]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/compaction.c
Merge tag 'dmaengine-4.6-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-artful-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41
42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44 struct page *page, *next;
45 unsigned long high_pfn = 0;
46
47 list_for_each_entry_safe(page, next, freelist, lru) {
48 unsigned long pfn = page_to_pfn(page);
49 list_del(&page->lru);
50 __free_page(page);
51 if (pfn > high_pfn)
52 high_pfn = pfn;
53 }
54
55 return high_pfn;
56 }
57
58 static void map_pages(struct list_head *list)
59 {
60 struct page *page;
61
62 list_for_each_entry(page, list, lru) {
63 arch_alloc_page(page, 0);
64 kernel_map_pages(page, 1, 1);
65 kasan_alloc_pages(page, 0);
66 }
67 }
68
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73
74 #ifdef CONFIG_COMPACTION
75
76 /* Do not skip compaction more than 64 times */
77 #define COMPACT_MAX_DEFER_SHIFT 6
78
79 /*
80 * Compaction is deferred when compaction fails to result in a page
81 * allocation success. 1 << compact_defer_limit compactions are skipped up
82 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
83 */
84 void defer_compaction(struct zone *zone, int order)
85 {
86 zone->compact_considered = 0;
87 zone->compact_defer_shift++;
88
89 if (order < zone->compact_order_failed)
90 zone->compact_order_failed = order;
91
92 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
93 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
94
95 trace_mm_compaction_defer_compaction(zone, order);
96 }
97
98 /* Returns true if compaction should be skipped this time */
99 bool compaction_deferred(struct zone *zone, int order)
100 {
101 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
102
103 if (order < zone->compact_order_failed)
104 return false;
105
106 /* Avoid possible overflow */
107 if (++zone->compact_considered > defer_limit)
108 zone->compact_considered = defer_limit;
109
110 if (zone->compact_considered >= defer_limit)
111 return false;
112
113 trace_mm_compaction_deferred(zone, order);
114
115 return true;
116 }
117
118 /*
119 * Update defer tracking counters after successful compaction of given order,
120 * which means an allocation either succeeded (alloc_success == true) or is
121 * expected to succeed.
122 */
123 void compaction_defer_reset(struct zone *zone, int order,
124 bool alloc_success)
125 {
126 if (alloc_success) {
127 zone->compact_considered = 0;
128 zone->compact_defer_shift = 0;
129 }
130 if (order >= zone->compact_order_failed)
131 zone->compact_order_failed = order + 1;
132
133 trace_mm_compaction_defer_reset(zone, order);
134 }
135
136 /* Returns true if restarting compaction after many failures */
137 bool compaction_restarting(struct zone *zone, int order)
138 {
139 if (order < zone->compact_order_failed)
140 return false;
141
142 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
143 zone->compact_considered >= 1UL << zone->compact_defer_shift;
144 }
145
146 /* Returns true if the pageblock should be scanned for pages to isolate. */
147 static inline bool isolation_suitable(struct compact_control *cc,
148 struct page *page)
149 {
150 if (cc->ignore_skip_hint)
151 return true;
152
153 return !get_pageblock_skip(page);
154 }
155
156 static void reset_cached_positions(struct zone *zone)
157 {
158 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
159 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
160 zone->compact_cached_free_pfn =
161 round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
162 }
163
164 /*
165 * This function is called to clear all cached information on pageblocks that
166 * should be skipped for page isolation when the migrate and free page scanner
167 * meet.
168 */
169 static void __reset_isolation_suitable(struct zone *zone)
170 {
171 unsigned long start_pfn = zone->zone_start_pfn;
172 unsigned long end_pfn = zone_end_pfn(zone);
173 unsigned long pfn;
174
175 zone->compact_blockskip_flush = false;
176
177 /* Walk the zone and mark every pageblock as suitable for isolation */
178 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
179 struct page *page;
180
181 cond_resched();
182
183 if (!pfn_valid(pfn))
184 continue;
185
186 page = pfn_to_page(pfn);
187 if (zone != page_zone(page))
188 continue;
189
190 clear_pageblock_skip(page);
191 }
192
193 reset_cached_positions(zone);
194 }
195
196 void reset_isolation_suitable(pg_data_t *pgdat)
197 {
198 int zoneid;
199
200 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
201 struct zone *zone = &pgdat->node_zones[zoneid];
202 if (!populated_zone(zone))
203 continue;
204
205 /* Only flush if a full compaction finished recently */
206 if (zone->compact_blockskip_flush)
207 __reset_isolation_suitable(zone);
208 }
209 }
210
211 /*
212 * If no pages were isolated then mark this pageblock to be skipped in the
213 * future. The information is later cleared by __reset_isolation_suitable().
214 */
215 static void update_pageblock_skip(struct compact_control *cc,
216 struct page *page, unsigned long nr_isolated,
217 bool migrate_scanner)
218 {
219 struct zone *zone = cc->zone;
220 unsigned long pfn;
221
222 if (cc->ignore_skip_hint)
223 return;
224
225 if (!page)
226 return;
227
228 if (nr_isolated)
229 return;
230
231 set_pageblock_skip(page);
232
233 pfn = page_to_pfn(page);
234
235 /* Update where async and sync compaction should restart */
236 if (migrate_scanner) {
237 if (pfn > zone->compact_cached_migrate_pfn[0])
238 zone->compact_cached_migrate_pfn[0] = pfn;
239 if (cc->mode != MIGRATE_ASYNC &&
240 pfn > zone->compact_cached_migrate_pfn[1])
241 zone->compact_cached_migrate_pfn[1] = pfn;
242 } else {
243 if (pfn < zone->compact_cached_free_pfn)
244 zone->compact_cached_free_pfn = pfn;
245 }
246 }
247 #else
248 static inline bool isolation_suitable(struct compact_control *cc,
249 struct page *page)
250 {
251 return true;
252 }
253
254 static void update_pageblock_skip(struct compact_control *cc,
255 struct page *page, unsigned long nr_isolated,
256 bool migrate_scanner)
257 {
258 }
259 #endif /* CONFIG_COMPACTION */
260
261 /*
262 * Compaction requires the taking of some coarse locks that are potentially
263 * very heavily contended. For async compaction, back out if the lock cannot
264 * be taken immediately. For sync compaction, spin on the lock if needed.
