 /* Do not cross the free scanner or scan within a memory hole */
272 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
273 cc->migrate_pfn = end_pfn;
274 return ISOLATE_NONE;
275 }
276
277 /*
278 * Ensure that there are not too many pages isolated from the LRU
279 * list by either parallel reclaimers or compaction. If there are,
280 * delay for some time until fewer pages are isolated
281 */
282 while (unlikely(too_many_isolated(zone))) {
283 /* async migration should just abort */
284 if (!cc->sync)
285 return ISOLATE_ABORT;
286
287 congestion_wait(BLK_RW_ASYNC, HZ/10);
288
289 if (fatal_signal_pending(current))
290 return ISOLATE_ABORT;
291 }
292
293 /* Time to isolate some pages for migration */
294 cond_resched();
295 spin_lock_irq(&zone->lru_lock);
296 for (; low_pfn < end_pfn; low_pfn++) {
297 struct page *page;
298 bool locked = true;
299
300 /* give a chance to irqs before checking need_resched() */
301 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
302 spin_unlock_irq(&zone->lru_lock);
303 locked = false;
304 }
305 if (need_resched() || spin_is_contended(&zone->lru_lock)) {
306 if (locked)
307 spin_unlock_irq(&zone->lru_lock);
308 cond_resched();
309 spin_lock_irq(&zone->lru_lock);
310 if (fatal_signal_pending(current))
311 break;
312 } else if (!locked)
313 spin_lock_irq(&zone->lru_lock);
314
315 if (!pfn_valid_within(low_pfn))
316 continue;
317 nr_scanned++;
318
319 /* Get the page and skip if free */
320 page = pfn_to_page(low_pfn);
321 if (PageBuddy(page))
322 continue;
323
324 /*
325 * For async migration, also only scan in MOVABLE blocks. Async
326 * migration is optimistic to see if the minimum amount of work
327 * satisfies the allocation
328 */
329 pageblock_nr = low_pfn >> pageblock_order;
330 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
331 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
332 low_pfn += pageblock_nr_pages;
333 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
334 last_pageblock_nr = pageblock_nr;
335 continue;
336 }
337
338 if (!PageLRU(page))
339 continue;
340
341 /*
342 * PageLRU is set, and lru_lock excludes isolation,
343 * splitting and collapsing (collapsing has already
344 * happened if PageLRU is set).
345 */
346 if (PageTransHuge(page)) {
347 low_pfn += (1 << compound_order(page)) - 1;
348 continue;
349 }
350
351 /* Try isolate the page */
352 if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
353 continue;
354
355 VM_BUG_ON(PageTransCompound(page));
356
357 /* Successfully isolated */
358 del_page_from_lru_list(zone, page, page_lru(page));
359 list_add(&page->lru, migratelist);
360 cc->nr_migratepages++;
361 nr_isolated++;
362
363 /* Avoid isolating too much */
364 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
365 break;
366 }
367
368 acct_isolated(zone, cc);
369
370 spin_unlock_irq(&zone->lru_lock);
371 cc->migrate_pfn = low_pfn;
372
373 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
374
375 return ISOLATE_SUCCESS;
376 }
377
378 /*
379 * This is a migrate-callback that "allocates" freepages by taking pages
380 * from the isolated freelists in the block we are migrating to.
381 */
382 static struct page *compaction_alloc(struct page *migratepage,
383 unsigned long data,
384 int **result)
385 {
386 struct compact_control *cc = (struct compact_control *)data;
387 struct page *freepage;
388
389 /* Isolate free pages if necessary */
390 if (list_empty(&cc->freepages)) {
391 isolate_freepages(cc->zone, cc);
392
393 if (list_empty(&cc->freepages))
394 return NULL;
395 }
396
397 freepage = list_entry(cc->freepages.next, struct page, lru);
398 list_del(&freepage->lru);
399 cc->nr_freepages--;
400
401 return freepage;
402 }
403
404 /*
405 * We cannot control nr_migratepages and nr_freepages fully when migration is
406 * running as migrate_pages() has no knowledge of compact_control. When
407 * migration is complete, we count the number of pages on the lists by hand.
