2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item
)
28 static inline void count_compact_events(enum vm_event_item item
, long delta
)
30 count_vm_events(item
, delta
);
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
42 static unsigned long release_freepages(struct list_head
*freelist
)
44 struct page
*page
, *next
;
45 unsigned long high_pfn
= 0;
47 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
48 unsigned long pfn
= page_to_pfn(page
);
58 static void map_pages(struct list_head
*list
)
62 list_for_each_entry(page
, list
, lru
) {
63 arch_alloc_page(page
, 0);
64 kernel_map_pages(page
, 1, 1);
65 kasan_alloc_pages(page
, 0);
69 static inline bool migrate_async_suitable(int migratetype
)
71 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
75 * Check that the whole (or subset of) a pageblock given by the interval of
76 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77 * with the migration of free compaction scanner. The scanners then need to
78 * use only pfn_valid_within() check for arches that allow holes within
81 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
83 * It's possible on some configurations to have a setup like node0 node1 node0
84 * i.e. it's possible that all pages within a zones range of pages do not
85 * belong to a single zone. We assume that a border between node0 and node1
86 * can occur within a single pageblock, but not a node0 node1 node0
87 * interleaving within a single pageblock. It is therefore sufficient to check
88 * the first and last page of a pageblock and avoid checking each individual
89 * page in a pageblock.
91 static struct page
*pageblock_pfn_to_page(unsigned long start_pfn
,
92 unsigned long end_pfn
, struct zone
*zone
)
94 struct page
*start_page
;
95 struct page
*end_page
;
97 /* end_pfn is one past the range we are checking */
100 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
103 start_page
= pfn_to_page(start_pfn
);
105 if (page_zone(start_page
) != zone
)
108 end_page
= pfn_to_page(end_pfn
);
110 /* This gives a shorter code than deriving page_zone(end_page) */
111 if (page_zone_id(start_page
) != page_zone_id(end_page
))
117 #ifdef CONFIG_COMPACTION
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
123 * Compaction is deferred when compaction fails to result in a page
124 * allocation success. 1 << compact_defer_limit compactions are skipped up
125 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
127 void defer_compaction(struct zone
*zone
, int order
)
129 zone
->compact_considered
= 0;
130 zone
->compact_defer_shift
++;
132 if (order
< zone
->compact_order_failed
)
133 zone
->compact_order_failed
= order
;
135 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
136 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
138 trace_mm_compaction_defer_compaction(zone
, order
);
141 /* Returns true if compaction should be skipped this time */
142 bool compaction_deferred(struct zone
*zone
, int order
)
144 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
146 if (order
< zone
->compact_order_failed
)
149 /* Avoid possible overflow */
150 if (++zone
->compact_considered
> defer_limit
)
151 zone
->compact_considered
= defer_limit
;
153 if (zone
->compact_considered
>= defer_limit
)
156 trace_mm_compaction_deferred(zone
, order
);
162 * Update defer tracking counters after successful compaction of given order,
163 * which means an allocation either succeeded (alloc_success == true) or is
164 * expected to succeed.
166 void compaction_defer_reset(struct zone
*zone
, int order
,
170 zone
->compact_considered
= 0;
171 zone
->compact_defer_shift
= 0;
173 if (order
>= zone
->compact_order_failed
)
174 zone
->compact_order_failed
= order
+ 1;
176 trace_mm_compaction_defer_reset(zone
, order
);
179 /* Returns true if restarting compaction after many failures */
180 bool compaction_restarting(struct zone
*zone
, int order
)
182 if (order
< zone
->compact_order_failed
)
185 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
186 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
190 static inline bool isolation_suitable(struct compact_control
*cc
,
193 if (cc
->ignore_skip_hint
)
196 return !get_pageblock_skip(page
);
199 static void reset_cached_positions(struct zone
*zone
)
201 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
202 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
203 zone
->compact_cached_free_pfn
= zone_end_pfn(zone
);
207 * This function is called to clear all cached information on pageblocks that
208 * should be skipped for page isolation when the migrate and free page scanner
211 static void __reset_isolation_suitable(struct zone
*zone
)
213 unsigned long start_pfn
= zone
->zone_start_pfn
;
214 unsigned long end_pfn
= zone_end_pfn(zone
);
217 zone
->compact_blockskip_flush
= false;
219 /* Walk the zone and mark every pageblock as suitable for isolation */
220 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
228 page
= pfn_to_page(pfn
);
229 if (zone
!= page_zone(page
))
232 clear_pageblock_skip(page
);
235 reset_cached_positions(zone
);
238 void reset_isolation_suitable(pg_data_t
*pgdat
)
242 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
243 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
244 if (!populated_zone(zone
))
247 /* Only flush if a full compaction finished recently */
248 if (zone
->compact_blockskip_flush
)
249 __reset_isolation_suitable(zone
);
254 * If no pages were isolated then mark this pageblock to be skipped in the
255 * future. The information is later cleared by __reset_isolation_suitable().
