]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/compaction.c
mm: introduce putback_movable_pages()
[mirror_ubuntu-bionic-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include "internal.h"
19
20 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/compaction.h>
24
25 static unsigned long release_freepages(struct list_head *freelist)
26 {
27 struct page *page, *next;
28 unsigned long count = 0;
29
30 list_for_each_entry_safe(page, next, freelist, lru) {
31 list_del(&page->lru);
32 __free_page(page);
33 count++;
34 }
35
36 return count;
37 }
38
39 static void map_pages(struct list_head *list)
40 {
41 struct page *page;
42
43 list_for_each_entry(page, list, lru) {
44 arch_alloc_page(page, 0);
45 kernel_map_pages(page, 1, 1);
46 }
47 }
48
49 static inline bool migrate_async_suitable(int migratetype)
50 {
51 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
52 }
53
54 #ifdef CONFIG_COMPACTION
55 /* Returns true if the pageblock should be scanned for pages to isolate. */
56 static inline bool isolation_suitable(struct compact_control *cc,
57 struct page *page)
58 {
59 if (cc->ignore_skip_hint)
60 return true;
61
62 return !get_pageblock_skip(page);
63 }
64
65 /*
66 * This function is called to clear all cached information on pageblocks that
67 * should be skipped for page isolation when the migrate and free page scanner
68 * meet.
69 */
70 static void __reset_isolation_suitable(struct zone *zone)
71 {
72 unsigned long start_pfn = zone->zone_start_pfn;
73 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
74 unsigned long pfn;
75
76 zone->compact_cached_migrate_pfn = start_pfn;
77 zone->compact_cached_free_pfn = end_pfn;
78 zone->compact_blockskip_flush = false;
79
80 /* Walk the zone and mark every pageblock as suitable for isolation */
81 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
82 struct page *page;
83
84 cond_resched();
85
86 if (!pfn_valid(pfn))
87 continue;
88
89 page = pfn_to_page(pfn);
90 if (zone != page_zone(page))
91 continue;
92
93 clear_pageblock_skip(page);
94 }
95 }
96
97 void reset_isolation_suitable(pg_data_t *pgdat)
98 {
99 int zoneid;
100
101 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
102 struct zone *zone = &pgdat->node_zones[zoneid];
103 if (!populated_zone(zone))
104 continue;
105
106 /* Only flush if a full compaction finished recently */
107 if (zone->compact_blockskip_flush)
108 __reset_isolation_suitable(zone);
109 }
110 }
111
112 /*
113 * If no pages were isolated then mark this pageblock to be skipped in the
114 * future. The information is later cleared by __reset_isolation_suitable().
115 */
116 static void update_pageblock_skip(struct compact_control *cc,
117 struct page *page, unsigned long nr_isolated,
118 bool migrate_scanner)
119 {
120 struct zone *zone = cc->zone;
121 if (!page)
122 return;
123
124 if (!nr_isolated) {
125 unsigned long pfn = page_to_pfn(page);
126 set_pageblock_skip(page);
127
128 /* Update where compaction should restart */
129 if (migrate_scanner) {
130 if (!cc->finished_update_migrate &&
131 pfn > zone->compact_cached_migrate_pfn)
132 zone->compact_cached_migrate_pfn = pfn;
133 } else {
134 if (!cc->finished_update_free &&
135 pfn < zone->compact_cached_free_pfn)
136 zone->compact_cached_free_pfn = pfn;
137 }
138 }
139 }
140 #else
141 static inline bool isolation_suitable(struct compact_control *cc,
142 struct page *page)
143 {
144 return true;
145 }
146
147 static void update_pageblock_skip(struct compact_control *cc,
148 struct page *page, unsigned long nr_isolated,
149 bool migrate_scanner)
150 {
151 }
152 #endif /* CONFIG_COMPACTION */
153
154 static inline bool should_release_lock(spinlock_t *lock)
155 {
156 return need_resched() || spin_is_contended(lock);
157 }
158
159 /*
160 * Compaction requires the taking of some coarse locks that are potentially
161 * very heavily contended. Check if the process needs to be scheduled or
162 * if the lock is contended. For async compaction, back out in the event
163 * if contention is severe. For sync compaction, schedule.
164 *
165 * Returns true if the lock is held.
