]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/compaction.c
Merge tag 'edac_for_3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp...
[mirror_ubuntu-bionic-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
74 {
75 if (cc->ignore_skip_hint)
76 return true;
77
78 return !get_pageblock_skip(page);
79 }
80
81 /*
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
85 */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
91
92 zone->compact_cached_migrate_pfn = start_pfn;
93 zone->compact_cached_free_pfn = end_pfn;
94 zone->compact_blockskip_flush = false;
95
96 /* Walk the zone and mark every pageblock as suitable for isolation */
97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 struct page *page;
99
100 cond_resched();
101
102 if (!pfn_valid(pfn))
103 continue;
104
105 page = pfn_to_page(pfn);
106 if (zone != page_zone(page))
107 continue;
108
109 clear_pageblock_skip(page);
110 }
111 }
112
113 void reset_isolation_suitable(pg_data_t *pgdat)
114 {
115 int zoneid;
116
117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 struct zone *zone = &pgdat->node_zones[zoneid];
119 if (!populated_zone(zone))
120 continue;
121
122 /* Only flush if a full compaction finished recently */
123 if (zone->compact_blockskip_flush)
124 __reset_isolation_suitable(zone);
125 }
126 }
127
128 /*
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
131 */
132 static void update_pageblock_skip(struct compact_control *cc,
133 struct page *page, unsigned long nr_isolated,
134 bool migrate_scanner)
135 {
136 struct zone *zone = cc->zone;
137
138 if (cc->ignore_skip_hint)
139 return;
140
141 if (!page)
142 return;
143
144 if (!nr_isolated) {
145 unsigned long pfn = page_to_pfn(page);
146 set_pageblock_skip(page);
147
148 /* Update where compaction should restart */
149 if (migrate_scanner) {
150 if (!cc->finished_update_migrate &&
151 pfn > zone->compact_cached_migrate_pfn)
152 zone->compact_cached_migrate_pfn = pfn;
153 } else {
154 if (!cc->finished_update_free &&
155 pfn < zone->compact_cached_free_pfn)
156 zone->compact_cached_free_pfn = pfn;
157 }
158 }
159 }
160 #else
161 static inline bool isolation_suitable(struct compact_control *cc,
162 struct page *page)
163 {
164 return true;
165 }
166
167 static void update_pageblock_skip(struct compact_control *cc,
168 struct page *page, unsigned long nr_isolated,
169 bool migrate_scanner)
170 {
171 }
172 #endif /* CONFIG_COMPACTION */
173
174 static inline bool should_release_lock(spinlock_t *lock)
175 {
176 return need_resched() || spin_is_contended(lock);
177 }
178
179 /*
180 * Compaction requires the taking of some coarse locks that are potentially
181 * very heavily contended. Check if the process needs to be scheduled or
182 * if the lock is contended. For async compaction, back out in the event
183 * if contention is severe. For sync compaction, schedule.
184 *
185 * Returns true if the lock is held.
186 * Returns false if the lock is released and compaction should abort
187 */
188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
189 bool locked, struct compact_control *cc)
190 {
191 if (should_release_lock(lock)) {
192 if (locked) {
193 spin_unlock_irqrestore(lock, *flags);
194 locked = false;
195 }
196
197 /* async aborts if taking too long or contended */
198 if (!cc->sync) {
199 cc->contended = true;
200 return false;
201 }
202
203 cond_resched();
204 }
205
206 if (!locked)
207 spin_lock_irqsave(lock, *flags);
208 return true;
209 }
210
211 static inline bool compact_trylock_irqsave(spinlock_t *lock,
212 unsigned long *flags, struct compact_control *cc)
213 {
214 return compact_checklock_irqsave(lock, flags, false, cc);
215 }
216
217 /* Returns true if the page is within a block suitable for migration to */
218 static bool suitable_migration_target(struct page *page)
219 {
220 /* If the page is a large free page, then disallow migration */
221 if (PageBuddy(page) && page_order(page) >= pageblock_order)
222 return false;
223
224 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
225 if (migrate_async_suitable(get_pageblock_migratetype(page)))
226 return true;
227
228 /* Otherwise skip the block */
229 return false;
230 }
231
232 /*
233 * Isolate free pages onto a private freelist. If @strict is true, will abort
234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
235 * (even though it may still end up isolating some pages).