257 static void update_pageblock_skip(struct compact_control
*cc
,
258 struct page
*page
, unsigned long nr_isolated
,
259 bool migrate_scanner
)
261 struct zone
*zone
= cc
->zone
;
264 if (cc
->ignore_skip_hint
)
273 set_pageblock_skip(page
);
275 pfn
= page_to_pfn(page
);
277 /* Update where async and sync compaction should restart */
278 if (migrate_scanner
) {
279 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
280 zone
->compact_cached_migrate_pfn
[0] = pfn
;
281 if (cc
->mode
!= MIGRATE_ASYNC
&&
282 pfn
> zone
->compact_cached_migrate_pfn
[1])
283 zone
->compact_cached_migrate_pfn
[1] = pfn
;
285 if (pfn
< zone
->compact_cached_free_pfn
)
286 zone
->compact_cached_free_pfn
= pfn
;
290 static inline bool isolation_suitable(struct compact_control
*cc
,
296 static void update_pageblock_skip(struct compact_control
*cc
,
297 struct page
*page
, unsigned long nr_isolated
,
298 bool migrate_scanner
)
301 #endif /* CONFIG_COMPACTION */
304 * Compaction requires the taking of some coarse locks that are potentially
305 * very heavily contended. For async compaction, back out if the lock cannot
306 * be taken immediately. For sync compaction, spin on the lock if needed.
308 * Returns true if the lock is held
309 * Returns false if the lock is not held and compaction should abort
311 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
312 struct compact_control
*cc
)
314 if (cc
->mode
== MIGRATE_ASYNC
) {
315 if (!spin_trylock_irqsave(lock
, *flags
)) {
316 cc
->contended
= COMPACT_CONTENDED_LOCK
;
320 spin_lock_irqsave(lock
, *flags
);
327 * Compaction requires the taking of some coarse locks that are potentially
328 * very heavily contended. The lock should be periodically unlocked to avoid
329 * having disabled IRQs for a long time, even when there is nobody waiting on
330 * the lock. It might also be that allowing the IRQs will result in
331 * need_resched() becoming true. If scheduling is needed, async compaction
332 * aborts. Sync compaction schedules.
333 * Either compaction type will also abort if a fatal signal is pending.
334 * In either case if the lock was locked, it is dropped and not regained.
336 * Returns true if compaction should abort due to fatal signal pending, or
337 * async compaction due to need_resched()
338 * Returns false when compaction can continue (sync compaction might have
341 static bool compact_unlock_should_abort(spinlock_t
*lock
,
342 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
345 spin_unlock_irqrestore(lock
, flags
);
349 if (fatal_signal_pending(current
)) {
350 cc
->contended
= COMPACT_CONTENDED_SCHED
;
354 if (need_resched()) {
355 if (cc
->mode
== MIGRATE_ASYNC
) {
356 cc
->contended
= COMPACT_CONTENDED_SCHED
;
366 * Aside from avoiding lock contention, compaction also periodically checks
367 * need_resched() and either schedules in sync compaction or aborts async
368 * compaction. This is similar to what compact_unlock_should_abort() does, but
369 * is used where no lock is concerned.
371 * Returns false when no scheduling was needed, or sync compaction scheduled.
372 * Returns true when async compaction should abort.
374 static inline bool compact_should_abort(struct compact_control
*cc
)
376 /* async compaction aborts if contended */
377 if (need_resched()) {
378 if (cc
->mode
== MIGRATE_ASYNC
) {
379 cc
->contended
= COMPACT_CONTENDED_SCHED
;
390 * Isolate free pages onto a private freelist. If @strict is true, will abort
391 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
392 * (even though it may still end up isolating some pages).
394 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
395 unsigned long *start_pfn
,
396 unsigned long end_pfn
,
397 struct list_head
*freelist
,
400 int nr_scanned
= 0, total_isolated
= 0;
401 struct page
*cursor
, *valid_page
= NULL
;
402 unsigned long flags
= 0;
404 unsigned long blockpfn
= *start_pfn
;
406 cursor
= pfn_to_page(blockpfn
);
408 /* Isolate free pages. */
409 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
411 struct page
*page
= cursor
;
414 * Periodically drop the lock (if held) regardless of its
415 * contention, to give chance to IRQs. Abort if fatal signal
416 * pending or async compaction detects need_resched()
418 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
419 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
424 if (!pfn_valid_within(blockpfn
))
431 * For compound pages such as THP and hugetlbfs, we can save
432 * potentially a lot of iterations if we skip them at once.
433 * The check is racy, but we can consider only valid values
434 * and the only danger is skipping too much.
436 if (PageCompound(page
)) {
437 unsigned int comp_order
= compound_order(page
);
439 if (likely(comp_order
< MAX_ORDER
)) {
440 blockpfn
+= (1UL << comp_order
) - 1;
441 cursor
+= (1UL << comp_order
) - 1;
447 if (!PageBuddy(page
))
451 * If we already hold the lock, we can skip some rechecking.
452 * Note that if we hold the lock now, checked_pageblock was
453 * already set in some previous iteration (or strict is true),
454 * so it is correct to skip the suitable migration target
459 * The zone lock must be held to isolate freepages.
460 * Unfortunately this is a very coarse lock and can be
461 * heavily contended if there are parallel allocations
462 * or parallel compactions. For async compaction do not
463 * spin on the lock and we acquire the lock as late as
466 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
471 /* Recheck this is a buddy page under lock */
472 if (!PageBuddy(page
))
476 /* Found a free page, break it into order-0 pages */
477 isolated
= split_free_page(page
);
478 total_isolated
+= isolated
;
479 for (i
= 0; i
< isolated
; i
++) {
480 list_add(&page
->lru
, freelist
);
484 /* If a page was split, advance to the end of it */
486 cc
->nr_freepages
+= isolated
;
488 cc
->nr_migratepages
<= cc
->nr_freepages
) {
489 blockpfn
+= isolated
;
493 blockpfn
+= isolated
- 1;
494 cursor
+= isolated
- 1;
507 * There is a tiny chance that we have read bogus compound_order(),
508 * so be careful to not go outside of the pageblock.
