]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/compaction.c
platform/x86: hp-wmi: Fix hp_wmi_read_int() reporting error (0x05)
[mirror_ubuntu-jammy-kernel.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 /*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
78 list_del(&page->lru);
79 __free_page(page);
80 if (pfn > high_pfn)
81 high_pfn = pfn;
82 }
83
84 return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
98
99 post_alloc_hook(page, order, __GFP_MOVABLE);
100 if (order)
101 split_page(page, order);
102
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
107 }
108
109 list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155 * Compaction is deferred when compaction fails to result in a page
156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
182 if (++zone->compact_considered >= defer_limit) {
183 zone->compact_considered = defer_limit;
184 return false;
185 }
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190 }
191
192 /*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197 void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199 {
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223 {
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 zone->compact_cached_free_pfn =
235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 /*
239 * Compound pages of >= pageblock_order should consistently be skipped until
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
242 */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245 if (!PageCompound(page))
246 return false;
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
254 }
255
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259 {
260 struct page *page = pfn_to_online_page(pfn);
261 struct page *block_page;
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
297 block_pfn = pageblock_end_pfn(pfn) - 1;
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
308 do {
309 if (check_source && PageLRU(page)) {
310 clear_pageblock_skip(page);
311 return true;
312 }
313
314 if (check_target && PageBuddy(page)) {
315 clear_pageblock_skip(page);
316 return true;
317 }
318
319 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
321 } while (page <= end_page);
322
323 return false;
324 }
325
326 /*
327 * This function is called to clear all cached information on pageblocks that
328 * should be skipped for page isolation when the migrate and free page scanner
329 * meet.
330 */
331 static void __reset_isolation_suitable(struct zone *zone)
332 {
333 unsigned long migrate_pfn = zone->zone_start_pfn;
334 unsigned long free_pfn = zone_end_pfn(zone) - 1;
335 unsigned long reset_migrate = free_pfn;
336 unsigned long reset_free = migrate_pfn;
337 bool source_set = false;
338 bool free_set = false;
339
340 if (!zone->compact_blockskip_flush)
341 return;
342
343 zone->compact_blockskip_flush = false;
344
345 /*
346 * Walk the zone and update pageblock skip information. Source looks
347 * for PageLRU while target looks for PageBuddy. When the scanner
348 * is found, both PageBuddy and PageLRU are checked as the pageblock
349 * is suitable as both source and target.
350 */
351 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352 free_pfn -= pageblock_nr_pages) {
353 cond_resched();
354
355 /* Update the migrate PFN */
356 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357 migrate_pfn < reset_migrate) {
358 source_set = true;
359 reset_migrate = migrate_pfn;
360 zone->compact_init_migrate_pfn = reset_migrate;
361 zone->compact_cached_migrate_pfn[0] = reset_migrate;
362 zone->compact_cached_migrate_pfn[1] = reset_migrate;
363 }
364
365 /* Update the free PFN */
366 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367 free_pfn > reset_free) {
368 free_set = true;
369 reset_free = free_pfn;
370 zone->compact_init_free_pfn = reset_free;
371 zone->compact_cached_free_pfn = reset_free;
372 }
373 }
374
375 /* Leave no distance if no suitable block was reset */
376 if (reset_migrate >= reset_free) {
377 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379 zone->compact_cached_free_pfn = free_pfn;
380 }
381 }
382
383 void reset_isolation_suitable(pg_data_t *pgdat)
384 {
385 int zoneid;
386
387 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388 struct zone *zone = &pgdat->node_zones[zoneid];
389 if (!populated_zone(zone))
390 continue;
391
392 /* Only flush if a full compaction finished recently */
393 if (zone->compact_blockskip_flush)
394 __reset_isolation_suitable(zone);
395 }
396 }
397
398 /*
399 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400 * locks are not required for read/writers. Returns true if it was already set.
401 */
402 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 unsigned long pfn)
404 {
405 bool skip;
406
407 /* Do no update if skip hint is being ignored */
408 if (cc->ignore_skip_hint)
409 return false;
410
411 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412 return false;
413
414 skip = get_pageblock_skip(page);
415 if (!skip && !cc->no_set_skip_hint)
416 set_pageblock_skip(page);
417
418 return skip;
419 }
420
421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422 {
423 struct zone *zone = cc->zone;
424
425 pfn = pageblock_end_pfn(pfn);
426
427 /* Set for isolation rather than compaction */
428 if (cc->no_set_skip_hint)
429 return;
430
431 if (pfn > zone->compact_cached_migrate_pfn[0])
432 zone->compact_cached_migrate_pfn[0] = pfn;
433 if (cc->mode != MIGRATE_ASYNC &&
434 pfn > zone->compact_cached_migrate_pfn[1])
435 zone->compact_cached_migrate_pfn[1] = pfn;
436 }
437
438 /*
439 * If no pages were isolated then mark this pageblock to be skipped in the
440 * future. The information is later cleared by __reset_isolation_suitable().
441 */
442 static void update_pageblock_skip(struct compact_control *cc,
443 struct page *page, unsigned long pfn)
444 {
445 struct zone *zone = cc->zone;
446
447 if (cc->no_set_skip_hint)
448 return;
449
450 if (!page)
451 return;
452
453 set_pageblock_skip(page);
454
455 /* Update where async and sync compaction should restart */
456 if (pfn < zone->compact_cached_free_pfn)
457 zone->compact_cached_free_pfn = pfn;
458 }
459 #else
460 static inline bool isolation_suitable(struct compact_control *cc,
461 struct page *page)
462 {
463 return true;
464 }
465
466 static inline bool pageblock_skip_persistent(struct page *page)
467 {
468 return false;
469 }
470
471 static inline void update_pageblock_skip(struct compact_control *cc,
472 struct page *page, unsigned long pfn)
473 {
474 }
475
476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 }
479
480 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 unsigned long pfn)
482 {
483 return false;
484 }
485 #endif /* CONFIG_COMPACTION */
486
487 /*
488 * Compaction requires the taking of some coarse locks that are potentially
489 * very heavily contended. For async compaction, trylock and record if the
490 * lock is contended. The lock will still be acquired but compaction will
491 * abort when the current block is finished regardless of success rate.
492 * Sync compaction acquires the lock.
493 *
494 * Always returns true which makes it easier to track lock state in callers.
495 */
496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
497 struct compact_control *cc)
498 __acquires(lock)
499 {
500 /* Track if the lock is contended in async mode */
501 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502 if (spin_trylock_irqsave(lock, *flags))
503 return true;
504
505 cc->contended = true;
506 }
507
508 spin_lock_irqsave(lock, *flags);
509 return true;
510 }
511
512 /*
513 * Compaction requires the taking of some coarse locks that are potentially
514 * very heavily contended. The lock should be periodically unlocked to avoid
515 * having disabled IRQs for a long time, even when there is nobody waiting on
516 * the lock. It might also be that allowing the IRQs will result in
517 * need_resched() becoming true. If scheduling is needed, async compaction
518 * aborts. Sync compaction schedules.
519 * Either compaction type will also abort if a fatal signal is pending.
520 * In either case if the lock was locked, it is dropped and not regained.
521 *
522 * Returns true if compaction should abort due to fatal signal pending, or
523 * async compaction due to need_resched()
524 * Returns false when compaction can continue (sync compaction might have
525 * scheduled)
526 */
527 static bool compact_unlock_should_abort(spinlock_t *lock,
528 unsigned long flags, bool *locked, struct compact_control *cc)
529 {
530 if (*locked) {
531 spin_unlock_irqrestore(lock, flags);
532 *locked = false;
533 }
534
535 if (fatal_signal_pending(current)) {
536 cc->contended = true;
537 return true;
538 }
539
540 cond_resched();
541
542 return false;
543 }
544
545 /*
546 * Isolate free pages onto a private freelist. If @strict is true, will abort
547 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548 * (even though it may still end up isolating some pages).
549 */
550 static unsigned long isolate_freepages_block(struct compact_control *cc,
551 unsigned long *start_pfn,
552 unsigned long end_pfn,
553 struct list_head *freelist,
554 unsigned int stride,
555 bool strict)
556 {
557 int nr_scanned = 0, total_isolated = 0;
558 struct page *cursor;
559 unsigned long flags = 0;
560 bool locked = false;
561 unsigned long blockpfn = *start_pfn;
562 unsigned int order;
563
564 /* Strict mode is for isolation, speed is secondary */
565 if (strict)
566 stride = 1;
567
568 cursor = pfn_to_page(blockpfn);
569
570 /* Isolate free pages. */
571 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
572 int isolated;
573 struct page *page = cursor;
574
575 /*
576 * Periodically drop the lock (if held) regardless of its
577 * contention, to give chance to IRQs. Abort if fatal signal
578 * pending or async compaction detects need_resched()
579 */
580 if (!(blockpfn % SWAP_CLUSTER_MAX)
581 && compact_unlock_should_abort(&cc->zone->lock, flags,
582 &locked, cc))
583 break;
584
585 nr_scanned++;
586
587 /*
588 * For compound pages such as THP and hugetlbfs, we can save
589 * potentially a lot of iterations if we skip them at once.
590 * The check is racy, but we can consider only valid values
591 * and the only danger is skipping too much.
592 */
593 if (PageCompound(page)) {
594 const unsigned int order = compound_order(page);
595
596 if (likely(order < MAX_ORDER)) {
597 blockpfn += (1UL << order) - 1;
598 cursor += (1UL << order) - 1;
599 }
600 goto isolate_fail;
601 }
602
603 if (!PageBuddy(page))
604 goto isolate_fail;
605
606 /*
607 * If we already hold the lock, we can skip some rechecking.
608 * Note that if we hold the lock now, checked_pageblock was
609 * already set in some previous iteration (or strict is true),
610 * so it is correct to skip the suitable migration target
611 * recheck as well.
612 */
613 if (!locked) {
614 locked = compact_lock_irqsave(&cc->zone->lock,
615 &flags, cc);
616
617 /* Recheck this is a buddy page under lock */
618 if (!PageBuddy(page))
619 goto isolate_fail;
620 }
621
622 /* Found a free page, will break it into order-0 pages */
623 order = buddy_order(page);
624 isolated = __isolate_free_page(page, order);
625 if (!isolated)
626 break;
627 set_page_private(page, order);
628
629 total_isolated += isolated;
630 cc->nr_freepages += isolated;
631 list_add_tail(&page->lru, freelist);
632
633 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634 blockpfn += isolated;
635 break;
636 }
637 /* Advance to the end of split page */
638 blockpfn += isolated - 1;
639 cursor += isolated - 1;
640 continue;
641
642 isolate_fail:
643 if (strict)
644 break;
645 else
646 continue;
647
648 }
649
650 if (locked)
651 spin_unlock_irqrestore(&cc->zone->lock, flags);
652
653 /*
654 * There is a tiny chance that we have read bogus compound_order(),
655 * so be careful to not go outside of the pageblock.