408 */
409 static void update_nr_listpages(struct compact_control *cc)
410 {
411 int nr_migratepages = 0;
412 int nr_freepages = 0;
413 struct page *page;
414
415 list_for_each_entry(page, &cc->migratepages, lru)
416 nr_migratepages++;
417 list_for_each_entry(page, &cc->freepages, lru)
418 nr_freepages++;
419
420 cc->nr_migratepages = nr_migratepages;
421 cc->nr_freepages = nr_freepages;
422 }
423
424 static int compact_finished(struct zone *zone,
425 struct compact_control *cc)
426 {
427 unsigned int order;
428 unsigned long watermark;
429
430 if (fatal_signal_pending(current))
431 return COMPACT_PARTIAL;
432
433 /* Compaction run completes if the migrate and free scanner meet */
434 if (cc->free_pfn <= cc->migrate_pfn)
435 return COMPACT_COMPLETE;
436
437 /*
438 * order == -1 is expected when compacting via
439 * /proc/sys/vm/compact_memory
440 */
441 if (cc->order == -1)
442 return COMPACT_CONTINUE;
443
444 /* Compaction run is not finished if the watermark is not met */
445 watermark = low_wmark_pages(zone);
446 watermark += (1 << cc->order);
447
448 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
449 return COMPACT_CONTINUE;
450
451 /* Direct compactor: Is a suitable page free? */
452 for (order = cc->order; order < MAX_ORDER; order++) {
453 /* Job done if page is free of the right migratetype */
454 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
455 return COMPACT_PARTIAL;
456
457 /* Job done if allocation would set block type */
458 if (order >= pageblock_order && zone->free_area[order].nr_free)
459 return COMPACT_PARTIAL;
460 }
461
462 return COMPACT_CONTINUE;
463 }
464
465 /*
466 * compaction_suitable: Is this suitable to run compaction on this zone now?
467 * Returns
468 * COMPACT_SKIPPED - If there are too few free pages for compaction
469 * COMPACT_PARTIAL - If the allocation would succeed without compaction
470 * COMPACT_CONTINUE - If compaction should run now
471 */
472 unsigned long compaction_suitable(struct zone *zone, int order)
473 {
474 int fragindex;
475 unsigned long watermark;
476
477 /*
478 * order == -1 is expected when compacting via
479 * /proc/sys/vm/compact_memory
480 */
481 if (order == -1)
482 return COMPACT_CONTINUE;
483
484 /*
485 * Watermarks for order-0 must be met for compaction. Note the 2UL.
486 * This is because during migration, copies of pages need to be
487 * allocated and for a short time, the footprint is higher
488 */
489 watermark = low_wmark_pages(zone) + (2UL << order);
490 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
491 return COMPACT_SKIPPED;
492
493 /*
494 * fragmentation index determines if allocation failures are due to
495 * low memory or external fragmentation
496 *
497 * index of -1000 implies allocations might succeed depending on
498 * watermarks
499 * index towards 0 implies failure is due to lack of memory
500 * index towards 1000 implies failure is due to fragmentation
501 *
502 * Only compact if a failure would be due to fragmentation.
503 */
504 fragindex = fragmentation_index(zone, order);
505 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
506 return COMPACT_SKIPPED;
507
508 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
509 0, 0))
510 return COMPACT_PARTIAL;
511
512 return COMPACT_CONTINUE;
513 }
514
515 static int compact_zone(struct zone *zone, struct compact_control *cc)
516 {
517 int ret;
518
519 ret = compaction_suitable(zone, cc->order);
520 switch (ret) {
521 case COMPACT_PARTIAL:
522 case COMPACT_SKIPPED:
523 /* Compaction is likely to fail */
524 return ret;
525 case COMPACT_CONTINUE:
526 /* Fall through to compaction */
527 ;
528 }
529
530 /* Setup to move all movable pages to the end of the zone */
531 cc->migrate_pfn = zone->zone_start_pfn;
532 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
533 cc->free_pfn &= ~(pageblock_nr_pages-1);
534
535 migrate_prep_local();
536
537 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
538 unsigned long nr_migrate, nr_remaining;
539 int err;
540
541 switch (isolate_migratepages(zone, cc)) {
542 case ISOLATE_ABORT:
543 ret = COMPACT_PARTIAL;
544 goto out;
545 case ISOLATE_NONE:
546 continue;
547 case ISOLATE_SUCCESS:
548 ;
549 }
550
551 nr_migrate = cc->nr_migratepages;
552 err = migrate_pages(&cc->migratepages, compaction_alloc,
553 (unsigned long)cc, false,
554 cc->sync);
555 update_nr_listpages(cc);
556 nr_remaining = cc->nr_migratepages;
557
558 count_vm_event(COMPACTBLOCKS);
559 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
560 if (nr_remaining)
561 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
562 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
563 nr_remaining);
564
565 /* Release LRU pages not migrated */
566 if (err) {
567 putback_lru_pages(&cc->migratepages);
568 cc->nr_migratepages = 0;
569 }
570
571 }
572
573 out:
574 /* Release free pages and check accounting */
575 cc->nr_freepages -= release_freepages(&cc->freepages);
576 VM_BUG_ON(cc->nr_freepages != 0);
577
578 return ret;
579 }
580
581 unsigned long compact_zone_order(struct zone *zone,
582 int order, gfp_t gfp_mask,
583 bool sync)
584 {
585 struct compact_control cc = {
586 .nr_freepages = 0,
587 .nr_migratepages = 0,
588 .order = order,
589 .migratetype = allocflags_to_migratetype(gfp_mask),
590 .zone = zone,
591 .sync = sync,
592 };
593 INIT_LIST_HEAD(&cc.freepages);
594 INIT_LIST_HEAD(&cc.migratepages);
595
596 return compact_zone(zone, &cc);
597 }
598
599 int sysctl_extfrag_threshold = 500;
600
601 /**
602 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
603 * @zonelist: The zonelist used for the current allocation
604 * @order: The order of the current allocation
605 * @gfp_mask: The GFP mask of the current allocation
606 * @nodemask: The allowed nodes to allocate from
607 * @sync: Whether migration is synchronous or not
608 *
609 * This is the main entry point for direct page compaction.