510 if (unlikely(blockpfn
> end_pfn
))
513 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
514 nr_scanned
, total_isolated
);
516 /* Record how far we have got within the block */
517 *start_pfn
= blockpfn
;
520 * If strict isolation is requested by CMA then check that all the
521 * pages requested were isolated. If there were any failures, 0 is
522 * returned and CMA will fail.
524 if (strict
&& blockpfn
< end_pfn
)
528 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
530 /* Update the pageblock-skip if the whole pageblock was scanned */
531 if (blockpfn
== end_pfn
)
532 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
534 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
536 count_compact_events(COMPACTISOLATED
, total_isolated
);
537 return total_isolated
;
541 * isolate_freepages_range() - isolate free pages.
542 * @start_pfn: The first PFN to start isolating.
543 * @end_pfn: The one-past-last PFN.
545 * Non-free pages, invalid PFNs, or zone boundaries within the
546 * [start_pfn, end_pfn) range are considered errors, cause function to
547 * undo its actions and return zero.
549 * Otherwise, function returns one-past-the-last PFN of isolated page
550 * (which may be greater then end_pfn if end fell in a middle of
554 isolate_freepages_range(struct compact_control
*cc
,
555 unsigned long start_pfn
, unsigned long end_pfn
)
557 unsigned long isolated
, pfn
, block_end_pfn
;
561 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
563 for (; pfn
< end_pfn
; pfn
+= isolated
,
564 block_end_pfn
+= pageblock_nr_pages
) {
565 /* Protect pfn from changing by isolate_freepages_block */
566 unsigned long isolate_start_pfn
= pfn
;
568 block_end_pfn
= min(block_end_pfn
, end_pfn
);
571 * pfn could pass the block_end_pfn if isolated freepage
572 * is more than pageblock order. In this case, we adjust
573 * scanning range to right one.
575 if (pfn
>= block_end_pfn
) {
576 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
577 block_end_pfn
= min(block_end_pfn
, end_pfn
);
580 if (!pageblock_pfn_to_page(pfn
, block_end_pfn
, cc
->zone
))
583 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
584 block_end_pfn
, &freelist
, true);
587 * In strict mode, isolate_freepages_block() returns 0 if
588 * there are any holes in the block (ie. invalid PFNs or
595 * If we managed to isolate pages, it is always (1 << n) *
596 * pageblock_nr_pages for some non-negative n. (Max order
597 * page may span two pageblocks).
601 /* split_free_page does not map the pages */
602 map_pages(&freelist
);
605 /* Loop terminated early, cleanup. */
606 release_freepages(&freelist
);
610 /* We don't use freelists for anything. */
614 /* Update the number of anon and file isolated pages in the zone */
615 static void acct_isolated(struct zone
*zone
, struct compact_control
*cc
)
618 unsigned int count
[2] = { 0, };
620 if (list_empty(&cc
->migratepages
))
623 list_for_each_entry(page
, &cc
->migratepages
, lru
)
624 count
[!!page_is_file_cache(page
)]++;
626 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
627 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
630 /* Similar to reclaim, but different enough that they don't share logic */
631 static bool too_many_isolated(struct zone
*zone
)
633 unsigned long active
, inactive
, isolated
;
635 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
636 zone_page_state(zone
, NR_INACTIVE_ANON
);
637 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
638 zone_page_state(zone
, NR_ACTIVE_ANON
);
639 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
640 zone_page_state(zone
, NR_ISOLATED_ANON
);
642 return isolated
> (inactive
+ active
) / 2;
646 * isolate_migratepages_block() - isolate all migrate-able pages within
648 * @cc: Compaction control structure.
649 * @low_pfn: The first PFN to isolate
650 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
651 * @isolate_mode: Isolation mode to be used.
653 * Isolate all pages that can be migrated from the range specified by
654 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
655 * Returns zero if there is a fatal signal pending, otherwise PFN of the
656 * first page that was not scanned (which may be both less, equal to or more
659 * The pages are isolated on cc->migratepages list (not required to be empty),
660 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
661 * is neither read nor updated.
664 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
665 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
667 struct zone
*zone
= cc
->zone
;
668 unsigned long nr_scanned
= 0, nr_isolated
= 0;
669 struct list_head
*migratelist
= &cc
->migratepages
;
670 struct lruvec
*lruvec
;
671 unsigned long flags
= 0;
673 struct page
*page
= NULL
, *valid_page
= NULL
;
674 unsigned long start_pfn
= low_pfn
;
677 * Ensure that there are not too many pages isolated from the LRU
678 * list by either parallel reclaimers or compaction. If there are,
679 * delay for some time until fewer pages are isolated
681 while (unlikely(too_many_isolated(zone
))) {
682 /* async migration should just abort */
683 if (cc
->mode
== MIGRATE_ASYNC
)
686 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
688 if (fatal_signal_pending(current
))
692 if (compact_should_abort(cc
))
695 /* Time to isolate some pages for migration */
696 for (; low_pfn
< end_pfn
; low_pfn
++) {
700 * Periodically drop the lock (if held) regardless of its
701 * contention, to give chance to IRQs. Abort async compaction
704 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
705 && compact_unlock_should_abort(&zone
->lru_lock
, flags
,
709 if (!pfn_valid_within(low_pfn
))
713 page
= pfn_to_page(low_pfn
);
719 * Skip if free. We read page order here without zone lock
720 * which is generally unsafe, but the race window is small and
721 * the worst thing that can happen is that we skip some
722 * potential isolation targets.
