]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/compaction.c
KVM: x86: Do not update EFLAGS on faulting emulation
[mirror_ubuntu-bionic-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 /*
71 * Check that the whole (or subset of) a pageblock given by the interval of
72 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
73 * with the migration of free compaction scanner. The scanners then need to
74 * use only pfn_valid_within() check for arches that allow holes within
75 * pageblocks.
76 *
77 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
78 *
79 * It's possible on some configurations to have a setup like node0 node1 node0
80 * i.e. it's possible that all pages within a zones range of pages do not
81 * belong to a single zone. We assume that a border between node0 and node1
82 * can occur within a single pageblock, but not a node0 node1 node0
83 * interleaving within a single pageblock. It is therefore sufficient to check
84 * the first and last page of a pageblock and avoid checking each individual
85 * page in a pageblock.
86 */
87 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
88 unsigned long end_pfn, struct zone *zone)
89 {
90 struct page *start_page;
91 struct page *end_page;
92
93 /* end_pfn is one past the range we are checking */
94 end_pfn--;
95
96 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
97 return NULL;
98
99 start_page = pfn_to_page(start_pfn);
100
101 if (page_zone(start_page) != zone)
102 return NULL;
103
104 end_page = pfn_to_page(end_pfn);
105
106 /* This gives a shorter code than deriving page_zone(end_page) */
107 if (page_zone_id(start_page) != page_zone_id(end_page))
108 return NULL;
109
110 return start_page;
111 }
112
113 #ifdef CONFIG_COMPACTION
114 /* Returns true if the pageblock should be scanned for pages to isolate. */
115 static inline bool isolation_suitable(struct compact_control *cc,
116 struct page *page)
117 {
118 if (cc->ignore_skip_hint)
119 return true;
120
121 return !get_pageblock_skip(page);
122 }
123
124 /*
125 * This function is called to clear all cached information on pageblocks that
126 * should be skipped for page isolation when the migrate and free page scanner
127 * meet.
128 */
129 static void __reset_isolation_suitable(struct zone *zone)
130 {
131 unsigned long start_pfn = zone->zone_start_pfn;
132 unsigned long end_pfn = zone_end_pfn(zone);
133 unsigned long pfn;
134
135 zone->compact_cached_migrate_pfn[0] = start_pfn;
136 zone->compact_cached_migrate_pfn[1] = start_pfn;
137 zone->compact_cached_free_pfn = end_pfn;
138 zone->compact_blockskip_flush = false;
139
140 /* Walk the zone and mark every pageblock as suitable for isolation */
141 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
142 struct page *page;
143
144 cond_resched();
145
146 if (!pfn_valid(pfn))
147 continue;
148
149 page = pfn_to_page(pfn);
150 if (zone != page_zone(page))
151 continue;
152
153 clear_pageblock_skip(page);
154 }
155 }
156
157 void reset_isolation_suitable(pg_data_t *pgdat)
158 {
159 int zoneid;
160
161 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
162 struct zone *zone = &pgdat->node_zones[zoneid];
163 if (!populated_zone(zone))
164 continue;
165
166 /* Only flush if a full compaction finished recently */
167 if (zone->compact_blockskip_flush)
168 __reset_isolation_suitable(zone);
169 }
170 }
171
172 /*
173 * If no pages were isolated then mark this pageblock to be skipped in the
174 * future. The information is later cleared by __reset_isolation_suitable().
175 */
176 static void update_pageblock_skip(struct compact_control *cc,
177 struct page *page, unsigned long nr_isolated,
178 bool migrate_scanner)
179 {
180 struct zone *zone = cc->zone;
181 unsigned long pfn;
182
183 if (cc->ignore_skip_hint)
184 return;
185
186 if (!page)
187 return;
188
189 if (nr_isolated)
190 return;
191
192 set_pageblock_skip(page);
193
194 pfn = page_to_pfn(page);
195
196 /* Update where async and sync compaction should restart */
197 if (migrate_scanner) {
198 if (cc->finished_update_migrate)
199 return;
200 if (pfn > zone->compact_cached_migrate_pfn[0])
201 zone->compact_cached_migrate_pfn[0] = pfn;
202 if (cc->mode != MIGRATE_ASYNC &&
203 pfn > zone->compact_cached_migrate_pfn[1])
204 zone->compact_cached_migrate_pfn[1] = pfn;
205 } else {
206 if (cc->finished_update_free)
207 return;
208 if (pfn < zone->compact_cached_free_pfn)
209 zone->compact_cached_free_pfn = pfn;
210 }
211 }
212 #else
213 static inline bool isolation_suitable(struct compact_control *cc,
214 struct page *page)
215 {
216 return true;
217 }
218
219 static void update_pageblock_skip(struct compact_control *cc,
220 struct page *page, unsigned long nr_isolated,
221 bool migrate_scanner)
222 {
223 }
224 #endif /* CONFIG_COMPACTION */
225
226 /*
227 * Compaction requires the taking of some coarse locks that are potentially
228 * very heavily contended. For async compaction, back out if the lock cannot
229 * be taken immediately. For sync compaction, spin on the lock if needed.
230 *
231 * Returns true if the lock is held
232 * Returns false if the lock is not held and compaction should abort
233 */
234 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
235 struct compact_control *cc)
236 {
237 if (cc->mode == MIGRATE_ASYNC) {
238 if (!spin_trylock_irqsave(lock, *flags)) {
239 cc->contended = COMPACT_CONTENDED_LOCK;
240 return false;
241 }
242 } else {
243 spin_lock_irqsave(lock, *flags);
244 }
245
246 return true;
247 }
248
249 /*
250 * Compaction requires the taking of some coarse locks that are potentially
251 * very heavily contended. The lock should be periodically unlocked to avoid
252 * having disabled IRQs for a long time, even when there is nobody waiting on
253 * the lock. It might also be that allowing the IRQs will result in
254 * need_resched() becoming true. If scheduling is needed, async compaction
255 * aborts. Sync compaction schedules.
