]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/compaction.c
mm, compaction: distinguish COMPACT_DEFERRED from COMPACT_SKIPPED
[mirror_ubuntu-bionic-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 struct page *page, *next;
53 unsigned long high_pfn = 0;
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
56 unsigned long pfn = page_to_pfn(page);
57 list_del(&page->lru);
58 __free_page(page);
59 if (pfn > high_pfn)
60 high_pfn = pfn;
61 }
62
63 return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68 struct page *page;
69
70 list_for_each_entry(page, list, lru) {
71 arch_alloc_page(page, 0);
72 kernel_map_pages(page, 1, 1);
73 kasan_alloc_pages(page, 0);
74 }
75 }
76
77 static inline bool migrate_async_suitable(int migratetype)
78 {
79 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80 }
81
82 #ifdef CONFIG_COMPACTION
83
84 /* Do not skip compaction more than 64 times */
85 #define COMPACT_MAX_DEFER_SHIFT 6
86
87 /*
88 * Compaction is deferred when compaction fails to result in a page
89 * allocation success. 1 << compact_defer_limit compactions are skipped up
90 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
91 */
92 void defer_compaction(struct zone *zone, int order)
93 {
94 zone->compact_considered = 0;
95 zone->compact_defer_shift++;
96
97 if (order < zone->compact_order_failed)
98 zone->compact_order_failed = order;
99
100 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
101 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
102
103 trace_mm_compaction_defer_compaction(zone, order);
104 }
105
106 /* Returns true if compaction should be skipped this time */
107 bool compaction_deferred(struct zone *zone, int order)
108 {
109 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
110
111 if (order < zone->compact_order_failed)
112 return false;
113
114 /* Avoid possible overflow */
115 if (++zone->compact_considered > defer_limit)
116 zone->compact_considered = defer_limit;
117
118 if (zone->compact_considered >= defer_limit)
119 return false;
120
121 trace_mm_compaction_deferred(zone, order);
122
123 return true;
124 }
125
126 /*
127 * Update defer tracking counters after successful compaction of given order,
128 * which means an allocation either succeeded (alloc_success == true) or is
129 * expected to succeed.
130 */
131 void compaction_defer_reset(struct zone *zone, int order,
132 bool alloc_success)
133 {
134 if (alloc_success) {
135 zone->compact_considered = 0;
136 zone->compact_defer_shift = 0;
137 }
138 if (order >= zone->compact_order_failed)
139 zone->compact_order_failed = order + 1;
140
141 trace_mm_compaction_defer_reset(zone, order);
142 }
143
144 /* Returns true if restarting compaction after many failures */
145 bool compaction_restarting(struct zone *zone, int order)
146 {
147 if (order < zone->compact_order_failed)
148 return false;
149
150 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
151 zone->compact_considered >= 1UL << zone->compact_defer_shift;
152 }
153
154 /* Returns true if the pageblock should be scanned for pages to isolate. */
155 static inline bool isolation_suitable(struct compact_control *cc,
156 struct page *page)
157 {
158 if (cc->ignore_skip_hint)
159 return true;
160
161 return !get_pageblock_skip(page);
162 }
163
164 static void reset_cached_positions(struct zone *zone)
165 {
166 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
167 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
168 zone->compact_cached_free_pfn =
169 pageblock_start_pfn(zone_end_pfn(zone) - 1);
170 }
171
172 /*
173 * This function is called to clear all cached information on pageblocks that
174 * should be skipped for page isolation when the migrate and free page scanner
175 * meet.
176 */
177 static void __reset_isolation_suitable(struct zone *zone)
178 {
179 unsigned long start_pfn = zone->zone_start_pfn;
180 unsigned long end_pfn = zone_end_pfn(zone);
181 unsigned long pfn;
182
183 zone->compact_blockskip_flush = false;
184
185 /* Walk the zone and mark every pageblock as suitable for isolation */
186 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
187 struct page *page;
188
189 cond_resched();
190
191 if (!pfn_valid(pfn))
192 continue;
193
194 page = pfn_to_page(pfn);
195 if (zone != page_zone(page))
196 continue;
197
198 clear_pageblock_skip(page);
199 }
200
201 reset_cached_positions(zone);
202 }
203
204 void reset_isolation_suitable(pg_data_t *pgdat)
205 {
206 int zoneid;
207
208 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
209 struct zone *zone = &pgdat->node_zones[zoneid];
210 if (!populated_zone(zone))
211 continue;
212
213 /* Only flush if a full compaction finished recently */
214 if (zone->compact_blockskip_flush)
215 __reset_isolation_suitable(zone);
216 }
217 }
218
219 /*
220 * If no pages were isolated then mark this pageblock to be skipped in the
221 * future. The information is later cleared by __reset_isolation_suitable().
222 */
223 static void update_pageblock_skip(struct compact_control *cc,
224 struct page *page, unsigned long nr_isolated,
225 bool migrate_scanner)
226 {
227 struct zone *zone = cc->zone;
228 unsigned long pfn;
229
230 if (cc->ignore_skip_hint)
231 return;
232
233 if (!page)
234 return;
235
236 if (nr_isolated)
237 return;
238
239 set_pageblock_skip(page);
240
241 pfn = page_to_pfn(page);
242
243 /* Update where async and sync compaction should restart */
244 if (migrate_scanner) {
245 if (pfn > zone->compact_cached_migrate_pfn[0])
246 zone->compact_cached_migrate_pfn[0] = pfn;
247 if (cc->mode != MIGRATE_ASYNC &&
248 pfn > zone->compact_cached_migrate_pfn[1])
249 zone->compact_cached_migrate_pfn[1] = pfn;
250 } else {
251 if (pfn < zone->compact_cached_free_pfn)
252 zone->compact_cached_free_pfn = pfn;
253 }
254 }
255 #else
256 static inline bool isolation_suitable(struct compact_control *cc,
257 struct page *page)
258 {
259 return true;
260 }
261
262 static void update_pageblock_skip(struct compact_control *cc,
263 struct page *page, unsigned long nr_isolated,
264 bool migrate_scanner)
265 {
266 }
267 #endif /* CONFIG_COMPACTION */
268
269 /*
270 * Compaction requires the taking of some coarse locks that are potentially
271 * very heavily contended. For async compaction, back out if the lock cannot
272 * be taken immediately. For sync compaction, spin on the lock if needed.
273 *
274 * Returns true if the lock is held
275 * Returns false if the lock is not held and compaction should abort
276 */
277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
278 struct compact_control *cc)
279 {
280 if (cc->mode == MIGRATE_ASYNC) {
281 if (!spin_trylock_irqsave(lock, *flags)) {
282 cc->contended = COMPACT_CONTENDED_LOCK;
283 return false;
284 }
285 } else {
286 spin_lock_irqsave(lock, *flags);
287 }
288
289 return true;
290 }
291
292 /*
293 * Compaction requires the taking of some coarse locks that are potentially
294 * very heavily contended. The lock should be periodically unlocked to avoid
295 * having disabled IRQs for a long time, even when there is nobody waiting on
296 * the lock. It might also be that allowing the IRQs will result in
297 * need_resched() becoming true. If scheduling is needed, async compaction
298 * aborts. Sync compaction schedules.
299 * Either compaction type will also abort if a fatal signal is pending.
300 * In either case if the lock was locked, it is dropped and not regained.