724 if (PageBuddy(page
)) {
725 unsigned long freepage_order
= page_order_unsafe(page
);
728 * Without lock, we cannot be sure that what we got is
729 * a valid page order. Consider only values in the
730 * valid order range to prevent low_pfn overflow.
732 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
733 low_pfn
+= (1UL << freepage_order
) - 1;
738 * Check may be lockless but that's ok as we recheck later.
739 * It's possible to migrate LRU pages and balloon pages
740 * Skip any other type of page
742 is_lru
= PageLRU(page
);
744 if (unlikely(balloon_page_movable(page
))) {
745 if (balloon_page_isolate(page
)) {
746 /* Successfully isolated */
747 goto isolate_success
;
753 * Regardless of being on LRU, compound pages such as THP and
754 * hugetlbfs are not to be compacted. We can potentially save
755 * a lot of iterations if we skip them at once. The check is
756 * racy, but we can consider only valid values and the only
757 * danger is skipping too much.
759 if (PageCompound(page
)) {
760 unsigned int comp_order
= compound_order(page
);
762 if (likely(comp_order
< MAX_ORDER
))
763 low_pfn
+= (1UL << comp_order
) - 1;
772 * Migration will fail if an anonymous page is pinned in memory,
773 * so avoid taking lru_lock and isolating it unnecessarily in an
774 * admittedly racy check.
776 if (!page_mapping(page
) &&
777 page_count(page
) > page_mapcount(page
))
780 /* If we already hold the lock, we can skip some rechecking */
782 locked
= compact_trylock_irqsave(&zone
->lru_lock
,
787 /* Recheck PageLRU and PageCompound under lock */
792 * Page become compound since the non-locked check,
793 * and it's on LRU. It can only be a THP so the order
794 * is safe to read and it's 0 for tail pages.
796 if (unlikely(PageCompound(page
))) {
797 low_pfn
+= (1UL << compound_order(page
)) - 1;
802 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
804 /* Try isolate the page */
805 if (__isolate_lru_page(page
, isolate_mode
) != 0)
808 VM_BUG_ON_PAGE(PageCompound(page
), page
);
810 /* Successfully isolated */
811 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
814 list_add(&page
->lru
, migratelist
);
815 cc
->nr_migratepages
++;
818 /* Avoid isolating too much */
819 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
826 * The PageBuddy() check could have potentially brought us outside
827 * the range to be scanned.
829 if (unlikely(low_pfn
> end_pfn
))
833 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
836 * Update the pageblock-skip information and cached scanner pfn,
837 * if the whole pageblock was scanned without isolating any page.
839 if (low_pfn
== end_pfn
)
840 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
842 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
843 nr_scanned
, nr_isolated
);
845 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
847 count_compact_events(COMPACTISOLATED
, nr_isolated
);
853 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
854 * @cc: Compaction control structure.
855 * @start_pfn: The first PFN to start isolating.
856 * @end_pfn: The one-past-last PFN.
858 * Returns zero if isolation fails fatally due to e.g. pending signal.
859 * Otherwise, function returns one-past-the-last PFN of isolated page
860 * (which may be greater than end_pfn if end fell in a middle of a THP page).
863 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
864 unsigned long end_pfn
)
866 unsigned long pfn
, block_end_pfn
;
868 /* Scan block by block. First and last block may be incomplete */
870 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
872 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
873 block_end_pfn
+= pageblock_nr_pages
) {
875 block_end_pfn
= min(block_end_pfn
, end_pfn
);
877 if (!pageblock_pfn_to_page(pfn
, block_end_pfn
, cc
->zone
))
880 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
881 ISOLATE_UNEVICTABLE
);
884 * In case of fatal failure, release everything that might
885 * have been isolated in the previous iteration, and signal
886 * the failure back to caller.
889 putback_movable_pages(&cc
->migratepages
);
890 cc
->nr_migratepages
= 0;
894 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
897 acct_isolated(cc
->zone
, cc
);
902 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
903 #ifdef CONFIG_COMPACTION
905 /* Returns true if the page is within a block suitable for migration to */
906 static bool suitable_migration_target(struct page
*page
)
908 /* If the page is a large free page, then disallow migration */
909 if (PageBuddy(page
)) {
911 * We are checking page_order without zone->lock taken. But
912 * the only small danger is that we skip a potentially suitable
913 * pageblock, so it's not worth to check order for valid range.
915 if (page_order_unsafe(page
) >= pageblock_order
)
919 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
920 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
923 /* Otherwise skip the block */
928 * Test whether the free scanner has reached the same or lower pageblock than
929 * the migration scanner, and compaction should thus terminate.
931 static inline bool compact_scanners_met(struct compact_control
*cc
)
933 return (cc
->free_pfn
>> pageblock_order
)
934 <= (cc
->migrate_pfn
>> pageblock_order
);
938 * Based on information in the current compact_control, find blocks
939 * suitable for isolating free pages from and then isolate them.