256 * Either compaction type will also abort if a fatal signal is pending.
257 * In either case if the lock was locked, it is dropped and not regained.
258 *
259 * Returns true if compaction should abort due to fatal signal pending, or
260 * async compaction due to need_resched()
261 * Returns false when compaction can continue (sync compaction might have
262 * scheduled)
263 */
264 static bool compact_unlock_should_abort(spinlock_t *lock,
265 unsigned long flags, bool *locked, struct compact_control *cc)
266 {
267 if (*locked) {
268 spin_unlock_irqrestore(lock, flags);
269 *locked = false;
270 }
271
272 if (fatal_signal_pending(current)) {
273 cc->contended = COMPACT_CONTENDED_SCHED;
274 return true;
275 }
276
277 if (need_resched()) {
278 if (cc->mode == MIGRATE_ASYNC) {
279 cc->contended = COMPACT_CONTENDED_SCHED;
280 return true;
281 }
282 cond_resched();
283 }
284
285 return false;
286 }
287
288 /*
289 * Aside from avoiding lock contention, compaction also periodically checks
290 * need_resched() and either schedules in sync compaction or aborts async
291 * compaction. This is similar to what compact_unlock_should_abort() does, but
292 * is used where no lock is concerned.
293 *
294 * Returns false when no scheduling was needed, or sync compaction scheduled.
295 * Returns true when async compaction should abort.
296 */
297 static inline bool compact_should_abort(struct compact_control *cc)
298 {
299 /* async compaction aborts if contended */
300 if (need_resched()) {
301 if (cc->mode == MIGRATE_ASYNC) {
302 cc->contended = COMPACT_CONTENDED_SCHED;
303 return true;
304 }
305
306 cond_resched();
307 }
308
309 return false;
310 }
311
312 /* Returns true if the page is within a block suitable for migration to */
313 static bool suitable_migration_target(struct page *page)
314 {
315 /* If the page is a large free page, then disallow migration */
316 if (PageBuddy(page)) {
317 /*
318 * We are checking page_order without zone->lock taken. But
319 * the only small danger is that we skip a potentially suitable
320 * pageblock, so it's not worth to check order for valid range.
321 */
322 if (page_order_unsafe(page) >= pageblock_order)
323 return false;
324 }
325
326 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
327 if (migrate_async_suitable(get_pageblock_migratetype(page)))
328 return true;
329
330 /* Otherwise skip the block */
331 return false;
332 }
333
334 /*
335 * Isolate free pages onto a private freelist. If @strict is true, will abort
336 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
337 * (even though it may still end up isolating some pages).
338 */
339 static unsigned long isolate_freepages_block(struct compact_control *cc,
340 unsigned long *start_pfn,
341 unsigned long end_pfn,
342 struct list_head *freelist,
343 bool strict)
344 {
345 int nr_scanned = 0, total_isolated = 0;
346 struct page *cursor, *valid_page = NULL;
347 unsigned long flags = 0;
348 bool locked = false;
349 unsigned long blockpfn = *start_pfn;
350
351 cursor = pfn_to_page(blockpfn);
352
353 /* Isolate free pages. */
354 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
355 int isolated, i;
356 struct page *page = cursor;
357
358 /*
359 * Periodically drop the lock (if held) regardless of its
360 * contention, to give chance to IRQs. Abort if fatal signal
361 * pending or async compaction detects need_resched()
362 */
363 if (!(blockpfn % SWAP_CLUSTER_MAX)
364 && compact_unlock_should_abort(&cc->zone->lock, flags,
365 &locked, cc))
366 break;
367
368 nr_scanned++;
369 if (!pfn_valid_within(blockpfn))
370 goto isolate_fail;
371
372 if (!valid_page)
373 valid_page = page;
374 if (!PageBuddy(page))
375 goto isolate_fail;
376
377 /*
378 * If we already hold the lock, we can skip some rechecking.
379 * Note that if we hold the lock now, checked_pageblock was
380 * already set in some previous iteration (or strict is true),
381 * so it is correct to skip the suitable migration target
382 * recheck as well.
383 */
384 if (!locked) {
385 /*
386 * The zone lock must be held to isolate freepages.
387 * Unfortunately this is a very coarse lock and can be
388 * heavily contended if there are parallel allocations
389 * or parallel compactions. For async compaction do not
390 * spin on the lock and we acquire the lock as late as
391 * possible.
392 */
393 locked = compact_trylock_irqsave(&cc->zone->lock,
394 &flags, cc);
395 if (!locked)
396 break;
397
398 /* Recheck this is a buddy page under lock */
399 if (!PageBuddy(page))
400 goto isolate_fail;
401 }
402
403 /* Found a free page, break it into order-0 pages */
404 isolated = split_free_page(page);
405 total_isolated += isolated;
406 for (i = 0; i < isolated; i++) {
407 list_add(&page->lru, freelist);
408 page++;
409 }
410
411 /* If a page was split, advance to the end of it */
412 if (isolated) {
413 blockpfn += isolated - 1;
414 cursor += isolated - 1;
415 continue;
416 }
417
418 isolate_fail:
419 if (strict)
420 break;
421 else
422 continue;
423
424 }
425
426 /* Record how far we have got within the block */
427 *start_pfn = blockpfn;
428
429 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
430
431 /*
432 * If strict isolation is requested by CMA then check that all the
433 * pages requested were isolated. If there were any failures, 0 is
434 * returned and CMA will fail.
