]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/compaction.c
Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac802...
[mirror_ubuntu-bionic-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18
19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/compaction.h>
23
24 static unsigned long release_freepages(struct list_head *freelist)
25 {
26 struct page *page, *next;
27 unsigned long count = 0;
28
29 list_for_each_entry_safe(page, next, freelist, lru) {
30 list_del(&page->lru);
31 __free_page(page);
32 count++;
33 }
34
35 return count;
36 }
37
38 static void map_pages(struct list_head *list)
39 {
40 struct page *page;
41
42 list_for_each_entry(page, list, lru) {
43 arch_alloc_page(page, 0);
44 kernel_map_pages(page, 1, 1);
45 }
46 }
47
48 static inline bool migrate_async_suitable(int migratetype)
49 {
50 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
51 }
52
53 /*
54 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
55 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
56 * pages inside of the pageblock (even though it may still end up isolating
57 * some pages).
58 */
59 static unsigned long isolate_freepages_block(unsigned long blockpfn,
60 unsigned long end_pfn,
61 struct list_head *freelist,
62 bool strict)
63 {
64 int nr_scanned = 0, total_isolated = 0;
65 struct page *cursor;
66
67 cursor = pfn_to_page(blockpfn);
68
69 /* Isolate free pages. This assumes the block is valid */
70 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
71 int isolated, i;
72 struct page *page = cursor;
73
74 if (!pfn_valid_within(blockpfn)) {
75 if (strict)
76 return 0;
77 continue;
78 }
79 nr_scanned++;
80
81 if (!PageBuddy(page)) {
82 if (strict)
83 return 0;
84 continue;
85 }
86
87 /* Found a free page, break it into order-0 pages */
88 isolated = split_free_page(page);
89 if (!isolated && strict)
90 return 0;
91 total_isolated += isolated;
92 for (i = 0; i < isolated; i++) {
93 list_add(&page->lru, freelist);
94 page++;
95 }
96
97 /* If a page was split, advance to the end of it */
98 if (isolated) {
99 blockpfn += isolated - 1;
100 cursor += isolated - 1;
101 }
102 }
103
104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 return total_isolated;
106 }
107
108 /**
109 * isolate_freepages_range() - isolate free pages.
110 * @start_pfn: The first PFN to start isolating.
111 * @end_pfn: The one-past-last PFN.
112 *
113 * Non-free pages, invalid PFNs, or zone boundaries within the
114 * [start_pfn, end_pfn) range are considered errors, cause function to
115 * undo its actions and return zero.
116 *
117 * Otherwise, function returns one-past-the-last PFN of isolated page
118 * (which may be greater then end_pfn if end fell in a middle of
119 * a free page).
120 */
121 unsigned long
122 isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
123 {
124 unsigned long isolated, pfn, block_end_pfn, flags;
125 struct zone *zone = NULL;
126 LIST_HEAD(freelist);
127
128 if (pfn_valid(start_pfn))
129 zone = page_zone(pfn_to_page(start_pfn));
130
131 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
132 if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
133 break;
134
135 /*
136 * On subsequent iterations ALIGN() is actually not needed,
137 * but we keep it that we not to complicate the code.
138 */
139 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
140 block_end_pfn = min(block_end_pfn, end_pfn);
141
142 spin_lock_irqsave(&zone->lock, flags);
143 isolated = isolate_freepages_block(pfn, block_end_pfn,
144 &freelist, true);
145 spin_unlock_irqrestore(&zone->lock, flags);
146
147 /*
148 * In strict mode, isolate_freepages_block() returns 0 if
149 * there are any holes in the block (ie. invalid PFNs or
150 * non-free pages).
151 */
152 if (!isolated)
153 break;
154
155 /*
156 * If we managed to isolate pages, it is always (1 << n) *
157 * pageblock_nr_pages for some non-negative n. (Max order
158 * page may span two pageblocks).