656 */
657 if (unlikely(blockpfn > end_pfn))
658 blockpfn = end_pfn;
659
660 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661 nr_scanned, total_isolated);
662
663 /* Record how far we have got within the block */
664 *start_pfn = blockpfn;
665
666 /*
667 * If strict isolation is requested by CMA then check that all the
668 * pages requested were isolated. If there were any failures, 0 is
669 * returned and CMA will fail.
670 */
671 if (strict && blockpfn < end_pfn)
672 total_isolated = 0;
673
674 cc->total_free_scanned += nr_scanned;
675 if (total_isolated)
676 count_compact_events(COMPACTISOLATED, total_isolated);
677 return total_isolated;
678 }
679
680 /**
681 * isolate_freepages_range() - isolate free pages.
682 * @cc: Compaction control structure.
683 * @start_pfn: The first PFN to start isolating.
684 * @end_pfn: The one-past-last PFN.
685 *
686 * Non-free pages, invalid PFNs, or zone boundaries within the
687 * [start_pfn, end_pfn) range are considered errors, cause function to
688 * undo its actions and return zero.
689 *
690 * Otherwise, function returns one-past-the-last PFN of isolated page
691 * (which may be greater then end_pfn if end fell in a middle of
692 * a free page).
693 */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696 unsigned long start_pfn, unsigned long end_pfn)
697 {
698 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699 LIST_HEAD(freelist);
700
701 pfn = start_pfn;
702 block_start_pfn = pageblock_start_pfn(pfn);
703 if (block_start_pfn < cc->zone->zone_start_pfn)
704 block_start_pfn = cc->zone->zone_start_pfn;
705 block_end_pfn = pageblock_end_pfn(pfn);
706
707 for (; pfn < end_pfn; pfn += isolated,
708 block_start_pfn = block_end_pfn,
709 block_end_pfn += pageblock_nr_pages) {
710 /* Protect pfn from changing by isolate_freepages_block */
711 unsigned long isolate_start_pfn = pfn;
712
713 block_end_pfn = min(block_end_pfn, end_pfn);
714
715 /*
716 * pfn could pass the block_end_pfn if isolated freepage
717 * is more than pageblock order. In this case, we adjust
718 * scanning range to right one.
719 */
720 if (pfn >= block_end_pfn) {
721 block_start_pfn = pageblock_start_pfn(pfn);
722 block_end_pfn = pageblock_end_pfn(pfn);
723 block_end_pfn = min(block_end_pfn, end_pfn);
724 }
725
726 if (!pageblock_pfn_to_page(block_start_pfn,
727 block_end_pfn, cc->zone))
728 break;
729
730 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
731 block_end_pfn, &freelist, 0, true);
732
733 /*
734 * In strict mode, isolate_freepages_block() returns 0 if
735 * there are any holes in the block (ie. invalid PFNs or
736 * non-free pages).
737 */
738 if (!isolated)
739 break;
740
741 /*
742 * If we managed to isolate pages, it is always (1 << n) *
743 * pageblock_nr_pages for some non-negative n. (Max order
744 * page may span two pageblocks).
745 */
746 }
747
748 /* __isolate_free_page() does not map the pages */
749 split_map_pages(&freelist);
750
751 if (pfn < end_pfn) {
752 /* Loop terminated early, cleanup. */
753 release_freepages(&freelist);
754 return 0;
755 }
756
757 /* We don't use freelists for anything. */
758 return pfn;
759 }
760
761 /* Similar to reclaim, but different enough that they don't share logic */
762 static bool too_many_isolated(pg_data_t *pgdat)
763 {
764 unsigned long active, inactive, isolated;
765
766 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
767 node_page_state(pgdat, NR_INACTIVE_ANON);
768 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
769 node_page_state(pgdat, NR_ACTIVE_ANON);
770 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
771 node_page_state(pgdat, NR_ISOLATED_ANON);
772
773 return isolated > (inactive + active) / 2;
774 }
775
776 /**
777 * isolate_migratepages_block() - isolate all migrate-able pages within
778 * a single pageblock
779 * @cc: Compaction control structure.
780 * @low_pfn: The first PFN to isolate
781 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
782 * @isolate_mode: Isolation mode to be used.
783 *
784 * Isolate all pages that can be migrated from the range specified by
785 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
786 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
787 * -ENOMEM in case we could not allocate a page, or 0.
788 * cc->migrate_pfn will contain the next pfn to scan.
789 *
790 * The pages are isolated on cc->migratepages list (not required to be empty),
791 * and cc->nr_migratepages is updated accordingly.
792 */
793 static int
794 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
795 unsigned long end_pfn, isolate_mode_t isolate_mode)
796 {
797 pg_data_t *pgdat = cc->zone->zone_pgdat;
798 unsigned long nr_scanned = 0, nr_isolated = 0;
799 struct lruvec *lruvec;
800 unsigned long flags = 0;
801 struct lruvec *locked = NULL;
802 struct page *page = NULL, *valid_page = NULL;
803 unsigned long start_pfn = low_pfn;
804 bool skip_on_failure = false;
805 unsigned long next_skip_pfn = 0;
806 bool skip_updated = false;
807 int ret = 0;
808
809 cc->migrate_pfn = low_pfn;
810
811 /*
812 * Ensure that there are not too many pages isolated from the LRU
813 * list by either parallel reclaimers or compaction. If there are,
814 * delay for some time until fewer pages are isolated
815 */
816 while (unlikely(too_many_isolated(pgdat))) {
817 /* stop isolation if there are still pages not migrated */
818 if (cc->nr_migratepages)
819 return -EAGAIN;
820
821 /* async migration should just abort */
822 if (cc->mode == MIGRATE_ASYNC)
823 return -EAGAIN;
824
825 congestion_wait(BLK_RW_ASYNC, HZ/10);
826
827 if (fatal_signal_pending(current))
828 return -EINTR;
829 }
830
831 cond_resched();
832
833 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
834 skip_on_failure = true;
835 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
836 }
837
838 /* Time to isolate some pages for migration */
839 for (; low_pfn < end_pfn; low_pfn++) {
840
841 if (skip_on_failure && low_pfn >= next_skip_pfn) {
842 /*
843 * We have isolated all migration candidates in the
844 * previous order-aligned block, and did not skip it due
845 * to failure. We should migrate the pages now and
846 * hopefully succeed compaction.
847 */
848 if (nr_isolated)
849 break;
850
851 /*
852 * We failed to isolate in the previous order-aligned
853 * block. Set the new boundary to the end of the
854 * current block. Note we can't simply increase
855 * next_skip_pfn by 1 << order, as low_pfn might have
856 * been incremented by a higher number due to skipping
857 * a compound or a high-order buddy page in the
858 * previous loop iteration.
859 */
860 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861 }
862
863 /*
864 * Periodically drop the lock (if held) regardless of its
865 * contention, to give chance to IRQs. Abort completely if
866 * a fatal signal is pending.
867 */
868 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
869 if (locked) {
870 unlock_page_lruvec_irqrestore(locked, flags);
871 locked = NULL;
872 }
873
874 if (fatal_signal_pending(current)) {
875 cc->contended = true;
876 ret = -EINTR;
877
878 goto fatal_pending;
879 }
880
881 cond_resched();
882 }
883
884 nr_scanned++;
885
886 page = pfn_to_page(low_pfn);
887
888 /*
889 * Check if the pageblock has already been marked skipped.
890 * Only the aligned PFN is checked as the caller isolates
891 * COMPACT_CLUSTER_MAX at a time so the second call must
892 * not falsely conclude that the block should be skipped.
893 */
894 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
895 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
896 low_pfn = end_pfn;
897 page = NULL;
898 goto isolate_abort;
899 }
900 valid_page = page;
901 }
902
903 if (PageHuge(page) && cc->alloc_contig) {
904 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
905
906 /*
907 * Fail isolation in case isolate_or_dissolve_huge_page()
908 * reports an error. In case of -ENOMEM, abort right away.
909 */
910 if (ret < 0) {
911 /* Do not report -EBUSY down the chain */
912 if (ret == -EBUSY)
913 ret = 0;
914 low_pfn += (1UL << compound_order(page)) - 1;
915 goto isolate_fail;
916 }
917
918 if (PageHuge(page)) {
919 /*
920 * Hugepage was successfully isolated and placed
921 * on the cc->migratepages list.
922 */
923 low_pfn += compound_nr(page) - 1;
924 goto isolate_success_no_list;
925 }
926
927 /*
928 * Ok, the hugepage was dissolved. Now these pages are
929 * Buddy and cannot be re-allocated because they are
930 * isolated. Fall-through as the check below handles
931 * Buddy pages.
932 */
933 }
934
935 /*
936 * Skip if free. We read page order here without zone lock
937 * which is generally unsafe, but the race window is small and
938 * the worst thing that can happen is that we skip some
939 * potential isolation targets.
940 */
941 if (PageBuddy(page)) {
942 unsigned long freepage_order = buddy_order_unsafe(page);
943
944 /*
945 * Without lock, we cannot be sure that what we got is
946 * a valid page order. Consider only values in the
947 * valid order range to prevent low_pfn overflow.
948 */
949 if (freepage_order > 0 && freepage_order < MAX_ORDER)
950 low_pfn += (1UL << freepage_order) - 1;
951 continue;
952 }
953
954 /*
955 * Regardless of being on LRU, compound pages such as THP and
956 * hugetlbfs are not to be compacted unless we are attempting
957 * an allocation much larger than the huge page size (eg CMA).
958 * We can potentially save a lot of iterations if we skip them
959 * at once. The check is racy, but we can consider only valid
960 * values and the only danger is skipping too much.
961 */
962 if (PageCompound(page) && !cc->alloc_contig) {
963 const unsigned int order = compound_order(page);
964
965 if (likely(order < MAX_ORDER))
966 low_pfn += (1UL << order) - 1;
967 goto isolate_fail;
968 }
969
970 /*
971 * Check may be lockless but that's ok as we recheck later.
972 * It's possible to migrate LRU and non-lru movable pages.
973 * Skip any other type of page
974 */
975 if (!PageLRU(page)) {
976 /*
977 * __PageMovable can return false positive so we need
978 * to verify it under page_lock.