435 */
436 if (strict && blockpfn < end_pfn)
437 total_isolated = 0;
438
439 if (locked)
440 spin_unlock_irqrestore(&cc->zone->lock, flags);
441
442 /* Update the pageblock-skip if the whole pageblock was scanned */
443 if (blockpfn == end_pfn)
444 update_pageblock_skip(cc, valid_page, total_isolated, false);
445
446 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
447 if (total_isolated)
448 count_compact_events(COMPACTISOLATED, total_isolated);
449 return total_isolated;
450 }
451
452 /**
453 * isolate_freepages_range() - isolate free pages.
454 * @start_pfn: The first PFN to start isolating.
455 * @end_pfn: The one-past-last PFN.
456 *
457 * Non-free pages, invalid PFNs, or zone boundaries within the
458 * [start_pfn, end_pfn) range are considered errors, cause function to
459 * undo its actions and return zero.
460 *
461 * Otherwise, function returns one-past-the-last PFN of isolated page
462 * (which may be greater then end_pfn if end fell in a middle of
463 * a free page).
464 */
465 unsigned long
466 isolate_freepages_range(struct compact_control *cc,
467 unsigned long start_pfn, unsigned long end_pfn)
468 {
469 unsigned long isolated, pfn, block_end_pfn;
470 LIST_HEAD(freelist);
471
472 pfn = start_pfn;
473 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
474
475 for (; pfn < end_pfn; pfn += isolated,
476 block_end_pfn += pageblock_nr_pages) {
477 /* Protect pfn from changing by isolate_freepages_block */
478 unsigned long isolate_start_pfn = pfn;
479
480 block_end_pfn = min(block_end_pfn, end_pfn);
481
482 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
483 break;
484
485 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
486 block_end_pfn, &freelist, true);
487
488 /*
489 * In strict mode, isolate_freepages_block() returns 0 if
490 * there are any holes in the block (ie. invalid PFNs or
491 * non-free pages).
492 */
493 if (!isolated)
494 break;
495
496 /*
497 * If we managed to isolate pages, it is always (1 << n) *
498 * pageblock_nr_pages for some non-negative n. (Max order
499 * page may span two pageblocks).
500 */
501 }
502
503 /* split_free_page does not map the pages */
504 map_pages(&freelist);
505
506 if (pfn < end_pfn) {
507 /* Loop terminated early, cleanup. */
508 release_freepages(&freelist);
509 return 0;
510 }
511
512 /* We don't use freelists for anything. */
513 return pfn;
514 }
515
516 /* Update the number of anon and file isolated pages in the zone */
517 static void acct_isolated(struct zone *zone, struct compact_control *cc)
518 {
519 struct page *page;
520 unsigned int count[2] = { 0, };
521
522 if (list_empty(&cc->migratepages))
523 return;
524
525 list_for_each_entry(page, &cc->migratepages, lru)
526 count[!!page_is_file_cache(page)]++;
527
528 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
529 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
530 }
531
532 /* Similar to reclaim, but different enough that they don't share logic */
533 static bool too_many_isolated(struct zone *zone)
534 {
535 unsigned long active, inactive, isolated;
536
537 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
538 zone_page_state(zone, NR_INACTIVE_ANON);
539 active = zone_page_state(zone, NR_ACTIVE_FILE) +
540 zone_page_state(zone, NR_ACTIVE_ANON);
541 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
542 zone_page_state(zone, NR_ISOLATED_ANON);
543
544 return isolated > (inactive + active) / 2;
545 }
546
547 /**
548 * isolate_migratepages_block() - isolate all migrate-able pages within
549 * a single pageblock
550 * @cc: Compaction control structure.
551 * @low_pfn: The first PFN to isolate
552 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
553 * @isolate_mode: Isolation mode to be used.
554 *
555 * Isolate all pages that can be migrated from the range specified by
556 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
557 * Returns zero if there is a fatal signal pending, otherwise PFN of the
558 * first page that was not scanned (which may be both less, equal to or more
559 * than end_pfn).
560 *
561 * The pages are isolated on cc->migratepages list (not required to be empty),
562 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
563 * is neither read nor updated.
564 */
565 static unsigned long
566 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
567 unsigned long end_pfn, isolate_mode_t isolate_mode)
568 {
569 struct zone *zone = cc->zone;
570 unsigned long nr_scanned = 0, nr_isolated = 0;
571 struct list_head *migratelist = &cc->migratepages;
572 struct lruvec *lruvec;
573 unsigned long flags = 0;
574 bool locked = false;
575 struct page *page = NULL, *valid_page = NULL;
576
577 /*
578 * Ensure that there are not too many pages isolated from the LRU
579 * list by either parallel reclaimers or compaction. If there are,
580 * delay for some time until fewer pages are isolated
581 */
582 while (unlikely(too_many_isolated(zone))) {
583 /* async migration should just abort */
584 if (cc->mode == MIGRATE_ASYNC)
585 return 0;
586
587 congestion_wait(BLK_RW_ASYNC, HZ/10);
588
589 if (fatal_signal_pending(current))
590 return 0;
591 }
592
593 if (compact_should_abort(cc))
594 return 0;
595
596 /* Time to isolate some pages for migration */
597 for (; low_pfn < end_pfn; low_pfn++) {
598 /*
599 * Periodically drop the lock (if held) regardless of its
600 * contention, to give chance to IRQs. Abort async compaction
601 * if contended.