159 */
160 }
161
162 /* split_free_page does not map the pages */
163 map_pages(&freelist);
164
165 if (pfn < end_pfn) {
166 /* Loop terminated early, cleanup. */
167 release_freepages(&freelist);
168 return 0;
169 }
170
171 /* We don't use freelists for anything. */
172 return pfn;
173 }
174
175 /* Update the number of anon and file isolated pages in the zone */
176 static void acct_isolated(struct zone *zone, struct compact_control *cc)
177 {
178 struct page *page;
179 unsigned int count[2] = { 0, };
180
181 list_for_each_entry(page, &cc->migratepages, lru)
182 count[!!page_is_file_cache(page)]++;
183
184 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
185 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
186 }
187
188 /* Similar to reclaim, but different enough that they don't share logic */
189 static bool too_many_isolated(struct zone *zone)
190 {
191 unsigned long active, inactive, isolated;
192
193 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
194 zone_page_state(zone, NR_INACTIVE_ANON);
195 active = zone_page_state(zone, NR_ACTIVE_FILE) +
196 zone_page_state(zone, NR_ACTIVE_ANON);
197 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
198 zone_page_state(zone, NR_ISOLATED_ANON);
199
200 return isolated > (inactive + active) / 2;
201 }
202
203 /**
204 * isolate_migratepages_range() - isolate all migrate-able pages in range.
205 * @zone: Zone pages are in.
206 * @cc: Compaction control structure.
207 * @low_pfn: The first PFN of the range.
208 * @end_pfn: The one-past-the-last PFN of the range.
209 *
210 * Isolate all pages that can be migrated from the range specified by
211 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
212 * pending), otherwise PFN of the first page that was not scanned
213 * (which may be both less, equal to or more then end_pfn).
214 *
215 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
216 * zero.
217 *
218 * Apart from cc->migratepages and cc->nr_migratetypes this function
219 * does not modify any cc's fields, in particular it does not modify
220 * (or read for that matter) cc->migrate_pfn.
221 */
222 unsigned long
223 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
224 unsigned long low_pfn, unsigned long end_pfn)
225 {
226 unsigned long last_pageblock_nr = 0, pageblock_nr;
227 unsigned long nr_scanned = 0, nr_isolated = 0;
228 struct list_head *migratelist = &cc->migratepages;
229 isolate_mode_t mode = 0;
230 struct lruvec *lruvec;
231
232 /*
233 * Ensure that there are not too many pages isolated from the LRU
234 * list by either parallel reclaimers or compaction. If there are,
235 * delay for some time until fewer pages are isolated
236 */
237 while (unlikely(too_many_isolated(zone))) {
238 /* async migration should just abort */
239 if (!cc->sync)
240 return 0;
241
242 congestion_wait(BLK_RW_ASYNC, HZ/10);
243
244 if (fatal_signal_pending(current))
245 return 0;
246 }
247
248 /* Time to isolate some pages for migration */
249 cond_resched();
250 spin_lock_irq(&zone->lru_lock);
251 for (; low_pfn < end_pfn; low_pfn++) {
252 struct page *page;
253 bool locked = true;
254
255 /* give a chance to irqs before checking need_resched() */
256 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
257 spin_unlock_irq(&zone->lru_lock);
258 locked = false;
259 }
260 if (need_resched() || spin_is_contended(&zone->lru_lock)) {
261 if (locked)
262 spin_unlock_irq(&zone->lru_lock);
263 cond_resched();
264 spin_lock_irq(&zone->lru_lock);
265 if (fatal_signal_pending(current))
266 break;
267 } else if (!locked)
268 spin_lock_irq(&zone->lru_lock);
269
270 /*
271 * migrate_pfn does not necessarily start aligned to a
272 * pageblock. Ensure that pfn_valid is called when moving
273 * into a new MAX_ORDER_NR_PAGES range in case of large
274 * memory holes within the zone
275 */
276 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
277 if (!pfn_valid(low_pfn)) {
278 low_pfn += MAX_ORDER_NR_PAGES - 1;
279 continue;
280 }
281 }
282
283 if (!pfn_valid_within(low_pfn))
284 continue;
285 nr_scanned++;
286
287 /*
288 * Get the page and ensure the page is within the same zone.