301 *
302 * Returns true if compaction should abort due to fatal signal pending, or
303 * async compaction due to need_resched()
304 * Returns false when compaction can continue (sync compaction might have
305 * scheduled)
306 */
307 static bool compact_unlock_should_abort(spinlock_t *lock,
308 unsigned long flags, bool *locked, struct compact_control *cc)
309 {
310 if (*locked) {
311 spin_unlock_irqrestore(lock, flags);
312 *locked = false;
313 }
314
315 if (fatal_signal_pending(current)) {
316 cc->contended = COMPACT_CONTENDED_SCHED;
317 return true;
318 }
319
320 if (need_resched()) {
321 if (cc->mode == MIGRATE_ASYNC) {
322 cc->contended = COMPACT_CONTENDED_SCHED;
323 return true;
324 }
325 cond_resched();
326 }
327
328 return false;
329 }
330
331 /*
332 * Aside from avoiding lock contention, compaction also periodically checks
333 * need_resched() and either schedules in sync compaction or aborts async
334 * compaction. This is similar to what compact_unlock_should_abort() does, but
335 * is used where no lock is concerned.
336 *
337 * Returns false when no scheduling was needed, or sync compaction scheduled.
338 * Returns true when async compaction should abort.
339 */
340 static inline bool compact_should_abort(struct compact_control *cc)
341 {
342 /* async compaction aborts if contended */
343 if (need_resched()) {
344 if (cc->mode == MIGRATE_ASYNC) {
345 cc->contended = COMPACT_CONTENDED_SCHED;
346 return true;
347 }
348
349 cond_resched();
350 }
351
352 return false;
353 }
354
355 /*
356 * Isolate free pages onto a private freelist. If @strict is true, will abort
357 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
358 * (even though it may still end up isolating some pages).
359 */
360 static unsigned long isolate_freepages_block(struct compact_control *cc,
361 unsigned long *start_pfn,
362 unsigned long end_pfn,
363 struct list_head *freelist,
364 bool strict)
365 {
366 int nr_scanned = 0, total_isolated = 0;
367 struct page *cursor, *valid_page = NULL;
368 unsigned long flags = 0;
369 bool locked = false;
370 unsigned long blockpfn = *start_pfn;
371
372 cursor = pfn_to_page(blockpfn);
373
374 /* Isolate free pages. */
375 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
376 int isolated, i;
377 struct page *page = cursor;
378
379 /*
380 * Periodically drop the lock (if held) regardless of its
381 * contention, to give chance to IRQs. Abort if fatal signal
382 * pending or async compaction detects need_resched()
383 */
384 if (!(blockpfn % SWAP_CLUSTER_MAX)
385 && compact_unlock_should_abort(&cc->zone->lock, flags,
386 &locked, cc))
387 break;
388
389 nr_scanned++;
390 if (!pfn_valid_within(blockpfn))
391 goto isolate_fail;
392
393 if (!valid_page)
394 valid_page = page;
395
396 /*
397 * For compound pages such as THP and hugetlbfs, we can save
398 * potentially a lot of iterations if we skip them at once.
399 * The check is racy, but we can consider only valid values
400 * and the only danger is skipping too much.
401 */
402 if (PageCompound(page)) {
403 unsigned int comp_order = compound_order(page);
404
405 if (likely(comp_order < MAX_ORDER)) {
406 blockpfn += (1UL << comp_order) - 1;
407 cursor += (1UL << comp_order) - 1;
408 }
409
410 goto isolate_fail;
411 }
412
413 if (!PageBuddy(page))
414 goto isolate_fail;
415
416 /*
417 * If we already hold the lock, we can skip some rechecking.
418 * Note that if we hold the lock now, checked_pageblock was
419 * already set in some previous iteration (or strict is true),
420 * so it is correct to skip the suitable migration target
421 * recheck as well.
422 */
423 if (!locked) {
424 /*
425 * The zone lock must be held to isolate freepages.
426 * Unfortunately this is a very coarse lock and can be
427 * heavily contended if there are parallel allocations
428 * or parallel compactions. For async compaction do not
429 * spin on the lock and we acquire the lock as late as
430 * possible.
431 */
432 locked = compact_trylock_irqsave(&cc->zone->lock,
433 &flags, cc);
434 if (!locked)
435 break;
436
437 /* Recheck this is a buddy page under lock */
438 if (!PageBuddy(page))
439 goto isolate_fail;
440 }
441
442 /* Found a free page, break it into order-0 pages */
443 isolated = split_free_page(page);
444 total_isolated += isolated;
445 for (i = 0; i < isolated; i++) {
446 list_add(&page->lru, freelist);
447 page++;
448 }
449
450 /* If a page was split, advance to the end of it */
451 if (isolated) {
452 cc->nr_freepages += isolated;
453 if (!strict &&
454 cc->nr_migratepages <= cc->nr_freepages) {
455 blockpfn += isolated;
456 break;
457 }
458
459 blockpfn += isolated - 1;
460 cursor += isolated - 1;
461 continue;
462 }
463
464 isolate_fail:
465 if (strict)
466 break;
467 else
468 continue;
469
470 }
471
472 /*
473 * There is a tiny chance that we have read bogus compound_order(),
474 * so be careful to not go outside of the pageblock.
475 */
476 if (unlikely(blockpfn > end_pfn))
477 blockpfn = end_pfn;
478
479 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
480 nr_scanned, total_isolated);
481
482 /* Record how far we have got within the block */
483 *start_pfn = blockpfn;
484
485 /*
486 * If strict isolation is requested by CMA then check that all the
487 * pages requested were isolated. If there were any failures, 0 is
488 * returned and CMA will fail.
489 */
490 if (strict && blockpfn < end_pfn)
491 total_isolated = 0;
492
493 if (locked)
494 spin_unlock_irqrestore(&cc->zone->lock, flags);
495
496 /* Update the pageblock-skip if the whole pageblock was scanned */
497 if (blockpfn == end_pfn)
498 update_pageblock_skip(cc, valid_page, total_isolated, false);
499
500 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
501 if (total_isolated)
502 count_compact_events(COMPACTISOLATED, total_isolated);
503 return total_isolated;
504 }
505
506 /**
507 * isolate_freepages_range() - isolate free pages.
508 * @start_pfn: The first PFN to start isolating.
509 * @end_pfn: The one-past-last PFN.
510 *
511 * Non-free pages, invalid PFNs, or zone boundaries within the
512 * [start_pfn, end_pfn) range are considered errors, cause function to
513 * undo its actions and return zero.
514 *
515 * Otherwise, function returns one-past-the-last PFN of isolated page
516 * (which may be greater then end_pfn if end fell in a middle of
517 * a free page).
518 */
519 unsigned long
520 isolate_freepages_range(struct compact_control *cc,
521 unsigned long start_pfn, unsigned long end_pfn)
522 {
523 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
524 LIST_HEAD(freelist);
525
526 pfn = start_pfn;
527 block_start_pfn = pageblock_start_pfn(pfn);
528 if (block_start_pfn < cc->zone->zone_start_pfn)
529 block_start_pfn = cc->zone->zone_start_pfn;
530 block_end_pfn = pageblock_end_pfn(pfn);
531
532 for (; pfn < end_pfn; pfn += isolated,
533 block_start_pfn = block_end_pfn,
534 block_end_pfn += pageblock_nr_pages) {
535 /* Protect pfn from changing by isolate_freepages_block */
536 unsigned long isolate_start_pfn = pfn;
537
538 block_end_pfn = min(block_end_pfn, end_pfn);
539
540 /*
541 * pfn could pass the block_end_pfn if isolated freepage
542 * is more than pageblock order. In this case, we adjust
543 * scanning range to right one.
544 */
545 if (pfn >= block_end_pfn) {
546 block_start_pfn = pageblock_start_pfn(pfn);
547 block_end_pfn = pageblock_end_pfn(pfn);
548 block_end_pfn = min(block_end_pfn, end_pfn);
549 }
550
551 if (!pageblock_pfn_to_page(block_start_pfn,
552 block_end_pfn, cc->zone))
553 break;
554
555 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
556 block_end_pfn, &freelist, true);
557
558 /*
559 * In strict mode, isolate_freepages_block() returns 0 if
560 * there are any holes in the block (ie. invalid PFNs or
561 * non-free pages).