265 *
266 * Returns true if the lock is held
267 * Returns false if the lock is not held and compaction should abort
268 */
269 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
270 struct compact_control *cc)
271 {
272 if (cc->mode == MIGRATE_ASYNC) {
273 if (!spin_trylock_irqsave(lock, *flags)) {
274 cc->contended = COMPACT_CONTENDED_LOCK;
275 return false;
276 }
277 } else {
278 spin_lock_irqsave(lock, *flags);
279 }
280
281 return true;
282 }
283
284 /*
285 * Compaction requires the taking of some coarse locks that are potentially
286 * very heavily contended. The lock should be periodically unlocked to avoid
287 * having disabled IRQs for a long time, even when there is nobody waiting on
288 * the lock. It might also be that allowing the IRQs will result in
289 * need_resched() becoming true. If scheduling is needed, async compaction
290 * aborts. Sync compaction schedules.
291 * Either compaction type will also abort if a fatal signal is pending.
292 * In either case if the lock was locked, it is dropped and not regained.
293 *
294 * Returns true if compaction should abort due to fatal signal pending, or
295 * async compaction due to need_resched()
296 * Returns false when compaction can continue (sync compaction might have
297 * scheduled)
298 */
299 static bool compact_unlock_should_abort(spinlock_t *lock,
300 unsigned long flags, bool *locked, struct compact_control *cc)
301 {
302 if (*locked) {
303 spin_unlock_irqrestore(lock, flags);
304 *locked = false;
305 }
306
307 if (fatal_signal_pending(current)) {
308 cc->contended = COMPACT_CONTENDED_SCHED;
309 return true;
310 }
311
312 if (need_resched()) {
313 if (cc->mode == MIGRATE_ASYNC) {
314 cc->contended = COMPACT_CONTENDED_SCHED;
315 return true;
316 }
317 cond_resched();
318 }
319
320 return false;
321 }
322
323 /*
324 * Aside from avoiding lock contention, compaction also periodically checks
325 * need_resched() and either schedules in sync compaction or aborts async
326 * compaction. This is similar to what compact_unlock_should_abort() does, but
327 * is used where no lock is concerned.
328 *
329 * Returns false when no scheduling was needed, or sync compaction scheduled.
330 * Returns true when async compaction should abort.
331 */
332 static inline bool compact_should_abort(struct compact_control *cc)
333 {
334 /* async compaction aborts if contended */
335 if (need_resched()) {
336 if (cc->mode == MIGRATE_ASYNC) {
337 cc->contended = COMPACT_CONTENDED_SCHED;
338 return true;
339 }
340
341 cond_resched();
342 }
343
344 return false;
345 }
346
347 /*
348 * Isolate free pages onto a private freelist. If @strict is true, will abort
349 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
350 * (even though it may still end up isolating some pages).
351 */
352 static unsigned long isolate_freepages_block(struct compact_control *cc,
353 unsigned long *start_pfn,
354 unsigned long end_pfn,
355 struct list_head *freelist,
356 bool strict)
357 {
358 int nr_scanned = 0, total_isolated = 0;
359 struct page *cursor, *valid_page = NULL;
360 unsigned long flags = 0;
361 bool locked = false;
362 unsigned long blockpfn = *start_pfn;
363
364 cursor = pfn_to_page(blockpfn);
365
366 /* Isolate free pages. */
367 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
368 int isolated, i;
369 struct page *page = cursor;
370
371 /*
372 * Periodically drop the lock (if held) regardless of its
373 * contention, to give chance to IRQs. Abort if fatal signal
374 * pending or async compaction detects need_resched()
375 */
376 if (!(blockpfn % SWAP_CLUSTER_MAX)
377 && compact_unlock_should_abort(&cc->zone->lock, flags,
378 &locked, cc))
379 break;
380
381 nr_scanned++;
382 if (!pfn_valid_within(blockpfn))
383 goto isolate_fail;
384
385 if (!valid_page)
386 valid_page = page;
387
388 /*
389 * For compound pages such as THP and hugetlbfs, we can save
390 * potentially a lot of iterations if we skip them at once.
391 * The check is racy, but we can consider only valid values
392 * and the only danger is skipping too much.
393 */
394 if (PageCompound(page)) {
395 unsigned int comp_order = compound_order(page);
396
397 if (likely(comp_order < MAX_ORDER)) {
398 blockpfn += (1UL << comp_order) - 1;
399 cursor += (1UL << comp_order) - 1;
400 }
401
402 goto isolate_fail;
403 }
404
405 if (!PageBuddy(page))
406 goto isolate_fail;
407
408 /*
409 * If we already hold the lock, we can skip some rechecking.
410 * Note that if we hold the lock now, checked_pageblock was
411 * already set in some previous iteration (or strict is true),
412 * so it is correct to skip the suitable migration target
413 * recheck as well.
414 */
415 if (!locked) {
416 /*
417 * The zone lock must be held to isolate freepages.
418 * Unfortunately this is a very coarse lock and can be
419 * heavily contended if there are parallel allocations
420 * or parallel compactions. For async compaction do not
421 * spin on the lock and we acquire the lock as late as
422 * possible.
423 */
424 locked = compact_trylock_irqsave(&cc->zone->lock,
425 &flags, cc);
426 if (!locked)
427 break;
428
429 /* Recheck this is a buddy page under lock */
430 if (!PageBuddy(page))
431 goto isolate_fail;
432 }
433
434 /* Found a free page, break it into order-0 pages */
435 isolated = split_free_page(page);
436 total_isolated += isolated;
437 for (i = 0; i < isolated; i++) {
438 list_add(&page->lru, freelist);
439 page++;
440 }
441
442 /* If a page was split, advance to the end of it */
443 if (isolated) {
444 cc->nr_freepages += isolated;
445 if (!strict &&
446 cc->nr_migratepages <= cc->nr_freepages) {
447 blockpfn += isolated;
448 break;
449 }
450
451 blockpfn += isolated - 1;
452 cursor += isolated - 1;
453 continue;
454 }
455
456 isolate_fail:
457 if (strict)
458 break;
459 else
460 continue;
461
462 }
463
464 /*
465 * There is a tiny chance that we have read bogus compound_order(),
466 * so be careful to not go outside of the pageblock.
467 */
468 if (unlikely(blockpfn > end_pfn))
469 blockpfn = end_pfn;
470
471 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
472 nr_scanned, total_isolated);
473
474 /* Record how far we have got within the block */
475 *start_pfn = blockpfn;
476
477 /*
478 * If strict isolation is requested by CMA then check that all the
479 * pages requested were isolated. If there were any failures, 0 is
480 * returned and CMA will fail.
481 */
482 if (strict && blockpfn < end_pfn)
483 total_isolated = 0;
484
485 if (locked)
486 spin_unlock_irqrestore(&cc->zone->lock, flags);
487
488 /* Update the pageblock-skip if the whole pageblock was scanned */
489 if (blockpfn == end_pfn)
490 update_pageblock_skip(cc, valid_page, total_isolated, false);
491
492 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
493 if (total_isolated)
494 count_compact_events(COMPACTISOLATED, total_isolated);
495 return total_isolated;
496 }
497
498 /**
499 * isolate_freepages_range() - isolate free pages.