289 * See the comment in isolate_freepages about overlapping
290 * nodes. It is deliberate that the new zone lock is not taken
291 * as memory compaction should not move pages between nodes.
292 */
293 page = pfn_to_page(low_pfn);
294 if (page_zone(page) != zone)
295 continue;
296
297 /* Skip if free */
298 if (PageBuddy(page))
299 continue;
300
301 /*
302 * For async migration, also only scan in MOVABLE blocks. Async
303 * migration is optimistic to see if the minimum amount of work
304 * satisfies the allocation
305 */
306 pageblock_nr = low_pfn >> pageblock_order;
307 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
308 !migrate_async_suitable(get_pageblock_migratetype(page))) {
309 low_pfn += pageblock_nr_pages;
310 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
311 last_pageblock_nr = pageblock_nr;
312 continue;
313 }
314
315 if (!PageLRU(page))
316 continue;
317
318 /*
319 * PageLRU is set, and lru_lock excludes isolation,
320 * splitting and collapsing (collapsing has already
321 * happened if PageLRU is set).
322 */
323 if (PageTransHuge(page)) {
324 low_pfn += (1 << compound_order(page)) - 1;
325 continue;
326 }
327
328 if (!cc->sync)
329 mode |= ISOLATE_ASYNC_MIGRATE;
330
331 lruvec = mem_cgroup_page_lruvec(page, zone);
332
333 /* Try isolate the page */
334 if (__isolate_lru_page(page, mode) != 0)
335 continue;
336
337 VM_BUG_ON(PageTransCompound(page));
338
339 /* Successfully isolated */
340 del_page_from_lru_list(page, lruvec, page_lru(page));
341 list_add(&page->lru, migratelist);
342 cc->nr_migratepages++;
343 nr_isolated++;
344
345 /* Avoid isolating too much */
346 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
347 ++low_pfn;
348 break;
349 }
350 }
351
352 acct_isolated(zone, cc);
353
354 spin_unlock_irq(&zone->lru_lock);
355
356 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
357
358 return low_pfn;
359 }
360
361 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
362 #ifdef CONFIG_COMPACTION
363
364 /* Returns true if the page is within a block suitable for migration to */
365 static bool suitable_migration_target(struct page *page)
366 {
367
368 int migratetype = get_pageblock_migratetype(page);
369
370 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
371 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
372 return false;
373
374 /* If the page is a large free page, then allow migration */
375 if (PageBuddy(page) && page_order(page) >= pageblock_order)
376 return true;
377
378 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
379 if (migrate_async_suitable(migratetype))
380 return true;
381
382 /* Otherwise skip the block */
383 return false;
384 }
385
386 /*
387 * Based on information in the current compact_control, find blocks
388 * suitable for isolating free pages from and then isolate them.
389 */
390 static void isolate_freepages(struct zone *zone,
391 struct compact_control *cc)
392 {
393 struct page *page;
394 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
395 unsigned long flags;
396 int nr_freepages = cc->nr_freepages;
397 struct list_head *freelist = &cc->freepages;
398
399 /*
400 * Initialise the free scanner. The starting point is where we last
401 * scanned from (or the end of the zone if starting). The low point
402 * is the end of the pageblock the migration scanner is using.
403 */
404 pfn = cc->free_pfn;
405 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
406
407 /*
408 * Take care that if the migration scanner is at the end of the zone
409 * that the free scanner does not accidentally move to the next zone
410 * in the next isolation cycle.
411 */
412 high_pfn = min(low_pfn, pfn);
413
414 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
415
416 /*
417 * Isolate free pages until enough are available to migrate the
418 * pages on cc->migratepages. We stop searching if the migrate
419 * and free page scanners meet or enough free pages are isolated.
420 */
421 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
422 pfn -= pageblock_nr_pages) {
423 unsigned long isolated;
424
425 /*
426 * Skip ahead if another thread is compacting in the area
427 * simultaneously. If we wrapped around, we can only skip
428 * ahead if zone->compact_cached_free_pfn also wrapped to
429 * above our starting point.