562 */
563 if (!isolated)
564 break;
565
566 /*
567 * If we managed to isolate pages, it is always (1 << n) *
568 * pageblock_nr_pages for some non-negative n. (Max order
569 * page may span two pageblocks).
570 */
571 }
572
573 /* split_free_page does not map the pages */
574 map_pages(&freelist);
575
576 if (pfn < end_pfn) {
577 /* Loop terminated early, cleanup. */
578 release_freepages(&freelist);
579 return 0;
580 }
581
582 /* We don't use freelists for anything. */
583 return pfn;
584 }
585
586 /* Update the number of anon and file isolated pages in the zone */
587 static void acct_isolated(struct zone *zone, struct compact_control *cc)
588 {
589 struct page *page;
590 unsigned int count[2] = { 0, };
591
592 if (list_empty(&cc->migratepages))
593 return;
594
595 list_for_each_entry(page, &cc->migratepages, lru)
596 count[!!page_is_file_cache(page)]++;
597
598 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
599 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
600 }
601
602 /* Similar to reclaim, but different enough that they don't share logic */
603 static bool too_many_isolated(struct zone *zone)
604 {
605 unsigned long active, inactive, isolated;
606
607 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
608 zone_page_state(zone, NR_INACTIVE_ANON);
609 active = zone_page_state(zone, NR_ACTIVE_FILE) +
610 zone_page_state(zone, NR_ACTIVE_ANON);
611 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
612 zone_page_state(zone, NR_ISOLATED_ANON);
613
614 return isolated > (inactive + active) / 2;
615 }
616
617 /**
618 * isolate_migratepages_block() - isolate all migrate-able pages within
619 * a single pageblock
620 * @cc: Compaction control structure.
621 * @low_pfn: The first PFN to isolate
622 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
623 * @isolate_mode: Isolation mode to be used.
624 *
625 * Isolate all pages that can be migrated from the range specified by
626 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
627 * Returns zero if there is a fatal signal pending, otherwise PFN of the
628 * first page that was not scanned (which may be both less, equal to or more
629 * than end_pfn).
630 *
631 * The pages are isolated on cc->migratepages list (not required to be empty),
632 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
633 * is neither read nor updated.
634 */
635 static unsigned long
636 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
637 unsigned long end_pfn, isolate_mode_t isolate_mode)
638 {
639 struct zone *zone = cc->zone;
640 unsigned long nr_scanned = 0, nr_isolated = 0;
641 struct lruvec *lruvec;
642 unsigned long flags = 0;
643 bool locked = false;
644 struct page *page = NULL, *valid_page = NULL;
645 unsigned long start_pfn = low_pfn;
646 bool skip_on_failure = false;
647 unsigned long next_skip_pfn = 0;
648
649 /*
650 * Ensure that there are not too many pages isolated from the LRU
651 * list by either parallel reclaimers or compaction. If there are,
652 * delay for some time until fewer pages are isolated
653 */
654 while (unlikely(too_many_isolated(zone))) {
655 /* async migration should just abort */
656 if (cc->mode == MIGRATE_ASYNC)
657 return 0;
658
659 congestion_wait(BLK_RW_ASYNC, HZ/10);
660
661 if (fatal_signal_pending(current))
662 return 0;
663 }
664
665 if (compact_should_abort(cc))
666 return 0;
667
668 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
669 skip_on_failure = true;
670 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
671 }
672
673 /* Time to isolate some pages for migration */
674 for (; low_pfn < end_pfn; low_pfn++) {
675 bool is_lru;
676
677 if (skip_on_failure && low_pfn >= next_skip_pfn) {
678 /*
679 * We have isolated all migration candidates in the
680 * previous order-aligned block, and did not skip it due
681 * to failure. We should migrate the pages now and
682 * hopefully succeed compaction.
683 */
684 if (nr_isolated)
685 break;
686
687 /*
688 * We failed to isolate in the previous order-aligned
689 * block. Set the new boundary to the end of the
690 * current block. Note we can't simply increase
691 * next_skip_pfn by 1 << order, as low_pfn might have
692 * been incremented by a higher number due to skipping
693 * a compound or a high-order buddy page in the
694 * previous loop iteration.
695 */
696 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
697 }
698
699 /*
700 * Periodically drop the lock (if held) regardless of its
701 * contention, to give chance to IRQs. Abort async compaction
702 * if contended.
703 */
704 if (!(low_pfn % SWAP_CLUSTER_MAX)
705 && compact_unlock_should_abort(&zone->lru_lock, flags,
706 &locked, cc))
707 break;
708
709 if (!pfn_valid_within(low_pfn))
710 goto isolate_fail;
711 nr_scanned++;
712
713 page = pfn_to_page(low_pfn);
714
715 if (!valid_page)
716 valid_page = page;
717
718 /*
719 * Skip if free. We read page order here without zone lock
720 * which is generally unsafe, but the race window is small and
721 * the worst thing that can happen is that we skip some
722 * potential isolation targets.
723 */
724 if (PageBuddy(page)) {
725 unsigned long freepage_order = page_order_unsafe(page);
726
727 /*
728 * Without lock, we cannot be sure that what we got is
729 * a valid page order. Consider only values in the
730 * valid order range to prevent low_pfn overflow.
731 */
732 if (freepage_order > 0 && freepage_order < MAX_ORDER)
733 low_pfn += (1UL << freepage_order) - 1;
734 continue;
735 }
736
737 /*
738 * Check may be lockless but that's ok as we recheck later.
739 * It's possible to migrate LRU pages and balloon pages
740 * Skip any other type of page
741 */
742 is_lru = PageLRU(page);
743 if (!is_lru) {
744 if (unlikely(balloon_page_movable(page))) {
745 if (balloon_page_isolate(page)) {
746 /* Successfully isolated */
747 goto isolate_success;
748 }
749 }
750 }
751
752 /*
753 * Regardless of being on LRU, compound pages such as THP and
754 * hugetlbfs are not to be compacted. We can potentially save
755 * a lot of iterations if we skip them at once. The check is
756 * racy, but we can consider only valid values and the only
757 * danger is skipping too much.
758 */
759 if (PageCompound(page)) {
760 unsigned int comp_order = compound_order(page);
761
762 if (likely(comp_order < MAX_ORDER))
763 low_pfn += (1UL << comp_order) - 1;
764
765 goto isolate_fail;
766 }
767
768 if (!is_lru)
769 goto isolate_fail;
770
771 /*
772 * Migration will fail if an anonymous page is pinned in memory,
773 * so avoid taking lru_lock and isolating it unnecessarily in an
774 * admittedly racy check.
775 */
776 if (!page_mapping(page) &&
777 page_count(page) > page_mapcount(page))
778 goto isolate_fail;
779
780 /* If we already hold the lock, we can skip some rechecking */
781 if (!locked) {
782 locked = compact_trylock_irqsave(&zone->lru_lock,
783 &flags, cc);
784 if (!locked)
785 break;
786
787 /* Recheck PageLRU and PageCompound under lock */
788 if (!PageLRU(page))
789 goto isolate_fail;
790
791 /*
792 * Page become compound since the non-locked check,
793 * and it's on LRU. It can only be a THP so the order
794 * is safe to read and it's 0 for tail pages.