979 */
980 if (unlikely(__PageMovable(page)) &&
981 !PageIsolated(page)) {
982 if (locked) {
983 unlock_page_lruvec_irqrestore(locked, flags);
984 locked = NULL;
985 }
986
987 if (!isolate_movable_page(page, isolate_mode))
988 goto isolate_success;
989 }
990
991 goto isolate_fail;
992 }
993
994 /*
995 * Migration will fail if an anonymous page is pinned in memory,
996 * so avoid taking lru_lock and isolating it unnecessarily in an
997 * admittedly racy check.
998 */
999 if (!page_mapping(page) &&
1000 page_count(page) > page_mapcount(page))
1001 goto isolate_fail;
1002
1003 /*
1004 * Only allow to migrate anonymous pages in GFP_NOFS context
1005 * because those do not depend on fs locks.
1006 */
1007 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1008 goto isolate_fail;
1009
1010 /*
1011 * Be careful not to clear PageLRU until after we're
1012 * sure the page is not being freed elsewhere -- the
1013 * page release code relies on it.
1014 */
1015 if (unlikely(!get_page_unless_zero(page)))
1016 goto isolate_fail;
1017
1018 if (!__isolate_lru_page_prepare(page, isolate_mode))
1019 goto isolate_fail_put;
1020
1021 /* Try isolate the page */
1022 if (!TestClearPageLRU(page))
1023 goto isolate_fail_put;
1024
1025 lruvec = mem_cgroup_page_lruvec(page);
1026
1027 /* If we already hold the lock, we can skip some rechecking */
1028 if (lruvec != locked) {
1029 if (locked)
1030 unlock_page_lruvec_irqrestore(locked, flags);
1031
1032 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1033 locked = lruvec;
1034
1035 lruvec_memcg_debug(lruvec, page);
1036
1037 /* Try get exclusive access under lock */
1038 if (!skip_updated) {
1039 skip_updated = true;
1040 if (test_and_set_skip(cc, page, low_pfn))
1041 goto isolate_abort;
1042 }
1043
1044 /*
1045 * Page become compound since the non-locked check,
1046 * and it's on LRU. It can only be a THP so the order
1047 * is safe to read and it's 0 for tail pages.
1048 */
1049 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1050 low_pfn += compound_nr(page) - 1;
1051 SetPageLRU(page);
1052 goto isolate_fail_put;
1053 }
1054 }
1055
1056 /* The whole page is taken off the LRU; skip the tail pages. */
1057 if (PageCompound(page))
1058 low_pfn += compound_nr(page) - 1;
1059
1060 /* Successfully isolated */
1061 del_page_from_lru_list(page, lruvec);
1062 mod_node_page_state(page_pgdat(page),
1063 NR_ISOLATED_ANON + page_is_file_lru(page),
1064 thp_nr_pages(page));
1065
1066 isolate_success:
1067 list_add(&page->lru, &cc->migratepages);
1068 isolate_success_no_list:
1069 cc->nr_migratepages += compound_nr(page);
1070 nr_isolated += compound_nr(page);
1071
1072 /*
1073 * Avoid isolating too much unless this block is being
1074 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1075 * or a lock is contended. For contention, isolate quickly to
1076 * potentially remove one source of contention.
1077 */
1078 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1079 !cc->rescan && !cc->contended) {
1080 ++low_pfn;
1081 break;
1082 }
1083
1084 continue;
1085
1086 isolate_fail_put:
1087 /* Avoid potential deadlock in freeing page under lru_lock */
1088 if (locked) {
1089 unlock_page_lruvec_irqrestore(locked, flags);
1090 locked = NULL;
1091 }
1092 put_page(page);
1093
1094 isolate_fail:
1095 if (!skip_on_failure && ret != -ENOMEM)
1096 continue;
1097
1098 /*
1099 * We have isolated some pages, but then failed. Release them
1100 * instead of migrating, as we cannot form the cc->order buddy
1101 * page anyway.
1102 */
1103 if (nr_isolated) {
1104 if (locked) {
1105 unlock_page_lruvec_irqrestore(locked, flags);
1106 locked = NULL;
1107 }
1108 putback_movable_pages(&cc->migratepages);
1109 cc->nr_migratepages = 0;
1110 nr_isolated = 0;
1111 }
1112
1113 if (low_pfn < next_skip_pfn) {
1114 low_pfn = next_skip_pfn - 1;
1115 /*
1116 * The check near the loop beginning would have updated
1117 * next_skip_pfn too, but this is a bit simpler.
1118 */
1119 next_skip_pfn += 1UL << cc->order;
1120 }
1121
1122 if (ret == -ENOMEM)
1123 break;
1124 }
1125
1126 /*
1127 * The PageBuddy() check could have potentially brought us outside
1128 * the range to be scanned.
1129 */
1130 if (unlikely(low_pfn > end_pfn))
1131 low_pfn = end_pfn;
1132
1133 page = NULL;
1134
1135 isolate_abort:
1136 if (locked)
1137 unlock_page_lruvec_irqrestore(locked, flags);
1138 if (page) {
1139 SetPageLRU(page);
1140 put_page(page);
1141 }
1142
1143 /*
1144 * Updated the cached scanner pfn once the pageblock has been scanned
1145 * Pages will either be migrated in which case there is no point
1146 * scanning in the near future or migration failed in which case the
1147 * failure reason may persist. The block is marked for skipping if
1148 * there were no pages isolated in the block or if the block is
1149 * rescanned twice in a row.
1150 */
1151 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1152 if (valid_page && !skip_updated)
1153 set_pageblock_skip(valid_page);
1154 update_cached_migrate(cc, low_pfn);
1155 }
1156
1157 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1158 nr_scanned, nr_isolated);
1159
1160 fatal_pending:
1161 cc->total_migrate_scanned += nr_scanned;
1162 if (nr_isolated)
1163 count_compact_events(COMPACTISOLATED, nr_isolated);
1164
1165 cc->migrate_pfn = low_pfn;
1166
1167 return ret;
1168 }
1169
1170 /**
1171 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1172 * @cc: Compaction control structure.
1173 * @start_pfn: The first PFN to start isolating.
1174 * @end_pfn: The one-past-last PFN.
1175 *
1176 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1177 * in case we could not allocate a page, or 0.
1178 */
1179 int
1180 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1181 unsigned long end_pfn)
1182 {
1183 unsigned long pfn, block_start_pfn, block_end_pfn;
1184 int ret = 0;
1185
1186 /* Scan block by block. First and last block may be incomplete */
1187 pfn = start_pfn;
1188 block_start_pfn = pageblock_start_pfn(pfn);
1189 if (block_start_pfn < cc->zone->zone_start_pfn)
1190 block_start_pfn = cc->zone->zone_start_pfn;
1191 block_end_pfn = pageblock_end_pfn(pfn);
1192
1193 for (; pfn < end_pfn; pfn = block_end_pfn,
1194 block_start_pfn = block_end_pfn,
1195 block_end_pfn += pageblock_nr_pages) {
1196
1197 block_end_pfn = min(block_end_pfn, end_pfn);
1198
1199 if (!pageblock_pfn_to_page(block_start_pfn,
1200 block_end_pfn, cc->zone))
1201 continue;
1202
1203 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1204 ISOLATE_UNEVICTABLE);
1205
1206 if (ret)
1207 break;
1208
1209 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1210 break;
1211 }
1212
1213 return ret;
1214 }
1215
1216 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1217 #ifdef CONFIG_COMPACTION
1218
1219 static bool suitable_migration_source(struct compact_control *cc,
1220 struct page *page)
1221 {
1222 int block_mt;
1223
1224 if (pageblock_skip_persistent(page))
1225 return false;
1226
1227 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1228 return true;
1229
1230 block_mt = get_pageblock_migratetype(page);
1231
1232 if (cc->migratetype == MIGRATE_MOVABLE)
1233 return is_migrate_movable(block_mt);
1234 else
1235 return block_mt == cc->migratetype;
1236 }
1237
1238 /* Returns true if the page is within a block suitable for migration to */
1239 static bool suitable_migration_target(struct compact_control *cc,
1240 struct page *page)
1241 {
1242 /* If the page is a large free page, then disallow migration */
1243 if (PageBuddy(page)) {
1244 /*
1245 * We are checking page_order without zone->lock taken. But
1246 * the only small danger is that we skip a potentially suitable
1247 * pageblock, so it's not worth to check order for valid range.
1248 */
1249 if (buddy_order_unsafe(page) >= pageblock_order)
1250 return false;
1251 }
1252
1253 if (cc->ignore_block_suitable)
1254 return true;
1255
1256 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1257 if (is_migrate_movable(get_pageblock_migratetype(page)))
1258 return true;
1259
1260 /* Otherwise skip the block */
1261 return false;
1262 }
1263
1264 static inline unsigned int
1265 freelist_scan_limit(struct compact_control *cc)
1266 {
1267 unsigned short shift = BITS_PER_LONG - 1;
1268
1269 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1270 }
1271
1272 /*
1273 * Test whether the free scanner has reached the same or lower pageblock than
1274 * the migration scanner, and compaction should thus terminate.
1275 */
1276 static inline bool compact_scanners_met(struct compact_control *cc)
1277 {
1278 return (cc->free_pfn >> pageblock_order)
1279 <= (cc->migrate_pfn >> pageblock_order);
1280 }
1281
1282 /*
1283 * Used when scanning for a suitable migration target which scans freelists
1284 * in reverse. Reorders the list such as the unscanned pages are scanned
1285 * first on the next iteration of the free scanner
1286 */
1287 static void
1288 move_freelist_head(struct list_head *freelist, struct page *freepage)
1289 {
1290 LIST_HEAD(sublist);
1291
1292 if (!list_is_last(freelist, &freepage->lru)) {
1293 list_cut_before(&sublist, freelist, &freepage->lru);
1294 list_splice_tail(&sublist, freelist);
1295 }
1296 }
1297
1298 /*
1299 * Similar to move_freelist_head except used by the migration scanner
1300 * when scanning forward. It's possible for these list operations to
1301 * move against each other if they search the free list exactly in
1302 * lockstep.
