]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/compaction.c
Merge tag 'vfs-5.10-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-jammy-kernel.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 /*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
78 list_del(&page->lru);
79 __free_page(page);
80 if (pfn > high_pfn)
81 high_pfn = pfn;
82 }
83
84 return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
98
99 post_alloc_hook(page, order, __GFP_MOVABLE);
100 if (order)
101 split_page(page, order);
102
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
107 }
108
109 list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140 VM_BUG_ON_PAGE(!PageLocked(page), page);
141 VM_BUG_ON_PAGE(!PageMovable(page), page);
142 /*
143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 * flag so that VM can catch up released page by driver after isolation.
145 * With it, VM migration doesn't try to put it back.
146 */
147 page->mapping = (void *)((unsigned long)page->mapping &
148 PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154
155 /*
156 * Compaction is deferred when compaction fails to result in a page
157 * allocation success. 1 << compact_defer_shift, compactions are skipped up
158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159 */
160 void defer_compaction(struct zone *zone, int order)
161 {
162 zone->compact_considered = 0;
163 zone->compact_defer_shift++;
164
165 if (order < zone->compact_order_failed)
166 zone->compact_order_failed = order;
167
168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171 trace_mm_compaction_defer_compaction(zone, order);
172 }
173
174 /* Returns true if compaction should be skipped this time */
175 bool compaction_deferred(struct zone *zone, int order)
176 {
177 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179 if (order < zone->compact_order_failed)
180 return false;
181
182 /* Avoid possible overflow */
183 if (++zone->compact_considered >= defer_limit) {
184 zone->compact_considered = defer_limit;
185 return false;
186 }
187
188 trace_mm_compaction_deferred(zone, order);
189
190 return true;
191 }
192
193 /*
194 * Update defer tracking counters after successful compaction of given order,
195 * which means an allocation either succeeded (alloc_success == true) or is
196 * expected to succeed.
197 */
198 void compaction_defer_reset(struct zone *zone, int order,
199 bool alloc_success)
200 {
201 if (alloc_success) {
202 zone->compact_considered = 0;
203 zone->compact_defer_shift = 0;
204 }
205 if (order >= zone->compact_order_failed)
206 zone->compact_order_failed = order + 1;
207
208 trace_mm_compaction_defer_reset(zone, order);
209 }
210
211 /* Returns true if restarting compaction after many failures */
212 bool compaction_restarting(struct zone *zone, int order)
213 {
214 if (order < zone->compact_order_failed)
215 return false;
216
217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223 struct page *page)
224 {
225 if (cc->ignore_skip_hint)
226 return true;
227
228 return !get_pageblock_skip(page);
229 }
230
231 static void reset_cached_positions(struct zone *zone)
232 {
233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 zone->compact_cached_free_pfn =
236 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238
239 /*
240 * Compound pages of >= pageblock_order should consistenly be skipped until
241 * released. It is always pointless to compact pages of such order (if they are
242 * migratable), and the pageblocks they occupy cannot contain any free pages.
243 */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 if (!PageCompound(page))
247 return false;
248
249 page = compound_head(page);
250
251 if (compound_order(page) >= pageblock_order)
252 return true;
253
254 return false;
255 }
256
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 bool check_target)
260 {
261 struct page *page = pfn_to_online_page(pfn);
262 struct page *block_page;
263 struct page *end_page;
264 unsigned long block_pfn;
265
266 if (!page)
267 return false;
268 if (zone != page_zone(page))
269 return false;
270 if (pageblock_skip_persistent(page))
271 return false;
272
273 /*
274 * If skip is already cleared do no further checking once the
275 * restart points have been set.
276 */
277 if (check_source && check_target && !get_pageblock_skip(page))
278 return true;
279
280 /*
281 * If clearing skip for the target scanner, do not select a
282 * non-movable pageblock as the starting point.