795 */
796 if (unlikely(PageCompound(page))) {
797 low_pfn += (1UL << compound_order(page)) - 1;
798 goto isolate_fail;
799 }
800 }
801
802 lruvec = mem_cgroup_page_lruvec(page, zone);
803
804 /* Try isolate the page */
805 if (__isolate_lru_page(page, isolate_mode) != 0)
806 goto isolate_fail;
807
808 VM_BUG_ON_PAGE(PageCompound(page), page);
809
810 /* Successfully isolated */
811 del_page_from_lru_list(page, lruvec, page_lru(page));
812
813 isolate_success:
814 list_add(&page->lru, &cc->migratepages);
815 cc->nr_migratepages++;
816 nr_isolated++;
817
818 /*
819 * Record where we could have freed pages by migration and not
820 * yet flushed them to buddy allocator.
821 * - this is the lowest page that was isolated and likely be
822 * then freed by migration.
823 */
824 if (!cc->last_migrated_pfn)
825 cc->last_migrated_pfn = low_pfn;
826
827 /* Avoid isolating too much */
828 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
829 ++low_pfn;
830 break;
831 }
832
833 continue;
834 isolate_fail:
835 if (!skip_on_failure)
836 continue;
837
838 /*
839 * We have isolated some pages, but then failed. Release them
840 * instead of migrating, as we cannot form the cc->order buddy
841 * page anyway.
842 */
843 if (nr_isolated) {
844 if (locked) {
845 spin_unlock_irqrestore(&zone->lru_lock, flags);
846 locked = false;
847 }
848 acct_isolated(zone, cc);
849 putback_movable_pages(&cc->migratepages);
850 cc->nr_migratepages = 0;
851 cc->last_migrated_pfn = 0;
852 nr_isolated = 0;
853 }
854
855 if (low_pfn < next_skip_pfn) {
856 low_pfn = next_skip_pfn - 1;
857 /*
858 * The check near the loop beginning would have updated
859 * next_skip_pfn too, but this is a bit simpler.
860 */
861 next_skip_pfn += 1UL << cc->order;
862 }
863 }
864
865 /*
866 * The PageBuddy() check could have potentially brought us outside
867 * the range to be scanned.
868 */
869 if (unlikely(low_pfn > end_pfn))
870 low_pfn = end_pfn;
871
872 if (locked)
873 spin_unlock_irqrestore(&zone->lru_lock, flags);
874
875 /*
876 * Update the pageblock-skip information and cached scanner pfn,
877 * if the whole pageblock was scanned without isolating any page.
878 */
879 if (low_pfn == end_pfn)
880 update_pageblock_skip(cc, valid_page, nr_isolated, true);
881
882 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
883 nr_scanned, nr_isolated);
884
885 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
886 if (nr_isolated)
887 count_compact_events(COMPACTISOLATED, nr_isolated);
888
889 return low_pfn;
890 }
891
892 /**
893 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
894 * @cc: Compaction control structure.
895 * @start_pfn: The first PFN to start isolating.
896 * @end_pfn: The one-past-last PFN.
897 *
898 * Returns zero if isolation fails fatally due to e.g. pending signal.
899 * Otherwise, function returns one-past-the-last PFN of isolated page
900 * (which may be greater than end_pfn if end fell in a middle of a THP page).
901 */
902 unsigned long
903 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
904 unsigned long end_pfn)
905 {
906 unsigned long pfn, block_start_pfn, block_end_pfn;
907
908 /* Scan block by block. First and last block may be incomplete */
909 pfn = start_pfn;
910 block_start_pfn = pageblock_start_pfn(pfn);
911 if (block_start_pfn < cc->zone->zone_start_pfn)
912 block_start_pfn = cc->zone->zone_start_pfn;
913 block_end_pfn = pageblock_end_pfn(pfn);
914
915 for (; pfn < end_pfn; pfn = block_end_pfn,
916 block_start_pfn = block_end_pfn,
917 block_end_pfn += pageblock_nr_pages) {
918
919 block_end_pfn = min(block_end_pfn, end_pfn);
920
921 if (!pageblock_pfn_to_page(block_start_pfn,
922 block_end_pfn, cc->zone))
923 continue;
924
925 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
926 ISOLATE_UNEVICTABLE);
927
928 if (!pfn)
929 break;
930
931 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
932 break;
933 }
934 acct_isolated(cc->zone, cc);
935
936 return pfn;
937 }
938
939 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
940 #ifdef CONFIG_COMPACTION
941
942 /* Returns true if the page is within a block suitable for migration to */
943 static bool suitable_migration_target(struct page *page)
944 {
945 /* If the page is a large free page, then disallow migration */
946 if (PageBuddy(page)) {
947 /*
948 * We are checking page_order without zone->lock taken. But
949 * the only small danger is that we skip a potentially suitable
950 * pageblock, so it's not worth to check order for valid range.
951 */
952 if (page_order_unsafe(page) >= pageblock_order)
953 return false;
954 }
955
956 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
957 if (migrate_async_suitable(get_pageblock_migratetype(page)))
958 return true;
959
960 /* Otherwise skip the block */
961 return false;
962 }
963
964 /*
965 * Test whether the free scanner has reached the same or lower pageblock than
966 * the migration scanner, and compaction should thus terminate.
967 */
968 static inline bool compact_scanners_met(struct compact_control *cc)
969 {
970 return (cc->free_pfn >> pageblock_order)
971 <= (cc->migrate_pfn >> pageblock_order);
972 }
973
974 /*
975 * Based on information in the current compact_control, find blocks
976 * suitable for isolating free pages from and then isolate them.
977 */
978 static void isolate_freepages(struct compact_control *cc)
979 {
980 struct zone *zone = cc->zone;
981 struct page *page;
982 unsigned long block_start_pfn; /* start of current pageblock */
983 unsigned long isolate_start_pfn; /* exact pfn we start at */
984 unsigned long block_end_pfn; /* end of current pageblock */
985 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
986 struct list_head *freelist = &cc->freepages;
987
988 /*
989 * Initialise the free scanner. The starting point is where we last
990 * successfully isolated from, zone-cached value, or the end of the
991 * zone when isolating for the first time. For looping we also need
992 * this pfn aligned down to the pageblock boundary, because we do
993 * block_start_pfn -= pageblock_nr_pages in the for loop.
994 * For ending point, take care when isolating in last pageblock of a
995 * a zone which ends in the middle of a pageblock.
996 * The low boundary is the end of the pageblock the migration scanner
997 * is using.
998 */
999 isolate_start_pfn = cc->free_pfn;
1000 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1001 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1002 zone_end_pfn(zone));
1003 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1004
1005 /*
1006 * Isolate free pages until enough are available to migrate the
1007 * pages on cc->migratepages. We stop searching if the migrate
1008 * and free page scanners meet or enough free pages are isolated.
1009 */
1010 for (; block_start_pfn >= low_pfn;
1011 block_end_pfn = block_start_pfn,
1012 block_start_pfn -= pageblock_nr_pages,
1013 isolate_start_pfn = block_start_pfn) {
1014
1015 /*
1016 * This can iterate a massively long zone without finding any
1017 * suitable migration targets, so periodically check if we need
1018 * to schedule, or even abort async compaction.
1019 */
1020 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1021 && compact_should_abort(cc))
1022 break;
1023
1024 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1025 zone);
1026 if (!page)
1027 continue;
1028
1029 /* Check the block is suitable for migration */
1030 if (!suitable_migration_target(page))
1031 continue;
1032
1033 /* If isolation recently failed, do not retry */
1034 if (!isolation_suitable(cc, page))
1035 continue;
1036
1037 /* Found a block suitable for isolating free pages from. */
1038 isolate_freepages_block(cc, &isolate_start_pfn,
1039 block_end_pfn, freelist, false);
1040
1041 /*
1042 * If we isolated enough freepages, or aborted due to async
1043 * compaction being contended, terminate the loop.
1044 * Remember where the free scanner should restart next time,
1045 * which is where isolate_freepages_block() left off.