236 */
237 static unsigned long isolate_freepages_block(struct compact_control *cc,
238 unsigned long blockpfn,
239 unsigned long end_pfn,
240 struct list_head *freelist,
241 bool strict)
242 {
243 int nr_scanned = 0, total_isolated = 0;
244 struct page *cursor, *valid_page = NULL;
245 unsigned long flags;
246 bool locked = false;
247 bool checked_pageblock = false;
248
249 cursor = pfn_to_page(blockpfn);
250
251 /* Isolate free pages. */
252 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
253 int isolated, i;
254 struct page *page = cursor;
255
256 nr_scanned++;
257 if (!pfn_valid_within(blockpfn))
258 goto isolate_fail;
259
260 if (!valid_page)
261 valid_page = page;
262 if (!PageBuddy(page))
263 goto isolate_fail;
264
265 /*
266 * The zone lock must be held to isolate freepages.
267 * Unfortunately this is a very coarse lock and can be
268 * heavily contended if there are parallel allocations
269 * or parallel compactions. For async compaction do not
270 * spin on the lock and we acquire the lock as late as
271 * possible.
272 */
273 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
274 locked, cc);
275 if (!locked)
276 break;
277
278 /* Recheck this is a suitable migration target under lock */
279 if (!strict && !checked_pageblock) {
280 /*
281 * We need to check suitability of pageblock only once
282 * and this isolate_freepages_block() is called with
283 * pageblock range, so just check once is sufficient.
284 */
285 checked_pageblock = true;
286 if (!suitable_migration_target(page))
287 break;
288 }
289
290 /* Recheck this is a buddy page under lock */
291 if (!PageBuddy(page))
292 goto isolate_fail;
293
294 /* Found a free page, break it into order-0 pages */
295 isolated = split_free_page(page);
296 total_isolated += isolated;
297 for (i = 0; i < isolated; i++) {
298 list_add(&page->lru, freelist);
299 page++;
300 }
301
302 /* If a page was split, advance to the end of it */
303 if (isolated) {
304 blockpfn += isolated - 1;
305 cursor += isolated - 1;
306 continue;
307 }
308
309 isolate_fail:
310 if (strict)
311 break;
312 else
313 continue;
314
315 }
316
317 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
318
319 /*
320 * If strict isolation is requested by CMA then check that all the
321 * pages requested were isolated. If there were any failures, 0 is
322 * returned and CMA will fail.
323 */
324 if (strict && blockpfn < end_pfn)
325 total_isolated = 0;
326
327 if (locked)
328 spin_unlock_irqrestore(&cc->zone->lock, flags);
329
330 /* Update the pageblock-skip if the whole pageblock was scanned */
331 if (blockpfn == end_pfn)
332 update_pageblock_skip(cc, valid_page, total_isolated, false);
333
334 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
335 if (total_isolated)
336 count_compact_events(COMPACTISOLATED, total_isolated);
337 return total_isolated;
338 }
339
340 /**
341 * isolate_freepages_range() - isolate free pages.
342 * @start_pfn: The first PFN to start isolating.
343 * @end_pfn: The one-past-last PFN.
344 *
345 * Non-free pages, invalid PFNs, or zone boundaries within the
346 * [start_pfn, end_pfn) range are considered errors, cause function to
347 * undo its actions and return zero.
348 *
349 * Otherwise, function returns one-past-the-last PFN of isolated page
350 * (which may be greater then end_pfn if end fell in a middle of
351 * a free page).
352 */
353 unsigned long
354 isolate_freepages_range(struct compact_control *cc,
355 unsigned long start_pfn, unsigned long end_pfn)
356 {
357 unsigned long isolated, pfn, block_end_pfn;
358 LIST_HEAD(freelist);
359
360 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
361 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
362 break;
363
364 /*
365 * On subsequent iterations ALIGN() is actually not needed,
366 * but we keep it that we not to complicate the code.
367 */
368 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
369 block_end_pfn = min(block_end_pfn, end_pfn);
370
371 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
372 &freelist, true);
373
374 /*
375 * In strict mode, isolate_freepages_block() returns 0 if
376 * there are any holes in the block (ie. invalid PFNs or
377 * non-free pages).
378 */
379 if (!isolated)
380 break;
381
382 /*
383 * If we managed to isolate pages, it is always (1 << n) *
384 * pageblock_nr_pages for some non-negative n. (Max order
385 * page may span two pageblocks).