941 static void isolate_freepages(struct compact_control
*cc
)
943 struct zone
*zone
= cc
->zone
;
945 unsigned long block_start_pfn
; /* start of current pageblock */
946 unsigned long isolate_start_pfn
; /* exact pfn we start at */
947 unsigned long block_end_pfn
; /* end of current pageblock */
948 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
949 struct list_head
*freelist
= &cc
->freepages
;
952 * Initialise the free scanner. The starting point is where we last
953 * successfully isolated from, zone-cached value, or the end of the
954 * zone when isolating for the first time. For looping we also need
955 * this pfn aligned down to the pageblock boundary, because we do
956 * block_start_pfn -= pageblock_nr_pages in the for loop.
957 * For ending point, take care when isolating in last pageblock of a
958 * a zone which ends in the middle of a pageblock.
959 * The low boundary is the end of the pageblock the migration scanner
962 isolate_start_pfn
= cc
->free_pfn
;
963 block_start_pfn
= cc
->free_pfn
& ~(pageblock_nr_pages
-1);
964 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
966 low_pfn
= ALIGN(cc
->migrate_pfn
+ 1, pageblock_nr_pages
);
969 * Isolate free pages until enough are available to migrate the
970 * pages on cc->migratepages. We stop searching if the migrate
971 * and free page scanners meet or enough free pages are isolated.
973 for (; block_start_pfn
>= low_pfn
;
974 block_end_pfn
= block_start_pfn
,
975 block_start_pfn
-= pageblock_nr_pages
,
976 isolate_start_pfn
= block_start_pfn
) {
979 * This can iterate a massively long zone without finding any
980 * suitable migration targets, so periodically check if we need
981 * to schedule, or even abort async compaction.
983 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
984 && compact_should_abort(cc
))
987 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
992 /* Check the block is suitable for migration */
993 if (!suitable_migration_target(page
))
996 /* If isolation recently failed, do not retry */
997 if (!isolation_suitable(cc
, page
))
1000 /* Found a block suitable for isolating free pages from. */
1001 isolate_freepages_block(cc
, &isolate_start_pfn
,
1002 block_end_pfn
, freelist
, false);
1005 * If we isolated enough freepages, or aborted due to async
1006 * compaction being contended, terminate the loop.
1007 * Remember where the free scanner should restart next time,
1008 * which is where isolate_freepages_block() left off.
1009 * But if it scanned the whole pageblock, isolate_start_pfn
1010 * now points at block_end_pfn, which is the start of the next
1012 * In that case we will however want to restart at the start
1013 * of the previous pageblock.
1015 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
1017 if (isolate_start_pfn
>= block_end_pfn
)
1019 block_start_pfn
- pageblock_nr_pages
;
1023 * isolate_freepages_block() should not terminate
1024 * prematurely unless contended, or isolated enough
1026 VM_BUG_ON(isolate_start_pfn
< block_end_pfn
);
1030 /* split_free_page does not map the pages */
1031 map_pages(freelist
);
1034 * Record where the free scanner will restart next time. Either we
1035 * broke from the loop and set isolate_start_pfn based on the last
1036 * call to isolate_freepages_block(), or we met the migration scanner
1037 * and the loop terminated due to isolate_start_pfn < low_pfn
1039 cc
->free_pfn
= isolate_start_pfn
;
1043 * This is a migrate-callback that "allocates" freepages by taking pages
1044 * from the isolated freelists in the block we are migrating to.
1046 static struct page
*compaction_alloc(struct page
*migratepage
,
1050 struct compact_control
*cc
= (struct compact_control
*)data
;
1051 struct page
*freepage
;
1054 * Isolate free pages if necessary, and if we are not aborting due to
1057 if (list_empty(&cc
->freepages
)) {
1059 isolate_freepages(cc
);
1061 if (list_empty(&cc
->freepages
))
1065 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1066 list_del(&freepage
->lru
);
1073 * This is a migrate-callback that "frees" freepages back to the isolated
1074 * freelist. All pages on the freelist are from the same zone, so there is no
1075 * special handling needed for NUMA.
1077 static void compaction_free(struct page
*page
, unsigned long data
)
1079 struct compact_control
*cc
= (struct compact_control
*)data
;
1081 list_add(&page
->lru
, &cc
->freepages
);
1085 /* possible outcome of isolate_migratepages */
1087 ISOLATE_ABORT
, /* Abort compaction now */
1088 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1089 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1090 } isolate_migrate_t
;
1093 * Allow userspace to control policy on scanning the unevictable LRU for
1094 * compactable pages.
1096 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1099 * Isolate all pages that can be migrated from the first suitable block,
1100 * starting at the block pointed to by the migrate scanner pfn within
1103 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1104 struct compact_control
*cc
)
1106 unsigned long low_pfn
, end_pfn
;
1107 unsigned long isolate_start_pfn
;
1109 const isolate_mode_t isolate_mode
=
1110 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1111 (cc
->mode
== MIGRATE_ASYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1114 * Start at where we last stopped, or beginning of the zone as
1115 * initialized by compact_zone()
1117 low_pfn
= cc
->migrate_pfn
;
1119 /* Only scan within a pageblock boundary */
1120 end_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
);
1123 * Iterate over whole pageblocks until we find the first suitable.
1124 * Do not cross the free scanner.
1126 for (; end_pfn
<= cc
->free_pfn
;
1127 low_pfn
= end_pfn
, end_pfn
+= pageblock_nr_pages
) {
1130 * This can potentially iterate a massively long zone with
1131 * many pageblocks unsuitable, so periodically check if we
1132 * need to schedule, or even abort async compaction.