166 * Returns false if the lock is released and compaction should abort
167 */
168 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
169 bool locked, struct compact_control *cc)
170 {
171 if (should_release_lock(lock)) {
172 if (locked) {
173 spin_unlock_irqrestore(lock, *flags);
174 locked = false;
175 }
176
177 /* async aborts if taking too long or contended */
178 if (!cc->sync) {
179 cc->contended = true;
180 return false;
181 }
182
183 cond_resched();
184 }
185
186 if (!locked)
187 spin_lock_irqsave(lock, *flags);
188 return true;
189 }
190
191 static inline bool compact_trylock_irqsave(spinlock_t *lock,
192 unsigned long *flags, struct compact_control *cc)
193 {
194 return compact_checklock_irqsave(lock, flags, false, cc);
195 }
196
197 /* Returns true if the page is within a block suitable for migration to */
198 static bool suitable_migration_target(struct page *page)
199 {
200 int migratetype = get_pageblock_migratetype(page);
201
202 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
203 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
204 return false;
205
206 /* If the page is a large free page, then allow migration */
207 if (PageBuddy(page) && page_order(page) >= pageblock_order)
208 return true;
209
210 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
211 if (migrate_async_suitable(migratetype))
212 return true;
213
214 /* Otherwise skip the block */
215 return false;
216 }
217
218 static void compact_capture_page(struct compact_control *cc)
219 {
220 unsigned long flags;
221 int mtype, mtype_low, mtype_high;
222
223 if (!cc->page || *cc->page)
224 return;
225
226 /*
227 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
228 * regardless of the migratetype of the freelist is is captured from.
229 * This is fine because the order for a high-order MIGRATE_MOVABLE
230 * allocation is typically at least a pageblock size and overall
231 * fragmentation is not impaired. Other allocation types must
232 * capture pages from their own migratelist because otherwise they
233 * could pollute other pageblocks like MIGRATE_MOVABLE with
234 * difficult to move pages and making fragmentation worse overall.
235 */
236 if (cc->migratetype == MIGRATE_MOVABLE) {
237 mtype_low = 0;
238 mtype_high = MIGRATE_PCPTYPES;
239 } else {
240 mtype_low = cc->migratetype;
241 mtype_high = cc->migratetype + 1;
242 }
243
244 /* Speculatively examine the free lists without zone lock */
245 for (mtype = mtype_low; mtype < mtype_high; mtype++) {
246 int order;
247 for (order = cc->order; order < MAX_ORDER; order++) {
248 struct page *page;
249 struct free_area *area;
250 area = &(cc->zone->free_area[order]);
251 if (list_empty(&area->free_list[mtype]))
252 continue;
253
254 /* Take the lock and attempt capture of the page */
255 if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
256 return;
257 if (!list_empty(&area->free_list[mtype])) {
258 page = list_entry(area->free_list[mtype].next,
259 struct page, lru);
260 if (capture_free_page(page, cc->order, mtype)) {
261 spin_unlock_irqrestore(&cc->zone->lock,
262 flags);
263 *cc->page = page;
264 return;
265 }
266 }
267 spin_unlock_irqrestore(&cc->zone->lock, flags);
268 }
269 }
270 }
271
272 /*
273 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
274 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
275 * pages inside of the pageblock (even though it may still end up isolating
276 * some pages).
277 */
278 static unsigned long isolate_freepages_block(struct compact_control *cc,
279 unsigned long blockpfn,
280 unsigned long end_pfn,
281 struct list_head *freelist,
282 bool strict)
283 {
284 int nr_scanned = 0, total_isolated = 0;
285 struct page *cursor, *valid_page = NULL;
286 unsigned long nr_strict_required = end_pfn - blockpfn;
287 unsigned long flags;
288 bool locked = false;
289
290 cursor = pfn_to_page(blockpfn);
291
292 /* Isolate free pages. */
293 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
294 int isolated, i;
295 struct page *page = cursor;
296
297 nr_scanned++;
298 if (!pfn_valid_within(blockpfn))
299 continue;
300 if (!valid_page)
301 valid_page = page;
302 if (!PageBuddy(page))
303 continue;
304
305 /*
306 * The zone lock must be held to isolate freepages.
307 * Unfortunately this is a very coarse lock and can be
308 * heavily contended if there are parallel allocations
309 * or parallel compactions. For async compaction do not
310 * spin on the lock and we acquire the lock as late as
311 * possible.
312 */
313 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
314 locked, cc);
315 if (!locked)
316 break;
317
318 /* Recheck this is a suitable migration target under lock */
319 if (!strict && !suitable_migration_target(page))
320 break;
321
322 /* Recheck this is a buddy page under lock */
323 if (!PageBuddy(page))
324 continue;
325
326 /* Found a free page, break it into order-0 pages */
327 isolated = split_free_page(page);
328 if (!isolated && strict)
329 break;
330 total_isolated += isolated;
331 for (i = 0; i < isolated; i++) {
332 list_add(&page->lru, freelist);
333 page++;
334 }
335
336 /* If a page was split, advance to the end of it */
337 if (isolated) {
338 blockpfn += isolated - 1;
339 cursor += isolated - 1;
340 }
341 }
342
343 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
344
345 /*
346 * If strict isolation is requested by CMA then check that all the
347 * pages requested were isolated. If there were any failures, 0 is
348 * returned and CMA will fail.