386 */
387 }
388
389 /* split_free_page does not map the pages */
390 map_pages(&freelist);
391
392 if (pfn < end_pfn) {
393 /* Loop terminated early, cleanup. */
394 release_freepages(&freelist);
395 return 0;
396 }
397
398 /* We don't use freelists for anything. */
399 return pfn;
400 }
401
402 /* Update the number of anon and file isolated pages in the zone */
403 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
404 {
405 struct page *page;
406 unsigned int count[2] = { 0, };
407
408 list_for_each_entry(page, &cc->migratepages, lru)
409 count[!!page_is_file_cache(page)]++;
410
411 /* If locked we can use the interrupt unsafe versions */
412 if (locked) {
413 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
414 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
415 } else {
416 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
417 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
418 }
419 }
420
421 /* Similar to reclaim, but different enough that they don't share logic */
422 static bool too_many_isolated(struct zone *zone)
423 {
424 unsigned long active, inactive, isolated;
425
426 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
427 zone_page_state(zone, NR_INACTIVE_ANON);
428 active = zone_page_state(zone, NR_ACTIVE_FILE) +
429 zone_page_state(zone, NR_ACTIVE_ANON);
430 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
431 zone_page_state(zone, NR_ISOLATED_ANON);
432
433 return isolated > (inactive + active) / 2;
434 }
435
436 /**
437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
438 * @zone: Zone pages are in.
439 * @cc: Compaction control structure.
440 * @low_pfn: The first PFN of the range.
441 * @end_pfn: The one-past-the-last PFN of the range.
442 * @unevictable: true if it allows to isolate unevictable pages
443 *
444 * Isolate all pages that can be migrated from the range specified by
445 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
446 * pending), otherwise PFN of the first page that was not scanned
447 * (which may be both less, equal to or more then end_pfn).
448 *
449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
450 * zero.
451 *
452 * Apart from cc->migratepages and cc->nr_migratetypes this function
453 * does not modify any cc's fields, in particular it does not modify
454 * (or read for that matter) cc->migrate_pfn.
455 */
456 unsigned long
457 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
458 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
459 {
460 unsigned long last_pageblock_nr = 0, pageblock_nr;
461 unsigned long nr_scanned = 0, nr_isolated = 0;
462 struct list_head *migratelist = &cc->migratepages;
463 struct lruvec *lruvec;
464 unsigned long flags;
465 bool locked = false;
466 struct page *page = NULL, *valid_page = NULL;
467 bool skipped_async_unsuitable = false;
468 const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
469 (unevictable ? ISOLATE_UNEVICTABLE : 0);
470
471 /*
472 * Ensure that there are not too many pages isolated from the LRU
473 * list by either parallel reclaimers or compaction. If there are,
474 * delay for some time until fewer pages are isolated
475 */
476 while (unlikely(too_many_isolated(zone))) {
477 /* async migration should just abort */
478 if (!cc->sync)
479 return 0;
480
481 congestion_wait(BLK_RW_ASYNC, HZ/10);
482
483 if (fatal_signal_pending(current))
484 return 0;
485 }
486
487 /* Time to isolate some pages for migration */
488 cond_resched();
489 for (; low_pfn < end_pfn; low_pfn++) {
490 /* give a chance to irqs before checking need_resched() */
491 if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
492 if (should_release_lock(&zone->lru_lock)) {
493 spin_unlock_irqrestore(&zone->lru_lock, flags);
494 locked = false;
495 }
496 }
497
498 /*
499 * migrate_pfn does not necessarily start aligned to a
500 * pageblock. Ensure that pfn_valid is called when moving
501 * into a new MAX_ORDER_NR_PAGES range in case of large
502 * memory holes within the zone
503 */
504 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
505 if (!pfn_valid(low_pfn)) {
506 low_pfn += MAX_ORDER_NR_PAGES - 1;
507 continue;
508 }
509 }
510
511 if (!pfn_valid_within(low_pfn))
512 continue;
513 nr_scanned++;
514
515 /*
516 * Get the page and ensure the page is within the same zone.
517 * See the comment in isolate_freepages about overlapping
518 * nodes. It is deliberate that the new zone lock is not taken
519 * as memory compaction should not move pages between nodes.