1134 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1135 && compact_should_abort(cc
))
1138 page
= pageblock_pfn_to_page(low_pfn
, end_pfn
, zone
);
1142 /* If isolation recently failed, do not retry */
1143 if (!isolation_suitable(cc
, page
))
1147 * For async compaction, also only scan in MOVABLE blocks.
1148 * Async compaction is optimistic to see if the minimum amount
1149 * of work satisfies the allocation.
1151 if (cc
->mode
== MIGRATE_ASYNC
&&
1152 !migrate_async_suitable(get_pageblock_migratetype(page
)))
1155 /* Perform the isolation */
1156 isolate_start_pfn
= low_pfn
;
1157 low_pfn
= isolate_migratepages_block(cc
, low_pfn
, end_pfn
,
1160 if (!low_pfn
|| cc
->contended
) {
1161 acct_isolated(zone
, cc
);
1162 return ISOLATE_ABORT
;
1166 * Record where we could have freed pages by migration and not
1167 * yet flushed them to buddy allocator.
1168 * - this is the lowest page that could have been isolated and
1169 * then freed by migration.
1171 if (cc
->nr_migratepages
&& !cc
->last_migrated_pfn
)
1172 cc
->last_migrated_pfn
= isolate_start_pfn
;
1175 * Either we isolated something and proceed with migration. Or
1176 * we failed and compact_zone should decide if we should
1182 acct_isolated(zone
, cc
);
1183 /* Record where migration scanner will be restarted. */
1184 cc
->migrate_pfn
= low_pfn
;
1186 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1190 * order == -1 is expected when compacting via
1191 * /proc/sys/vm/compact_memory
1193 static inline bool is_via_compact_memory(int order
)
1198 static int __compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1199 const int migratetype
)
1202 unsigned long watermark
;
1204 if (cc
->contended
|| fatal_signal_pending(current
))
1205 return COMPACT_CONTENDED
;
1207 /* Compaction run completes if the migrate and free scanner meet */
1208 if (compact_scanners_met(cc
)) {
1209 /* Let the next compaction start anew. */
1210 reset_cached_positions(zone
);
1213 * Mark that the PG_migrate_skip information should be cleared
1214 * by kswapd when it goes to sleep. kswapd does not set the
1215 * flag itself as the decision to be clear should be directly
1216 * based on an allocation request.
1218 if (!current_is_kswapd())
1219 zone
->compact_blockskip_flush
= true;
1221 return COMPACT_COMPLETE
;
1224 if (is_via_compact_memory(cc
->order
))
1225 return COMPACT_CONTINUE
;
1227 /* Compaction run is not finished if the watermark is not met */
1228 watermark
= low_wmark_pages(zone
);
1230 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, cc
->classzone_idx
,
1232 return COMPACT_CONTINUE
;
1234 /* Direct compactor: Is a suitable page free? */
1235 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1236 struct free_area
*area
= &zone
->free_area
[order
];
1239 /* Job done if page is free of the right migratetype */
1240 if (!list_empty(&area
->free_list
[migratetype
]))
1241 return COMPACT_PARTIAL
;
1244 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1245 if (migratetype
== MIGRATE_MOVABLE
&&
1246 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1247 return COMPACT_PARTIAL
;
1250 * Job done if allocation would steal freepages from
1251 * other migratetype buddy lists.
1253 if (find_suitable_fallback(area
, order
, migratetype
,
1254 true, &can_steal
) != -1)
1255 return COMPACT_PARTIAL
;
1258 return COMPACT_NO_SUITABLE_PAGE
;
1261 static int compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1262 const int migratetype
)
1266 ret
= __compact_finished(zone
, cc
, migratetype
);
1267 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1268 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1269 ret
= COMPACT_CONTINUE
;
1275 * compaction_suitable: Is this suitable to run compaction on this zone now?
1277 * COMPACT_SKIPPED - If there are too few free pages for compaction
1278 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1279 * COMPACT_CONTINUE - If compaction should run now
1281 static unsigned long __compaction_suitable(struct zone
*zone
, int order
,
1282 int alloc_flags
, int classzone_idx
)
1285 unsigned long watermark
;
1287 if (is_via_compact_memory(order
))
1288 return COMPACT_CONTINUE
;
1290 watermark
= low_wmark_pages(zone
);
1292 * If watermarks for high-order allocation are already met, there
1293 * should be no need for compaction at all.
1295 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1297 return COMPACT_PARTIAL
;
1300 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1301 * This is because during migration, copies of pages need to be
1302 * allocated and for a short time, the footprint is higher
1304 watermark
+= (2UL << order
);
1305 if (!zone_watermark_ok(zone
, 0, watermark
, classzone_idx
, alloc_flags
))
1306 return COMPACT_SKIPPED
;
1309 * fragmentation index determines if allocation failures are due to
1310 * low memory or external fragmentation
1312 * index of -1000 would imply allocations might succeed depending on
1313 * watermarks, but we already failed the high-order watermark check
1314 * index towards 0 implies failure is due to lack of memory
1315 * index towards 1000 implies failure is due to fragmentation
1317 * Only compact if a failure would be due to fragmentation.