349 */
350 if (strict && nr_strict_required > total_isolated)
351 total_isolated = 0;
352
353 if (locked)
354 spin_unlock_irqrestore(&cc->zone->lock, flags);
355
356 /* Update the pageblock-skip if the whole pageblock was scanned */
357 if (blockpfn == end_pfn)
358 update_pageblock_skip(cc, valid_page, total_isolated, false);
359
360 return total_isolated;
361 }
362
363 /**
364 * isolate_freepages_range() - isolate free pages.
365 * @start_pfn: The first PFN to start isolating.
366 * @end_pfn: The one-past-last PFN.
367 *
368 * Non-free pages, invalid PFNs, or zone boundaries within the
369 * [start_pfn, end_pfn) range are considered errors, cause function to
370 * undo its actions and return zero.
371 *
372 * Otherwise, function returns one-past-the-last PFN of isolated page
373 * (which may be greater then end_pfn if end fell in a middle of
374 * a free page).
375 */
376 unsigned long
377 isolate_freepages_range(struct compact_control *cc,
378 unsigned long start_pfn, unsigned long end_pfn)
379 {
380 unsigned long isolated, pfn, block_end_pfn;
381 LIST_HEAD(freelist);
382
383 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
384 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
385 break;
386
387 /*
388 * On subsequent iterations ALIGN() is actually not needed,
389 * but we keep it that we not to complicate the code.
390 */
391 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
392 block_end_pfn = min(block_end_pfn, end_pfn);
393
394 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
395 &freelist, true);
396
397 /*
398 * In strict mode, isolate_freepages_block() returns 0 if
399 * there are any holes in the block (ie. invalid PFNs or
400 * non-free pages).
401 */
402 if (!isolated)
403 break;
404
405 /*
406 * If we managed to isolate pages, it is always (1 << n) *
407 * pageblock_nr_pages for some non-negative n. (Max order
408 * page may span two pageblocks).
409 */
410 }
411
412 /* split_free_page does not map the pages */
413 map_pages(&freelist);
414
415 if (pfn < end_pfn) {
416 /* Loop terminated early, cleanup. */
417 release_freepages(&freelist);
418 return 0;
419 }
420
421 /* We don't use freelists for anything. */
422 return pfn;
423 }
424
425 /* Update the number of anon and file isolated pages in the zone */
426 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
427 {
428 struct page *page;
429 unsigned int count[2] = { 0, };
430
431 list_for_each_entry(page, &cc->migratepages, lru)
432 count[!!page_is_file_cache(page)]++;
433
434 /* If locked we can use the interrupt unsafe versions */
435 if (locked) {
436 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
437 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
438 } else {
439 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
440 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
441 }
442 }
443
444 /* Similar to reclaim, but different enough that they don't share logic */
445 static bool too_many_isolated(struct zone *zone)
446 {
447 unsigned long active, inactive, isolated;
448
449 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
450 zone_page_state(zone, NR_INACTIVE_ANON);
451 active = zone_page_state(zone, NR_ACTIVE_FILE) +
452 zone_page_state(zone, NR_ACTIVE_ANON);
453 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
454 zone_page_state(zone, NR_ISOLATED_ANON);
455
456 return isolated > (inactive + active) / 2;
457 }
458
459 /**
460 * isolate_migratepages_range() - isolate all migrate-able pages in range.
461 * @zone: Zone pages are in.
462 * @cc: Compaction control structure.
463 * @low_pfn: The first PFN of the range.
464 * @end_pfn: The one-past-the-last PFN of the range.
465 * @unevictable: true if it allows to isolate unevictable pages
466 *
467 * Isolate all pages that can be migrated from the range specified by
468 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
469 * pending), otherwise PFN of the first page that was not scanned
470 * (which may be both less, equal to or more then end_pfn).
471 *
472 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
473 * zero.
474 *
475 * Apart from cc->migratepages and cc->nr_migratetypes this function
476 * does not modify any cc's fields, in particular it does not modify
477 * (or read for that matter) cc->migrate_pfn.