500 * @start_pfn: The first PFN to start isolating.
501 * @end_pfn: The one-past-last PFN.
502 *
503 * Non-free pages, invalid PFNs, or zone boundaries within the
504 * [start_pfn, end_pfn) range are considered errors, cause function to
505 * undo its actions and return zero.
506 *
507 * Otherwise, function returns one-past-the-last PFN of isolated page
508 * (which may be greater then end_pfn if end fell in a middle of
509 * a free page).
510 */
511 unsigned long
512 isolate_freepages_range(struct compact_control *cc,
513 unsigned long start_pfn, unsigned long end_pfn)
514 {
515 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
516 LIST_HEAD(freelist);
517
518 pfn = start_pfn;
519 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
520 if (block_start_pfn < cc->zone->zone_start_pfn)
521 block_start_pfn = cc->zone->zone_start_pfn;
522 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
523
524 for (; pfn < end_pfn; pfn += isolated,
525 block_start_pfn = block_end_pfn,
526 block_end_pfn += pageblock_nr_pages) {
527 /* Protect pfn from changing by isolate_freepages_block */
528 unsigned long isolate_start_pfn = pfn;
529
530 block_end_pfn = min(block_end_pfn, end_pfn);
531
532 /*
533 * pfn could pass the block_end_pfn if isolated freepage
534 * is more than pageblock order. In this case, we adjust
535 * scanning range to right one.
536 */
537 if (pfn >= block_end_pfn) {
538 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
539 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
540 block_end_pfn = min(block_end_pfn, end_pfn);
541 }
542
543 if (!pageblock_pfn_to_page(block_start_pfn,
544 block_end_pfn, cc->zone))
545 break;
546
547 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
548 block_end_pfn, &freelist, true);
549
550 /*
551 * In strict mode, isolate_freepages_block() returns 0 if
552 * there are any holes in the block (ie. invalid PFNs or
553 * non-free pages).
554 */
555 if (!isolated)
556 break;
557
558 /*
559 * If we managed to isolate pages, it is always (1 << n) *
560 * pageblock_nr_pages for some non-negative n. (Max order
561 * page may span two pageblocks).
562 */
563 }
564
565 /* split_free_page does not map the pages */
566 map_pages(&freelist);
567
568 if (pfn < end_pfn) {
569 /* Loop terminated early, cleanup. */
570 release_freepages(&freelist);
571 return 0;
572 }
573
574 /* We don't use freelists for anything. */
575 return pfn;
576 }
577
578 /* Update the number of anon and file isolated pages in the zone */
579 static void acct_isolated(struct zone *zone, struct compact_control *cc)
580 {
581 struct page *page;
582 unsigned int count[2] = { 0, };
583
584 if (list_empty(&cc->migratepages))
585 return;
586
587 list_for_each_entry(page, &cc->migratepages, lru)
588 count[!!page_is_file_cache(page)]++;
589
590 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
591 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
592 }
593
594 /* Similar to reclaim, but different enough that they don't share logic */
595 static bool too_many_isolated(struct zone *zone)
596 {
597 unsigned long active, inactive, isolated;
598
599 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
600 zone_page_state(zone, NR_INACTIVE_ANON);
601 active = zone_page_state(zone, NR_ACTIVE_FILE) +
602 zone_page_state(zone, NR_ACTIVE_ANON);
603 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
604 zone_page_state(zone, NR_ISOLATED_ANON);
605
606 return isolated > (inactive + active) / 2;
607 }
608
609 /**
610 * isolate_migratepages_block() - isolate all migrate-able pages within
611 * a single pageblock
612 * @cc: Compaction control structure.
613 * @low_pfn: The first PFN to isolate
614 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
615 * @isolate_mode: Isolation mode to be used.
616 *
617 * Isolate all pages that can be migrated from the range specified by
618 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
619 * Returns zero if there is a fatal signal pending, otherwise PFN of the
620 * first page that was not scanned (which may be both less, equal to or more
621 * than end_pfn).
622 *
623 * The pages are isolated on cc->migratepages list (not required to be empty),
624 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
625 * is neither read nor updated.
626 */
627 static unsigned long
628 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
629 unsigned long end_pfn, isolate_mode_t isolate_mode)
630 {
631 struct zone *zone = cc->zone;
632 unsigned long nr_scanned = 0, nr_isolated = 0;
633 struct list_head *migratelist = &cc->migratepages;
634 struct lruvec *lruvec;
635 unsigned long flags = 0;
636 bool locked = false;
637 struct page *page = NULL, *valid_page = NULL;
638 unsigned long start_pfn = low_pfn;
639
640 /*
641 * Ensure that there are not too many pages isolated from the LRU
642 * list by either parallel reclaimers or compaction. If there are,
643 * delay for some time until fewer pages are isolated
644 */
645 while (unlikely(too_many_isolated(zone))) {
646 /* async migration should just abort */
647 if (cc->mode == MIGRATE_ASYNC)
648 return 0;
649
650 congestion_wait(BLK_RW_ASYNC, HZ/10);
651
652 if (fatal_signal_pending(current))
653 return 0;
654 }
655
656 if (compact_should_abort(cc))
657 return 0;
658
659 /* Time to isolate some pages for migration */
660 for (; low_pfn < end_pfn; low_pfn++) {
661 bool is_lru;
662
663 /*
664 * Periodically drop the lock (if held) regardless of its
665 * contention, to give chance to IRQs. Abort async compaction
666 * if contended.
667 */
668 if (!(low_pfn % SWAP_CLUSTER_MAX)
669 && compact_unlock_should_abort(&zone->lru_lock, flags,
670 &locked, cc))
671 break;
672
673 if (!pfn_valid_within(low_pfn))
674 continue;
675 nr_scanned++;
676
677 page = pfn_to_page(low_pfn);
678
679 if (!valid_page)
680 valid_page = page;
681
682 /*
683 * Skip if free. We read page order here without zone lock
684 * which is generally unsafe, but the race window is small and
685 * the worst thing that can happen is that we skip some
686 * potential isolation targets.
687 */
688 if (PageBuddy(page)) {
689 unsigned long freepage_order = page_order_unsafe(page);
690
691 /*
692 * Without lock, we cannot be sure that what we got is
693 * a valid page order. Consider only values in the
694 * valid order range to prevent low_pfn overflow.