1319 fragindex
= fragmentation_index(zone
, order
);
1320 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1321 return COMPACT_NOT_SUITABLE_ZONE
;
1323 return COMPACT_CONTINUE
;
1326 unsigned long compaction_suitable(struct zone
*zone
, int order
,
1327 int alloc_flags
, int classzone_idx
)
1331 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
);
1332 trace_mm_compaction_suitable(zone
, order
, ret
);
1333 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1334 ret
= COMPACT_SKIPPED
;
1339 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1342 unsigned long start_pfn
= zone
->zone_start_pfn
;
1343 unsigned long end_pfn
= zone_end_pfn(zone
);
1344 const int migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1345 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1347 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1350 case COMPACT_PARTIAL
:
1351 case COMPACT_SKIPPED
:
1352 /* Compaction is likely to fail */
1354 case COMPACT_CONTINUE
:
1355 /* Fall through to compaction */
1360 * Clear pageblock skip if there were failures recently and compaction
1361 * is about to be retried after being deferred. kswapd does not do
1362 * this reset as it'll reset the cached information when going to sleep.
1364 if (compaction_restarting(zone
, cc
->order
) && !current_is_kswapd())
1365 __reset_isolation_suitable(zone
);
1368 * Setup to move all movable pages to the end of the zone. Used cached
1369 * information on where the scanners should start but check that it
1370 * is initialised by ensuring the values are within zone boundaries.
1372 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1373 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1374 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
> end_pfn
) {
1375 cc
->free_pfn
= end_pfn
& ~(pageblock_nr_pages
-1);
1376 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1378 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
> end_pfn
) {
1379 cc
->migrate_pfn
= start_pfn
;
1380 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1381 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1383 cc
->last_migrated_pfn
= 0;
1385 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1386 cc
->free_pfn
, end_pfn
, sync
);
1388 migrate_prep_local();
1390 while ((ret
= compact_finished(zone
, cc
, migratetype
)) ==
1394 switch (isolate_migratepages(zone
, cc
)) {
1396 ret
= COMPACT_CONTENDED
;
1397 putback_movable_pages(&cc
->migratepages
);
1398 cc
->nr_migratepages
= 0;
1402 * We haven't isolated and migrated anything, but
1403 * there might still be unflushed migrations from
1404 * previous cc->order aligned block.
1407 case ISOLATE_SUCCESS
:
1411 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1412 compaction_free
, (unsigned long)cc
, cc
->mode
,
1415 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1418 /* All pages were either migrated or will be released */
1419 cc
->nr_migratepages
= 0;
1421 putback_movable_pages(&cc
->migratepages
);
1423 * migrate_pages() may return -ENOMEM when scanners meet
1424 * and we want compact_finished() to detect it
1426 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
1427 ret
= COMPACT_CONTENDED
;
1434 * Has the migration scanner moved away from the previous
1435 * cc->order aligned block where we migrated from? If yes,
1436 * flush the pages that were freed, so that they can merge and
1437 * compact_finished() can detect immediately if allocation
1440 if (cc
->order
> 0 && cc
->last_migrated_pfn
) {
1442 unsigned long current_block_start
=
1443 cc
->migrate_pfn
& ~((1UL << cc
->order
) - 1);
1445 if (cc
->last_migrated_pfn
< current_block_start
) {
1447 lru_add_drain_cpu(cpu
);
1448 drain_local_pages(zone
);
1450 /* No more flushing until we migrate again */
1451 cc
->last_migrated_pfn
= 0;
1459 * Release free pages and update where the free scanner should restart,
1460 * so we don't leave any returned pages behind in the next attempt.
1462 if (cc
->nr_freepages
> 0) {
1463 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1465 cc
->nr_freepages
= 0;
1466 VM_BUG_ON(free_pfn
== 0);
1467 /* The cached pfn is always the first in a pageblock */
1468 free_pfn
&= ~(pageblock_nr_pages
-1);
1470 * Only go back, not forward. The cached pfn might have been
1471 * already reset to zone end in compact_finished()
1473 if (free_pfn
> zone
->compact_cached_free_pfn
)
1474 zone
->compact_cached_free_pfn
= free_pfn
;
1477 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1478 cc
->free_pfn
, end_pfn
, sync
, ret
);
1480 if (ret
== COMPACT_CONTENDED
)
1481 ret
= COMPACT_PARTIAL
;
1486 static unsigned long compact_zone_order(struct zone
*zone
, int order
,
1487 gfp_t gfp_mask
, enum migrate_mode mode
, int *contended
,
1488 int alloc_flags
, int classzone_idx
)
1491 struct compact_control cc
= {
1493 .nr_migratepages
= 0,
1495 .gfp_mask
= gfp_mask
,
1498 .alloc_flags
= alloc_flags
,
1499 .classzone_idx
= classzone_idx
,
1501 INIT_LIST_HEAD(&cc
.freepages
);
1502 INIT_LIST_HEAD(&cc
.migratepages
);
1504 ret
= compact_zone(zone
, &cc
);
1506 VM_BUG_ON(!list_empty(&cc
.freepages
));
1507 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1509 *contended
= cc
.contended
;
1513 int sysctl_extfrag_threshold
= 500;
1516 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1517 * @gfp_mask: The GFP mask of the current allocation
1518 * @order: The order of the current allocation
1519 * @alloc_flags: The allocation flags of the current allocation
1520 * @ac: The context of current allocation
1521 * @mode: The migration mode for async, sync light, or sync migration
1522 * @contended: Return value that determines if compaction was aborted due to
1523 * need_resched() or lock contention
1525 * This is the main entry point for direct page compaction.