1303 */
1304 static void
1305 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1306 {
1307 LIST_HEAD(sublist);
1308
1309 if (!list_is_first(freelist, &freepage->lru)) {
1310 list_cut_position(&sublist, freelist, &freepage->lru);
1311 list_splice_tail(&sublist, freelist);
1312 }
1313 }
1314
1315 static void
1316 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1317 {
1318 unsigned long start_pfn, end_pfn;
1319 struct page *page;
1320
1321 /* Do not search around if there are enough pages already */
1322 if (cc->nr_freepages >= cc->nr_migratepages)
1323 return;
1324
1325 /* Minimise scanning during async compaction */
1326 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1327 return;
1328
1329 /* Pageblock boundaries */
1330 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1331 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1332
1333 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1334 if (!page)
1335 return;
1336
1337 /* Scan before */
1338 if (start_pfn != pfn) {
1339 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1340 if (cc->nr_freepages >= cc->nr_migratepages)
1341 return;
1342 }
1343
1344 /* Scan after */
1345 start_pfn = pfn + nr_isolated;
1346 if (start_pfn < end_pfn)
1347 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1348
1349 /* Skip this pageblock in the future as it's full or nearly full */
1350 if (cc->nr_freepages < cc->nr_migratepages)
1351 set_pageblock_skip(page);
1352 }
1353
1354 /* Search orders in round-robin fashion */
1355 static int next_search_order(struct compact_control *cc, int order)
1356 {
1357 order--;
1358 if (order < 0)
1359 order = cc->order - 1;
1360
1361 /* Search wrapped around? */
1362 if (order == cc->search_order) {
1363 cc->search_order--;
1364 if (cc->search_order < 0)
1365 cc->search_order = cc->order - 1;
1366 return -1;
1367 }
1368
1369 return order;
1370 }
1371
1372 static unsigned long
1373 fast_isolate_freepages(struct compact_control *cc)
1374 {
1375 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1376 unsigned int nr_scanned = 0;
1377 unsigned long low_pfn, min_pfn, highest = 0;
1378 unsigned long nr_isolated = 0;
1379 unsigned long distance;
1380 struct page *page = NULL;
1381 bool scan_start = false;
1382 int order;
1383
1384 /* Full compaction passes in a negative order */
1385 if (cc->order <= 0)
1386 return cc->free_pfn;
1387
1388 /*
1389 * If starting the scan, use a deeper search and use the highest
1390 * PFN found if a suitable one is not found.
1391 */
1392 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1393 limit = pageblock_nr_pages >> 1;
1394 scan_start = true;
1395 }
1396
1397 /*
1398 * Preferred point is in the top quarter of the scan space but take
1399 * a pfn from the top half if the search is problematic.
1400 */
1401 distance = (cc->free_pfn - cc->migrate_pfn);
1402 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1403 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1404
1405 if (WARN_ON_ONCE(min_pfn > low_pfn))
1406 low_pfn = min_pfn;
1407
1408 /*
1409 * Search starts from the last successful isolation order or the next
1410 * order to search after a previous failure
1411 */
1412 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1413
1414 for (order = cc->search_order;
1415 !page && order >= 0;
1416 order = next_search_order(cc, order)) {
1417 struct free_area *area = &cc->zone->free_area[order];
1418 struct list_head *freelist;
1419 struct page *freepage;
1420 unsigned long flags;
1421 unsigned int order_scanned = 0;
1422 unsigned long high_pfn = 0;
1423
1424 if (!area->nr_free)
1425 continue;
1426
1427 spin_lock_irqsave(&cc->zone->lock, flags);
1428 freelist = &area->free_list[MIGRATE_MOVABLE];
1429 list_for_each_entry_reverse(freepage, freelist, lru) {
1430 unsigned long pfn;
1431
1432 order_scanned++;
1433 nr_scanned++;
1434 pfn = page_to_pfn(freepage);
1435
1436 if (pfn >= highest)
1437 highest = max(pageblock_start_pfn(pfn),
1438 cc->zone->zone_start_pfn);
1439
1440 if (pfn >= low_pfn) {
1441 cc->fast_search_fail = 0;
1442 cc->search_order = order;
1443 page = freepage;
1444 break;
1445 }
1446
1447 if (pfn >= min_pfn && pfn > high_pfn) {
1448 high_pfn = pfn;
1449
1450 /* Shorten the scan if a candidate is found */
1451 limit >>= 1;
1452 }
1453
1454 if (order_scanned >= limit)
1455 break;
1456 }
1457
1458 /* Use a minimum pfn if a preferred one was not found */
1459 if (!page && high_pfn) {
1460 page = pfn_to_page(high_pfn);
1461
1462 /* Update freepage for the list reorder below */
1463 freepage = page;
1464 }
1465
1466 /* Reorder to so a future search skips recent pages */
1467 move_freelist_head(freelist, freepage);
1468
1469 /* Isolate the page if available */
1470 if (page) {
1471 if (__isolate_free_page(page, order)) {
1472 set_page_private(page, order);
1473 nr_isolated = 1 << order;
1474 cc->nr_freepages += nr_isolated;
1475 list_add_tail(&page->lru, &cc->freepages);
1476 count_compact_events(COMPACTISOLATED, nr_isolated);
1477 } else {
1478 /* If isolation fails, abort the search */
1479 order = cc->search_order + 1;
1480 page = NULL;
1481 }
1482 }
1483
1484 spin_unlock_irqrestore(&cc->zone->lock, flags);
1485
1486 /*
1487 * Smaller scan on next order so the total scan is related
1488 * to freelist_scan_limit.
1489 */
1490 if (order_scanned >= limit)
1491 limit = max(1U, limit >> 1);
1492 }
1493
1494 if (!page) {
1495 cc->fast_search_fail++;
1496 if (scan_start) {
1497 /*
1498 * Use the highest PFN found above min. If one was
1499 * not found, be pessimistic for direct compaction
1500 * and use the min mark.
1501 */
1502 if (highest) {
1503 page = pfn_to_page(highest);
1504 cc->free_pfn = highest;
1505 } else {
1506 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1507 page = pageblock_pfn_to_page(min_pfn,
1508 min(pageblock_end_pfn(min_pfn),
1509 zone_end_pfn(cc->zone)),
1510 cc->zone);
1511 cc->free_pfn = min_pfn;
1512 }
1513 }
1514 }
1515 }
1516
1517 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1518 highest -= pageblock_nr_pages;
1519 cc->zone->compact_cached_free_pfn = highest;
1520 }
1521
1522 cc->total_free_scanned += nr_scanned;
1523 if (!page)
1524 return cc->free_pfn;
1525
1526 low_pfn = page_to_pfn(page);
1527 fast_isolate_around(cc, low_pfn, nr_isolated);
1528 return low_pfn;
1529 }
1530
1531 /*
1532 * Based on information in the current compact_control, find blocks
1533 * suitable for isolating free pages from and then isolate them.
1534 */
1535 static void isolate_freepages(struct compact_control *cc)
1536 {
1537 struct zone *zone = cc->zone;
1538 struct page *page;
1539 unsigned long block_start_pfn; /* start of current pageblock */
1540 unsigned long isolate_start_pfn; /* exact pfn we start at */
1541 unsigned long block_end_pfn; /* end of current pageblock */
1542 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1543 struct list_head *freelist = &cc->freepages;
1544 unsigned int stride;
1545
1546 /* Try a small search of the free lists for a candidate */
1547 isolate_start_pfn = fast_isolate_freepages(cc);
1548 if (cc->nr_freepages)
1549 goto splitmap;
1550
1551 /*
1552 * Initialise the free scanner. The starting point is where we last
1553 * successfully isolated from, zone-cached value, or the end of the
1554 * zone when isolating for the first time. For looping we also need
1555 * this pfn aligned down to the pageblock boundary, because we do
1556 * block_start_pfn -= pageblock_nr_pages in the for loop.
1557 * For ending point, take care when isolating in last pageblock of a
1558 * zone which ends in the middle of a pageblock.
1559 * The low boundary is the end of the pageblock the migration scanner
1560 * is using.
1561 */
1562 isolate_start_pfn = cc->free_pfn;
1563 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1564 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1565 zone_end_pfn(zone));
1566 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1567 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1568
1569 /*
1570 * Isolate free pages until enough are available to migrate the
1571 * pages on cc->migratepages. We stop searching if the migrate
1572 * and free page scanners meet or enough free pages are isolated.
1573 */
1574 for (; block_start_pfn >= low_pfn;
1575 block_end_pfn = block_start_pfn,
1576 block_start_pfn -= pageblock_nr_pages,
1577 isolate_start_pfn = block_start_pfn) {
1578 unsigned long nr_isolated;
1579
1580 /*
1581 * This can iterate a massively long zone without finding any
1582 * suitable migration targets, so periodically check resched.
1583 */
1584 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1585 cond_resched();
1586
1587 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1588 zone);
1589 if (!page)
1590 continue;
1591
1592 /* Check the block is suitable for migration */
1593 if (!suitable_migration_target(cc, page))
1594 continue;
1595
1596 /* If isolation recently failed, do not retry */
1597 if (!isolation_suitable(cc, page))
1598 continue;
1599
1600 /* Found a block suitable for isolating free pages from. */
1601 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1602 block_end_pfn, freelist, stride, false);
1603
1604 /* Update the skip hint if the full pageblock was scanned */
1605 if (isolate_start_pfn == block_end_pfn)
1606 update_pageblock_skip(cc, page, block_start_pfn);
1607
1608 /* Are enough freepages isolated? */
1609 if (cc->nr_freepages >= cc->nr_migratepages) {
1610 if (isolate_start_pfn >= block_end_pfn) {
1611 /*
1612 * Restart at previous pageblock if more
1613 * freepages can be isolated next time.
1614 */
1615 isolate_start_pfn =
1616 block_start_pfn - pageblock_nr_pages;
1617 }
1618 break;
1619 } else if (isolate_start_pfn < block_end_pfn) {
1620 /*
1621 * If isolation failed early, do not continue
1622 * needlessly.
1623 */
1624 break;
1625 }
1626
1627 /* Adjust stride depending on isolation */
1628 if (nr_isolated) {
1629 stride = 1;
1630 continue;
1631 }
1632 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1633 }
1634
1635 /*
1636 * Record where the free scanner will restart next time. Either we
1637 * broke from the loop and set isolate_start_pfn based on the last
1638 * call to isolate_freepages_block(), or we met the migration scanner
1639 * and the loop terminated due to isolate_start_pfn < low_pfn
1640 */
1641 cc->free_pfn = isolate_start_pfn;
1642
1643 splitmap:
1644 /* __isolate_free_page() does not map the pages */
1645 split_map_pages(freelist);
1646 }
1647
1648 /*
1649 * This is a migrate-callback that "allocates" freepages by taking pages
1650 * from the isolated freelists in the block we are migrating to.
1651 */
1652 static struct page *compaction_alloc(struct page *migratepage,
1653 unsigned long data)
1654 {
1655 struct compact_control *cc = (struct compact_control *)data;
1656 struct page *freepage;
1657
1658 if (list_empty(&cc->freepages)) {
1659 isolate_freepages(cc);
1660
1661 if (list_empty(&cc->freepages))
1662 return NULL;
1663 }
1664
1665 freepage = list_entry(cc->freepages.next, struct page, lru);
1666 list_del(&freepage->lru);
1667 cc->nr_freepages--;
1668
1669 return freepage;
1670 }
1671
1672 /*
1673 * This is a migrate-callback that "frees" freepages back to the isolated
1674 * freelist. All pages on the freelist are from the same zone, so there is no
1675 * special handling needed for NUMA.