1046 * But if it scanned the whole pageblock, isolate_start_pfn
1047 * now points at block_end_pfn, which is the start of the next
1048 * pageblock.
1049 * In that case we will however want to restart at the start
1050 * of the previous pageblock.
1051 */
1052 if ((cc->nr_freepages >= cc->nr_migratepages)
1053 || cc->contended) {
1054 if (isolate_start_pfn >= block_end_pfn)
1055 isolate_start_pfn =
1056 block_start_pfn - pageblock_nr_pages;
1057 break;
1058 } else {
1059 /*
1060 * isolate_freepages_block() should not terminate
1061 * prematurely unless contended, or isolated enough
1062 */
1063 VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1064 }
1065 }
1066
1067 /* split_free_page does not map the pages */
1068 map_pages(freelist);
1069
1070 /*
1071 * Record where the free scanner will restart next time. Either we
1072 * broke from the loop and set isolate_start_pfn based on the last
1073 * call to isolate_freepages_block(), or we met the migration scanner
1074 * and the loop terminated due to isolate_start_pfn < low_pfn
1075 */
1076 cc->free_pfn = isolate_start_pfn;
1077 }
1078
1079 /*
1080 * This is a migrate-callback that "allocates" freepages by taking pages
1081 * from the isolated freelists in the block we are migrating to.
1082 */
1083 static struct page *compaction_alloc(struct page *migratepage,
1084 unsigned long data,
1085 int **result)
1086 {
1087 struct compact_control *cc = (struct compact_control *)data;
1088 struct page *freepage;
1089
1090 /*
1091 * Isolate free pages if necessary, and if we are not aborting due to
1092 * contention.
1093 */
1094 if (list_empty(&cc->freepages)) {
1095 if (!cc->contended)
1096 isolate_freepages(cc);
1097
1098 if (list_empty(&cc->freepages))
1099 return NULL;
1100 }
1101
1102 freepage = list_entry(cc->freepages.next, struct page, lru);
1103 list_del(&freepage->lru);
1104 cc->nr_freepages--;
1105
1106 return freepage;
1107 }
1108
1109 /*
1110 * This is a migrate-callback that "frees" freepages back to the isolated
1111 * freelist. All pages on the freelist are from the same zone, so there is no
1112 * special handling needed for NUMA.
1113 */
1114 static void compaction_free(struct page *page, unsigned long data)
1115 {
1116 struct compact_control *cc = (struct compact_control *)data;
1117
1118 list_add(&page->lru, &cc->freepages);
1119 cc->nr_freepages++;
1120 }
1121
1122 /* possible outcome of isolate_migratepages */
1123 typedef enum {
1124 ISOLATE_ABORT, /* Abort compaction now */
1125 ISOLATE_NONE, /* No pages isolated, continue scanning */
1126 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1127 } isolate_migrate_t;
1128
1129 /*
1130 * Allow userspace to control policy on scanning the unevictable LRU for
1131 * compactable pages.
1132 */
1133 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1134
1135 /*
1136 * Isolate all pages that can be migrated from the first suitable block,
1137 * starting at the block pointed to by the migrate scanner pfn within
1138 * compact_control.
1139 */
1140 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1141 struct compact_control *cc)
1142 {
1143 unsigned long block_start_pfn;
1144 unsigned long block_end_pfn;
1145 unsigned long low_pfn;
1146 struct page *page;
1147 const isolate_mode_t isolate_mode =
1148 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1149 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1150
1151 /*
1152 * Start at where we last stopped, or beginning of the zone as
1153 * initialized by compact_zone()
1154 */
1155 low_pfn = cc->migrate_pfn;
1156 block_start_pfn = pageblock_start_pfn(low_pfn);
1157 if (block_start_pfn < zone->zone_start_pfn)
1158 block_start_pfn = zone->zone_start_pfn;
1159
1160 /* Only scan within a pageblock boundary */
1161 block_end_pfn = pageblock_end_pfn(low_pfn);
1162
1163 /*
1164 * Iterate over whole pageblocks until we find the first suitable.
1165 * Do not cross the free scanner.
1166 */
1167 for (; block_end_pfn <= cc->free_pfn;
1168 low_pfn = block_end_pfn,
1169 block_start_pfn = block_end_pfn,
1170 block_end_pfn += pageblock_nr_pages) {
1171
1172 /*
1173 * This can potentially iterate a massively long zone with
1174 * many pageblocks unsuitable, so periodically check if we
1175 * need to schedule, or even abort async compaction.
1176 */
1177 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1178 && compact_should_abort(cc))
1179 break;
1180
1181 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1182 zone);
1183 if (!page)
1184 continue;
1185
1186 /* If isolation recently failed, do not retry */
1187 if (!isolation_suitable(cc, page))
1188 continue;
1189
1190 /*
1191 * For async compaction, also only scan in MOVABLE blocks.
1192 * Async compaction is optimistic to see if the minimum amount
1193 * of work satisfies the allocation.
1194 */
1195 if (cc->mode == MIGRATE_ASYNC &&
1196 !migrate_async_suitable(get_pageblock_migratetype(page)))
1197 continue;
1198
1199 /* Perform the isolation */
1200 low_pfn = isolate_migratepages_block(cc, low_pfn,
1201 block_end_pfn, isolate_mode);
1202
1203 if (!low_pfn || cc->contended) {
1204 acct_isolated(zone, cc);
1205 return ISOLATE_ABORT;
1206 }
1207
1208 /*
1209 * Either we isolated something and proceed with migration. Or
1210 * we failed and compact_zone should decide if we should
1211 * continue or not.
1212 */
1213 break;
1214 }
1215
1216 acct_isolated(zone, cc);
1217 /* Record where migration scanner will be restarted. */
1218 cc->migrate_pfn = low_pfn;
1219
1220 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1221 }
1222
1223 /*
1224 * order == -1 is expected when compacting via
1225 * /proc/sys/vm/compact_memory
1226 */
1227 static inline bool is_via_compact_memory(int order)
1228 {
1229 return order == -1;
1230 }
1231
1232 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1233 const int migratetype)
1234 {
1235 unsigned int order;
1236 unsigned long watermark;
1237
1238 if (cc->contended || fatal_signal_pending(current))
1239 return COMPACT_CONTENDED;
1240
1241 /* Compaction run completes if the migrate and free scanner meet */
1242 if (compact_scanners_met(cc)) {
1243 /* Let the next compaction start anew. */
1244 reset_cached_positions(zone);
1245
1246 /*
1247 * Mark that the PG_migrate_skip information should be cleared
1248 * by kswapd when it goes to sleep. kcompactd does not set the
1249 * flag itself as the decision to be clear should be directly
1250 * based on an allocation request.
1251 */
1252 if (cc->direct_compaction)
1253 zone->compact_blockskip_flush = true;
1254
1255 return COMPACT_COMPLETE;
1256 }
1257
1258 if (is_via_compact_memory(cc->order))
1259 return COMPACT_CONTINUE;
1260
1261 /* Compaction run is not finished if the watermark is not met */
1262 watermark = low_wmark_pages(zone);
1263
1264 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1265 cc->alloc_flags))
1266 return COMPACT_CONTINUE;
1267
1268 /* Direct compactor: Is a suitable page free? */
1269 for (order = cc->order; order < MAX_ORDER; order++) {
1270 struct free_area *area = &zone->free_area[order];
1271 bool can_steal;
1272
1273 /* Job done if page is free of the right migratetype */
1274 if (!list_empty(&area->free_list[migratetype]))
1275 return COMPACT_PARTIAL;
1276
1277 #ifdef CONFIG_CMA
1278 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1279 if (migratetype == MIGRATE_MOVABLE &&
1280 !list_empty(&area->free_list[MIGRATE_CMA]))
1281 return COMPACT_PARTIAL;
1282 #endif
1283 /*
1284 * Job done if allocation would steal freepages from
1285 * other migratetype buddy lists.