520 */
521 page = pfn_to_page(low_pfn);
522 if (page_zone(page) != zone)
523 continue;
524
525 if (!valid_page)
526 valid_page = page;
527
528 /* If isolation recently failed, do not retry */
529 pageblock_nr = low_pfn >> pageblock_order;
530 if (last_pageblock_nr != pageblock_nr) {
531 int mt;
532
533 last_pageblock_nr = pageblock_nr;
534 if (!isolation_suitable(cc, page))
535 goto next_pageblock;
536
537 /*
538 * For async migration, also only scan in MOVABLE
539 * blocks. Async migration is optimistic to see if
540 * the minimum amount of work satisfies the allocation
541 */
542 mt = get_pageblock_migratetype(page);
543 if (!cc->sync && !migrate_async_suitable(mt)) {
544 cc->finished_update_migrate = true;
545 skipped_async_unsuitable = true;
546 goto next_pageblock;
547 }
548 }
549
550 /*
551 * Skip if free. page_order cannot be used without zone->lock
552 * as nothing prevents parallel allocations or buddy merging.
553 */
554 if (PageBuddy(page))
555 continue;
556
557 /*
558 * Check may be lockless but that's ok as we recheck later.
559 * It's possible to migrate LRU pages and balloon pages
560 * Skip any other type of page
561 */
562 if (!PageLRU(page)) {
563 if (unlikely(balloon_page_movable(page))) {
564 if (locked && balloon_page_isolate(page)) {
565 /* Successfully isolated */
566 goto isolate_success;
567 }
568 }
569 continue;
570 }
571
572 /*
573 * PageLRU is set. lru_lock normally excludes isolation
574 * splitting and collapsing (collapsing has already happened
575 * if PageLRU is set) but the lock is not necessarily taken
576 * here and it is wasteful to take it just to check transhuge.
577 * Check TransHuge without lock and skip the whole pageblock if
578 * it's either a transhuge or hugetlbfs page, as calling
579 * compound_order() without preventing THP from splitting the
580 * page underneath us may return surprising results.
581 */
582 if (PageTransHuge(page)) {
583 if (!locked)
584 goto next_pageblock;
585 low_pfn += (1 << compound_order(page)) - 1;
586 continue;
587 }
588
589 /*
590 * Migration will fail if an anonymous page is pinned in memory,
591 * so avoid taking lru_lock and isolating it unnecessarily in an
592 * admittedly racy check.
593 */
594 if (!page_mapping(page) &&
595 page_count(page) > page_mapcount(page))
596 continue;
597
598 /* Check if it is ok to still hold the lock */
599 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
600 locked, cc);
601 if (!locked || fatal_signal_pending(current))
602 break;
603
604 /* Recheck PageLRU and PageTransHuge under lock */
605 if (!PageLRU(page))
606 continue;
607 if (PageTransHuge(page)) {
608 low_pfn += (1 << compound_order(page)) - 1;
609 continue;
610 }
611
612 lruvec = mem_cgroup_page_lruvec(page, zone);
613
614 /* Try isolate the page */
615 if (__isolate_lru_page(page, mode) != 0)
616 continue;
617
618 VM_BUG_ON_PAGE(PageTransCompound(page), page);
619
620 /* Successfully isolated */
621 del_page_from_lru_list(page, lruvec, page_lru(page));
622
623 isolate_success:
624 cc->finished_update_migrate = true;
625 list_add(&page->lru, migratelist);
626 cc->nr_migratepages++;
627 nr_isolated++;
628
629 /* Avoid isolating too much */
630 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
631 ++low_pfn;
632 break;
633 }
634
635 continue;
636
637 next_pageblock:
638 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
639 }
640
641 acct_isolated(zone, locked, cc);
642
643 if (locked)
644 spin_unlock_irqrestore(&zone->lru_lock, flags);
645
646 /*
647 * Update the pageblock-skip information and cached scanner pfn,
648 * if the whole pageblock was scanned without isolating any page.
649 * This is not done when pageblock was skipped due to being unsuitable
650 * for async compaction, so that eventual sync compaction can try.
651 */
652 if (low_pfn == end_pfn && !skipped_async_unsuitable)
653 update_pageblock_skip(cc, valid_page, nr_isolated, true);
654
655 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
656
657 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
658 if (nr_isolated)
659 count_compact_events(COMPACTISOLATED, nr_isolated);
660
661 return low_pfn;
662 }
663
664 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
665 #ifdef CONFIG_COMPACTION
666 /*
667 * Based on information in the current compact_control, find blocks
668 * suitable for isolating free pages from and then isolate them.
669 */
670 static void isolate_freepages(struct zone *zone,
671 struct compact_control *cc)
672 {
673 struct page *page;
674 unsigned long high_pfn, low_pfn, pfn, z_end_pfn;
675 int nr_freepages = cc->nr_freepages;
676 struct list_head *freelist = &cc->freepages;
677
678 /*
679 * Initialise the free scanner. The starting point is where we last
680 * successfully isolated from, zone-cached value, or the end of the
681 * zone when isolating for the first time. We need this aligned to
682 * the pageblock boundary, because we do pfn -= pageblock_nr_pages
683 * in the for loop.