1676 */
1677 static void compaction_free(struct page *page, unsigned long data)
1678 {
1679 struct compact_control *cc = (struct compact_control *)data;
1680
1681 list_add(&page->lru, &cc->freepages);
1682 cc->nr_freepages++;
1683 }
1684
1685 /* possible outcome of isolate_migratepages */
1686 typedef enum {
1687 ISOLATE_ABORT, /* Abort compaction now */
1688 ISOLATE_NONE, /* No pages isolated, continue scanning */
1689 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1690 } isolate_migrate_t;
1691
1692 /*
1693 * Allow userspace to control policy on scanning the unevictable LRU for
1694 * compactable pages.
1695 */
1696 #ifdef CONFIG_PREEMPT_RT
1697 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1698 #else
1699 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1700 #endif
1701
1702 static inline void
1703 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1704 {
1705 if (cc->fast_start_pfn == ULONG_MAX)
1706 return;
1707
1708 if (!cc->fast_start_pfn)
1709 cc->fast_start_pfn = pfn;
1710
1711 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1712 }
1713
1714 static inline unsigned long
1715 reinit_migrate_pfn(struct compact_control *cc)
1716 {
1717 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1718 return cc->migrate_pfn;
1719
1720 cc->migrate_pfn = cc->fast_start_pfn;
1721 cc->fast_start_pfn = ULONG_MAX;
1722
1723 return cc->migrate_pfn;
1724 }
1725
1726 /*
1727 * Briefly search the free lists for a migration source that already has
1728 * some free pages to reduce the number of pages that need migration
1729 * before a pageblock is free.
1730 */
1731 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1732 {
1733 unsigned int limit = freelist_scan_limit(cc);
1734 unsigned int nr_scanned = 0;
1735 unsigned long distance;
1736 unsigned long pfn = cc->migrate_pfn;
1737 unsigned long high_pfn;
1738 int order;
1739 bool found_block = false;
1740
1741 /* Skip hints are relied on to avoid repeats on the fast search */
1742 if (cc->ignore_skip_hint)
1743 return pfn;
1744
1745 /*
1746 * If the migrate_pfn is not at the start of a zone or the start
1747 * of a pageblock then assume this is a continuation of a previous
1748 * scan restarted due to COMPACT_CLUSTER_MAX.
1749 */
1750 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1751 return pfn;
1752
1753 /*
1754 * For smaller orders, just linearly scan as the number of pages
1755 * to migrate should be relatively small and does not necessarily
1756 * justify freeing up a large block for a small allocation.
1757 */
1758 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1759 return pfn;
1760
1761 /*
1762 * Only allow kcompactd and direct requests for movable pages to
1763 * quickly clear out a MOVABLE pageblock for allocation. This
1764 * reduces the risk that a large movable pageblock is freed for
1765 * an unmovable/reclaimable small allocation.
1766 */
1767 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1768 return pfn;
1769
1770 /*
1771 * When starting the migration scanner, pick any pageblock within the
1772 * first half of the search space. Otherwise try and pick a pageblock
1773 * within the first eighth to reduce the chances that a migration
1774 * target later becomes a source.
1775 */
1776 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1777 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1778 distance >>= 2;
1779 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1780
1781 for (order = cc->order - 1;
1782 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1783 order--) {
1784 struct free_area *area = &cc->zone->free_area[order];
1785 struct list_head *freelist;
1786 unsigned long flags;
1787 struct page *freepage;
1788
1789 if (!area->nr_free)
1790 continue;
1791
1792 spin_lock_irqsave(&cc->zone->lock, flags);
1793 freelist = &area->free_list[MIGRATE_MOVABLE];
1794 list_for_each_entry(freepage, freelist, lru) {
1795 unsigned long free_pfn;
1796
1797 if (nr_scanned++ >= limit) {
1798 move_freelist_tail(freelist, freepage);
1799 break;
1800 }
1801
1802 free_pfn = page_to_pfn(freepage);
1803 if (free_pfn < high_pfn) {
1804 /*
1805 * Avoid if skipped recently. Ideally it would
1806 * move to the tail but even safe iteration of
1807 * the list assumes an entry is deleted, not
1808 * reordered.
1809 */
1810 if (get_pageblock_skip(freepage))
1811 continue;
1812
1813 /* Reorder to so a future search skips recent pages */
1814 move_freelist_tail(freelist, freepage);
1815
1816 update_fast_start_pfn(cc, free_pfn);
1817 pfn = pageblock_start_pfn(free_pfn);
1818 cc->fast_search_fail = 0;
1819 found_block = true;
1820 set_pageblock_skip(freepage);
1821 break;
1822 }
1823 }
1824 spin_unlock_irqrestore(&cc->zone->lock, flags);
1825 }
1826
1827 cc->total_migrate_scanned += nr_scanned;
1828
1829 /*
1830 * If fast scanning failed then use a cached entry for a page block
1831 * that had free pages as the basis for starting a linear scan.
1832 */
1833 if (!found_block) {
1834 cc->fast_search_fail++;
1835 pfn = reinit_migrate_pfn(cc);
1836 }
1837 return pfn;
1838 }
1839
1840 /*
1841 * Isolate all pages that can be migrated from the first suitable block,
1842 * starting at the block pointed to by the migrate scanner pfn within
1843 * compact_control.
1844 */
1845 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1846 {
1847 unsigned long block_start_pfn;
1848 unsigned long block_end_pfn;
1849 unsigned long low_pfn;
1850 struct page *page;
1851 const isolate_mode_t isolate_mode =
1852 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1853 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1854 bool fast_find_block;
1855
1856 /*
1857 * Start at where we last stopped, or beginning of the zone as
1858 * initialized by compact_zone(). The first failure will use
1859 * the lowest PFN as the starting point for linear scanning.
1860 */
1861 low_pfn = fast_find_migrateblock(cc);
1862 block_start_pfn = pageblock_start_pfn(low_pfn);
1863 if (block_start_pfn < cc->zone->zone_start_pfn)
1864 block_start_pfn = cc->zone->zone_start_pfn;
1865
1866 /*
1867 * fast_find_migrateblock marks a pageblock skipped so to avoid
1868 * the isolation_suitable check below, check whether the fast
1869 * search was successful.
1870 */
1871 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1872
1873 /* Only scan within a pageblock boundary */
1874 block_end_pfn = pageblock_end_pfn(low_pfn);
1875
1876 /*
1877 * Iterate over whole pageblocks until we find the first suitable.
1878 * Do not cross the free scanner.
1879 */
1880 for (; block_end_pfn <= cc->free_pfn;
1881 fast_find_block = false,
1882 cc->migrate_pfn = low_pfn = block_end_pfn,
1883 block_start_pfn = block_end_pfn,
1884 block_end_pfn += pageblock_nr_pages) {
1885
1886 /*
1887 * This can potentially iterate a massively long zone with
1888 * many pageblocks unsuitable, so periodically check if we
1889 * need to schedule.
1890 */
1891 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1892 cond_resched();
1893
1894 page = pageblock_pfn_to_page(block_start_pfn,
1895 block_end_pfn, cc->zone);
1896 if (!page)
1897 continue;
1898
1899 /*
1900 * If isolation recently failed, do not retry. Only check the
1901 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1902 * to be visited multiple times. Assume skip was checked
1903 * before making it "skip" so other compaction instances do
1904 * not scan the same block.
1905 */
1906 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1907 !fast_find_block && !isolation_suitable(cc, page))
1908 continue;
1909
1910 /*
1911 * For async compaction, also only scan in MOVABLE blocks
1912 * without huge pages. Async compaction is optimistic to see
1913 * if the minimum amount of work satisfies the allocation.
1914 * The cached PFN is updated as it's possible that all
1915 * remaining blocks between source and target are unsuitable
1916 * and the compaction scanners fail to meet.
1917 */
1918 if (!suitable_migration_source(cc, page)) {
1919 update_cached_migrate(cc, block_end_pfn);
1920 continue;
1921 }
1922
1923 /* Perform the isolation */
1924 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1925 isolate_mode))
1926 return ISOLATE_ABORT;
1927
1928 /*
1929 * Either we isolated something and proceed with migration. Or
1930 * we failed and compact_zone should decide if we should
1931 * continue or not.
1932 */
1933 break;
1934 }
1935
1936 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1937 }
1938
1939 /*
1940 * order == -1 is expected when compacting via
1941 * /proc/sys/vm/compact_memory
1942 */
1943 static inline bool is_via_compact_memory(int order)
1944 {
1945 return order == -1;
1946 }
1947
1948 static bool kswapd_is_running(pg_data_t *pgdat)
1949 {
1950 return pgdat->kswapd && task_is_running(pgdat->kswapd);
1951 }
1952
1953 /*
1954 * A zone's fragmentation score is the external fragmentation wrt to the
1955 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1956 */
1957 static unsigned int fragmentation_score_zone(struct zone *zone)
1958 {
1959 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1960 }
1961
1962 /*
1963 * A weighted zone's fragmentation score is the external fragmentation
1964 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1965 * returns a value in the range [0, 100].
1966 *
1967 * The scaling factor ensures that proactive compaction focuses on larger
1968 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1969 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1970 * and thus never exceeds the high threshold for proactive compaction.
1971 */
1972 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1973 {
1974 unsigned long score;
1975
1976 score = zone->present_pages * fragmentation_score_zone(zone);
1977 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1978 }
1979
1980 /*
1981 * The per-node proactive (background) compaction process is started by its
1982 * corresponding kcompactd thread when the node's fragmentation score
1983 * exceeds the high threshold. The compaction process remains active till
1984 * the node's score falls below the low threshold, or one of the back-off
1985 * conditions is met.
1986 */
1987 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1988 {
1989 unsigned int score = 0;
1990 int zoneid;
1991
1992 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1993 struct zone *zone;
1994
1995 zone = &pgdat->node_zones[zoneid];
1996 score += fragmentation_score_zone_weighted(zone);
1997 }
1998
1999 return score;
2000 }
2001
2002 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2003 {
2004 unsigned int wmark_low;
2005
2006 /*
2007 * Cap the low watermark to avoid excessive compaction
2008 * activity in case a user sets the proactiveness tunable
2009 * close to 100 (maximum).