695 */
696 if (freepage_order > 0 && freepage_order < MAX_ORDER)
697 low_pfn += (1UL << freepage_order) - 1;
698 continue;
699 }
700
701 /*
702 * Check may be lockless but that's ok as we recheck later.
703 * It's possible to migrate LRU pages and balloon pages
704 * Skip any other type of page
705 */
706 is_lru = PageLRU(page);
707 if (!is_lru) {
708 if (unlikely(balloon_page_movable(page))) {
709 if (balloon_page_isolate(page)) {
710 /* Successfully isolated */
711 goto isolate_success;
712 }
713 }
714 }
715
716 /*
717 * Regardless of being on LRU, compound pages such as THP and
718 * hugetlbfs are not to be compacted. We can potentially save
719 * a lot of iterations if we skip them at once. The check is
720 * racy, but we can consider only valid values and the only
721 * danger is skipping too much.
722 */
723 if (PageCompound(page)) {
724 unsigned int comp_order = compound_order(page);
725
726 if (likely(comp_order < MAX_ORDER))
727 low_pfn += (1UL << comp_order) - 1;
728
729 continue;
730 }
731
732 if (!is_lru)
733 continue;
734
735 /*
736 * Migration will fail if an anonymous page is pinned in memory,
737 * so avoid taking lru_lock and isolating it unnecessarily in an
738 * admittedly racy check.
739 */
740 if (!page_mapping(page) &&
741 page_count(page) > page_mapcount(page))
742 continue;
743
744 /* If we already hold the lock, we can skip some rechecking */
745 if (!locked) {
746 locked = compact_trylock_irqsave(&zone->lru_lock,
747 &flags, cc);
748 if (!locked)
749 break;
750
751 /* Recheck PageLRU and PageCompound under lock */
752 if (!PageLRU(page))
753 continue;
754
755 /*
756 * Page become compound since the non-locked check,
757 * and it's on LRU. It can only be a THP so the order
758 * is safe to read and it's 0 for tail pages.
759 */
760 if (unlikely(PageCompound(page))) {
761 low_pfn += (1UL << compound_order(page)) - 1;
762 continue;
763 }
764 }
765
766 lruvec = mem_cgroup_page_lruvec(page, zone);
767
768 /* Try isolate the page */
769 if (__isolate_lru_page(page, isolate_mode) != 0)
770 continue;
771
772 VM_BUG_ON_PAGE(PageCompound(page), page);
773
774 /* Successfully isolated */
775 del_page_from_lru_list(page, lruvec, page_lru(page));
776
777 isolate_success:
778 list_add(&page->lru, migratelist);
779 cc->nr_migratepages++;
780 nr_isolated++;
781
782 /* Avoid isolating too much */
783 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
784 ++low_pfn;
785 break;
786 }
787 }
788
789 /*
790 * The PageBuddy() check could have potentially brought us outside
791 * the range to be scanned.
792 */
793 if (unlikely(low_pfn > end_pfn))
794 low_pfn = end_pfn;
795
796 if (locked)
797 spin_unlock_irqrestore(&zone->lru_lock, flags);
798
799 /*
800 * Update the pageblock-skip information and cached scanner pfn,
801 * if the whole pageblock was scanned without isolating any page.
802 */
803 if (low_pfn == end_pfn)
804 update_pageblock_skip(cc, valid_page, nr_isolated, true);
805
806 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
807 nr_scanned, nr_isolated);
808
809 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
810 if (nr_isolated)
811 count_compact_events(COMPACTISOLATED, nr_isolated);
812
813 return low_pfn;
814 }
815
816 /**
817 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
818 * @cc: Compaction control structure.
819 * @start_pfn: The first PFN to start isolating.
820 * @end_pfn: The one-past-last PFN.
821 *
822 * Returns zero if isolation fails fatally due to e.g. pending signal.
823 * Otherwise, function returns one-past-the-last PFN of isolated page
824 * (which may be greater than end_pfn if end fell in a middle of a THP page).
825 */
826 unsigned long
827 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
828 unsigned long end_pfn)
829 {
830 unsigned long pfn, block_start_pfn, block_end_pfn;
831
832 /* Scan block by block. First and last block may be incomplete */
833 pfn = start_pfn;
834 block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
835 if (block_start_pfn < cc->zone->zone_start_pfn)
836 block_start_pfn = cc->zone->zone_start_pfn;
837 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
838
839 for (; pfn < end_pfn; pfn = block_end_pfn,
840 block_start_pfn = block_end_pfn,
841 block_end_pfn += pageblock_nr_pages) {
842
843 block_end_pfn = min(block_end_pfn, end_pfn);
844
845 if (!pageblock_pfn_to_page(block_start_pfn,
846 block_end_pfn, cc->zone))
847 continue;
848
849 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
850 ISOLATE_UNEVICTABLE);
851
852 /*
853 * In case of fatal failure, release everything that might
854 * have been isolated in the previous iteration, and signal
855 * the failure back to caller.
856 */
857 if (!pfn) {
858 putback_movable_pages(&cc->migratepages);
859 cc->nr_migratepages = 0;
860 break;
861 }
862
863 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
864 break;
865 }
866 acct_isolated(cc->zone, cc);
867
868 return pfn;
869 }
870
871 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
872 #ifdef CONFIG_COMPACTION
873
874 /* Returns true if the page is within a block suitable for migration to */
875 static bool suitable_migration_target(struct page *page)
876 {
877 /* If the page is a large free page, then disallow migration */
878 if (PageBuddy(page)) {
879 /*
880 * We are checking page_order without zone->lock taken. But
881 * the only small danger is that we skip a potentially suitable
882 * pageblock, so it's not worth to check order for valid range.
883 */
884 if (page_order_unsafe(page) >= pageblock_order)
885 return false;
886 }
887
888 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
889 if (migrate_async_suitable(get_pageblock_migratetype(page)))
890 return true;
891
892 /* Otherwise skip the block */
893 return false;
894 }
895
896 /*
897 * Test whether the free scanner has reached the same or lower pageblock than
898 * the migration scanner, and compaction should thus terminate.
899 */
900 static inline bool compact_scanners_met(struct compact_control *cc)
901 {
902 return (cc->free_pfn >> pageblock_order)
903 <= (cc->migrate_pfn >> pageblock_order);
904 }
905
906 /*
907 * Based on information in the current compact_control, find blocks
908 * suitable for isolating free pages from and then isolate them.