602 */
603 if (!(low_pfn % SWAP_CLUSTER_MAX)
604 && compact_unlock_should_abort(&zone->lru_lock, flags,
605 &locked, cc))
606 break;
607
608 if (!pfn_valid_within(low_pfn))
609 continue;
610 nr_scanned++;
611
612 page = pfn_to_page(low_pfn);
613
614 if (!valid_page)
615 valid_page = page;
616
617 /*
618 * Skip if free. We read page order here without zone lock
619 * which is generally unsafe, but the race window is small and
620 * the worst thing that can happen is that we skip some
621 * potential isolation targets.
622 */
623 if (PageBuddy(page)) {
624 unsigned long freepage_order = page_order_unsafe(page);
625
626 /*
627 * Without lock, we cannot be sure that what we got is
628 * a valid page order. Consider only values in the
629 * valid order range to prevent low_pfn overflow.
630 */
631 if (freepage_order > 0 && freepage_order < MAX_ORDER)
632 low_pfn += (1UL << freepage_order) - 1;
633 continue;
634 }
635
636 /*
637 * Check may be lockless but that's ok as we recheck later.
638 * It's possible to migrate LRU pages and balloon pages
639 * Skip any other type of page
640 */
641 if (!PageLRU(page)) {
642 if (unlikely(balloon_page_movable(page))) {
643 if (balloon_page_isolate(page)) {
644 /* Successfully isolated */
645 goto isolate_success;
646 }
647 }
648 continue;
649 }
650
651 /*
652 * PageLRU is set. lru_lock normally excludes isolation
653 * splitting and collapsing (collapsing has already happened
654 * if PageLRU is set) but the lock is not necessarily taken
655 * here and it is wasteful to take it just to check transhuge.
656 * Check TransHuge without lock and skip the whole pageblock if
657 * it's either a transhuge or hugetlbfs page, as calling
658 * compound_order() without preventing THP from splitting the
659 * page underneath us may return surprising results.
660 */
661 if (PageTransHuge(page)) {
662 if (!locked)
663 low_pfn = ALIGN(low_pfn + 1,
664 pageblock_nr_pages) - 1;
665 else
666 low_pfn += (1 << compound_order(page)) - 1;
667
668 continue;
669 }
670
671 /*
672 * Migration will fail if an anonymous page is pinned in memory,
673 * so avoid taking lru_lock and isolating it unnecessarily in an
674 * admittedly racy check.
675 */
676 if (!page_mapping(page) &&
677 page_count(page) > page_mapcount(page))
678 continue;
679
680 /* If we already hold the lock, we can skip some rechecking */
681 if (!locked) {
682 locked = compact_trylock_irqsave(&zone->lru_lock,
683 &flags, cc);
684 if (!locked)
685 break;
686
687 /* Recheck PageLRU and PageTransHuge under lock */
688 if (!PageLRU(page))
689 continue;
690 if (PageTransHuge(page)) {
691 low_pfn += (1 << compound_order(page)) - 1;
692 continue;
693 }
694 }
695
696 lruvec = mem_cgroup_page_lruvec(page, zone);
697
698 /* Try isolate the page */
699 if (__isolate_lru_page(page, isolate_mode) != 0)
700 continue;
701
702 VM_BUG_ON_PAGE(PageTransCompound(page), page);
703
704 /* Successfully isolated */
705 del_page_from_lru_list(page, lruvec, page_lru(page));
706
707 isolate_success:
708 cc->finished_update_migrate = true;
709 list_add(&page->lru, migratelist);
710 cc->nr_migratepages++;
711 nr_isolated++;
712
713 /* Avoid isolating too much */
714 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
715 ++low_pfn;
716 break;
717 }
718 }
719
720 /*
721 * The PageBuddy() check could have potentially brought us outside
722 * the range to be scanned.
723 */
724 if (unlikely(low_pfn > end_pfn))
725 low_pfn = end_pfn;
726
727 if (locked)
728 spin_unlock_irqrestore(&zone->lru_lock, flags);
729
730 /*
731 * Update the pageblock-skip information and cached scanner pfn,
732 * if the whole pageblock was scanned without isolating any page.
733 */
734 if (low_pfn == end_pfn)
735 update_pageblock_skip(cc, valid_page, nr_isolated, true);
736
737 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
738
739 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
740 if (nr_isolated)
741 count_compact_events(COMPACTISOLATED, nr_isolated);
742
743 return low_pfn;
744 }
745
746 /**
747 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
748 * @cc: Compaction control structure.
749 * @start_pfn: The first PFN to start isolating.
750 * @end_pfn: The one-past-last PFN.
751 *
752 * Returns zero if isolation fails fatally due to e.g. pending signal.
753 * Otherwise, function returns one-past-the-last PFN of isolated page
754 * (which may be greater than end_pfn if end fell in a middle of a THP page).
755 */
756 unsigned long
757 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
758 unsigned long end_pfn)
759 {
760 unsigned long pfn, block_end_pfn;
761
762 /* Scan block by block. First and last block may be incomplete */
763 pfn = start_pfn;
764 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
765
766 for (; pfn < end_pfn; pfn = block_end_pfn,
767 block_end_pfn += pageblock_nr_pages) {
768
769 block_end_pfn = min(block_end_pfn, end_pfn);
770
771 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
772 continue;
773
774 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
775 ISOLATE_UNEVICTABLE);
776
777 /*
778 * In case of fatal failure, release everything that might
779 * have been isolated in the previous iteration, and signal
780 * the failure back to caller.