2010 */
2011 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2012 return low ? wmark_low : min(wmark_low + 10, 100U);
2013 }
2014
2015 static bool should_proactive_compact_node(pg_data_t *pgdat)
2016 {
2017 int wmark_high;
2018
2019 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2020 return false;
2021
2022 wmark_high = fragmentation_score_wmark(pgdat, false);
2023 return fragmentation_score_node(pgdat) > wmark_high;
2024 }
2025
2026 static enum compact_result __compact_finished(struct compact_control *cc)
2027 {
2028 unsigned int order;
2029 const int migratetype = cc->migratetype;
2030 int ret;
2031
2032 /* Compaction run completes if the migrate and free scanner meet */
2033 if (compact_scanners_met(cc)) {
2034 /* Let the next compaction start anew. */
2035 reset_cached_positions(cc->zone);
2036
2037 /*
2038 * Mark that the PG_migrate_skip information should be cleared
2039 * by kswapd when it goes to sleep. kcompactd does not set the
2040 * flag itself as the decision to be clear should be directly
2041 * based on an allocation request.
2042 */
2043 if (cc->direct_compaction)
2044 cc->zone->compact_blockskip_flush = true;
2045
2046 if (cc->whole_zone)
2047 return COMPACT_COMPLETE;
2048 else
2049 return COMPACT_PARTIAL_SKIPPED;
2050 }
2051
2052 if (cc->proactive_compaction) {
2053 int score, wmark_low;
2054 pg_data_t *pgdat;
2055
2056 pgdat = cc->zone->zone_pgdat;
2057 if (kswapd_is_running(pgdat))
2058 return COMPACT_PARTIAL_SKIPPED;
2059
2060 score = fragmentation_score_zone(cc->zone);
2061 wmark_low = fragmentation_score_wmark(pgdat, true);
2062
2063 if (score > wmark_low)
2064 ret = COMPACT_CONTINUE;
2065 else
2066 ret = COMPACT_SUCCESS;
2067
2068 goto out;
2069 }
2070
2071 if (is_via_compact_memory(cc->order))
2072 return COMPACT_CONTINUE;
2073
2074 /*
2075 * Always finish scanning a pageblock to reduce the possibility of
2076 * fallbacks in the future. This is particularly important when
2077 * migration source is unmovable/reclaimable but it's not worth
2078 * special casing.
2079 */
2080 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2081 return COMPACT_CONTINUE;
2082
2083 /* Direct compactor: Is a suitable page free? */
2084 ret = COMPACT_NO_SUITABLE_PAGE;
2085 for (order = cc->order; order < MAX_ORDER; order++) {
2086 struct free_area *area = &cc->zone->free_area[order];
2087 bool can_steal;
2088
2089 /* Job done if page is free of the right migratetype */
2090 if (!free_area_empty(area, migratetype))
2091 return COMPACT_SUCCESS;
2092
2093 #ifdef CONFIG_CMA
2094 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2095 if (migratetype == MIGRATE_MOVABLE &&
2096 !free_area_empty(area, MIGRATE_CMA))
2097 return COMPACT_SUCCESS;
2098 #endif
2099 /*
2100 * Job done if allocation would steal freepages from
2101 * other migratetype buddy lists.
2102 */
2103 if (find_suitable_fallback(area, order, migratetype,
2104 true, &can_steal) != -1) {
2105
2106 /* movable pages are OK in any pageblock */
2107 if (migratetype == MIGRATE_MOVABLE)
2108 return COMPACT_SUCCESS;
2109
2110 /*
2111 * We are stealing for a non-movable allocation. Make
2112 * sure we finish compacting the current pageblock
2113 * first so it is as free as possible and we won't
2114 * have to steal another one soon. This only applies
2115 * to sync compaction, as async compaction operates
2116 * on pageblocks of the same migratetype.
2117 */
2118 if (cc->mode == MIGRATE_ASYNC ||
2119 IS_ALIGNED(cc->migrate_pfn,
2120 pageblock_nr_pages)) {
2121 return COMPACT_SUCCESS;
2122 }
2123
2124 ret = COMPACT_CONTINUE;
2125 break;
2126 }
2127 }
2128
2129 out:
2130 if (cc->contended || fatal_signal_pending(current))
2131 ret = COMPACT_CONTENDED;
2132
2133 return ret;
2134 }
2135
2136 static enum compact_result compact_finished(struct compact_control *cc)
2137 {
2138 int ret;
2139
2140 ret = __compact_finished(cc);
2141 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2142 if (ret == COMPACT_NO_SUITABLE_PAGE)
2143 ret = COMPACT_CONTINUE;
2144
2145 return ret;
2146 }
2147
2148 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2149 unsigned int alloc_flags,
2150 int highest_zoneidx,
2151 unsigned long wmark_target)
2152 {
2153 unsigned long watermark;
2154
2155 if (is_via_compact_memory(order))
2156 return COMPACT_CONTINUE;
2157
2158 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2159 /*
2160 * If watermarks for high-order allocation are already met, there
2161 * should be no need for compaction at all.
2162 */
2163 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2164 alloc_flags))
2165 return COMPACT_SUCCESS;
2166
2167 /*
2168 * Watermarks for order-0 must be met for compaction to be able to
2169 * isolate free pages for migration targets. This means that the
2170 * watermark and alloc_flags have to match, or be more pessimistic than
2171 * the check in __isolate_free_page(). We don't use the direct
2172 * compactor's alloc_flags, as they are not relevant for freepage
2173 * isolation. We however do use the direct compactor's highest_zoneidx
2174 * to skip over zones where lowmem reserves would prevent allocation
2175 * even if compaction succeeds.
2176 * For costly orders, we require low watermark instead of min for
2177 * compaction to proceed to increase its chances.
2178 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2179 * suitable migration targets
2180 */
2181 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2182 low_wmark_pages(zone) : min_wmark_pages(zone);
2183 watermark += compact_gap(order);
2184 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2185 ALLOC_CMA, wmark_target))
2186 return COMPACT_SKIPPED;
2187
2188 return COMPACT_CONTINUE;
2189 }
2190
2191 /*
2192 * compaction_suitable: Is this suitable to run compaction on this zone now?
2193 * Returns
2194 * COMPACT_SKIPPED - If there are too few free pages for compaction
2195 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2196 * COMPACT_CONTINUE - If compaction should run now
2197 */
2198 enum compact_result compaction_suitable(struct zone *zone, int order,
2199 unsigned int alloc_flags,
2200 int highest_zoneidx)
2201 {
2202 enum compact_result ret;
2203 int fragindex;
2204
2205 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2206 zone_page_state(zone, NR_FREE_PAGES));
2207 /*
2208 * fragmentation index determines if allocation failures are due to
2209 * low memory or external fragmentation
2210 *
2211 * index of -1000 would imply allocations might succeed depending on
2212 * watermarks, but we already failed the high-order watermark check
2213 * index towards 0 implies failure is due to lack of memory
2214 * index towards 1000 implies failure is due to fragmentation
2215 *
2216 * Only compact if a failure would be due to fragmentation. Also
2217 * ignore fragindex for non-costly orders where the alternative to
2218 * a successful reclaim/compaction is OOM. Fragindex and the
2219 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2220 * excessive compaction for costly orders, but it should not be at the
2221 * expense of system stability.
2222 */
2223 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2224 fragindex = fragmentation_index(zone, order);
2225 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2226 ret = COMPACT_NOT_SUITABLE_ZONE;
2227 }
2228
2229 trace_mm_compaction_suitable(zone, order, ret);
2230 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2231 ret = COMPACT_SKIPPED;
2232
2233 return ret;
2234 }
2235
2236 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2237 int alloc_flags)
2238 {
2239 struct zone *zone;
2240 struct zoneref *z;
2241
2242 /*
2243 * Make sure at least one zone would pass __compaction_suitable if we continue
2244 * retrying the reclaim.
2245 */
2246 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2247 ac->highest_zoneidx, ac->nodemask) {
2248 unsigned long available;
2249 enum compact_result compact_result;
2250
2251 /*
2252 * Do not consider all the reclaimable memory because we do not
2253 * want to trash just for a single high order allocation which
2254 * is even not guaranteed to appear even if __compaction_suitable
2255 * is happy about the watermark check.
2256 */
2257 available = zone_reclaimable_pages(zone) / order;
2258 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2259 compact_result = __compaction_suitable(zone, order, alloc_flags,
2260 ac->highest_zoneidx, available);
2261 if (compact_result != COMPACT_SKIPPED)
2262 return true;
2263 }
2264
2265 return false;
2266 }
2267
2268 static enum compact_result
2269 compact_zone(struct compact_control *cc, struct capture_control *capc)
2270 {
2271 enum compact_result ret;
2272 unsigned long start_pfn = cc->zone->zone_start_pfn;
2273 unsigned long end_pfn = zone_end_pfn(cc->zone);
2274 unsigned long last_migrated_pfn;
2275 const bool sync = cc->mode != MIGRATE_ASYNC;
2276 bool update_cached;
2277
2278 /*
2279 * These counters track activities during zone compaction. Initialize
2280 * them before compacting a new zone.
2281 */
2282 cc->total_migrate_scanned = 0;
2283 cc->total_free_scanned = 0;
2284 cc->nr_migratepages = 0;
2285 cc->nr_freepages = 0;
2286 INIT_LIST_HEAD(&cc->freepages);
2287 INIT_LIST_HEAD(&cc->migratepages);
2288
2289 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2290 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2291 cc->highest_zoneidx);
2292 /* Compaction is likely to fail */
2293 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2294 return ret;
2295
2296 /* huh, compaction_suitable is returning something unexpected */
2297 VM_BUG_ON(ret != COMPACT_CONTINUE);
2298
2299 /*
2300 * Clear pageblock skip if there were failures recently and compaction
2301 * is about to be retried after being deferred.
2302 */
2303 if (compaction_restarting(cc->zone, cc->order))
2304 __reset_isolation_suitable(cc->zone);
2305
2306 /*
2307 * Setup to move all movable pages to the end of the zone. Used cached
2308 * information on where the scanners should start (unless we explicitly
2309 * want to compact the whole zone), but check that it is initialised
2310 * by ensuring the values are within zone boundaries.
2311 */
2312 cc->fast_start_pfn = 0;
2313 if (cc->whole_zone) {
2314 cc->migrate_pfn = start_pfn;
2315 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2316 } else {
2317 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2318 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2319 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2320 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2321 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2322 }
2323 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2324 cc->migrate_pfn = start_pfn;
2325 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2326 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2327 }
2328
2329 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2330 cc->whole_zone = true;
2331 }
2332
2333 last_migrated_pfn = 0;
2334
2335 /*
2336 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2337 * the basis that some migrations will fail in ASYNC mode. However,
2338 * if the cached PFNs match and pageblocks are skipped due to having
2339 * no isolation candidates, then the sync state does not matter.
2340 * Until a pageblock with isolation candidates is found, keep the
2341 * cached PFNs in sync to avoid revisiting the same blocks.