1286 */
1287 if (find_suitable_fallback(area, order, migratetype,
1288 true, &can_steal) != -1)
1289 return COMPACT_PARTIAL;
1290 }
1291
1292 return COMPACT_NO_SUITABLE_PAGE;
1293 }
1294
1295 static enum compact_result compact_finished(struct zone *zone,
1296 struct compact_control *cc,
1297 const int migratetype)
1298 {
1299 int ret;
1300
1301 ret = __compact_finished(zone, cc, migratetype);
1302 trace_mm_compaction_finished(zone, cc->order, ret);
1303 if (ret == COMPACT_NO_SUITABLE_PAGE)
1304 ret = COMPACT_CONTINUE;
1305
1306 return ret;
1307 }
1308
1309 /*
1310 * compaction_suitable: Is this suitable to run compaction on this zone now?
1311 * Returns
1312 * COMPACT_SKIPPED - If there are too few free pages for compaction
1313 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1314 * COMPACT_CONTINUE - If compaction should run now
1315 */
1316 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1317 unsigned int alloc_flags,
1318 int classzone_idx)
1319 {
1320 int fragindex;
1321 unsigned long watermark;
1322
1323 if (is_via_compact_memory(order))
1324 return COMPACT_CONTINUE;
1325
1326 watermark = low_wmark_pages(zone);
1327 /*
1328 * If watermarks for high-order allocation are already met, there
1329 * should be no need for compaction at all.
1330 */
1331 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1332 alloc_flags))
1333 return COMPACT_PARTIAL;
1334
1335 /*
1336 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1337 * This is because during migration, copies of pages need to be
1338 * allocated and for a short time, the footprint is higher
1339 */
1340 watermark += (2UL << order);
1341 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1342 return COMPACT_SKIPPED;
1343
1344 /*
1345 * fragmentation index determines if allocation failures are due to
1346 * low memory or external fragmentation
1347 *
1348 * index of -1000 would imply allocations might succeed depending on
1349 * watermarks, but we already failed the high-order watermark check
1350 * index towards 0 implies failure is due to lack of memory
1351 * index towards 1000 implies failure is due to fragmentation
1352 *
1353 * Only compact if a failure would be due to fragmentation.
1354 */
1355 fragindex = fragmentation_index(zone, order);
1356 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1357 return COMPACT_NOT_SUITABLE_ZONE;
1358
1359 return COMPACT_CONTINUE;
1360 }
1361
1362 enum compact_result compaction_suitable(struct zone *zone, int order,
1363 unsigned int alloc_flags,
1364 int classzone_idx)
1365 {
1366 enum compact_result ret;
1367
1368 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1369 trace_mm_compaction_suitable(zone, order, ret);
1370 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1371 ret = COMPACT_SKIPPED;
1372
1373 return ret;
1374 }
1375
1376 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1377 {
1378 enum compact_result ret;
1379 unsigned long start_pfn = zone->zone_start_pfn;
1380 unsigned long end_pfn = zone_end_pfn(zone);
1381 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1382 const bool sync = cc->mode != MIGRATE_ASYNC;
1383
1384 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1385 cc->classzone_idx);
1386 /* Compaction is likely to fail */
1387 if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1388 return ret;
1389
1390 /* huh, compaction_suitable is returning something unexpected */
1391 VM_BUG_ON(ret != COMPACT_CONTINUE);
1392
1393 /*
1394 * Clear pageblock skip if there were failures recently and compaction
1395 * is about to be retried after being deferred.
1396 */
1397 if (compaction_restarting(zone, cc->order))
1398 __reset_isolation_suitable(zone);
1399
1400 /*
1401 * Setup to move all movable pages to the end of the zone. Used cached
1402 * information on where the scanners should start but check that it
1403 * is initialised by ensuring the values are within zone boundaries.
1404 */
1405 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1406 cc->free_pfn = zone->compact_cached_free_pfn;
1407 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1408 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1409 zone->compact_cached_free_pfn = cc->free_pfn;
1410 }
1411 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1412 cc->migrate_pfn = start_pfn;
1413 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1414 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1415 }
1416 cc->last_migrated_pfn = 0;
1417
1418 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1419 cc->free_pfn, end_pfn, sync);
1420
1421 migrate_prep_local();
1422
1423 while ((ret = compact_finished(zone, cc, migratetype)) ==
1424 COMPACT_CONTINUE) {
1425 int err;
1426
1427 switch (isolate_migratepages(zone, cc)) {
1428 case ISOLATE_ABORT:
1429 ret = COMPACT_CONTENDED;
1430 putback_movable_pages(&cc->migratepages);
1431 cc->nr_migratepages = 0;
1432 goto out;
1433 case ISOLATE_NONE:
1434 /*
1435 * We haven't isolated and migrated anything, but
1436 * there might still be unflushed migrations from
1437 * previous cc->order aligned block.
1438 */
1439 goto check_drain;
1440 case ISOLATE_SUCCESS:
1441 ;
1442 }
1443
1444 err = migrate_pages(&cc->migratepages, compaction_alloc,
1445 compaction_free, (unsigned long)cc, cc->mode,
1446 MR_COMPACTION);
1447
1448 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1449 &cc->migratepages);
1450
1451 /* All pages were either migrated or will be released */
1452 cc->nr_migratepages = 0;
1453 if (err) {
1454 putback_movable_pages(&cc->migratepages);
1455 /*
1456 * migrate_pages() may return -ENOMEM when scanners meet
1457 * and we want compact_finished() to detect it
1458 */
1459 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1460 ret = COMPACT_CONTENDED;
1461 goto out;
1462 }
1463 /*
1464 * We failed to migrate at least one page in the current
1465 * order-aligned block, so skip the rest of it.
1466 */
1467 if (cc->direct_compaction &&
1468 (cc->mode == MIGRATE_ASYNC)) {
1469 cc->migrate_pfn = block_end_pfn(
1470 cc->migrate_pfn - 1, cc->order);
1471 /* Draining pcplists is useless in this case */
1472 cc->last_migrated_pfn = 0;
1473
1474 }
1475 }
1476
1477 check_drain:
1478 /*
1479 * Has the migration scanner moved away from the previous
1480 * cc->order aligned block where we migrated from? If yes,
1481 * flush the pages that were freed, so that they can merge and
1482 * compact_finished() can detect immediately if allocation
1483 * would succeed.
1484 */
1485 if (cc->order > 0 && cc->last_migrated_pfn) {
1486 int cpu;
1487 unsigned long current_block_start =
1488 block_start_pfn(cc->migrate_pfn, cc->order);
1489
1490 if (cc->last_migrated_pfn < current_block_start) {
1491 cpu = get_cpu();
1492 lru_add_drain_cpu(cpu);
1493 drain_local_pages(zone);
1494 put_cpu();
1495 /* No more flushing until we migrate again */
1496 cc->last_migrated_pfn = 0;
1497 }
1498 }
1499
1500 }
1501
1502 out:
1503 /*
1504 * Release free pages and update where the free scanner should restart,
1505 * so we don't leave any returned pages behind in the next attempt.