684 * The low boundary is the end of the pageblock the migration scanner
685 * is using.
686 */
687 pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
688 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
689
690 /*
691 * Take care that if the migration scanner is at the end of the zone
692 * that the free scanner does not accidentally move to the next zone
693 * in the next isolation cycle.
694 */
695 high_pfn = min(low_pfn, pfn);
696
697 z_end_pfn = zone_end_pfn(zone);
698
699 /*
700 * Isolate free pages until enough are available to migrate the
701 * pages on cc->migratepages. We stop searching if the migrate
702 * and free page scanners meet or enough free pages are isolated.
703 */
704 for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
705 pfn -= pageblock_nr_pages) {
706 unsigned long isolated;
707 unsigned long end_pfn;
708
709 /*
710 * This can iterate a massively long zone without finding any
711 * suitable migration targets, so periodically check if we need
712 * to schedule.
713 */
714 cond_resched();
715
716 if (!pfn_valid(pfn))
717 continue;
718
719 /*
720 * Check for overlapping nodes/zones. It's possible on some
721 * configurations to have a setup like
722 * node0 node1 node0
723 * i.e. it's possible that all pages within a zones range of
724 * pages do not belong to a single zone.
725 */
726 page = pfn_to_page(pfn);
727 if (page_zone(page) != zone)
728 continue;
729
730 /* Check the block is suitable for migration */
731 if (!suitable_migration_target(page))
732 continue;
733
734 /* If isolation recently failed, do not retry */
735 if (!isolation_suitable(cc, page))
736 continue;
737
738 /* Found a block suitable for isolating free pages from */
739 isolated = 0;
740
741 /*
742 * Take care when isolating in last pageblock of a zone which
743 * ends in the middle of a pageblock.
744 */
745 end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn);
746 isolated = isolate_freepages_block(cc, pfn, end_pfn,
747 freelist, false);
748 nr_freepages += isolated;
749
750 /*
751 * Record the highest PFN we isolated pages from. When next
752 * looking for free pages, the search will restart here as
753 * page migration may have returned some pages to the allocator
754 */
755 if (isolated) {
756 cc->finished_update_free = true;
757 high_pfn = max(high_pfn, pfn);
758 }
759 }
760
761 /* split_free_page does not map the pages */
762 map_pages(freelist);
763
764 /*
765 * If we crossed the migrate scanner, we want to keep it that way
766 * so that compact_finished() may detect this
767 */
768 if (pfn < low_pfn)
769 cc->free_pfn = max(pfn, zone->zone_start_pfn);
770 else
771 cc->free_pfn = high_pfn;
772 cc->nr_freepages = nr_freepages;
773 }
774
775 /*
776 * This is a migrate-callback that "allocates" freepages by taking pages
777 * from the isolated freelists in the block we are migrating to.
778 */
779 static struct page *compaction_alloc(struct page *migratepage,
780 unsigned long data,
781 int **result)
782 {
783 struct compact_control *cc = (struct compact_control *)data;
784 struct page *freepage;
785
786 /* Isolate free pages if necessary */
787 if (list_empty(&cc->freepages)) {
788 isolate_freepages(cc->zone, cc);
789
790 if (list_empty(&cc->freepages))
791 return NULL;
792 }
793
794 freepage = list_entry(cc->freepages.next, struct page, lru);
795 list_del(&freepage->lru);
796 cc->nr_freepages--;
797
798 return freepage;
799 }
800
801 /*
802 * We cannot control nr_migratepages and nr_freepages fully when migration is
803 * running as migrate_pages() has no knowledge of compact_control. When
804 * migration is complete, we count the number of pages on the lists by hand.
805 */
806 static void update_nr_listpages(struct compact_control *cc)
807 {
808 int nr_migratepages = 0;
809 int nr_freepages = 0;
810 struct page *page;
811
812 list_for_each_entry(page, &cc->migratepages, lru)
813 nr_migratepages++;
814 list_for_each_entry(page, &cc->freepages, lru)
815 nr_freepages++;
816
817 cc->nr_migratepages = nr_migratepages;
818 cc->nr_freepages = nr_freepages;
819 }
820
821 /* possible outcome of isolate_migratepages */
822 typedef enum {
823 ISOLATE_ABORT, /* Abort compaction now */
824 ISOLATE_NONE, /* No pages isolated, continue scanning */
825 ISOLATE_SUCCESS, /* Pages isolated, migrate */
826 } isolate_migrate_t;
827
828 /*
829 * Isolate all pages that can be migrated from the block pointed to by
830 * the migrate scanner within compact_control.