909 */
910 static void isolate_freepages(struct compact_control *cc)
911 {
912 struct zone *zone = cc->zone;
913 struct page *page;
914 unsigned long block_start_pfn; /* start of current pageblock */
915 unsigned long isolate_start_pfn; /* exact pfn we start at */
916 unsigned long block_end_pfn; /* end of current pageblock */
917 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
918 struct list_head *freelist = &cc->freepages;
919
920 /*
921 * Initialise the free scanner. The starting point is where we last
922 * successfully isolated from, zone-cached value, or the end of the
923 * zone when isolating for the first time. For looping we also need
924 * this pfn aligned down to the pageblock boundary, because we do
925 * block_start_pfn -= pageblock_nr_pages in the for loop.
926 * For ending point, take care when isolating in last pageblock of a
927 * a zone which ends in the middle of a pageblock.
928 * The low boundary is the end of the pageblock the migration scanner
929 * is using.
930 */
931 isolate_start_pfn = cc->free_pfn;
932 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
933 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
934 zone_end_pfn(zone));
935 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
936
937 /*
938 * Isolate free pages until enough are available to migrate the
939 * pages on cc->migratepages. We stop searching if the migrate
940 * and free page scanners meet or enough free pages are isolated.
941 */
942 for (; block_start_pfn >= low_pfn;
943 block_end_pfn = block_start_pfn,
944 block_start_pfn -= pageblock_nr_pages,
945 isolate_start_pfn = block_start_pfn) {
946
947 /*
948 * This can iterate a massively long zone without finding any
949 * suitable migration targets, so periodically check if we need
950 * to schedule, or even abort async compaction.
951 */
952 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
953 && compact_should_abort(cc))
954 break;
955
956 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
957 zone);
958 if (!page)
959 continue;
960
961 /* Check the block is suitable for migration */
962 if (!suitable_migration_target(page))
963 continue;
964
965 /* If isolation recently failed, do not retry */
966 if (!isolation_suitable(cc, page))
967 continue;
968
969 /* Found a block suitable for isolating free pages from. */
970 isolate_freepages_block(cc, &isolate_start_pfn,
971 block_end_pfn, freelist, false);
972
973 /*
974 * If we isolated enough freepages, or aborted due to async
975 * compaction being contended, terminate the loop.
976 * Remember where the free scanner should restart next time,
977 * which is where isolate_freepages_block() left off.
978 * But if it scanned the whole pageblock, isolate_start_pfn
979 * now points at block_end_pfn, which is the start of the next
980 * pageblock.
981 * In that case we will however want to restart at the start
982 * of the previous pageblock.
983 */
984 if ((cc->nr_freepages >= cc->nr_migratepages)
985 || cc->contended) {
986 if (isolate_start_pfn >= block_end_pfn)
987 isolate_start_pfn =
988 block_start_pfn - pageblock_nr_pages;
989 break;
990 } else {
991 /*
992 * isolate_freepages_block() should not terminate
993 * prematurely unless contended, or isolated enough
994 */
995 VM_BUG_ON(isolate_start_pfn < block_end_pfn);
996 }
997 }
998
999 /* split_free_page does not map the pages */
1000 map_pages(freelist);
1001
1002 /*
1003 * Record where the free scanner will restart next time. Either we
1004 * broke from the loop and set isolate_start_pfn based on the last
1005 * call to isolate_freepages_block(), or we met the migration scanner
1006 * and the loop terminated due to isolate_start_pfn < low_pfn
1007 */
1008 cc->free_pfn = isolate_start_pfn;
1009 }
1010
1011 /*
1012 * This is a migrate-callback that "allocates" freepages by taking pages
1013 * from the isolated freelists in the block we are migrating to.
1014 */
1015 static struct page *compaction_alloc(struct page *migratepage,
1016 unsigned long data,
1017 int **result)
1018 {
1019 struct compact_control *cc = (struct compact_control *)data;
1020 struct page *freepage;
1021
1022 /*
1023 * Isolate free pages if necessary, and if we are not aborting due to
1024 * contention.
1025 */
1026 if (list_empty(&cc->freepages)) {
1027 if (!cc->contended)
1028 isolate_freepages(cc);
1029
1030 if (list_empty(&cc->freepages))
1031 return NULL;
1032 }
1033
1034 freepage = list_entry(cc->freepages.next, struct page, lru);
1035 list_del(&freepage->lru);
1036 cc->nr_freepages--;
1037
1038 return freepage;
1039 }
1040
1041 /*
1042 * This is a migrate-callback that "frees" freepages back to the isolated
1043 * freelist. All pages on the freelist are from the same zone, so there is no
1044 * special handling needed for NUMA.
1045 */
1046 static void compaction_free(struct page *page, unsigned long data)
1047 {
1048 struct compact_control *cc = (struct compact_control *)data;
1049
1050 list_add(&page->lru, &cc->freepages);
1051 cc->nr_freepages++;
1052 }
1053
1054 /* possible outcome of isolate_migratepages */
1055 typedef enum {
1056 ISOLATE_ABORT, /* Abort compaction now */
1057 ISOLATE_NONE, /* No pages isolated, continue scanning */
1058 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1059 } isolate_migrate_t;
1060
1061 /*
1062 * Allow userspace to control policy on scanning the unevictable LRU for
1063 * compactable pages.
1064 */
1065 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1066
1067 /*
1068 * Isolate all pages that can be migrated from the first suitable block,
1069 * starting at the block pointed to by the migrate scanner pfn within
1070 * compact_control.
1071 */
1072 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1073 struct compact_control *cc)
1074 {
1075 unsigned long block_start_pfn;
1076 unsigned long block_end_pfn;
1077 unsigned long low_pfn;
1078 unsigned long isolate_start_pfn;
1079 struct page *page;
1080 const isolate_mode_t isolate_mode =
1081 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1082 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1083
1084 /*
1085 * Start at where we last stopped, or beginning of the zone as
1086 * initialized by compact_zone()
1087 */
1088 low_pfn = cc->migrate_pfn;
1089 block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1090 if (block_start_pfn < zone->zone_start_pfn)
1091 block_start_pfn = zone->zone_start_pfn;
1092
1093 /* Only scan within a pageblock boundary */
1094 block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1095
1096 /*
1097 * Iterate over whole pageblocks until we find the first suitable.
1098 * Do not cross the free scanner.
1099 */
1100 for (; block_end_pfn <= cc->free_pfn;
1101 low_pfn = block_end_pfn,
1102 block_start_pfn = block_end_pfn,
1103 block_end_pfn += pageblock_nr_pages) {
1104
1105 /*
1106 * This can potentially iterate a massively long zone with
1107 * many pageblocks unsuitable, so periodically check if we
1108 * need to schedule, or even abort async compaction.