1527 unsigned long try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1528 int alloc_flags
, const struct alloc_context
*ac
,
1529 enum migrate_mode mode
, int *contended
)
1531 int may_enter_fs
= gfp_mask
& __GFP_FS
;
1532 int may_perform_io
= gfp_mask
& __GFP_IO
;
1535 int rc
= COMPACT_DEFERRED
;
1536 int all_zones_contended
= COMPACT_CONTENDED_LOCK
; /* init for &= op */
1538 *contended
= COMPACT_CONTENDED_NONE
;
1540 /* Check if the GFP flags allow compaction */
1541 if (!order
|| !may_enter_fs
|| !may_perform_io
)
1542 return COMPACT_SKIPPED
;
1544 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, mode
);
1546 /* Compact each zone in the list */
1547 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1552 if (compaction_deferred(zone
, order
))
1555 status
= compact_zone_order(zone
, order
, gfp_mask
, mode
,
1556 &zone_contended
, alloc_flags
,
1558 rc
= max(status
, rc
);
1560 * It takes at least one zone that wasn't lock contended
1561 * to clear all_zones_contended.
1563 all_zones_contended
&= zone_contended
;
1565 /* If a normal allocation would succeed, stop compacting */
1566 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
),
1567 ac
->classzone_idx
, alloc_flags
)) {
1569 * We think the allocation will succeed in this zone,
1570 * but it is not certain, hence the false. The caller
1571 * will repeat this with true if allocation indeed
1572 * succeeds in this zone.
1574 compaction_defer_reset(zone
, order
, false);
1576 * It is possible that async compaction aborted due to
1577 * need_resched() and the watermarks were ok thanks to
1578 * somebody else freeing memory. The allocation can
1579 * however still fail so we better signal the
1580 * need_resched() contention anyway (this will not
1581 * prevent the allocation attempt).
1583 if (zone_contended
== COMPACT_CONTENDED_SCHED
)
1584 *contended
= COMPACT_CONTENDED_SCHED
;
1589 if (mode
!= MIGRATE_ASYNC
&& status
== COMPACT_COMPLETE
) {
1591 * We think that allocation won't succeed in this zone
1592 * so we defer compaction there. If it ends up
1593 * succeeding after all, it will be reset.
1595 defer_compaction(zone
, order
);
1599 * We might have stopped compacting due to need_resched() in
1600 * async compaction, or due to a fatal signal detected. In that
1601 * case do not try further zones and signal need_resched()
1604 if ((zone_contended
== COMPACT_CONTENDED_SCHED
)
1605 || fatal_signal_pending(current
)) {
1606 *contended
= COMPACT_CONTENDED_SCHED
;
1613 * We might not have tried all the zones, so be conservative
1614 * and assume they are not all lock contended.
1616 all_zones_contended
= 0;
1621 * If at least one zone wasn't deferred or skipped, we report if all
1622 * zones that were tried were lock contended.
1624 if (rc
> COMPACT_SKIPPED
&& all_zones_contended
)
1625 *contended
= COMPACT_CONTENDED_LOCK
;
1631 /* Compact all zones within a node */
1632 static void __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
1637 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1639 zone
= &pgdat
->node_zones
[zoneid
];
1640 if (!populated_zone(zone
))
1643 cc
->nr_freepages
= 0;
1644 cc
->nr_migratepages
= 0;
1646 INIT_LIST_HEAD(&cc
->freepages
);
1647 INIT_LIST_HEAD(&cc
->migratepages
);
1650 * When called via /proc/sys/vm/compact_memory
1651 * this makes sure we compact the whole zone regardless of
1652 * cached scanner positions.
1654 if (is_via_compact_memory(cc
->order
))
1655 __reset_isolation_suitable(zone
);
1657 if (is_via_compact_memory(cc
->order
) ||
1658 !compaction_deferred(zone
, cc
->order
))
1659 compact_zone(zone
, cc
);
1661 if (cc
->order
> 0) {
1662 if (zone_watermark_ok(zone
, cc
->order
,
1663 low_wmark_pages(zone
), 0, 0))
1664 compaction_defer_reset(zone
, cc
->order
, false);
1667 VM_BUG_ON(!list_empty(&cc
->freepages
));
1668 VM_BUG_ON(!list_empty(&cc
->migratepages
));
1672 void compact_pgdat(pg_data_t
*pgdat
, int order
)
1674 struct compact_control cc
= {
1676 .mode
= MIGRATE_ASYNC
,
1682 __compact_pgdat(pgdat
, &cc
);
1685 static void compact_node(int nid
)
1687 struct compact_control cc
= {
1689 .mode
= MIGRATE_SYNC
,
1690 .ignore_skip_hint
= true,
1693 __compact_pgdat(NODE_DATA(nid
), &cc
);
1696 /* Compact all nodes in the system */
1697 static void compact_nodes(void)
1701 /* Flush pending updates to the LRU lists */
1702 lru_add_drain_all();
1704 for_each_online_node(nid
)
1708 /* The written value is actually unused, all memory is compacted */
1709 int sysctl_compact_memory
;
1711 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1712 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1713 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1721 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1722 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1724 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1729 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1730 static ssize_t
sysfs_compact_node(struct device
*dev
,
1731 struct device_attribute
*attr
,
1732 const char *buf
, size_t count
)
1736 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1737 /* Flush pending updates to the LRU lists */
1738 lru_add_drain_all();
1745 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1747 int compaction_register_node(struct node
*node
)
1749 return device_create_file(&node
->dev
, &dev_attr_compact
);
1752 void compaction_unregister_node(struct node
*node
)
1754 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1756 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1758 #endif /* CONFIG_COMPACTION */