831 */
832 static isolate_migrate_t isolate_migratepages(struct zone *zone,
833 struct compact_control *cc)
834 {
835 unsigned long low_pfn, end_pfn;
836
837 /* Do not scan outside zone boundaries */
838 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
839
840 /* Only scan within a pageblock boundary */
841 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
842
843 /* Do not cross the free scanner or scan within a memory hole */
844 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
845 cc->migrate_pfn = end_pfn;
846 return ISOLATE_NONE;
847 }
848
849 /* Perform the isolation */
850 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
851 if (!low_pfn || cc->contended)
852 return ISOLATE_ABORT;
853
854 cc->migrate_pfn = low_pfn;
855
856 return ISOLATE_SUCCESS;
857 }
858
859 static int compact_finished(struct zone *zone,
860 struct compact_control *cc)
861 {
862 unsigned int order;
863 unsigned long watermark;
864
865 if (fatal_signal_pending(current))
866 return COMPACT_PARTIAL;
867
868 /* Compaction run completes if the migrate and free scanner meet */
869 if (cc->free_pfn <= cc->migrate_pfn) {
870 /* Let the next compaction start anew. */
871 zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
872 zone->compact_cached_free_pfn = zone_end_pfn(zone);
873
874 /*
875 * Mark that the PG_migrate_skip information should be cleared
876 * by kswapd when it goes to sleep. kswapd does not set the
877 * flag itself as the decision to be clear should be directly
878 * based on an allocation request.
879 */
880 if (!current_is_kswapd())
881 zone->compact_blockskip_flush = true;
882
883 return COMPACT_COMPLETE;
884 }
885
886 /*
887 * order == -1 is expected when compacting via
888 * /proc/sys/vm/compact_memory
889 */
890 if (cc->order == -1)
891 return COMPACT_CONTINUE;
892
893 /* Compaction run is not finished if the watermark is not met */
894 watermark = low_wmark_pages(zone);
895 watermark += (1 << cc->order);
896
897 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
898 return COMPACT_CONTINUE;
899
900 /* Direct compactor: Is a suitable page free? */
901 for (order = cc->order; order < MAX_ORDER; order++) {
902 struct free_area *area = &zone->free_area[order];
903
904 /* Job done if page is free of the right migratetype */
905 if (!list_empty(&area->free_list[cc->migratetype]))
906 return COMPACT_PARTIAL;
907
908 /* Job done if allocation would set block type */
909 if (cc->order >= pageblock_order && area->nr_free)
910 return COMPACT_PARTIAL;
911 }
912
913 return COMPACT_CONTINUE;
914 }
915
916 /*
917 * compaction_suitable: Is this suitable to run compaction on this zone now?
918 * Returns
919 * COMPACT_SKIPPED - If there are too few free pages for compaction
920 * COMPACT_PARTIAL - If the allocation would succeed without compaction
921 * COMPACT_CONTINUE - If compaction should run now
922 */
923 unsigned long compaction_suitable(struct zone *zone, int order)
924 {
925 int fragindex;
926 unsigned long watermark;
927
928 /*
929 * order == -1 is expected when compacting via
930 * /proc/sys/vm/compact_memory
931 */
932 if (order == -1)
933 return COMPACT_CONTINUE;
934
935 /*
936 * Watermarks for order-0 must be met for compaction. Note the 2UL.
937 * This is because during migration, copies of pages need to be
938 * allocated and for a short time, the footprint is higher
939 */
940 watermark = low_wmark_pages(zone) + (2UL << order);
941 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
942 return COMPACT_SKIPPED;
943
944 /*
945 * fragmentation index determines if allocation failures are due to
946 * low memory or external fragmentation
947 *
948 * index of -1000 implies allocations might succeed depending on
949 * watermarks
950 * index towards 0 implies failure is due to lack of memory
951 * index towards 1000 implies failure is due to fragmentation
952 *
953 * Only compact if a failure would be due to fragmentation.