781 */
782 if (!pfn) {
783 putback_movable_pages(&cc->migratepages);
784 cc->nr_migratepages = 0;
785 break;
786 }
787
788 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
789 break;
790 }
791 acct_isolated(cc->zone, cc);
792
793 return pfn;
794 }
795
796 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
797 #ifdef CONFIG_COMPACTION
798 /*
799 * Based on information in the current compact_control, find blocks
800 * suitable for isolating free pages from and then isolate them.
801 */
802 static void isolate_freepages(struct compact_control *cc)
803 {
804 struct zone *zone = cc->zone;
805 struct page *page;
806 unsigned long block_start_pfn; /* start of current pageblock */
807 unsigned long isolate_start_pfn; /* exact pfn we start at */
808 unsigned long block_end_pfn; /* end of current pageblock */
809 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
810 int nr_freepages = cc->nr_freepages;
811 struct list_head *freelist = &cc->freepages;
812
813 /*
814 * Initialise the free scanner. The starting point is where we last
815 * successfully isolated from, zone-cached value, or the end of the
816 * zone when isolating for the first time. For looping we also need
817 * this pfn aligned down to the pageblock boundary, because we do
818 * block_start_pfn -= pageblock_nr_pages in the for loop.
819 * For ending point, take care when isolating in last pageblock of a
820 * a zone which ends in the middle of a pageblock.
821 * The low boundary is the end of the pageblock the migration scanner
822 * is using.
823 */
824 isolate_start_pfn = cc->free_pfn;
825 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
826 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
827 zone_end_pfn(zone));
828 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
829
830 /*
831 * Isolate free pages until enough are available to migrate the
832 * pages on cc->migratepages. We stop searching if the migrate
833 * and free page scanners meet or enough free pages are isolated.
834 */
835 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
836 block_end_pfn = block_start_pfn,
837 block_start_pfn -= pageblock_nr_pages,
838 isolate_start_pfn = block_start_pfn) {
839 unsigned long isolated;
840
841 /*
842 * This can iterate a massively long zone without finding any
843 * suitable migration targets, so periodically check if we need
844 * to schedule, or even abort async compaction.
845 */
846 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
847 && compact_should_abort(cc))
848 break;
849
850 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
851 zone);
852 if (!page)
853 continue;
854
855 /* Check the block is suitable for migration */
856 if (!suitable_migration_target(page))
857 continue;
858
859 /* If isolation recently failed, do not retry */
860 if (!isolation_suitable(cc, page))
861 continue;
862
863 /* Found a block suitable for isolating free pages from. */
864 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
865 block_end_pfn, freelist, false);
866 nr_freepages += isolated;
867
868 /*
869 * Remember where the free scanner should restart next time,
870 * which is where isolate_freepages_block() left off.
871 * But if it scanned the whole pageblock, isolate_start_pfn
872 * now points at block_end_pfn, which is the start of the next
873 * pageblock.
874 * In that case we will however want to restart at the start
875 * of the previous pageblock.
876 */
877 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
878 isolate_start_pfn :
879 block_start_pfn - pageblock_nr_pages;
880
881 /*
882 * Set a flag that we successfully isolated in this pageblock.
883 * In the next loop iteration, zone->compact_cached_free_pfn
884 * will not be updated and thus it will effectively contain the
885 * highest pageblock we isolated pages from.
886 */
887 if (isolated)
888 cc->finished_update_free = true;
889
890 /*
891 * isolate_freepages_block() might have aborted due to async
892 * compaction being contended
893 */
894 if (cc->contended)
895 break;
896 }
897
898 /* split_free_page does not map the pages */
899 map_pages(freelist);
900
901 /*
902 * If we crossed the migrate scanner, we want to keep it that way
903 * so that compact_finished() may detect this
904 */
905 if (block_start_pfn < low_pfn)
906 cc->free_pfn = cc->migrate_pfn;
907
908 cc->nr_freepages = nr_freepages;
909 }
910
911 /*
912 * This is a migrate-callback that "allocates" freepages by taking pages
913 * from the isolated freelists in the block we are migrating to.
914 */
915 static struct page *compaction_alloc(struct page *migratepage,
916 unsigned long data,
917 int **result)
918 {
919 struct compact_control *cc = (struct compact_control *)data;
920 struct page *freepage;
921
922 /*
923 * Isolate free pages if necessary, and if we are not aborting due to
924 * contention.
925 */
926 if (list_empty(&cc->freepages)) {
927 if (!cc->contended)
928 isolate_freepages(cc);
929
930 if (list_empty(&cc->freepages))
931 return NULL;
932 }
933
934 freepage = list_entry(cc->freepages.next, struct page, lru);
935 list_del(&freepage->lru);
936 cc->nr_freepages--;
937
938 return freepage;
939 }
940
941 /*
942 * This is a migrate-callback that "frees" freepages back to the isolated
943 * freelist. All pages on the freelist are from the same zone, so there is no
944 * special handling needed for NUMA.
945 */
946 static void compaction_free(struct page *page, unsigned long data)
947 {
948 struct compact_control *cc = (struct compact_control *)data;
949
950 list_add(&page->lru, &cc->freepages);
951 cc->nr_freepages++;
952 }
953
954 /* possible outcome of isolate_migratepages */
955 typedef enum {
956 ISOLATE_ABORT, /* Abort compaction now */
957 ISOLATE_NONE, /* No pages isolated, continue scanning */
958 ISOLATE_SUCCESS, /* Pages isolated, migrate */
959 } isolate_migrate_t;
960
961 /*
962 * Isolate all pages that can be migrated from the first suitable block,
963 * starting at the block pointed to by the migrate scanner pfn within
964 * compact_control.