1109 */
1110 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1111 && compact_should_abort(cc))
1112 break;
1113
1114 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1115 zone);
1116 if (!page)
1117 continue;
1118
1119 /* If isolation recently failed, do not retry */
1120 if (!isolation_suitable(cc, page))
1121 continue;
1122
1123 /*
1124 * For async compaction, also only scan in MOVABLE blocks.
1125 * Async compaction is optimistic to see if the minimum amount
1126 * of work satisfies the allocation.
1127 */
1128 if (cc->mode == MIGRATE_ASYNC &&
1129 !migrate_async_suitable(get_pageblock_migratetype(page)))
1130 continue;
1131
1132 /* Perform the isolation */
1133 isolate_start_pfn = low_pfn;
1134 low_pfn = isolate_migratepages_block(cc, low_pfn,
1135 block_end_pfn, isolate_mode);
1136
1137 if (!low_pfn || cc->contended) {
1138 acct_isolated(zone, cc);
1139 return ISOLATE_ABORT;
1140 }
1141
1142 /*
1143 * Record where we could have freed pages by migration and not
1144 * yet flushed them to buddy allocator.
1145 * - this is the lowest page that could have been isolated and
1146 * then freed by migration.
1147 */
1148 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1149 cc->last_migrated_pfn = isolate_start_pfn;
1150
1151 /*
1152 * Either we isolated something and proceed with migration. Or
1153 * we failed and compact_zone should decide if we should
1154 * continue or not.
1155 */
1156 break;
1157 }
1158
1159 acct_isolated(zone, cc);
1160 /* Record where migration scanner will be restarted. */
1161 cc->migrate_pfn = low_pfn;
1162
1163 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1164 }
1165
1166 /*
1167 * order == -1 is expected when compacting via
1168 * /proc/sys/vm/compact_memory
1169 */
1170 static inline bool is_via_compact_memory(int order)
1171 {
1172 return order == -1;
1173 }
1174
1175 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1176 const int migratetype)
1177 {
1178 unsigned int order;
1179 unsigned long watermark;
1180
1181 if (cc->contended || fatal_signal_pending(current))
1182 return COMPACT_CONTENDED;
1183
1184 /* Compaction run completes if the migrate and free scanner meet */
1185 if (compact_scanners_met(cc)) {
1186 /* Let the next compaction start anew. */
1187 reset_cached_positions(zone);
1188
1189 /*
1190 * Mark that the PG_migrate_skip information should be cleared
1191 * by kswapd when it goes to sleep. kswapd does not set the
1192 * flag itself as the decision to be clear should be directly
1193 * based on an allocation request.
1194 */
1195 if (!current_is_kswapd())
1196 zone->compact_blockskip_flush = true;
1197
1198 return COMPACT_COMPLETE;
1199 }
1200
1201 if (is_via_compact_memory(cc->order))
1202 return COMPACT_CONTINUE;
1203
1204 /* Compaction run is not finished if the watermark is not met */
1205 watermark = low_wmark_pages(zone);
1206
1207 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1208 cc->alloc_flags))
1209 return COMPACT_CONTINUE;
1210
1211 /* Direct compactor: Is a suitable page free? */
1212 for (order = cc->order; order < MAX_ORDER; order++) {
1213 struct free_area *area = &zone->free_area[order];
1214 bool can_steal;
1215
1216 /* Job done if page is free of the right migratetype */
1217 if (!list_empty(&area->free_list[migratetype]))
1218 return COMPACT_PARTIAL;
1219
1220 #ifdef CONFIG_CMA
1221 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1222 if (migratetype == MIGRATE_MOVABLE &&
1223 !list_empty(&area->free_list[MIGRATE_CMA]))
1224 return COMPACT_PARTIAL;
1225 #endif
1226 /*
1227 * Job done if allocation would steal freepages from
1228 * other migratetype buddy lists.
1229 */
1230 if (find_suitable_fallback(area, order, migratetype,
1231 true, &can_steal) != -1)
1232 return COMPACT_PARTIAL;
1233 }
1234
1235 return COMPACT_NO_SUITABLE_PAGE;
1236 }
1237
1238 static int compact_finished(struct zone *zone, struct compact_control *cc,
1239 const int migratetype)
1240 {
1241 int ret;
1242
1243 ret = __compact_finished(zone, cc, migratetype);
1244 trace_mm_compaction_finished(zone, cc->order, ret);
1245 if (ret == COMPACT_NO_SUITABLE_PAGE)
1246 ret = COMPACT_CONTINUE;
1247
1248 return ret;
1249 }
1250
1251 /*
1252 * compaction_suitable: Is this suitable to run compaction on this zone now?
1253 * Returns
1254 * COMPACT_SKIPPED - If there are too few free pages for compaction
1255 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1256 * COMPACT_CONTINUE - If compaction should run now
1257 */
1258 static unsigned long __compaction_suitable(struct zone *zone, int order,
1259 int alloc_flags, int classzone_idx)
1260 {
1261 int fragindex;
1262 unsigned long watermark;
1263
1264 if (is_via_compact_memory(order))
1265 return COMPACT_CONTINUE;
1266
1267 watermark = low_wmark_pages(zone);
1268 /*
1269 * If watermarks for high-order allocation are already met, there
1270 * should be no need for compaction at all.
1271 */
1272 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1273 alloc_flags))
1274 return COMPACT_PARTIAL;
1275
1276 /*
1277 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1278 * This is because during migration, copies of pages need to be
1279 * allocated and for a short time, the footprint is higher
1280 */
1281 watermark += (2UL << order);
1282 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1283 return COMPACT_SKIPPED;
1284
1285 /*
1286 * fragmentation index determines if allocation failures are due to
1287 * low memory or external fragmentation
1288 *
1289 * index of -1000 would imply allocations might succeed depending on
1290 * watermarks, but we already failed the high-order watermark check
1291 * index towards 0 implies failure is due to lack of memory
1292 * index towards 1000 implies failure is due to fragmentation
1293 *
1294 * Only compact if a failure would be due to fragmentation.