1506 */
1507 if (cc->nr_freepages > 0) {
1508 unsigned long free_pfn = release_freepages(&cc->freepages);
1509
1510 cc->nr_freepages = 0;
1511 VM_BUG_ON(free_pfn == 0);
1512 /* The cached pfn is always the first in a pageblock */
1513 free_pfn = pageblock_start_pfn(free_pfn);
1514 /*
1515 * Only go back, not forward. The cached pfn might have been
1516 * already reset to zone end in compact_finished()
1517 */
1518 if (free_pfn > zone->compact_cached_free_pfn)
1519 zone->compact_cached_free_pfn = free_pfn;
1520 }
1521
1522 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1523 cc->free_pfn, end_pfn, sync, ret);
1524
1525 if (ret == COMPACT_CONTENDED)
1526 ret = COMPACT_PARTIAL;
1527
1528 return ret;
1529 }
1530
1531 static enum compact_result compact_zone_order(struct zone *zone, int order,
1532 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1533 unsigned int alloc_flags, int classzone_idx)
1534 {
1535 enum compact_result ret;
1536 struct compact_control cc = {
1537 .nr_freepages = 0,
1538 .nr_migratepages = 0,
1539 .order = order,
1540 .gfp_mask = gfp_mask,
1541 .zone = zone,
1542 .mode = mode,
1543 .alloc_flags = alloc_flags,
1544 .classzone_idx = classzone_idx,
1545 .direct_compaction = true,
1546 };
1547 INIT_LIST_HEAD(&cc.freepages);
1548 INIT_LIST_HEAD(&cc.migratepages);
1549
1550 ret = compact_zone(zone, &cc);
1551
1552 VM_BUG_ON(!list_empty(&cc.freepages));
1553 VM_BUG_ON(!list_empty(&cc.migratepages));
1554
1555 *contended = cc.contended;
1556 return ret;
1557 }
1558
1559 int sysctl_extfrag_threshold = 500;
1560
1561 /**
1562 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1563 * @gfp_mask: The GFP mask of the current allocation
1564 * @order: The order of the current allocation
1565 * @alloc_flags: The allocation flags of the current allocation
1566 * @ac: The context of current allocation
1567 * @mode: The migration mode for async, sync light, or sync migration
1568 * @contended: Return value that determines if compaction was aborted due to
1569 * need_resched() or lock contention
1570 *
1571 * This is the main entry point for direct page compaction.
1572 */
1573 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1574 unsigned int alloc_flags, const struct alloc_context *ac,
1575 enum migrate_mode mode, int *contended)
1576 {
1577 int may_enter_fs = gfp_mask & __GFP_FS;
1578 int may_perform_io = gfp_mask & __GFP_IO;
1579 struct zoneref *z;
1580 struct zone *zone;
1581 enum compact_result rc = COMPACT_SKIPPED;
1582 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1583
1584 *contended = COMPACT_CONTENDED_NONE;
1585
1586 /* Check if the GFP flags allow compaction */
1587 if (!order || !may_enter_fs || !may_perform_io)
1588 return COMPACT_SKIPPED;
1589
1590 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1591
1592 /* Compact each zone in the list */
1593 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1594 ac->nodemask) {
1595 enum compact_result status;
1596 int zone_contended;
1597
1598 if (compaction_deferred(zone, order)) {
1599 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1600 continue;
1601 }
1602
1603 status = compact_zone_order(zone, order, gfp_mask, mode,
1604 &zone_contended, alloc_flags,
1605 ac_classzone_idx(ac));
1606 rc = max(status, rc);
1607 /*
1608 * It takes at least one zone that wasn't lock contended
1609 * to clear all_zones_contended.
1610 */
1611 all_zones_contended &= zone_contended;
1612
1613 /* If a normal allocation would succeed, stop compacting */
1614 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1615 ac_classzone_idx(ac), alloc_flags)) {
1616 /*
1617 * We think the allocation will succeed in this zone,
1618 * but it is not certain, hence the false. The caller
1619 * will repeat this with true if allocation indeed
1620 * succeeds in this zone.
1621 */
1622 compaction_defer_reset(zone, order, false);
1623 /*
1624 * It is possible that async compaction aborted due to
1625 * need_resched() and the watermarks were ok thanks to
1626 * somebody else freeing memory. The allocation can
1627 * however still fail so we better signal the
1628 * need_resched() contention anyway (this will not
1629 * prevent the allocation attempt).
1630 */
1631 if (zone_contended == COMPACT_CONTENDED_SCHED)
1632 *contended = COMPACT_CONTENDED_SCHED;
1633
1634 goto break_loop;
1635 }
1636
1637 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1638 /*
1639 * We think that allocation won't succeed in this zone
1640 * so we defer compaction there. If it ends up
1641 * succeeding after all, it will be reset.
1642 */
1643 defer_compaction(zone, order);
1644 }
1645
1646 /*
1647 * We might have stopped compacting due to need_resched() in
1648 * async compaction, or due to a fatal signal detected. In that
1649 * case do not try further zones and signal need_resched()
1650 * contention.
1651 */
1652 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1653 || fatal_signal_pending(current)) {
1654 *contended = COMPACT_CONTENDED_SCHED;
1655 goto break_loop;
1656 }
1657
1658 continue;
1659 break_loop:
1660 /*
1661 * We might not have tried all the zones, so be conservative
1662 * and assume they are not all lock contended.
1663 */
1664 all_zones_contended = 0;
1665 break;
1666 }
1667
1668 /*
1669 * If at least one zone wasn't deferred or skipped, we report if all
1670 * zones that were tried were lock contended.
1671 */
1672 if (rc > COMPACT_INACTIVE && all_zones_contended)
1673 *contended = COMPACT_CONTENDED_LOCK;
1674
1675 return rc;
1676 }
1677
1678
1679 /* Compact all zones within a node */
1680 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1681 {
1682 int zoneid;
1683 struct zone *zone;
1684
1685 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1686
1687 zone = &pgdat->node_zones[zoneid];
1688 if (!populated_zone(zone))
1689 continue;
1690
1691 cc->nr_freepages = 0;
1692 cc->nr_migratepages = 0;
1693 cc->zone = zone;
1694 INIT_LIST_HEAD(&cc->freepages);
1695 INIT_LIST_HEAD(&cc->migratepages);
1696
1697 /*
1698 * When called via /proc/sys/vm/compact_memory
1699 * this makes sure we compact the whole zone regardless of
1700 * cached scanner positions.