478 */
479 unsigned long
480 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
481 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
482 {
483 unsigned long last_pageblock_nr = 0, pageblock_nr;
484 unsigned long nr_scanned = 0, nr_isolated = 0;
485 struct list_head *migratelist = &cc->migratepages;
486 isolate_mode_t mode = 0;
487 struct lruvec *lruvec;
488 unsigned long flags;
489 bool locked = false;
490 struct page *page = NULL, *valid_page = NULL;
491
492 /*
493 * Ensure that there are not too many pages isolated from the LRU
494 * list by either parallel reclaimers or compaction. If there are,
495 * delay for some time until fewer pages are isolated
496 */
497 while (unlikely(too_many_isolated(zone))) {
498 /* async migration should just abort */
499 if (!cc->sync)
500 return 0;
501
502 congestion_wait(BLK_RW_ASYNC, HZ/10);
503
504 if (fatal_signal_pending(current))
505 return 0;
506 }
507
508 /* Time to isolate some pages for migration */
509 cond_resched();
510 for (; low_pfn < end_pfn; low_pfn++) {
511 /* give a chance to irqs before checking need_resched() */
512 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
513 if (should_release_lock(&zone->lru_lock)) {
514 spin_unlock_irqrestore(&zone->lru_lock, flags);
515 locked = false;
516 }
517 }
518
519 /*
520 * migrate_pfn does not necessarily start aligned to a
521 * pageblock. Ensure that pfn_valid is called when moving
522 * into a new MAX_ORDER_NR_PAGES range in case of large
523 * memory holes within the zone
524 */
525 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
526 if (!pfn_valid(low_pfn)) {
527 low_pfn += MAX_ORDER_NR_PAGES - 1;
528 continue;
529 }
530 }
531
532 if (!pfn_valid_within(low_pfn))
533 continue;
534 nr_scanned++;
535
536 /*
537 * Get the page and ensure the page is within the same zone.
538 * See the comment in isolate_freepages about overlapping
539 * nodes. It is deliberate that the new zone lock is not taken
540 * as memory compaction should not move pages between nodes.
541 */
542 page = pfn_to_page(low_pfn);
543 if (page_zone(page) != zone)
544 continue;
545
546 if (!valid_page)
547 valid_page = page;
548
549 /* If isolation recently failed, do not retry */
550 pageblock_nr = low_pfn >> pageblock_order;
551 if (!isolation_suitable(cc, page))
552 goto next_pageblock;
553
554 /* Skip if free */
555 if (PageBuddy(page))
556 continue;
557
558 /*
559 * For async migration, also only scan in MOVABLE blocks. Async
560 * migration is optimistic to see if the minimum amount of work
561 * satisfies the allocation
562 */
563 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
564 !migrate_async_suitable(get_pageblock_migratetype(page))) {
565 cc->finished_update_migrate = true;
566 goto next_pageblock;
567 }
568
569 /*
570 * Check may be lockless but that's ok as we recheck later.
571 * It's possible to migrate LRU pages and balloon pages
572 * Skip any other type of page
573 */
574 if (!PageLRU(page)) {
575 if (unlikely(balloon_page_movable(page))) {
576 if (locked && balloon_page_isolate(page)) {
577 /* Successfully isolated */
578 cc->finished_update_migrate = true;
579 list_add(&page->lru, migratelist);
580 cc->nr_migratepages++;
581 nr_isolated++;
582 goto check_compact_cluster;
583 }
584 }
585 continue;
586 }
587
588 /*
589 * PageLRU is set. lru_lock normally excludes isolation
590 * splitting and collapsing (collapsing has already happened
591 * if PageLRU is set) but the lock is not necessarily taken
592 * here and it is wasteful to take it just to check transhuge.
593 * Check TransHuge without lock and skip the whole pageblock if
594 * it's either a transhuge or hugetlbfs page, as calling
595 * compound_order() without preventing THP from splitting the
596 * page underneath us may return surprising results.
597 */
598 if (PageTransHuge(page)) {
599 if (!locked)
600 goto next_pageblock;
601 low_pfn += (1 << compound_order(page)) - 1;
602 continue;
603 }
604
605 /* Check if it is ok to still hold the lock */
606 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
607 locked, cc);
608 if (!locked || fatal_signal_pending(current))
609 break;
610
611 /* Recheck PageLRU and PageTransHuge under lock */
612 if (!PageLRU(page))
613 continue;
614 if (PageTransHuge(page)) {
615 low_pfn += (1 << compound_order(page)) - 1;
616 continue;
617 }
618
619 if (!cc->sync)
620 mode |= ISOLATE_ASYNC_MIGRATE;
621
622 if (unevictable)
623 mode |= ISOLATE_UNEVICTABLE;
624
625 lruvec = mem_cgroup_page_lruvec(page, zone);
626
627 /* Try isolate the page */
628 if (__isolate_lru_page(page, mode) != 0)
629 continue;
630
631 VM_BUG_ON(PageTransCompound(page));
632
633 /* Successfully isolated */
634 cc->finished_update_migrate = true;
635 del_page_from_lru_list(page, lruvec, page_lru(page));
636 list_add(&page->lru, migratelist);
637 cc->nr_migratepages++;
638 nr_isolated++;
639
640 check_compact_cluster:
641 /* Avoid isolating too much */
642 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
643 ++low_pfn;
644 break;
645 }
646
647 continue;
648
649 next_pageblock:
650 low_pfn += pageblock_nr_pages;
651 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
652 last_pageblock_nr = pageblock_nr;
653 }
654
655 acct_isolated(zone, locked, cc);
656
657 if (locked)
658 spin_unlock_irqrestore(&zone->lru_lock, flags);
659
660 /* Update the pageblock-skip if the whole pageblock was scanned */
661 if (low_pfn == end_pfn)
662 update_pageblock_skip(cc, valid_page, nr_isolated, true);
663
664 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
665
666 return low_pfn;
667 }
668
669 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
670 #ifdef CONFIG_COMPACTION
671 /*
672 * Based on information in the current compact_control, find blocks
673 * suitable for isolating free pages from and then isolate them.