1295 */
1296 fragindex = fragmentation_index(zone, order);
1297 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1298 return COMPACT_NOT_SUITABLE_ZONE;
1299
1300 return COMPACT_CONTINUE;
1301 }
1302
1303 unsigned long compaction_suitable(struct zone *zone, int order,
1304 int alloc_flags, int classzone_idx)
1305 {
1306 unsigned long ret;
1307
1308 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1309 trace_mm_compaction_suitable(zone, order, ret);
1310 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1311 ret = COMPACT_SKIPPED;
1312
1313 return ret;
1314 }
1315
1316 static int compact_zone(struct zone *zone, struct compact_control *cc)
1317 {
1318 int ret;
1319 unsigned long start_pfn = zone->zone_start_pfn;
1320 unsigned long end_pfn = zone_end_pfn(zone);
1321 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1322 const bool sync = cc->mode != MIGRATE_ASYNC;
1323
1324 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1325 cc->classzone_idx);
1326 switch (ret) {
1327 case COMPACT_PARTIAL:
1328 case COMPACT_SKIPPED:
1329 /* Compaction is likely to fail */
1330 return ret;
1331 case COMPACT_CONTINUE:
1332 /* Fall through to compaction */
1333 ;
1334 }
1335
1336 /*
1337 * Clear pageblock skip if there were failures recently and compaction
1338 * is about to be retried after being deferred. kswapd does not do
1339 * this reset as it'll reset the cached information when going to sleep.
1340 */
1341 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1342 __reset_isolation_suitable(zone);
1343
1344 /*
1345 * Setup to move all movable pages to the end of the zone. Used cached
1346 * information on where the scanners should start but check that it
1347 * is initialised by ensuring the values are within zone boundaries.
1348 */
1349 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1350 cc->free_pfn = zone->compact_cached_free_pfn;
1351 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1352 cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1353 zone->compact_cached_free_pfn = cc->free_pfn;
1354 }
1355 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1356 cc->migrate_pfn = start_pfn;
1357 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1358 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1359 }
1360 cc->last_migrated_pfn = 0;
1361
1362 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1363 cc->free_pfn, end_pfn, sync);
1364
1365 migrate_prep_local();
1366
1367 while ((ret = compact_finished(zone, cc, migratetype)) ==
1368 COMPACT_CONTINUE) {
1369 int err;
1370
1371 switch (isolate_migratepages(zone, cc)) {
1372 case ISOLATE_ABORT:
1373 ret = COMPACT_CONTENDED;
1374 putback_movable_pages(&cc->migratepages);
1375 cc->nr_migratepages = 0;
1376 goto out;
1377 case ISOLATE_NONE:
1378 /*
1379 * We haven't isolated and migrated anything, but
1380 * there might still be unflushed migrations from
1381 * previous cc->order aligned block.
1382 */
1383 goto check_drain;
1384 case ISOLATE_SUCCESS:
1385 ;
1386 }
1387
1388 err = migrate_pages(&cc->migratepages, compaction_alloc,
1389 compaction_free, (unsigned long)cc, cc->mode,
1390 MR_COMPACTION);
1391
1392 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1393 &cc->migratepages);
1394
1395 /* All pages were either migrated or will be released */
1396 cc->nr_migratepages = 0;
1397 if (err) {
1398 putback_movable_pages(&cc->migratepages);
1399 /*
1400 * migrate_pages() may return -ENOMEM when scanners meet
1401 * and we want compact_finished() to detect it
1402 */
1403 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1404 ret = COMPACT_CONTENDED;
1405 goto out;
1406 }
1407 }
1408
1409 check_drain:
1410 /*
1411 * Has the migration scanner moved away from the previous
1412 * cc->order aligned block where we migrated from? If yes,
1413 * flush the pages that were freed, so that they can merge and
1414 * compact_finished() can detect immediately if allocation
1415 * would succeed.
1416 */
1417 if (cc->order > 0 && cc->last_migrated_pfn) {
1418 int cpu;
1419 unsigned long current_block_start =
1420 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1421
1422 if (cc->last_migrated_pfn < current_block_start) {
1423 cpu = get_cpu();
1424 lru_add_drain_cpu(cpu);
1425 drain_local_pages(zone);
1426 put_cpu();
1427 /* No more flushing until we migrate again */
1428 cc->last_migrated_pfn = 0;
1429 }
1430 }
1431
1432 }
1433
1434 out:
1435 /*
1436 * Release free pages and update where the free scanner should restart,
1437 * so we don't leave any returned pages behind in the next attempt.
1438 */
1439 if (cc->nr_freepages > 0) {
1440 unsigned long free_pfn = release_freepages(&cc->freepages);
1441
1442 cc->nr_freepages = 0;
1443 VM_BUG_ON(free_pfn == 0);
1444 /* The cached pfn is always the first in a pageblock */
1445 free_pfn &= ~(pageblock_nr_pages-1);
1446 /*
1447 * Only go back, not forward. The cached pfn might have been
1448 * already reset to zone end in compact_finished()
1449 */
1450 if (free_pfn > zone->compact_cached_free_pfn)
1451 zone->compact_cached_free_pfn = free_pfn;
1452 }
1453
1454 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1455 cc->free_pfn, end_pfn, sync, ret);
1456
1457 if (ret == COMPACT_CONTENDED)
1458 ret = COMPACT_PARTIAL;
1459
1460 return ret;
1461 }
1462
1463 static unsigned long compact_zone_order(struct zone *zone, int order,
1464 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1465 int alloc_flags, int classzone_idx)
1466 {
1467 unsigned long ret;
1468 struct compact_control cc = {
1469 .nr_freepages = 0,
1470 .nr_migratepages = 0,
1471 .order = order,
1472 .gfp_mask = gfp_mask,
1473 .zone = zone,
1474 .mode = mode,
1475 .alloc_flags = alloc_flags,
1476 .classzone_idx = classzone_idx,
1477 };
1478 INIT_LIST_HEAD(&cc.freepages);
1479 INIT_LIST_HEAD(&cc.migratepages);
1480
1481 ret = compact_zone(zone, &cc);
1482
1483 VM_BUG_ON(!list_empty(&cc.freepages));
1484 VM_BUG_ON(!list_empty(&cc.migratepages));
1485
1486 *contended = cc.contended;
1487 return ret;
1488 }
1489
1490 int sysctl_extfrag_threshold = 500;
1491
1492 /**
1493 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1494 * @gfp_mask: The GFP mask of the current allocation
1495 * @order: The order of the current allocation
1496 * @alloc_flags: The allocation flags of the current allocation
1497 * @ac: The context of current allocation
1498 * @mode: The migration mode for async, sync light, or sync migration
1499 * @contended: Return value that determines if compaction was aborted due to
1500 * need_resched() or lock contention
1501 *
1502 * This is the main entry point for direct page compaction.