1701 */
1702 if (is_via_compact_memory(cc->order))
1703 __reset_isolation_suitable(zone);
1704
1705 if (is_via_compact_memory(cc->order) ||
1706 !compaction_deferred(zone, cc->order))
1707 compact_zone(zone, cc);
1708
1709 VM_BUG_ON(!list_empty(&cc->freepages));
1710 VM_BUG_ON(!list_empty(&cc->migratepages));
1711
1712 if (is_via_compact_memory(cc->order))
1713 continue;
1714
1715 if (zone_watermark_ok(zone, cc->order,
1716 low_wmark_pages(zone), 0, 0))
1717 compaction_defer_reset(zone, cc->order, false);
1718 }
1719 }
1720
1721 void compact_pgdat(pg_data_t *pgdat, int order)
1722 {
1723 struct compact_control cc = {
1724 .order = order,
1725 .mode = MIGRATE_ASYNC,
1726 };
1727
1728 if (!order)
1729 return;
1730
1731 __compact_pgdat(pgdat, &cc);
1732 }
1733
1734 static void compact_node(int nid)
1735 {
1736 struct compact_control cc = {
1737 .order = -1,
1738 .mode = MIGRATE_SYNC,
1739 .ignore_skip_hint = true,
1740 };
1741
1742 __compact_pgdat(NODE_DATA(nid), &cc);
1743 }
1744
1745 /* Compact all nodes in the system */
1746 static void compact_nodes(void)
1747 {
1748 int nid;
1749
1750 /* Flush pending updates to the LRU lists */
1751 lru_add_drain_all();
1752
1753 for_each_online_node(nid)
1754 compact_node(nid);
1755 }
1756
1757 /* The written value is actually unused, all memory is compacted */
1758 int sysctl_compact_memory;
1759
1760 /*
1761 * This is the entry point for compacting all nodes via
1762 * /proc/sys/vm/compact_memory
1763 */
1764 int sysctl_compaction_handler(struct ctl_table *table, int write,
1765 void __user *buffer, size_t *length, loff_t *ppos)
1766 {
1767 if (write)
1768 compact_nodes();
1769
1770 return 0;
1771 }
1772
1773 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1774 void __user *buffer, size_t *length, loff_t *ppos)
1775 {
1776 proc_dointvec_minmax(table, write, buffer, length, ppos);
1777
1778 return 0;
1779 }
1780
1781 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1782 static ssize_t sysfs_compact_node(struct device *dev,
1783 struct device_attribute *attr,
1784 const char *buf, size_t count)
1785 {
1786 int nid = dev->id;
1787
1788 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1789 /* Flush pending updates to the LRU lists */
1790 lru_add_drain_all();
1791
1792 compact_node(nid);
1793 }
1794
1795 return count;
1796 }
1797 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1798
1799 int compaction_register_node(struct node *node)
1800 {
1801 return device_create_file(&node->dev, &dev_attr_compact);
1802 }
1803
1804 void compaction_unregister_node(struct node *node)
1805 {
1806 return device_remove_file(&node->dev, &dev_attr_compact);
1807 }
1808 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1809
1810 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1811 {
1812 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1813 }
1814
1815 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1816 {
1817 int zoneid;
1818 struct zone *zone;
1819 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1820
1821 for (zoneid = 0; zoneid < classzone_idx; zoneid++) {
1822 zone = &pgdat->node_zones[zoneid];
1823
1824 if (!populated_zone(zone))
1825 continue;
1826
1827 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1828 classzone_idx) == COMPACT_CONTINUE)
1829 return true;
1830 }
1831
1832 return false;
1833 }
1834
1835 static void kcompactd_do_work(pg_data_t *pgdat)
1836 {
1837 /*
1838 * With no special task, compact all zones so that a page of requested
1839 * order is allocatable.
1840 */
1841 int zoneid;
1842 struct zone *zone;
1843 struct compact_control cc = {
1844 .order = pgdat->kcompactd_max_order,
1845 .classzone_idx = pgdat->kcompactd_classzone_idx,
1846 .mode = MIGRATE_SYNC_LIGHT,
1847 .ignore_skip_hint = true,
1848
1849 };
1850 bool success = false;
1851
1852 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1853 cc.classzone_idx);
1854 count_vm_event(KCOMPACTD_WAKE);
1855
1856 for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) {
1857 int status;
1858
1859 zone = &pgdat->node_zones[zoneid];
1860 if (!populated_zone(zone))
1861 continue;
1862
1863 if (compaction_deferred(zone, cc.order))
1864 continue;
1865
1866 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1867 COMPACT_CONTINUE)
1868 continue;
1869
1870 cc.nr_freepages = 0;
1871 cc.nr_migratepages = 0;
1872 cc.zone = zone;
1873 INIT_LIST_HEAD(&cc.freepages);
1874 INIT_LIST_HEAD(&cc.migratepages);
1875
1876 if (kthread_should_stop())
1877 return;
1878 status = compact_zone(zone, &cc);
1879
1880 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1881 cc.classzone_idx, 0)) {
1882 success = true;
1883 compaction_defer_reset(zone, cc.order, false);
1884 } else if (status == COMPACT_COMPLETE) {
1885 /*
1886 * We use sync migration mode here, so we defer like
1887 * sync direct compaction does.
1888 */
1889 defer_compaction(zone, cc.order);
1890 }
1891
1892 VM_BUG_ON(!list_empty(&cc.freepages));
1893 VM_BUG_ON(!list_empty(&cc.migratepages));
1894 }
1895
1896 /*
1897 * Regardless of success, we are done until woken up next. But remember
1898 * the requested order/classzone_idx in case it was higher/tighter than
1899 * our current ones
1900 */
1901 if (pgdat->kcompactd_max_order <= cc.order)
1902 pgdat->kcompactd_max_order = 0;
1903 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1904 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1905 }
1906
1907 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1908 {
1909 if (!order)
1910 return;
1911
1912 if (pgdat->kcompactd_max_order < order)
1913 pgdat->kcompactd_max_order = order;
1914
1915 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1916 pgdat->kcompactd_classzone_idx = classzone_idx;
1917
1918 if (!waitqueue_active(&pgdat->kcompactd_wait))
1919 return;
1920
1921 if (!kcompactd_node_suitable(pgdat))
1922 return;
1923
1924 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1925 classzone_idx);
1926 wake_up_interruptible(&pgdat->kcompactd_wait);
1927 }
1928
1929 /*
1930 * The background compaction daemon, started as a kernel thread
1931 * from the init process.
1932 */
1933 static int kcompactd(void *p)
1934 {
1935 pg_data_t *pgdat = (pg_data_t*)p;
1936 struct task_struct *tsk = current;
1937
1938 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1939
1940 if (!cpumask_empty(cpumask))
1941 set_cpus_allowed_ptr(tsk, cpumask);
1942
1943 set_freezable();
1944
1945 pgdat->kcompactd_max_order = 0;
1946 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1947
1948 while (!kthread_should_stop()) {
1949 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1950 wait_event_freezable(pgdat->kcompactd_wait,
1951 kcompactd_work_requested(pgdat));
1952
1953 kcompactd_do_work(pgdat);
1954 }
1955
1956 return 0;
1957 }
1958
1959 /*
1960 * This kcompactd start function will be called by init and node-hot-add.
1961 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1962 */
1963 int kcompactd_run(int nid)
1964 {
1965 pg_data_t *pgdat = NODE_DATA(nid);
1966 int ret = 0;
1967
1968 if (pgdat->kcompactd)
1969 return 0;
1970
1971 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1972 if (IS_ERR(pgdat->kcompactd)) {
1973 pr_err("Failed to start kcompactd on node %d\n", nid);
1974 ret = PTR_ERR(pgdat->kcompactd);
1975 pgdat->kcompactd = NULL;
1976 }
1977 return ret;
1978 }
1979
1980 /*
1981 * Called by memory hotplug when all memory in a node is offlined. Caller must
1982 * hold mem_hotplug_begin/end().
1983 */
1984 void kcompactd_stop(int nid)
1985 {
1986 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
1987
1988 if (kcompactd) {
1989 kthread_stop(kcompactd);
1990 NODE_DATA(nid)->kcompactd = NULL;
1991 }
1992 }
1993
1994 /*
1995 * It's optimal to keep kcompactd on the same CPUs as their memory, but
1996 * not required for correctness. So if the last cpu in a node goes
1997 * away, we get changed to run anywhere: as the first one comes back,
1998 * restore their cpu bindings.
1999 */
2000 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2001 void *hcpu)
2002 {
2003 int nid;
2004
2005 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2006 for_each_node_state(nid, N_MEMORY) {
2007 pg_data_t *pgdat = NODE_DATA(nid);
2008 const struct cpumask *mask;
2009
2010 mask = cpumask_of_node(pgdat->node_id);
2011
2012 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2013 /* One of our CPUs online: restore mask */
2014 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2015 }
2016 }
2017 return NOTIFY_OK;
2018 }
2019
2020 static int __init kcompactd_init(void)
2021 {
2022 int nid;
2023
2024 for_each_node_state(nid, N_MEMORY)
2025 kcompactd_run(nid);
2026 hotcpu_notifier(cpu_callback, 0);
2027 return 0;
2028 }
2029 subsys_initcall(kcompactd_init)
2030
2031 #endif /* CONFIG_COMPACTION */