965 */
966 static isolate_migrate_t isolate_migratepages(struct zone *zone,
967 struct compact_control *cc)
968 {
969 unsigned long low_pfn, end_pfn;
970 struct page *page;
971 const isolate_mode_t isolate_mode =
972 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
973
974 /*
975 * Start at where we last stopped, or beginning of the zone as
976 * initialized by compact_zone()
977 */
978 low_pfn = cc->migrate_pfn;
979
980 /* Only scan within a pageblock boundary */
981 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
982
983 /*
984 * Iterate over whole pageblocks until we find the first suitable.
985 * Do not cross the free scanner.
986 */
987 for (; end_pfn <= cc->free_pfn;
988 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
989
990 /*
991 * This can potentially iterate a massively long zone with
992 * many pageblocks unsuitable, so periodically check if we
993 * need to schedule, or even abort async compaction.
994 */
995 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
996 && compact_should_abort(cc))
997 break;
998
999 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1000 if (!page)
1001 continue;
1002
1003 /* If isolation recently failed, do not retry */
1004 if (!isolation_suitable(cc, page))
1005 continue;
1006
1007 /*
1008 * For async compaction, also only scan in MOVABLE blocks.
1009 * Async compaction is optimistic to see if the minimum amount
1010 * of work satisfies the allocation.
1011 */
1012 if (cc->mode == MIGRATE_ASYNC &&
1013 !migrate_async_suitable(get_pageblock_migratetype(page)))
1014 continue;
1015
1016 /* Perform the isolation */
1017 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1018 isolate_mode);
1019
1020 if (!low_pfn || cc->contended)
1021 return ISOLATE_ABORT;
1022
1023 /*
1024 * Either we isolated something and proceed with migration. Or
1025 * we failed and compact_zone should decide if we should
1026 * continue or not.
1027 */
1028 break;
1029 }
1030
1031 acct_isolated(zone, cc);
1032 /* Record where migration scanner will be restarted */
1033 cc->migrate_pfn = low_pfn;
1034
1035 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1036 }
1037
1038 static int compact_finished(struct zone *zone, struct compact_control *cc,
1039 const int migratetype)
1040 {
1041 unsigned int order;
1042 unsigned long watermark;
1043
1044 if (cc->contended || fatal_signal_pending(current))
1045 return COMPACT_PARTIAL;
1046
1047 /* Compaction run completes if the migrate and free scanner meet */
1048 if (cc->free_pfn <= cc->migrate_pfn) {
1049 /* Let the next compaction start anew. */
1050 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1051 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1052 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1053
1054 /*
1055 * Mark that the PG_migrate_skip information should be cleared
1056 * by kswapd when it goes to sleep. kswapd does not set the
1057 * flag itself as the decision to be clear should be directly
1058 * based on an allocation request.
1059 */
1060 if (!current_is_kswapd())
1061 zone->compact_blockskip_flush = true;
1062
1063 return COMPACT_COMPLETE;
1064 }
1065
1066 /*
1067 * order == -1 is expected when compacting via
1068 * /proc/sys/vm/compact_memory
1069 */
1070 if (cc->order == -1)
1071 return COMPACT_CONTINUE;
1072
1073 /* Compaction run is not finished if the watermark is not met */
1074 watermark = low_wmark_pages(zone);
1075 watermark += (1 << cc->order);
1076
1077 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
1078 return COMPACT_CONTINUE;
1079
1080 /* Direct compactor: Is a suitable page free? */
1081 for (order = cc->order; order < MAX_ORDER; order++) {
1082 struct free_area *area = &zone->free_area[order];
1083
1084 /* Job done if page is free of the right migratetype */
1085 if (!list_empty(&area->free_list[migratetype]))
1086 return COMPACT_PARTIAL;
1087
1088 /* Job done if allocation would set block type */
1089 if (cc->order >= pageblock_order && area->nr_free)
1090 return COMPACT_PARTIAL;
1091 }
1092
1093 return COMPACT_CONTINUE;
1094 }
1095
1096 /*
1097 * compaction_suitable: Is this suitable to run compaction on this zone now?
1098 * Returns
1099 * COMPACT_SKIPPED - If there are too few free pages for compaction
1100 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1101 * COMPACT_CONTINUE - If compaction should run now
1102 */
1103 unsigned long compaction_suitable(struct zone *zone, int order)
1104 {
1105 int fragindex;
1106 unsigned long watermark;
1107
1108 /*
1109 * order == -1 is expected when compacting via
1110 * /proc/sys/vm/compact_memory
1111 */
1112 if (order == -1)
1113 return COMPACT_CONTINUE;
1114
1115 /*
1116 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1117 * This is because during migration, copies of pages need to be
1118 * allocated and for a short time, the footprint is higher
1119 */
1120 watermark = low_wmark_pages(zone) + (2UL << order);
1121 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1122 return COMPACT_SKIPPED;
1123
1124 /*
1125 * fragmentation index determines if allocation failures are due to
1126 * low memory or external fragmentation
1127 *
1128 * index of -1000 implies allocations might succeed depending on
1129 * watermarks
1130 * index towards 0 implies failure is due to lack of memory
1131 * index towards 1000 implies failure is due to fragmentation
1132 *
1133 * Only compact if a failure would be due to fragmentation.