1503 */
1504 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1505 int alloc_flags, const struct alloc_context *ac,
1506 enum migrate_mode mode, int *contended)
1507 {
1508 int may_enter_fs = gfp_mask & __GFP_FS;
1509 int may_perform_io = gfp_mask & __GFP_IO;
1510 struct zoneref *z;
1511 struct zone *zone;
1512 int rc = COMPACT_DEFERRED;
1513 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1514
1515 *contended = COMPACT_CONTENDED_NONE;
1516
1517 /* Check if the GFP flags allow compaction */
1518 if (!order || !may_enter_fs || !may_perform_io)
1519 return COMPACT_SKIPPED;
1520
1521 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1522
1523 /* Compact each zone in the list */
1524 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1525 ac->nodemask) {
1526 int status;
1527 int zone_contended;
1528
1529 if (compaction_deferred(zone, order))
1530 continue;
1531
1532 status = compact_zone_order(zone, order, gfp_mask, mode,
1533 &zone_contended, alloc_flags,
1534 ac->classzone_idx);
1535 rc = max(status, rc);
1536 /*
1537 * It takes at least one zone that wasn't lock contended
1538 * to clear all_zones_contended.
1539 */
1540 all_zones_contended &= zone_contended;
1541
1542 /* If a normal allocation would succeed, stop compacting */
1543 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1544 ac->classzone_idx, alloc_flags)) {
1545 /*
1546 * We think the allocation will succeed in this zone,
1547 * but it is not certain, hence the false. The caller
1548 * will repeat this with true if allocation indeed
1549 * succeeds in this zone.
1550 */
1551 compaction_defer_reset(zone, order, false);
1552 /*
1553 * It is possible that async compaction aborted due to
1554 * need_resched() and the watermarks were ok thanks to
1555 * somebody else freeing memory. The allocation can
1556 * however still fail so we better signal the
1557 * need_resched() contention anyway (this will not
1558 * prevent the allocation attempt).
1559 */
1560 if (zone_contended == COMPACT_CONTENDED_SCHED)
1561 *contended = COMPACT_CONTENDED_SCHED;
1562
1563 goto break_loop;
1564 }
1565
1566 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1567 /*
1568 * We think that allocation won't succeed in this zone
1569 * so we defer compaction there. If it ends up
1570 * succeeding after all, it will be reset.
1571 */
1572 defer_compaction(zone, order);
1573 }
1574
1575 /*
1576 * We might have stopped compacting due to need_resched() in
1577 * async compaction, or due to a fatal signal detected. In that
1578 * case do not try further zones and signal need_resched()
1579 * contention.
1580 */
1581 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1582 || fatal_signal_pending(current)) {
1583 *contended = COMPACT_CONTENDED_SCHED;
1584 goto break_loop;
1585 }
1586
1587 continue;
1588 break_loop:
1589 /*
1590 * We might not have tried all the zones, so be conservative
1591 * and assume they are not all lock contended.
1592 */
1593 all_zones_contended = 0;
1594 break;
1595 }
1596
1597 /*
1598 * If at least one zone wasn't deferred or skipped, we report if all
1599 * zones that were tried were lock contended.
1600 */
1601 if (rc > COMPACT_SKIPPED && all_zones_contended)
1602 *contended = COMPACT_CONTENDED_LOCK;
1603
1604 return rc;
1605 }
1606
1607
1608 /* Compact all zones within a node */
1609 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1610 {
1611 int zoneid;
1612 struct zone *zone;
1613
1614 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1615
1616 zone = &pgdat->node_zones[zoneid];
1617 if (!populated_zone(zone))
1618 continue;
1619
1620 cc->nr_freepages = 0;
1621 cc->nr_migratepages = 0;
1622 cc->zone = zone;
1623 INIT_LIST_HEAD(&cc->freepages);
1624 INIT_LIST_HEAD(&cc->migratepages);
1625
1626 /*
1627 * When called via /proc/sys/vm/compact_memory
1628 * this makes sure we compact the whole zone regardless of
1629 * cached scanner positions.
1630 */
1631 if (is_via_compact_memory(cc->order))
1632 __reset_isolation_suitable(zone);
1633
1634 if (is_via_compact_memory(cc->order) ||
1635 !compaction_deferred(zone, cc->order))
1636 compact_zone(zone, cc);
1637
1638 VM_BUG_ON(!list_empty(&cc->freepages));
1639 VM_BUG_ON(!list_empty(&cc->migratepages));
1640
1641 if (is_via_compact_memory(cc->order))
1642 continue;
1643
1644 if (zone_watermark_ok(zone, cc->order,
1645 low_wmark_pages(zone), 0, 0))
1646 compaction_defer_reset(zone, cc->order, false);
1647 }
1648 }
1649
1650 void compact_pgdat(pg_data_t *pgdat, int order)
1651 {
1652 struct compact_control cc = {
1653 .order = order,
1654 .mode = MIGRATE_ASYNC,
1655 };
1656
1657 if (!order)
1658 return;
1659
1660 __compact_pgdat(pgdat, &cc);
1661 }
1662
1663 static void compact_node(int nid)
1664 {
1665 struct compact_control cc = {
1666 .order = -1,
1667 .mode = MIGRATE_SYNC,
1668 .ignore_skip_hint = true,
1669 };
1670
1671 __compact_pgdat(NODE_DATA(nid), &cc);
1672 }
1673
1674 /* Compact all nodes in the system */
1675 static void compact_nodes(void)
1676 {
1677 int nid;
1678
1679 /* Flush pending updates to the LRU lists */
1680 lru_add_drain_all();
1681
1682 for_each_online_node(nid)
1683 compact_node(nid);
1684 }
1685
1686 /* The written value is actually unused, all memory is compacted */
1687 int sysctl_compact_memory;
1688
1689 /*
1690 * This is the entry point for compacting all nodes via
1691 * /proc/sys/vm/compact_memory
1692 */
1693 int sysctl_compaction_handler(struct ctl_table *table, int write,
1694 void __user *buffer, size_t *length, loff_t *ppos)
1695 {
1696 if (write)
1697 compact_nodes();
1698
1699 return 0;
1700 }
1701
1702 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1703 void __user *buffer, size_t *length, loff_t *ppos)
1704 {
1705 proc_dointvec_minmax(table, write, buffer, length, ppos);
1706
1707 return 0;
1708 }
1709
1710 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1711 static ssize_t sysfs_compact_node(struct device *dev,
1712 struct device_attribute *attr,
1713 const char *buf, size_t count)
1714 {
1715 int nid = dev->id;
1716
1717 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1718 /* Flush pending updates to the LRU lists */
1719 lru_add_drain_all();
1720
1721 compact_node(nid);
1722 }
1723
1724 return count;
1725 }
1726 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1727
1728 int compaction_register_node(struct node *node)
1729 {
1730 return device_create_file(&node->dev, &dev_attr_compact);
1731 }
1732
1733 void compaction_unregister_node(struct node *node)
1734 {
1735 return device_remove_file(&node->dev, &dev_attr_compact);
1736 }
1737 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1738
1739 #endif /* CONFIG_COMPACTION */