610 */
611 unsigned long try_to_compact_pages(struct zonelist *zonelist,
612 int order, gfp_t gfp_mask, nodemask_t *nodemask,
613 bool sync)
614 {
615 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
616 int may_enter_fs = gfp_mask & __GFP_FS;
617 int may_perform_io = gfp_mask & __GFP_IO;
618 struct zoneref *z;
619 struct zone *zone;
620 int rc = COMPACT_SKIPPED;
621
622 /*
623 * Check whether it is worth even starting compaction. The order check is
624 * made because an assumption is made that the page allocator can satisfy
625 * the "cheaper" orders without taking special steps
626 */
627 if (!order || !may_enter_fs || !may_perform_io)
628 return rc;
629
630 count_vm_event(COMPACTSTALL);
631
632 /* Compact each zone in the list */
633 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
634 nodemask) {
635 int status;
636
637 status = compact_zone_order(zone, order, gfp_mask, sync);
638 rc = max(status, rc);
639
640 /* If a normal allocation would succeed, stop compacting */
641 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
642 break;
643 }
644
645 return rc;
646 }
647
648
649 /* Compact all zones within a node */
650 static int compact_node(int nid)
651 {
652 int zoneid;
653 pg_data_t *pgdat;
654 struct zone *zone;
655
656 if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
657 return -EINVAL;
658 pgdat = NODE_DATA(nid);
659
660 /* Flush pending updates to the LRU lists */
661 lru_add_drain_all();
662
663 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
664 struct compact_control cc = {
665 .nr_freepages = 0,
666 .nr_migratepages = 0,
667 .order = -1,
668 };
669
670 zone = &pgdat->node_zones[zoneid];
671 if (!populated_zone(zone))
672 continue;
673
674 cc.zone = zone;
675 INIT_LIST_HEAD(&cc.freepages);
676 INIT_LIST_HEAD(&cc.migratepages);
677
678 compact_zone(zone, &cc);
679
680 VM_BUG_ON(!list_empty(&cc.freepages));
681 VM_BUG_ON(!list_empty(&cc.migratepages));
682 }
683
684 return 0;
685 }
686
687 /* Compact all nodes in the system */
688 static int compact_nodes(void)
689 {
690 int nid;
691
692 for_each_online_node(nid)
693 compact_node(nid);
694
695 return COMPACT_COMPLETE;
696 }
697
698 /* The written value is actually unused, all memory is compacted */
699 int sysctl_compact_memory;
700
701 /* This is the entry point for compacting all nodes via /proc/sys/vm */
702 int sysctl_compaction_handler(struct ctl_table *table, int write,
703 void __user *buffer, size_t *length, loff_t *ppos)
704 {
705 if (write)
706 return compact_nodes();
707
708 return 0;
709 }
710
711 int sysctl_extfrag_handler(struct ctl_table *table, int write,
712 void __user *buffer, size_t *length, loff_t *ppos)
713 {
714 proc_dointvec_minmax(table, write, buffer, length, ppos);
715
716 return 0;
717 }
718
719 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
720 ssize_t sysfs_compact_node(struct sys_device *dev,
721 struct sysdev_attribute *attr,
722 const char *buf, size_t count)
723 {
724 compact_node(dev->id);
725
726 return count;
727 }
728 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
729
730 int compaction_register_node(struct node *node)
731 {
732 return sysdev_create_file(&node->sysdev, &attr_compact);
733 }
734
735 void compaction_unregister_node(struct node *node)
736 {
737 return sysdev_remove_file(&node->sysdev, &attr_compact);
738 }
739 #endif /* CONFIG_SYSFS && CONFIG_NUMA */