674 */
675 static void isolate_freepages(struct zone *zone,
676 struct compact_control *cc)
677 {
678 struct page *page;
679 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
680 int nr_freepages = cc->nr_freepages;
681 struct list_head *freelist = &cc->freepages;
682
683 /*
684 * Initialise the free scanner. The starting point is where we last
685 * scanned from (or the end of the zone if starting). The low point
686 * is the end of the pageblock the migration scanner is using.
687 */
688 pfn = cc->free_pfn;
689 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
690
691 /*
692 * Take care that if the migration scanner is at the end of the zone
693 * that the free scanner does not accidentally move to the next zone
694 * in the next isolation cycle.
695 */
696 high_pfn = min(low_pfn, pfn);
697
698 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
699
700 /*
701 * Isolate free pages until enough are available to migrate the
702 * pages on cc->migratepages. We stop searching if the migrate
703 * and free page scanners meet or enough free pages are isolated.
704 */
705 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
706 pfn -= pageblock_nr_pages) {
707 unsigned long isolated;
708
709 if (!pfn_valid(pfn))
710 continue;
711
712 /*
713 * Check for overlapping nodes/zones. It's possible on some
714 * configurations to have a setup like
715 * node0 node1 node0
716 * i.e. it's possible that all pages within a zones range of
717 * pages do not belong to a single zone.
718 */
719 page = pfn_to_page(pfn);
720 if (page_zone(page) != zone)
721 continue;
722
723 /* Check the block is suitable for migration */
724 if (!suitable_migration_target(page))
725 continue;
726
727 /* If isolation recently failed, do not retry */
728 if (!isolation_suitable(cc, page))
729 continue;
730
731 /* Found a block suitable for isolating free pages from */
732 isolated = 0;
733
734 /*
735 * As pfn may not start aligned, pfn+pageblock_nr_page
736 * may cross a MAX_ORDER_NR_PAGES boundary and miss
737 * a pfn_valid check. Ensure isolate_freepages_block()
738 * only scans within a pageblock
739 */
740 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
741 end_pfn = min(end_pfn, zone_end_pfn);
742 isolated = isolate_freepages_block(cc, pfn, end_pfn,
743 freelist, false);
744 nr_freepages += isolated;
745
746 /*
747 * Record the highest PFN we isolated pages from. When next
748 * looking for free pages, the search will restart here as
749 * page migration may have returned some pages to the allocator
750 */
751 if (isolated) {
752 cc->finished_update_free = true;
753 high_pfn = max(high_pfn, pfn);
754 }
755 }
756
757 /* split_free_page does not map the pages */
758 map_pages(freelist);
759
760 cc->free_pfn = high_pfn;
761 cc->nr_freepages = nr_freepages;
762 }
763
764 /*
765 * This is a migrate-callback that "allocates" freepages by taking pages
766 * from the isolated freelists in the block we are migrating to.
767 */
768 static struct page *compaction_alloc(struct page *migratepage,
769 unsigned long data,
770 int **result)
771 {
772 struct compact_control *cc = (struct compact_control *)data;
773 struct page *freepage;
774
775 /* Isolate free pages if necessary */
776 if (list_empty(&cc->freepages)) {
777 isolate_freepages(cc->zone, cc);
778
779 if (list_empty(&cc->freepages))
780 return NULL;
781 }
782
783 freepage = list_entry(cc->freepages.next, struct page, lru);
784 list_del(&freepage->lru);
785 cc->nr_freepages--;
786
787 return freepage;
788 }
789
790 /*
791 * We cannot control nr_migratepages and nr_freepages fully when migration is
792 * running as migrate_pages() has no knowledge of compact_control. When
793 * migration is complete, we count the number of pages on the lists by hand.