954 */
955 fragindex = fragmentation_index(zone, order);
956 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
957 return COMPACT_SKIPPED;
958
959 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
960 0, 0))
961 return COMPACT_PARTIAL;
962
963 return COMPACT_CONTINUE;
964 }
965
966 static int compact_zone(struct zone *zone, struct compact_control *cc)
967 {
968 int ret;
969 unsigned long start_pfn = zone->zone_start_pfn;
970 unsigned long end_pfn = zone_end_pfn(zone);
971
972 ret = compaction_suitable(zone, cc->order);
973 switch (ret) {
974 case COMPACT_PARTIAL:
975 case COMPACT_SKIPPED:
976 /* Compaction is likely to fail */
977 return ret;
978 case COMPACT_CONTINUE:
979 /* Fall through to compaction */
980 ;
981 }
982
983 /*
984 * Clear pageblock skip if there were failures recently and compaction
985 * is about to be retried after being deferred. kswapd does not do
986 * this reset as it'll reset the cached information when going to sleep.
987 */
988 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
989 __reset_isolation_suitable(zone);
990
991 /*
992 * Setup to move all movable pages to the end of the zone. Used cached
993 * information on where the scanners should start but check that it
994 * is initialised by ensuring the values are within zone boundaries.
995 */
996 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
997 cc->free_pfn = zone->compact_cached_free_pfn;
998 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
999 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1000 zone->compact_cached_free_pfn = cc->free_pfn;
1001 }
1002 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1003 cc->migrate_pfn = start_pfn;
1004 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
1005 }
1006
1007 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1008
1009 migrate_prep_local();
1010
1011 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1012 unsigned long nr_migrate, nr_remaining;
1013 int err;
1014
1015 switch (isolate_migratepages(zone, cc)) {
1016 case ISOLATE_ABORT:
1017 ret = COMPACT_PARTIAL;
1018 putback_movable_pages(&cc->migratepages);
1019 cc->nr_migratepages = 0;
1020 goto out;
1021 case ISOLATE_NONE:
1022 continue;
1023 case ISOLATE_SUCCESS:
1024 ;
1025 }
1026
1027 nr_migrate = cc->nr_migratepages;
1028 err = migrate_pages(&cc->migratepages, compaction_alloc,
1029 (unsigned long)cc,
1030 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1031 MR_COMPACTION);
1032 update_nr_listpages(cc);
1033 nr_remaining = cc->nr_migratepages;
1034
1035 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1036 nr_remaining);
1037
1038 /* Release isolated pages not migrated */
1039 if (err) {
1040 putback_movable_pages(&cc->migratepages);
1041 cc->nr_migratepages = 0;
1042 /*
1043 * migrate_pages() may return -ENOMEM when scanners meet
1044 * and we want compact_finished() to detect it
1045 */
1046 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1047 ret = COMPACT_PARTIAL;
1048 goto out;
1049 }
1050 }
1051 }
1052
1053 out:
1054 /* Release free pages and check accounting */
1055 cc->nr_freepages -= release_freepages(&cc->freepages);
1056 VM_BUG_ON(cc->nr_freepages != 0);
1057
1058 trace_mm_compaction_end(ret);
1059
1060 return ret;
1061 }
1062
1063 static unsigned long compact_zone_order(struct zone *zone,
1064 int order, gfp_t gfp_mask,
1065 bool sync, bool *contended)
1066 {
1067 unsigned long ret;
1068 struct compact_control cc = {
1069 .nr_freepages = 0,
1070 .nr_migratepages = 0,
1071 .order = order,
1072 .migratetype = allocflags_to_migratetype(gfp_mask),
1073 .zone = zone,
1074 .sync = sync,
1075 };
1076 INIT_LIST_HEAD(&cc.freepages);
1077 INIT_LIST_HEAD(&cc.migratepages);
1078
1079 ret = compact_zone(zone, &cc);
1080
1081 VM_BUG_ON(!list_empty(&cc.freepages));
1082 VM_BUG_ON(!list_empty(&cc.migratepages));
1083
1084 *contended = cc.contended;
1085 return ret;
1086 }
1087
1088 int sysctl_extfrag_threshold = 500;
1089
1090 /**
1091 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1092 * @zonelist: The zonelist used for the current allocation
1093 * @order: The order of the current allocation
1094 * @gfp_mask: The GFP mask of the current allocation
1095 * @nodemask: The allowed nodes to allocate from
1096 * @sync: Whether migration is synchronous or not
1097 * @contended: Return value that is true if compaction was aborted due to lock contention
1098 * @page: Optionally capture a free page of the requested order during compaction
1099 *
1100 * This is the main entry point for direct page compaction.