430 */
431 if (cc->order > 0 && (!cc->wrapped ||
432 zone->compact_cached_free_pfn >
433 cc->start_free_pfn))
434 pfn = min(pfn, zone->compact_cached_free_pfn);
435
436 if (!pfn_valid(pfn))
437 continue;
438
439 /*
440 * Check for overlapping nodes/zones. It's possible on some
441 * configurations to have a setup like
442 * node0 node1 node0
443 * i.e. it's possible that all pages within a zones range of
444 * pages do not belong to a single zone.
445 */
446 page = pfn_to_page(pfn);
447 if (page_zone(page) != zone)
448 continue;
449
450 /* Check the block is suitable for migration */
451 if (!suitable_migration_target(page))
452 continue;
453
454 /*
455 * Found a block suitable for isolating free pages from. Now
456 * we disabled interrupts, double check things are ok and
457 * isolate the pages. This is to minimise the time IRQs
458 * are disabled
459 */
460 isolated = 0;
461 spin_lock_irqsave(&zone->lock, flags);
462 if (suitable_migration_target(page)) {
463 end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
464 isolated = isolate_freepages_block(pfn, end_pfn,
465 freelist, false);
466 nr_freepages += isolated;
467 }
468 spin_unlock_irqrestore(&zone->lock, flags);
469
470 /*
471 * Record the highest PFN we isolated pages from. When next
472 * looking for free pages, the search will restart here as
473 * page migration may have returned some pages to the allocator
474 */
475 if (isolated) {
476 high_pfn = max(high_pfn, pfn);
477 if (cc->order > 0)
478 zone->compact_cached_free_pfn = high_pfn;
479 }
480 }
481
482 /* split_free_page does not map the pages */
483 map_pages(freelist);
484
485 cc->free_pfn = high_pfn;
486 cc->nr_freepages = nr_freepages;
487 }
488
489 /*
490 * This is a migrate-callback that "allocates" freepages by taking pages
491 * from the isolated freelists in the block we are migrating to.
492 */
493 static struct page *compaction_alloc(struct page *migratepage,
494 unsigned long data,
495 int **result)
496 {
497 struct compact_control *cc = (struct compact_control *)data;
498 struct page *freepage;
499
500 /* Isolate free pages if necessary */
501 if (list_empty(&cc->freepages)) {
502 isolate_freepages(cc->zone, cc);
503
504 if (list_empty(&cc->freepages))
505 return NULL;
506 }
507
508 freepage = list_entry(cc->freepages.next, struct page, lru);
509 list_del(&freepage->lru);
510 cc->nr_freepages--;
511
512 return freepage;
513 }
514
515 /*
516 * We cannot control nr_migratepages and nr_freepages fully when migration is
517 * running as migrate_pages() has no knowledge of compact_control. When
518 * migration is complete, we count the number of pages on the lists by hand.
519 */
520 static void update_nr_listpages(struct compact_control *cc)
521 {
522 int nr_migratepages = 0;
523 int nr_freepages = 0;
524 struct page *page;
525
526 list_for_each_entry(page, &cc->migratepages, lru)
527 nr_migratepages++;
528 list_for_each_entry(page, &cc->freepages, lru)
529 nr_freepages++;
530
531 cc->nr_migratepages = nr_migratepages;
532 cc->nr_freepages = nr_freepages;
533 }
534
535 /* possible outcome of isolate_migratepages */
536 typedef enum {
537 ISOLATE_ABORT, /* Abort compaction now */
538 ISOLATE_NONE, /* No pages isolated, continue scanning */
539 ISOLATE_SUCCESS, /* Pages isolated, migrate */
540 } isolate_migrate_t;
541
542 /*
543 * Isolate all pages that can be migrated from the block pointed to by
544 * the migrate scanner within compact_control.