2342 */
2343 update_cached = !sync &&
2344 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2345
2346 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2347 cc->free_pfn, end_pfn, sync);
2348
2349 /* lru_add_drain_all could be expensive with involving other CPUs */
2350 lru_add_drain();
2351
2352 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2353 int err;
2354 unsigned long iteration_start_pfn = cc->migrate_pfn;
2355
2356 /*
2357 * Avoid multiple rescans which can happen if a page cannot be
2358 * isolated (dirty/writeback in async mode) or if the migrated
2359 * pages are being allocated before the pageblock is cleared.
2360 * The first rescan will capture the entire pageblock for
2361 * migration. If it fails, it'll be marked skip and scanning
2362 * will proceed as normal.
2363 */
2364 cc->rescan = false;
2365 if (pageblock_start_pfn(last_migrated_pfn) ==
2366 pageblock_start_pfn(iteration_start_pfn)) {
2367 cc->rescan = true;
2368 }
2369
2370 switch (isolate_migratepages(cc)) {
2371 case ISOLATE_ABORT:
2372 ret = COMPACT_CONTENDED;
2373 putback_movable_pages(&cc->migratepages);
2374 cc->nr_migratepages = 0;
2375 goto out;
2376 case ISOLATE_NONE:
2377 if (update_cached) {
2378 cc->zone->compact_cached_migrate_pfn[1] =
2379 cc->zone->compact_cached_migrate_pfn[0];
2380 }
2381
2382 /*
2383 * We haven't isolated and migrated anything, but
2384 * there might still be unflushed migrations from
2385 * previous cc->order aligned block.
2386 */
2387 goto check_drain;
2388 case ISOLATE_SUCCESS:
2389 update_cached = false;
2390 last_migrated_pfn = iteration_start_pfn;
2391 }
2392
2393 err = migrate_pages(&cc->migratepages, compaction_alloc,
2394 compaction_free, (unsigned long)cc, cc->mode,
2395 MR_COMPACTION, NULL);
2396
2397 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2398 &cc->migratepages);
2399
2400 /* All pages were either migrated or will be released */
2401 cc->nr_migratepages = 0;
2402 if (err) {
2403 putback_movable_pages(&cc->migratepages);
2404 /*
2405 * migrate_pages() may return -ENOMEM when scanners meet
2406 * and we want compact_finished() to detect it
2407 */
2408 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2409 ret = COMPACT_CONTENDED;
2410 goto out;
2411 }
2412 /*
2413 * We failed to migrate at least one page in the current
2414 * order-aligned block, so skip the rest of it.
2415 */
2416 if (cc->direct_compaction &&
2417 (cc->mode == MIGRATE_ASYNC)) {
2418 cc->migrate_pfn = block_end_pfn(
2419 cc->migrate_pfn - 1, cc->order);
2420 /* Draining pcplists is useless in this case */
2421 last_migrated_pfn = 0;
2422 }
2423 }
2424
2425 check_drain:
2426 /*
2427 * Has the migration scanner moved away from the previous
2428 * cc->order aligned block where we migrated from? If yes,
2429 * flush the pages that were freed, so that they can merge and
2430 * compact_finished() can detect immediately if allocation
2431 * would succeed.
2432 */
2433 if (cc->order > 0 && last_migrated_pfn) {
2434 unsigned long current_block_start =
2435 block_start_pfn(cc->migrate_pfn, cc->order);
2436
2437 if (last_migrated_pfn < current_block_start) {
2438 lru_add_drain_cpu_zone(cc->zone);
2439 /* No more flushing until we migrate again */
2440 last_migrated_pfn = 0;
2441 }
2442 }
2443
2444 /* Stop if a page has been captured */
2445 if (capc && capc->page) {
2446 ret = COMPACT_SUCCESS;
2447 break;
2448 }
2449 }
2450
2451 out:
2452 /*
2453 * Release free pages and update where the free scanner should restart,
2454 * so we don't leave any returned pages behind in the next attempt.
2455 */
2456 if (cc->nr_freepages > 0) {
2457 unsigned long free_pfn = release_freepages(&cc->freepages);
2458
2459 cc->nr_freepages = 0;
2460 VM_BUG_ON(free_pfn == 0);
2461 /* The cached pfn is always the first in a pageblock */
2462 free_pfn = pageblock_start_pfn(free_pfn);
2463 /*
2464 * Only go back, not forward. The cached pfn might have been
2465 * already reset to zone end in compact_finished()
2466 */
2467 if (free_pfn > cc->zone->compact_cached_free_pfn)
2468 cc->zone->compact_cached_free_pfn = free_pfn;
2469 }
2470
2471 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2472 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2473
2474 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2475 cc->free_pfn, end_pfn, sync, ret);
2476
2477 return ret;
2478 }
2479
2480 static enum compact_result compact_zone_order(struct zone *zone, int order,
2481 gfp_t gfp_mask, enum compact_priority prio,
2482 unsigned int alloc_flags, int highest_zoneidx,
2483 struct page **capture)
2484 {
2485 enum compact_result ret;
2486 struct compact_control cc = {
2487 .order = order,
2488 .search_order = order,
2489 .gfp_mask = gfp_mask,
2490 .zone = zone,
2491 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2492 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2493 .alloc_flags = alloc_flags,
2494 .highest_zoneidx = highest_zoneidx,
2495 .direct_compaction = true,
2496 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2497 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2498 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2499 };
2500 struct capture_control capc = {
2501 .cc = &cc,
2502 .page = NULL,
2503 };
2504
2505 /*
2506 * Make sure the structs are really initialized before we expose the
2507 * capture control, in case we are interrupted and the interrupt handler
2508 * frees a page.
2509 */
2510 barrier();
2511 WRITE_ONCE(current->capture_control, &capc);
2512
2513 ret = compact_zone(&cc, &capc);
2514
2515 VM_BUG_ON(!list_empty(&cc.freepages));
2516 VM_BUG_ON(!list_empty(&cc.migratepages));
2517
2518 /*
2519 * Make sure we hide capture control first before we read the captured
2520 * page pointer, otherwise an interrupt could free and capture a page
2521 * and we would leak it.
2522 */
2523 WRITE_ONCE(current->capture_control, NULL);
2524 *capture = READ_ONCE(capc.page);
2525 /*
2526 * Technically, it is also possible that compaction is skipped but
2527 * the page is still captured out of luck(IRQ came and freed the page).
2528 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2529 * the COMPACT[STALL|FAIL] when compaction is skipped.
2530 */
2531 if (*capture)
2532 ret = COMPACT_SUCCESS;
2533
2534 return ret;
2535 }
2536
2537 int sysctl_extfrag_threshold = 500;
2538
2539 /**
2540 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2541 * @gfp_mask: The GFP mask of the current allocation
2542 * @order: The order of the current allocation
2543 * @alloc_flags: The allocation flags of the current allocation
2544 * @ac: The context of current allocation
2545 * @prio: Determines how hard direct compaction should try to succeed
2546 * @capture: Pointer to free page created by compaction will be stored here
2547 *
2548 * This is the main entry point for direct page compaction.
2549 */
2550 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2551 unsigned int alloc_flags, const struct alloc_context *ac,
2552 enum compact_priority prio, struct page **capture)
2553 {
2554 int may_perform_io = gfp_mask & __GFP_IO;
2555 struct zoneref *z;
2556 struct zone *zone;
2557 enum compact_result rc = COMPACT_SKIPPED;
2558
2559 /*
2560 * Check if the GFP flags allow compaction - GFP_NOIO is really
2561 * tricky context because the migration might require IO
2562 */
2563 if (!may_perform_io)
2564 return COMPACT_SKIPPED;
2565
2566 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2567
2568 /* Compact each zone in the list */
2569 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2570 ac->highest_zoneidx, ac->nodemask) {
2571 enum compact_result status;
2572
2573 if (prio > MIN_COMPACT_PRIORITY
2574 && compaction_deferred(zone, order)) {
2575 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2576 continue;
2577 }
2578
2579 status = compact_zone_order(zone, order, gfp_mask, prio,
2580 alloc_flags, ac->highest_zoneidx, capture);
2581 rc = max(status, rc);
2582
2583 /* The allocation should succeed, stop compacting */
2584 if (status == COMPACT_SUCCESS) {
2585 /*
2586 * We think the allocation will succeed in this zone,
2587 * but it is not certain, hence the false. The caller
2588 * will repeat this with true if allocation indeed
2589 * succeeds in this zone.
2590 */
2591 compaction_defer_reset(zone, order, false);
2592
2593 break;
2594 }
2595
2596 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2597 status == COMPACT_PARTIAL_SKIPPED))
2598 /*
2599 * We think that allocation won't succeed in this zone
2600 * so we defer compaction there. If it ends up
2601 * succeeding after all, it will be reset.
2602 */
2603 defer_compaction(zone, order);
2604
2605 /*
2606 * We might have stopped compacting due to need_resched() in
2607 * async compaction, or due to a fatal signal detected. In that
2608 * case do not try further zones
2609 */
2610 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2611 || fatal_signal_pending(current))
2612 break;
2613 }
2614
2615 return rc;
2616 }
2617
2618 /*
2619 * Compact all zones within a node till each zone's fragmentation score
2620 * reaches within proactive compaction thresholds (as determined by the
2621 * proactiveness tunable).
2622 *
2623 * It is possible that the function returns before reaching score targets
2624 * due to various back-off conditions, such as, contention on per-node or
2625 * per-zone locks.
2626 */
2627 static void proactive_compact_node(pg_data_t *pgdat)
2628 {
2629 int zoneid;
2630 struct zone *zone;
2631 struct compact_control cc = {
2632 .order = -1,
2633 .mode = MIGRATE_SYNC_LIGHT,
2634 .ignore_skip_hint = true,
2635 .whole_zone = true,
2636 .gfp_mask = GFP_KERNEL,
2637 .proactive_compaction = true,
2638 };
2639
2640 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2641 zone = &pgdat->node_zones[zoneid];
2642 if (!populated_zone(zone))
2643 continue;
2644
2645 cc.zone = zone;
2646
2647 compact_zone(&cc, NULL);
2648
2649 VM_BUG_ON(!list_empty(&cc.freepages));
2650 VM_BUG_ON(!list_empty(&cc.migratepages));
2651 }
2652 }
2653
2654 /* Compact all zones within a node */
2655 static void compact_node(int nid)
2656 {
2657 pg_data_t *pgdat = NODE_DATA(nid);
2658 int zoneid;
2659 struct zone *zone;
2660 struct compact_control cc = {
2661 .order = -1,
2662 .mode = MIGRATE_SYNC,
2663 .ignore_skip_hint = true,
2664 .whole_zone = true,
2665 .gfp_mask = GFP_KERNEL,
2666 };
2667
2668
2669 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2670
2671 zone = &pgdat->node_zones[zoneid];
2672 if (!populated_zone(zone))
2673 continue;
2674
2675 cc.zone = zone;
2676
2677 compact_zone(&cc, NULL);
2678
2679 VM_BUG_ON(!list_empty(&cc.freepages));
2680 VM_BUG_ON(!list_empty(&cc.migratepages));
2681 }
2682 }
2683
2684 /* Compact all nodes in the system */
2685 static void compact_nodes(void)
2686 {
2687 int nid;
2688
2689 /* Flush pending updates to the LRU lists */
2690 lru_add_drain_all();
2691
2692 for_each_online_node(nid)
2693 compact_node(nid);
2694 }
2695
2696 /*
2697 * Tunable for proactive compaction. It determines how
2698 * aggressively the kernel should compact memory in the
2699 * background. It takes values in the range [0, 100].