1134 */
1135 fragindex = fragmentation_index(zone, order);
1136 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1137 return COMPACT_SKIPPED;
1138
1139 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
1140 0, 0))
1141 return COMPACT_PARTIAL;
1142
1143 return COMPACT_CONTINUE;
1144 }
1145
1146 static int compact_zone(struct zone *zone, struct compact_control *cc)
1147 {
1148 int ret;
1149 unsigned long start_pfn = zone->zone_start_pfn;
1150 unsigned long end_pfn = zone_end_pfn(zone);
1151 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1152 const bool sync = cc->mode != MIGRATE_ASYNC;
1153
1154 ret = compaction_suitable(zone, cc->order);
1155 switch (ret) {
1156 case COMPACT_PARTIAL:
1157 case COMPACT_SKIPPED:
1158 /* Compaction is likely to fail */
1159 return ret;
1160 case COMPACT_CONTINUE:
1161 /* Fall through to compaction */
1162 ;
1163 }
1164
1165 /*
1166 * Clear pageblock skip if there were failures recently and compaction
1167 * is about to be retried after being deferred. kswapd does not do
1168 * this reset as it'll reset the cached information when going to sleep.
1169 */
1170 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1171 __reset_isolation_suitable(zone);
1172
1173 /*
1174 * Setup to move all movable pages to the end of the zone. Used cached
1175 * information on where the scanners should start but check that it
1176 * is initialised by ensuring the values are within zone boundaries.
1177 */
1178 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1179 cc->free_pfn = zone->compact_cached_free_pfn;
1180 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1181 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1182 zone->compact_cached_free_pfn = cc->free_pfn;
1183 }
1184 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1185 cc->migrate_pfn = start_pfn;
1186 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1187 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1188 }
1189
1190 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1191
1192 migrate_prep_local();
1193
1194 while ((ret = compact_finished(zone, cc, migratetype)) ==
1195 COMPACT_CONTINUE) {
1196 int err;
1197
1198 switch (isolate_migratepages(zone, cc)) {
1199 case ISOLATE_ABORT:
1200 ret = COMPACT_PARTIAL;
1201 putback_movable_pages(&cc->migratepages);
1202 cc->nr_migratepages = 0;
1203 goto out;
1204 case ISOLATE_NONE:
1205 continue;
1206 case ISOLATE_SUCCESS:
1207 ;
1208 }
1209
1210 err = migrate_pages(&cc->migratepages, compaction_alloc,
1211 compaction_free, (unsigned long)cc, cc->mode,
1212 MR_COMPACTION);
1213
1214 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1215 &cc->migratepages);
1216
1217 /* All pages were either migrated or will be released */
1218 cc->nr_migratepages = 0;
1219 if (err) {
1220 putback_movable_pages(&cc->migratepages);
1221 /*
1222 * migrate_pages() may return -ENOMEM when scanners meet
1223 * and we want compact_finished() to detect it
1224 */
1225 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1226 ret = COMPACT_PARTIAL;
1227 goto out;
1228 }
1229 }
1230 }
1231
1232 out:
1233 /* Release free pages and check accounting */
1234 cc->nr_freepages -= release_freepages(&cc->freepages);
1235 VM_BUG_ON(cc->nr_freepages != 0);
1236
1237 trace_mm_compaction_end(ret);
1238
1239 return ret;
1240 }
1241
1242 static unsigned long compact_zone_order(struct zone *zone, int order,
1243 gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1244 {
1245 unsigned long ret;
1246 struct compact_control cc = {
1247 .nr_freepages = 0,
1248 .nr_migratepages = 0,
1249 .order = order,
1250 .gfp_mask = gfp_mask,
1251 .zone = zone,
1252 .mode = mode,
1253 };
1254 INIT_LIST_HEAD(&cc.freepages);
1255 INIT_LIST_HEAD(&cc.migratepages);
1256
1257 ret = compact_zone(zone, &cc);
1258
1259 VM_BUG_ON(!list_empty(&cc.freepages));
1260 VM_BUG_ON(!list_empty(&cc.migratepages));
1261
1262 *contended = cc.contended;
1263 return ret;
1264 }
1265
1266 int sysctl_extfrag_threshold = 500;
1267
1268 /**
1269 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1270 * @zonelist: The zonelist used for the current allocation
1271 * @order: The order of the current allocation
1272 * @gfp_mask: The GFP mask of the current allocation
1273 * @nodemask: The allowed nodes to allocate from
1274 * @mode: The migration mode for async, sync light, or sync migration
1275 * @contended: Return value that determines if compaction was aborted due to
1276 * need_resched() or lock contention
1277 * @candidate_zone: Return the zone where we think allocation should succeed
1278 *
1279 * This is the main entry point for direct page compaction.
1280 */
1281 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1282 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1283 enum migrate_mode mode, int *contended,
1284 struct zone **candidate_zone)
1285 {
1286 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1287 int may_enter_fs = gfp_mask & __GFP_FS;
1288 int may_perform_io = gfp_mask & __GFP_IO;
1289 struct zoneref *z;
1290 struct zone *zone;
1291 int rc = COMPACT_DEFERRED;
1292 int alloc_flags = 0;
1293 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1294
1295 *contended = COMPACT_CONTENDED_NONE;
1296
1297 /* Check if the GFP flags allow compaction */
1298 if (!order || !may_enter_fs || !may_perform_io)
1299 return COMPACT_SKIPPED;
1300
1301 #ifdef CONFIG_CMA
1302 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1303 alloc_flags |= ALLOC_CMA;
1304 #endif
1305 /* Compact each zone in the list */
1306 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1307 nodemask) {
1308 int status;
1309 int zone_contended;
1310
1311 if (compaction_deferred(zone, order))
1312 continue;
1313
1314 status = compact_zone_order(zone, order, gfp_mask, mode,
1315 &zone_contended);
1316 rc = max(status, rc);
1317 /*
1318 * It takes at least one zone that wasn't lock contended
1319 * to clear all_zones_contended.