545 */
546 static isolate_migrate_t isolate_migratepages(struct zone *zone,
547 struct compact_control *cc)
548 {
549 unsigned long low_pfn, end_pfn;
550
551 /* Do not scan outside zone boundaries */
552 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
553
554 /* Only scan within a pageblock boundary */
555 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
556
557 /* Do not cross the free scanner or scan within a memory hole */
558 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
559 cc->migrate_pfn = end_pfn;
560 return ISOLATE_NONE;
561 }
562
563 /* Perform the isolation */
564 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
565 if (!low_pfn)
566 return ISOLATE_ABORT;
567
568 cc->migrate_pfn = low_pfn;
569
570 return ISOLATE_SUCCESS;
571 }
572
573 /*
574 * Returns the start pfn of the last page block in a zone. This is the starting
575 * point for full compaction of a zone. Compaction searches for free pages from
576 * the end of each zone, while isolate_freepages_block scans forward inside each
577 * page block.
578 */
579 static unsigned long start_free_pfn(struct zone *zone)
580 {
581 unsigned long free_pfn;
582 free_pfn = zone->zone_start_pfn + zone->spanned_pages;
583 free_pfn &= ~(pageblock_nr_pages-1);
584 return free_pfn;
585 }
586
587 static int compact_finished(struct zone *zone,
588 struct compact_control *cc)
589 {
590 unsigned int order;
591 unsigned long watermark;
592
593 if (fatal_signal_pending(current))
594 return COMPACT_PARTIAL;
595
596 /*
597 * A full (order == -1) compaction run starts at the beginning and
598 * end of a zone; it completes when the migrate and free scanner meet.
599 * A partial (order > 0) compaction can start with the free scanner
600 * at a random point in the zone, and may have to restart.
601 */
602 if (cc->free_pfn <= cc->migrate_pfn) {
603 if (cc->order > 0 && !cc->wrapped) {
604 /* We started partway through; restart at the end. */
605 unsigned long free_pfn = start_free_pfn(zone);
606 zone->compact_cached_free_pfn = free_pfn;
607 cc->free_pfn = free_pfn;
608 cc->wrapped = 1;
609 return COMPACT_CONTINUE;
610 }
611 return COMPACT_COMPLETE;
612 }
613
614 /* We wrapped around and ended up where we started. */
615 if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn)
616 return COMPACT_COMPLETE;
617
618 /*
619 * order == -1 is expected when compacting via
620 * /proc/sys/vm/compact_memory
621 */
622 if (cc->order == -1)
623 return COMPACT_CONTINUE;
624
625 /* Compaction run is not finished if the watermark is not met */
626 watermark = low_wmark_pages(zone);
627 watermark += (1 << cc->order);
628
629 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
630 return COMPACT_CONTINUE;
631
632 /* Direct compactor: Is a suitable page free? */
633 for (order = cc->order; order < MAX_ORDER; order++) {
634 /* Job done if page is free of the right migratetype */
635 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
636 return COMPACT_PARTIAL;
637
638 /* Job done if allocation would set block type */
639 if (order >= pageblock_order && zone->free_area[order].nr_free)
640 return COMPACT_PARTIAL;
641 }
642
643 return COMPACT_CONTINUE;
644 }
645
646 /*
647 * compaction_suitable: Is this suitable to run compaction on this zone now?
648 * Returns
649 * COMPACT_SKIPPED - If there are too few free pages for compaction
650 * COMPACT_PARTIAL - If the allocation would succeed without compaction
651 * COMPACT_CONTINUE - If compaction should run now
652 */
653 unsigned long compaction_suitable(struct zone *zone, int order)
654 {
655 int fragindex;
656 unsigned long watermark;
657
658 /*
659 * order == -1 is expected when compacting via
660 * /proc/sys/vm/compact_memory
661 */
662 if (order == -1)
663 return COMPACT_CONTINUE;
664
665 /*
666 * Watermarks for order-0 must be met for compaction. Note the 2UL.
667 * This is because during migration, copies of pages need to be
668 * allocated and for a short time, the footprint is higher
669 */
670 watermark = low_wmark_pages(zone) + (2UL << order);
671 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
672 return COMPACT_SKIPPED;
673
674 /*
675 * fragmentation index determines if allocation failures are due to
676 * low memory or external fragmentation
677 *
678 * index of -1000 implies allocations might succeed depending on
679 * watermarks
680 * index towards 0 implies failure is due to lack of memory
681 * index towards 1000 implies failure is due to fragmentation
682 *
683 * Only compact if a failure would be due to fragmentation.