794 */
795 static void update_nr_listpages(struct compact_control *cc)
796 {
797 int nr_migratepages = 0;
798 int nr_freepages = 0;
799 struct page *page;
800
801 list_for_each_entry(page, &cc->migratepages, lru)
802 nr_migratepages++;
803 list_for_each_entry(page, &cc->freepages, lru)
804 nr_freepages++;
805
806 cc->nr_migratepages = nr_migratepages;
807 cc->nr_freepages = nr_freepages;
808 }
809
810 /* possible outcome of isolate_migratepages */
811 typedef enum {
812 ISOLATE_ABORT, /* Abort compaction now */
813 ISOLATE_NONE, /* No pages isolated, continue scanning */
814 ISOLATE_SUCCESS, /* Pages isolated, migrate */
815 } isolate_migrate_t;
816
817 /*
818 * Isolate all pages that can be migrated from the block pointed to by
819 * the migrate scanner within compact_control.
820 */
821 static isolate_migrate_t isolate_migratepages(struct zone *zone,
822 struct compact_control *cc)
823 {
824 unsigned long low_pfn, end_pfn;
825
826 /* Do not scan outside zone boundaries */
827 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
828
829 /* Only scan within a pageblock boundary */
830 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
831
832 /* Do not cross the free scanner or scan within a memory hole */
833 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
834 cc->migrate_pfn = end_pfn;
835 return ISOLATE_NONE;
836 }
837
838 /* Perform the isolation */
839 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
840 if (!low_pfn || cc->contended)
841 return ISOLATE_ABORT;
842
843 cc->migrate_pfn = low_pfn;
844
845 return ISOLATE_SUCCESS;
846 }
847
848 static int compact_finished(struct zone *zone,
849 struct compact_control *cc)
850 {
851 unsigned long watermark;
852
853 if (fatal_signal_pending(current))
854 return COMPACT_PARTIAL;
855
856 /* Compaction run completes if the migrate and free scanner meet */
857 if (cc->free_pfn <= cc->migrate_pfn) {
858 /*
859 * Mark that the PG_migrate_skip information should be cleared
860 * by kswapd when it goes to sleep. kswapd does not set the
861 * flag itself as the decision to be clear should be directly
862 * based on an allocation request.
863 */
864 if (!current_is_kswapd())
865 zone->compact_blockskip_flush = true;
866
867 return COMPACT_COMPLETE;
868 }
869
870 /*
871 * order == -1 is expected when compacting via
872 * /proc/sys/vm/compact_memory
873 */
874 if (cc->order == -1)
875 return COMPACT_CONTINUE;
876
877 /* Compaction run is not finished if the watermark is not met */
878 watermark = low_wmark_pages(zone);
879 watermark += (1 << cc->order);
880
881 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
882 return COMPACT_CONTINUE;
883
884 /* Direct compactor: Is a suitable page free? */
885 if (cc->page) {
886 /* Was a suitable page captured? */
887 if (*cc->page)
888 return COMPACT_PARTIAL;
889 } else {
890 unsigned int order;
891 for (order = cc->order; order < MAX_ORDER; order++) {
892 struct free_area *area = &zone->free_area[cc->order];
893 /* Job done if page is free of the right migratetype */
894 if (!list_empty(&area->free_list[cc->migratetype]))
895 return COMPACT_PARTIAL;
896
897 /* Job done if allocation would set block type */
898 if (cc->order >= pageblock_order && area->nr_free)
899 return COMPACT_PARTIAL;
900 }
901 }
902
903 return COMPACT_CONTINUE;
904 }
905
906 /*
907 * compaction_suitable: Is this suitable to run compaction on this zone now?
908 * Returns
909 * COMPACT_SKIPPED - If there are too few free pages for compaction
910 * COMPACT_PARTIAL - If the allocation would succeed without compaction
911 * COMPACT_CONTINUE - If compaction should run now
912 */
913 unsigned long compaction_suitable(struct zone *zone, int order)
914 {
915 int fragindex;
916 unsigned long watermark;
917
918 /*
919 * order == -1 is expected when compacting via
920 * /proc/sys/vm/compact_memory
921 */
922 if (order == -1)
923 return COMPACT_CONTINUE;
924
925 /*
926 * Watermarks for order-0 must be met for compaction. Note the 2UL.
927 * This is because during migration, copies of pages need to be
928 * allocated and for a short time, the footprint is higher
929 */
930 watermark = low_wmark_pages(zone) + (2UL << order);
931 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
932 return COMPACT_SKIPPED;
933
934 /*
935 * fragmentation index determines if allocation failures are due to
936 * low memory or external fragmentation
937 *
938 * index of -1000 implies allocations might succeed depending on
939 * watermarks
940 * index towards 0 implies failure is due to lack of memory
941 * index towards 1000 implies failure is due to fragmentation
942 *
943 * Only compact if a failure would be due to fragmentation.