1320 */
1321 all_zones_contended &= zone_contended;
1322
1323 /* If a normal allocation would succeed, stop compacting */
1324 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1325 alloc_flags)) {
1326 *candidate_zone = zone;
1327 /*
1328 * We think the allocation will succeed in this zone,
1329 * but it is not certain, hence the false. The caller
1330 * will repeat this with true if allocation indeed
1331 * succeeds in this zone.
1332 */
1333 compaction_defer_reset(zone, order, false);
1334 /*
1335 * It is possible that async compaction aborted due to
1336 * need_resched() and the watermarks were ok thanks to
1337 * somebody else freeing memory. The allocation can
1338 * however still fail so we better signal the
1339 * need_resched() contention anyway (this will not
1340 * prevent the allocation attempt).
1341 */
1342 if (zone_contended == COMPACT_CONTENDED_SCHED)
1343 *contended = COMPACT_CONTENDED_SCHED;
1344
1345 goto break_loop;
1346 }
1347
1348 if (mode != MIGRATE_ASYNC) {
1349 /*
1350 * We think that allocation won't succeed in this zone
1351 * so we defer compaction there. If it ends up
1352 * succeeding after all, it will be reset.
1353 */
1354 defer_compaction(zone, order);
1355 }
1356
1357 /*
1358 * We might have stopped compacting due to need_resched() in
1359 * async compaction, or due to a fatal signal detected. In that
1360 * case do not try further zones and signal need_resched()
1361 * contention.
1362 */
1363 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1364 || fatal_signal_pending(current)) {
1365 *contended = COMPACT_CONTENDED_SCHED;
1366 goto break_loop;
1367 }
1368
1369 continue;
1370 break_loop:
1371 /*
1372 * We might not have tried all the zones, so be conservative
1373 * and assume they are not all lock contended.
1374 */
1375 all_zones_contended = 0;
1376 break;
1377 }
1378
1379 /*
1380 * If at least one zone wasn't deferred or skipped, we report if all
1381 * zones that were tried were lock contended.
1382 */
1383 if (rc > COMPACT_SKIPPED && all_zones_contended)
1384 *contended = COMPACT_CONTENDED_LOCK;
1385
1386 return rc;
1387 }
1388
1389
1390 /* Compact all zones within a node */
1391 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1392 {
1393 int zoneid;
1394 struct zone *zone;
1395
1396 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1397
1398 zone = &pgdat->node_zones[zoneid];
1399 if (!populated_zone(zone))
1400 continue;
1401
1402 cc->nr_freepages = 0;
1403 cc->nr_migratepages = 0;
1404 cc->zone = zone;
1405 INIT_LIST_HEAD(&cc->freepages);
1406 INIT_LIST_HEAD(&cc->migratepages);
1407
1408 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1409 compact_zone(zone, cc);
1410
1411 if (cc->order > 0) {
1412 if (zone_watermark_ok(zone, cc->order,
1413 low_wmark_pages(zone), 0, 0))
1414 compaction_defer_reset(zone, cc->order, false);
1415 }
1416
1417 VM_BUG_ON(!list_empty(&cc->freepages));
1418 VM_BUG_ON(!list_empty(&cc->migratepages));
1419 }
1420 }
1421
1422 void compact_pgdat(pg_data_t *pgdat, int order)
1423 {
1424 struct compact_control cc = {
1425 .order = order,
1426 .mode = MIGRATE_ASYNC,
1427 };
1428
1429 if (!order)
1430 return;
1431
1432 __compact_pgdat(pgdat, &cc);
1433 }
1434
1435 static void compact_node(int nid)
1436 {
1437 struct compact_control cc = {
1438 .order = -1,
1439 .mode = MIGRATE_SYNC,
1440 .ignore_skip_hint = true,
1441 };
1442
1443 __compact_pgdat(NODE_DATA(nid), &cc);
1444 }
1445
1446 /* Compact all nodes in the system */
1447 static void compact_nodes(void)
1448 {
1449 int nid;
1450
1451 /* Flush pending updates to the LRU lists */
1452 lru_add_drain_all();
1453
1454 for_each_online_node(nid)
1455 compact_node(nid);
1456 }
1457
1458 /* The written value is actually unused, all memory is compacted */
1459 int sysctl_compact_memory;
1460
1461 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1462 int sysctl_compaction_handler(struct ctl_table *table, int write,
1463 void __user *buffer, size_t *length, loff_t *ppos)
1464 {
1465 if (write)
1466 compact_nodes();
1467
1468 return 0;
1469 }
1470
1471 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1472 void __user *buffer, size_t *length, loff_t *ppos)
1473 {
1474 proc_dointvec_minmax(table, write, buffer, length, ppos);
1475
1476 return 0;
1477 }
1478
1479 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1480 static ssize_t sysfs_compact_node(struct device *dev,
1481 struct device_attribute *attr,
1482 const char *buf, size_t count)
1483 {
1484 int nid = dev->id;
1485
1486 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1487 /* Flush pending updates to the LRU lists */
1488 lru_add_drain_all();
1489
1490 compact_node(nid);
1491 }
1492
1493 return count;
1494 }
1495 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1496
1497 int compaction_register_node(struct node *node)
1498 {
1499 return device_create_file(&node->dev, &dev_attr_compact);
1500 }
1501
1502 void compaction_unregister_node(struct node *node)
1503 {
1504 return device_remove_file(&node->dev, &dev_attr_compact);
1505 }
1506 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1507
1508 #endif /* CONFIG_COMPACTION */