684 */
685 fragindex = fragmentation_index(zone, order);
686 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
687 return COMPACT_SKIPPED;
688
689 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
690 0, 0))
691 return COMPACT_PARTIAL;
692
693 return COMPACT_CONTINUE;
694 }
695
696 static int compact_zone(struct zone *zone, struct compact_control *cc)
697 {
698 int ret;
699
700 ret = compaction_suitable(zone, cc->order);
701 switch (ret) {
702 case COMPACT_PARTIAL:
703 case COMPACT_SKIPPED:
704 /* Compaction is likely to fail */
705 return ret;
706 case COMPACT_CONTINUE:
707 /* Fall through to compaction */
708 ;
709 }
710
711 /* Setup to move all movable pages to the end of the zone */
712 cc->migrate_pfn = zone->zone_start_pfn;
713
714 if (cc->order > 0) {
715 /* Incremental compaction. Start where the last one stopped. */
716 cc->free_pfn = zone->compact_cached_free_pfn;
717 cc->start_free_pfn = cc->free_pfn;
718 } else {
719 /* Order == -1 starts at the end of the zone. */
720 cc->free_pfn = start_free_pfn(zone);
721 }
722
723 migrate_prep_local();
724
725 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
726 unsigned long nr_migrate, nr_remaining;
727 int err;
728
729 switch (isolate_migratepages(zone, cc)) {
730 case ISOLATE_ABORT:
731 ret = COMPACT_PARTIAL;
732 goto out;
733 case ISOLATE_NONE:
734 continue;
735 case ISOLATE_SUCCESS:
736 ;
737 }
738
739 nr_migrate = cc->nr_migratepages;
740 err = migrate_pages(&cc->migratepages, compaction_alloc,
741 (unsigned long)cc, false,
742 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
743 update_nr_listpages(cc);
744 nr_remaining = cc->nr_migratepages;
745
746 count_vm_event(COMPACTBLOCKS);
747 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
748 if (nr_remaining)
749 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
750 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
751 nr_remaining);
752
753 /* Release LRU pages not migrated */
754 if (err) {
755 putback_lru_pages(&cc->migratepages);
756 cc->nr_migratepages = 0;
757 if (err == -ENOMEM) {
758 ret = COMPACT_PARTIAL;
759 goto out;
760 }
761 }
762 }
763
764 out:
765 /* Release free pages and check accounting */
766 cc->nr_freepages -= release_freepages(&cc->freepages);
767 VM_BUG_ON(cc->nr_freepages != 0);
768
769 return ret;
770 }
771
772 static unsigned long compact_zone_order(struct zone *zone,
773 int order, gfp_t gfp_mask,
774 bool sync)
775 {
776 struct compact_control cc = {
777 .nr_freepages = 0,
778 .nr_migratepages = 0,
779 .order = order,
780 .migratetype = allocflags_to_migratetype(gfp_mask),
781 .zone = zone,
782 .sync = sync,
783 };
784 INIT_LIST_HEAD(&cc.freepages);
785 INIT_LIST_HEAD(&cc.migratepages);
786
787 return compact_zone(zone, &cc);
788 }
789
790 int sysctl_extfrag_threshold = 500;
791
792 /**
793 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
794 * @zonelist: The zonelist used for the current allocation
795 * @order: The order of the current allocation
796 * @gfp_mask: The GFP mask of the current allocation
797 * @nodemask: The allowed nodes to allocate from
798 * @sync: Whether migration is synchronous or not
799 *
800 * This is the main entry point for direct page compaction.