944 */
945 fragindex = fragmentation_index(zone, order);
946 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
947 return COMPACT_SKIPPED;
948
949 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
950 0, 0))
951 return COMPACT_PARTIAL;
952
953 return COMPACT_CONTINUE;
954 }
955
956 static int compact_zone(struct zone *zone, struct compact_control *cc)
957 {
958 int ret;
959 unsigned long start_pfn = zone->zone_start_pfn;
960 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
961
962 ret = compaction_suitable(zone, cc->order);
963 switch (ret) {
964 case COMPACT_PARTIAL:
965 case COMPACT_SKIPPED:
966 /* Compaction is likely to fail */
967 return ret;
968 case COMPACT_CONTINUE:
969 /* Fall through to compaction */
970 ;
971 }
972
973 /*
974 * Setup to move all movable pages to the end of the zone. Used cached
975 * information on where the scanners should start but check that it
976 * is initialised by ensuring the values are within zone boundaries.
977 */
978 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
979 cc->free_pfn = zone->compact_cached_free_pfn;
980 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
981 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
982 zone->compact_cached_free_pfn = cc->free_pfn;
983 }
984 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
985 cc->migrate_pfn = start_pfn;
986 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
987 }
988
989 /*
990 * Clear pageblock skip if there were failures recently and compaction
991 * is about to be retried after being deferred. kswapd does not do
992 * this reset as it'll reset the cached information when going to sleep.
993 */
994 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
995 __reset_isolation_suitable(zone);
996
997 migrate_prep_local();
998
999 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1000 unsigned long nr_migrate, nr_remaining;
1001 int err;
1002
1003 switch (isolate_migratepages(zone, cc)) {
1004 case ISOLATE_ABORT:
1005 ret = COMPACT_PARTIAL;
1006 putback_movable_pages(&cc->migratepages);
1007 cc->nr_migratepages = 0;
1008 goto out;
1009 case ISOLATE_NONE:
1010 continue;
1011 case ISOLATE_SUCCESS:
1012 ;
1013 }
1014
1015 nr_migrate = cc->nr_migratepages;
1016 err = migrate_pages(&cc->migratepages, compaction_alloc,
1017 (unsigned long)cc, false,
1018 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
1019 update_nr_listpages(cc);
1020 nr_remaining = cc->nr_migratepages;
1021
1022 count_vm_event(COMPACTBLOCKS);
1023 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
1024 if (nr_remaining)
1025 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
1026 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1027 nr_remaining);
1028
1029 /* Release isolated pages not migrated */
1030 if (err) {
1031 putback_movable_pages(&cc->migratepages);
1032 cc->nr_migratepages = 0;
1033 if (err == -ENOMEM) {
1034 ret = COMPACT_PARTIAL;
1035 goto out;
1036 }
1037 }
1038
1039 /* Capture a page now if it is a suitable size */
1040 compact_capture_page(cc);
1041 }
1042
1043 out:
1044 /* Release free pages and check accounting */
1045 cc->nr_freepages -= release_freepages(&cc->freepages);
1046 VM_BUG_ON(cc->nr_freepages != 0);
1047
1048 return ret;
1049 }
1050
1051 static unsigned long compact_zone_order(struct zone *zone,
1052 int order, gfp_t gfp_mask,
1053 bool sync, bool *contended,
1054 struct page **page)
1055 {
1056 unsigned long ret;
1057 struct compact_control cc = {
1058 .nr_freepages = 0,
1059 .nr_migratepages = 0,
1060 .order = order,
1061 .migratetype = allocflags_to_migratetype(gfp_mask),
1062 .zone = zone,
1063 .sync = sync,
1064 .page = page,
1065 };
1066 INIT_LIST_HEAD(&cc.freepages);
1067 INIT_LIST_HEAD(&cc.migratepages);
1068
1069 ret = compact_zone(zone, &cc);
1070
1071 VM_BUG_ON(!list_empty(&cc.freepages));
1072 VM_BUG_ON(!list_empty(&cc.migratepages));
1073
1074 *contended = cc.contended;
1075 return ret;
1076 }
1077
1078 int sysctl_extfrag_threshold = 500;
1079
1080 /**
1081 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1082 * @zonelist: The zonelist used for the current allocation
1083 * @order: The order of the current allocation
1084 * @gfp_mask: The GFP mask of the current allocation
1085 * @nodemask: The allowed nodes to allocate from
1086 * @sync: Whether migration is synchronous or not
1087 * @contended: Return value that is true if compaction was aborted due to lock contention
1088 * @page: Optionally capture a free page of the requested order during compaction
1089 *
1090 * This is the main entry point for direct page compaction.