1101 */
1102 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1103 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1104 bool sync, bool *contended)
1105 {
1106 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1107 int may_enter_fs = gfp_mask & __GFP_FS;
1108 int may_perform_io = gfp_mask & __GFP_IO;
1109 struct zoneref *z;
1110 struct zone *zone;
1111 int rc = COMPACT_SKIPPED;
1112 int alloc_flags = 0;
1113
1114 /* Check if the GFP flags allow compaction */
1115 if (!order || !may_enter_fs || !may_perform_io)
1116 return rc;
1117
1118 count_compact_event(COMPACTSTALL);
1119
1120 #ifdef CONFIG_CMA
1121 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1122 alloc_flags |= ALLOC_CMA;
1123 #endif
1124 /* Compact each zone in the list */
1125 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1126 nodemask) {
1127 int status;
1128
1129 status = compact_zone_order(zone, order, gfp_mask, sync,
1130 contended);
1131 rc = max(status, rc);
1132
1133 /* If a normal allocation would succeed, stop compacting */
1134 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1135 alloc_flags))
1136 break;
1137 }
1138
1139 return rc;
1140 }
1141
1142
1143 /* Compact all zones within a node */
1144 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1145 {
1146 int zoneid;
1147 struct zone *zone;
1148
1149 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1150
1151 zone = &pgdat->node_zones[zoneid];
1152 if (!populated_zone(zone))
1153 continue;
1154
1155 cc->nr_freepages = 0;
1156 cc->nr_migratepages = 0;
1157 cc->zone = zone;
1158 INIT_LIST_HEAD(&cc->freepages);
1159 INIT_LIST_HEAD(&cc->migratepages);
1160
1161 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1162 compact_zone(zone, cc);
1163
1164 if (cc->order > 0) {
1165 if (zone_watermark_ok(zone, cc->order,
1166 low_wmark_pages(zone), 0, 0))
1167 compaction_defer_reset(zone, cc->order, false);
1168 /* Currently async compaction is never deferred. */
1169 else if (cc->sync)
1170 defer_compaction(zone, cc->order);
1171 }
1172
1173 VM_BUG_ON(!list_empty(&cc->freepages));
1174 VM_BUG_ON(!list_empty(&cc->migratepages));
1175 }
1176 }
1177
1178 void compact_pgdat(pg_data_t *pgdat, int order)
1179 {
1180 struct compact_control cc = {
1181 .order = order,
1182 .sync = false,
1183 };
1184
1185 if (!order)
1186 return;
1187
1188 __compact_pgdat(pgdat, &cc);
1189 }
1190
1191 static void compact_node(int nid)
1192 {
1193 struct compact_control cc = {
1194 .order = -1,
1195 .sync = true,
1196 .ignore_skip_hint = true,
1197 };
1198
1199 __compact_pgdat(NODE_DATA(nid), &cc);
1200 }
1201
1202 /* Compact all nodes in the system */
1203 static void compact_nodes(void)
1204 {
1205 int nid;
1206
1207 /* Flush pending updates to the LRU lists */
1208 lru_add_drain_all();
1209
1210 for_each_online_node(nid)
1211 compact_node(nid);
1212 }
1213
1214 /* The written value is actually unused, all memory is compacted */
1215 int sysctl_compact_memory;
1216
1217 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1218 int sysctl_compaction_handler(struct ctl_table *table, int write,
1219 void __user *buffer, size_t *length, loff_t *ppos)
1220 {
1221 if (write)
1222 compact_nodes();
1223
1224 return 0;
1225 }
1226
1227 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1228 void __user *buffer, size_t *length, loff_t *ppos)
1229 {
1230 proc_dointvec_minmax(table, write, buffer, length, ppos);
1231
1232 return 0;
1233 }
1234
1235 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1236 static ssize_t sysfs_compact_node(struct device *dev,
1237 struct device_attribute *attr,
1238 const char *buf, size_t count)
1239 {
1240 int nid = dev->id;
1241
1242 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1243 /* Flush pending updates to the LRU lists */
1244 lru_add_drain_all();
1245
1246 compact_node(nid);
1247 }
1248
1249 return count;
1250 }
1251 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1252
1253 int compaction_register_node(struct node *node)
1254 {
1255 return device_create_file(&node->dev, &dev_attr_compact);
1256 }
1257
1258 void compaction_unregister_node(struct node *node)
1259 {
1260 return device_remove_file(&node->dev, &dev_attr_compact);
1261 }
1262 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1263
1264 #endif /* CONFIG_COMPACTION */