801 */
802 unsigned long try_to_compact_pages(struct zonelist *zonelist,
803 int order, gfp_t gfp_mask, nodemask_t *nodemask,
804 bool sync)
805 {
806 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
807 int may_enter_fs = gfp_mask & __GFP_FS;
808 int may_perform_io = gfp_mask & __GFP_IO;
809 struct zoneref *z;
810 struct zone *zone;
811 int rc = COMPACT_SKIPPED;
812
813 /*
814 * Check whether it is worth even starting compaction. The order check is
815 * made because an assumption is made that the page allocator can satisfy
816 * the "cheaper" orders without taking special steps
817 */
818 if (!order || !may_enter_fs || !may_perform_io)
819 return rc;
820
821 count_vm_event(COMPACTSTALL);
822
823 /* Compact each zone in the list */
824 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
825 nodemask) {
826 int status;
827
828 status = compact_zone_order(zone, order, gfp_mask, sync);
829 rc = max(status, rc);
830
831 /* If a normal allocation would succeed, stop compacting */
832 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
833 break;
834 }
835
836 return rc;
837 }
838
839
840 /* Compact all zones within a node */
841 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
842 {
843 int zoneid;
844 struct zone *zone;
845
846 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
847
848 zone = &pgdat->node_zones[zoneid];
849 if (!populated_zone(zone))
850 continue;
851
852 cc->nr_freepages = 0;
853 cc->nr_migratepages = 0;
854 cc->zone = zone;
855 INIT_LIST_HEAD(&cc->freepages);
856 INIT_LIST_HEAD(&cc->migratepages);
857
858 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
859 compact_zone(zone, cc);
860
861 if (cc->order > 0) {
862 int ok = zone_watermark_ok(zone, cc->order,
863 low_wmark_pages(zone), 0, 0);
864 if (ok && cc->order > zone->compact_order_failed)
865 zone->compact_order_failed = cc->order + 1;
866 /* Currently async compaction is never deferred. */
867 else if (!ok && cc->sync)
868 defer_compaction(zone, cc->order);
869 }
870
871 VM_BUG_ON(!list_empty(&cc->freepages));
872 VM_BUG_ON(!list_empty(&cc->migratepages));
873 }
874
875 return 0;
876 }
877
878 int compact_pgdat(pg_data_t *pgdat, int order)
879 {
880 struct compact_control cc = {
881 .order = order,
882 .sync = false,
883 };
884
885 return __compact_pgdat(pgdat, &cc);
886 }
887
888 static int compact_node(int nid)
889 {
890 struct compact_control cc = {
891 .order = -1,
892 .sync = true,
893 };
894
895 return __compact_pgdat(NODE_DATA(nid), &cc);
896 }
897
898 /* Compact all nodes in the system */
899 static int compact_nodes(void)
900 {
901 int nid;
902
903 /* Flush pending updates to the LRU lists */
904 lru_add_drain_all();
905
906 for_each_online_node(nid)
907 compact_node(nid);
908
909 return COMPACT_COMPLETE;
910 }
911
912 /* The written value is actually unused, all memory is compacted */
913 int sysctl_compact_memory;
914
915 /* This is the entry point for compacting all nodes via /proc/sys/vm */
916 int sysctl_compaction_handler(struct ctl_table *table, int write,
917 void __user *buffer, size_t *length, loff_t *ppos)
918 {
919 if (write)
920 return compact_nodes();
921
922 return 0;
923 }
924
925 int sysctl_extfrag_handler(struct ctl_table *table, int write,
926 void __user *buffer, size_t *length, loff_t *ppos)
927 {
928 proc_dointvec_minmax(table, write, buffer, length, ppos);
929
930 return 0;
931 }
932
933 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
934 ssize_t sysfs_compact_node(struct device *dev,
935 struct device_attribute *attr,
936 const char *buf, size_t count)
937 {
938 int nid = dev->id;
939
940 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
941 /* Flush pending updates to the LRU lists */
942 lru_add_drain_all();
943
944 compact_node(nid);
945 }
946
947 return count;
948 }
949 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
950
951 int compaction_register_node(struct node *node)
952 {
953 return device_create_file(&node->dev, &dev_attr_compact);
954 }
955
956 void compaction_unregister_node(struct node *node)
957 {
958 return device_remove_file(&node->dev, &dev_attr_compact);
959 }
960 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
961
962 #endif /* CONFIG_COMPACTION */