1091 */
1092 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1093 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1094 bool sync, bool *contended, struct page **page)
1095 {
1096 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1097 int may_enter_fs = gfp_mask & __GFP_FS;
1098 int may_perform_io = gfp_mask & __GFP_IO;
1099 struct zoneref *z;
1100 struct zone *zone;
1101 int rc = COMPACT_SKIPPED;
1102 int alloc_flags = 0;
1103
1104 /* Check if the GFP flags allow compaction */
1105 if (!order || !may_enter_fs || !may_perform_io)
1106 return rc;
1107
1108 count_vm_event(COMPACTSTALL);
1109
1110 #ifdef CONFIG_CMA
1111 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1112 alloc_flags |= ALLOC_CMA;
1113 #endif
1114 /* Compact each zone in the list */
1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1116 nodemask) {
1117 int status;
1118
1119 status = compact_zone_order(zone, order, gfp_mask, sync,
1120 contended, page);
1121 rc = max(status, rc);
1122
1123 /* If a normal allocation would succeed, stop compacting */
1124 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1125 alloc_flags))
1126 break;
1127 }
1128
1129 return rc;
1130 }
1131
1132
1133 /* Compact all zones within a node */
1134 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1135 {
1136 int zoneid;
1137 struct zone *zone;
1138
1139 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1140
1141 zone = &pgdat->node_zones[zoneid];
1142 if (!populated_zone(zone))
1143 continue;
1144
1145 cc->nr_freepages = 0;
1146 cc->nr_migratepages = 0;
1147 cc->zone = zone;
1148 INIT_LIST_HEAD(&cc->freepages);
1149 INIT_LIST_HEAD(&cc->migratepages);
1150
1151 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1152 compact_zone(zone, cc);
1153
1154 if (cc->order > 0) {
1155 int ok = zone_watermark_ok(zone, cc->order,
1156 low_wmark_pages(zone), 0, 0);
1157 if (ok && cc->order >= zone->compact_order_failed)
1158 zone->compact_order_failed = cc->order + 1;
1159 /* Currently async compaction is never deferred. */
1160 else if (!ok && cc->sync)
1161 defer_compaction(zone, cc->order);
1162 }
1163
1164 VM_BUG_ON(!list_empty(&cc->freepages));
1165 VM_BUG_ON(!list_empty(&cc->migratepages));
1166 }
1167
1168 return 0;
1169 }
1170
1171 int compact_pgdat(pg_data_t *pgdat, int order)
1172 {
1173 struct compact_control cc = {
1174 .order = order,
1175 .sync = false,
1176 .page = NULL,
1177 };
1178
1179 return __compact_pgdat(pgdat, &cc);
1180 }
1181
1182 static int compact_node(int nid)
1183 {
1184 struct compact_control cc = {
1185 .order = -1,
1186 .sync = true,
1187 .page = NULL,
1188 };
1189
1190 return __compact_pgdat(NODE_DATA(nid), &cc);
1191 }
1192
1193 /* Compact all nodes in the system */
1194 static int compact_nodes(void)
1195 {
1196 int nid;
1197
1198 /* Flush pending updates to the LRU lists */
1199 lru_add_drain_all();
1200
1201 for_each_online_node(nid)
1202 compact_node(nid);
1203
1204 return COMPACT_COMPLETE;
1205 }
1206
1207 /* The written value is actually unused, all memory is compacted */
1208 int sysctl_compact_memory;
1209
1210 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1211 int sysctl_compaction_handler(struct ctl_table *table, int write,
1212 void __user *buffer, size_t *length, loff_t *ppos)
1213 {
1214 if (write)
1215 return compact_nodes();
1216
1217 return 0;
1218 }
1219
1220 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1221 void __user *buffer, size_t *length, loff_t *ppos)
1222 {
1223 proc_dointvec_minmax(table, write, buffer, length, ppos);
1224
1225 return 0;
1226 }
1227
1228 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1229 ssize_t sysfs_compact_node(struct device *dev,
1230 struct device_attribute *attr,
1231 const char *buf, size_t count)
1232 {
1233 int nid = dev->id;
1234
1235 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1236 /* Flush pending updates to the LRU lists */
1237 lru_add_drain_all();
1238
1239 compact_node(nid);
1240 }
1241
1242 return count;
1243 }
1244 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1245
1246 int compaction_register_node(struct node *node)
1247 {
1248 return device_create_file(&node->dev, &dev_attr_compact);
1249 }
1250
1251 void compaction_unregister_node(struct node *node)
1252 {
1253 return device_remove_file(&node->dev, &dev_attr_compact);
1254 }
1255 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1256
1257 #endif /* CONFIG_COMPACTION */