2700 */
2701 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2702
2703 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2704 void *buffer, size_t *length, loff_t *ppos)
2705 {
2706 int rc, nid;
2707
2708 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2709 if (rc)
2710 return rc;
2711
2712 if (write && sysctl_compaction_proactiveness) {
2713 for_each_online_node(nid) {
2714 pg_data_t *pgdat = NODE_DATA(nid);
2715
2716 if (pgdat->proactive_compact_trigger)
2717 continue;
2718
2719 pgdat->proactive_compact_trigger = true;
2720 wake_up_interruptible(&pgdat->kcompactd_wait);
2721 }
2722 }
2723
2724 return 0;
2725 }
2726
2727 /*
2728 * This is the entry point for compacting all nodes via
2729 * /proc/sys/vm/compact_memory
2730 */
2731 int sysctl_compaction_handler(struct ctl_table *table, int write,
2732 void *buffer, size_t *length, loff_t *ppos)
2733 {
2734 if (write)
2735 compact_nodes();
2736
2737 return 0;
2738 }
2739
2740 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2741 static ssize_t compact_store(struct device *dev,
2742 struct device_attribute *attr,
2743 const char *buf, size_t count)
2744 {
2745 int nid = dev->id;
2746
2747 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2748 /* Flush pending updates to the LRU lists */
2749 lru_add_drain_all();
2750
2751 compact_node(nid);
2752 }
2753
2754 return count;
2755 }
2756 static DEVICE_ATTR_WO(compact);
2757
2758 int compaction_register_node(struct node *node)
2759 {
2760 return device_create_file(&node->dev, &dev_attr_compact);
2761 }
2762
2763 void compaction_unregister_node(struct node *node)
2764 {
2765 return device_remove_file(&node->dev, &dev_attr_compact);
2766 }
2767 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2768
2769 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2770 {
2771 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2772 pgdat->proactive_compact_trigger;
2773 }
2774
2775 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2776 {
2777 int zoneid;
2778 struct zone *zone;
2779 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2780
2781 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2782 zone = &pgdat->node_zones[zoneid];
2783
2784 if (!populated_zone(zone))
2785 continue;
2786
2787 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2788 highest_zoneidx) == COMPACT_CONTINUE)
2789 return true;
2790 }
2791
2792 return false;
2793 }
2794
2795 static void kcompactd_do_work(pg_data_t *pgdat)
2796 {
2797 /*
2798 * With no special task, compact all zones so that a page of requested
2799 * order is allocatable.
2800 */
2801 int zoneid;
2802 struct zone *zone;
2803 struct compact_control cc = {
2804 .order = pgdat->kcompactd_max_order,
2805 .search_order = pgdat->kcompactd_max_order,
2806 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2807 .mode = MIGRATE_SYNC_LIGHT,
2808 .ignore_skip_hint = false,
2809 .gfp_mask = GFP_KERNEL,
2810 };
2811 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2812 cc.highest_zoneidx);
2813 count_compact_event(KCOMPACTD_WAKE);
2814
2815 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2816 int status;
2817
2818 zone = &pgdat->node_zones[zoneid];
2819 if (!populated_zone(zone))
2820 continue;
2821
2822 if (compaction_deferred(zone, cc.order))
2823 continue;
2824
2825 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2826 COMPACT_CONTINUE)
2827 continue;
2828
2829 if (kthread_should_stop())
2830 return;
2831
2832 cc.zone = zone;
2833 status = compact_zone(&cc, NULL);
2834
2835 if (status == COMPACT_SUCCESS) {
2836 compaction_defer_reset(zone, cc.order, false);
2837 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2838 /*
2839 * Buddy pages may become stranded on pcps that could
2840 * otherwise coalesce on the zone's free area for
2841 * order >= cc.order. This is ratelimited by the
2842 * upcoming deferral.
2843 */
2844 drain_all_pages(zone);
2845
2846 /*
2847 * We use sync migration mode here, so we defer like
2848 * sync direct compaction does.
2849 */
2850 defer_compaction(zone, cc.order);
2851 }
2852
2853 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2854 cc.total_migrate_scanned);
2855 count_compact_events(KCOMPACTD_FREE_SCANNED,
2856 cc.total_free_scanned);
2857
2858 VM_BUG_ON(!list_empty(&cc.freepages));
2859 VM_BUG_ON(!list_empty(&cc.migratepages));
2860 }
2861
2862 /*
2863 * Regardless of success, we are done until woken up next. But remember
2864 * the requested order/highest_zoneidx in case it was higher/tighter
2865 * than our current ones
2866 */
2867 if (pgdat->kcompactd_max_order <= cc.order)
2868 pgdat->kcompactd_max_order = 0;
2869 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2870 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2871 }
2872
2873 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2874 {
2875 if (!order)
2876 return;
2877
2878 if (pgdat->kcompactd_max_order < order)
2879 pgdat->kcompactd_max_order = order;
2880
2881 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2882 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2883
2884 /*
2885 * Pairs with implicit barrier in wait_event_freezable()
2886 * such that wakeups are not missed.
2887 */
2888 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2889 return;
2890
2891 if (!kcompactd_node_suitable(pgdat))
2892 return;
2893
2894 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2895 highest_zoneidx);
2896 wake_up_interruptible(&pgdat->kcompactd_wait);
2897 }
2898
2899 /*
2900 * The background compaction daemon, started as a kernel thread
2901 * from the init process.
2902 */
2903 static int kcompactd(void *p)
2904 {
2905 pg_data_t *pgdat = (pg_data_t *)p;
2906 struct task_struct *tsk = current;
2907 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2908 long timeout = default_timeout;
2909
2910 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2911
2912 if (!cpumask_empty(cpumask))
2913 set_cpus_allowed_ptr(tsk, cpumask);
2914
2915 set_freezable();
2916
2917 pgdat->kcompactd_max_order = 0;
2918 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2919
2920 while (!kthread_should_stop()) {
2921 unsigned long pflags;
2922
2923 /*
2924 * Avoid the unnecessary wakeup for proactive compaction
2925 * when it is disabled.
2926 */
2927 if (!sysctl_compaction_proactiveness)
2928 timeout = MAX_SCHEDULE_TIMEOUT;
2929 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2930 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2931 kcompactd_work_requested(pgdat), timeout) &&
2932 !pgdat->proactive_compact_trigger) {
2933
2934 psi_memstall_enter(&pflags);
2935 kcompactd_do_work(pgdat);
2936 psi_memstall_leave(&pflags);
2937 /*
2938 * Reset the timeout value. The defer timeout from
2939 * proactive compaction is lost here but that is fine
2940 * as the condition of the zone changing substantionally
2941 * then carrying on with the previous defer interval is
2942 * not useful.
2943 */
2944 timeout = default_timeout;
2945 continue;
2946 }
2947
2948 /*
2949 * Start the proactive work with default timeout. Based
2950 * on the fragmentation score, this timeout is updated.
2951 */
2952 timeout = default_timeout;
2953 if (should_proactive_compact_node(pgdat)) {
2954 unsigned int prev_score, score;
2955
2956 prev_score = fragmentation_score_node(pgdat);
2957 proactive_compact_node(pgdat);
2958 score = fragmentation_score_node(pgdat);
2959 /*
2960 * Defer proactive compaction if the fragmentation
2961 * score did not go down i.e. no progress made.
2962 */
2963 if (unlikely(score >= prev_score))
2964 timeout =
2965 default_timeout << COMPACT_MAX_DEFER_SHIFT;
2966 }
2967 if (unlikely(pgdat->proactive_compact_trigger))
2968 pgdat->proactive_compact_trigger = false;
2969 }
2970
2971 return 0;
2972 }
2973
2974 /*
2975 * This kcompactd start function will be called by init and node-hot-add.
2976 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2977 */
2978 int kcompactd_run(int nid)
2979 {
2980 pg_data_t *pgdat = NODE_DATA(nid);
2981 int ret = 0;
2982
2983 if (pgdat->kcompactd)
2984 return 0;
2985
2986 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2987 if (IS_ERR(pgdat->kcompactd)) {
2988 pr_err("Failed to start kcompactd on node %d\n", nid);
2989 ret = PTR_ERR(pgdat->kcompactd);
2990 pgdat->kcompactd = NULL;
2991 }
2992 return ret;
2993 }
2994
2995 /*
2996 * Called by memory hotplug when all memory in a node is offlined. Caller must
2997 * hold mem_hotplug_begin/end().
2998 */
2999 void kcompactd_stop(int nid)
3000 {
3001 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3002
3003 if (kcompactd) {
3004 kthread_stop(kcompactd);
3005 NODE_DATA(nid)->kcompactd = NULL;
3006 }
3007 }
3008
3009 /*
3010 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3011 * not required for correctness. So if the last cpu in a node goes
3012 * away, we get changed to run anywhere: as the first one comes back,
3013 * restore their cpu bindings.
3014 */
3015 static int kcompactd_cpu_online(unsigned int cpu)
3016 {
3017 int nid;
3018
3019 for_each_node_state(nid, N_MEMORY) {
3020 pg_data_t *pgdat = NODE_DATA(nid);
3021 const struct cpumask *mask;
3022
3023 mask = cpumask_of_node(pgdat->node_id);
3024
3025 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3026 /* One of our CPUs online: restore mask */
3027 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3028 }
3029 return 0;
3030 }
3031
3032 static int __init kcompactd_init(void)
3033 {
3034 int nid;
3035 int ret;
3036
3037 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3038 "mm/compaction:online",
3039 kcompactd_cpu_online, NULL);
3040 if (ret < 0) {
3041 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3042 return ret;
3043 }
3044
3045 for_each_node_state(nid, N_MEMORY)
3046 kcompactd_run(nid);
3047 return 0;
3048 }
3049 subsys_initcall(kcompactd_init)
3050
3051 #endif /* CONFIG_COMPACTION */