283 */
284 if (!check_source && check_target &&
285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 return false;
287
288 /* Ensure the start of the pageblock or zone is online and valid */
289 block_pfn = pageblock_start_pfn(pfn);
290 block_pfn = max(block_pfn, zone->zone_start_pfn);
291 block_page = pfn_to_online_page(block_pfn);
292 if (block_page) {
293 page = block_page;
294 pfn = block_pfn;
295 }
296
297 /* Ensure the end of the pageblock or zone is online and valid */
298 block_pfn = pageblock_end_pfn(pfn) - 1;
299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 end_page = pfn_to_online_page(block_pfn);
301 if (!end_page)
302 return false;
303
304 /*
305 * Only clear the hint if a sample indicates there is either a
306 * free page or an LRU page in the block. One or other condition
307 * is necessary for the block to be a migration source/target.
308 */
309 do {
310 if (pfn_valid_within(pfn)) {
311 if (check_source && PageLRU(page)) {
312 clear_pageblock_skip(page);
313 return true;
314 }
315
316 if (check_target && PageBuddy(page)) {
317 clear_pageblock_skip(page);
318 return true;
319 }
320 }
321
322 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 } while (page <= end_page);
325
326 return false;
327 }
328
329 /*
330 * This function is called to clear all cached information on pageblocks that
331 * should be skipped for page isolation when the migrate and free page scanner
332 * meet.
333 */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 unsigned long migrate_pfn = zone->zone_start_pfn;
337 unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 unsigned long reset_migrate = free_pfn;
339 unsigned long reset_free = migrate_pfn;
340 bool source_set = false;
341 bool free_set = false;
342
343 if (!zone->compact_blockskip_flush)
344 return;
345
346 zone->compact_blockskip_flush = false;
347
348 /*
349 * Walk the zone and update pageblock skip information. Source looks
350 * for PageLRU while target looks for PageBuddy. When the scanner
351 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 * is suitable as both source and target.
353 */
354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 free_pfn -= pageblock_nr_pages) {
356 cond_resched();
357
358 /* Update the migrate PFN */
359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 migrate_pfn < reset_migrate) {
361 source_set = true;
362 reset_migrate = migrate_pfn;
363 zone->compact_init_migrate_pfn = reset_migrate;
364 zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 }
367
368 /* Update the free PFN */
369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 free_pfn > reset_free) {
371 free_set = true;
372 reset_free = free_pfn;
373 zone->compact_init_free_pfn = reset_free;
374 zone->compact_cached_free_pfn = reset_free;
375 }
376 }
377
378 /* Leave no distance if no suitable block was reset */
379 if (reset_migrate >= reset_free) {
380 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 zone->compact_cached_free_pfn = free_pfn;
383 }
384 }
385
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 int zoneid;
389
390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 struct zone *zone = &pgdat->node_zones[zoneid];
392 if (!populated_zone(zone))
393 continue;
394
395 /* Only flush if a full compaction finished recently */
396 if (zone->compact_blockskip_flush)
397 __reset_isolation_suitable(zone);
398 }
399 }
400
401 /*
402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403 * locks are not required for read/writers. Returns true if it was already set.
404 */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 unsigned long pfn)
407 {
408 bool skip;
409
410 /* Do no update if skip hint is being ignored */
411 if (cc->ignore_skip_hint)
412 return false;
413
414 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 return false;
416
417 skip = get_pageblock_skip(page);
418 if (!skip && !cc->no_set_skip_hint)
419 set_pageblock_skip(page);
420
421 return skip;
422 }
423
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 struct zone *zone = cc->zone;
427
428 pfn = pageblock_end_pfn(pfn);
429
430 /* Set for isolation rather than compaction */
431 if (cc->no_set_skip_hint)
432 return;
433
434 if (pfn > zone->compact_cached_migrate_pfn[0])
435 zone->compact_cached_migrate_pfn[0] = pfn;
436 if (cc->mode != MIGRATE_ASYNC &&
437 pfn > zone->compact_cached_migrate_pfn[1])
438 zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440
441 /*
442 * If no pages were isolated then mark this pageblock to be skipped in the
443 * future. The information is later cleared by __reset_isolation_suitable().
444 */
445 static void update_pageblock_skip(struct compact_control *cc,
446 struct page *page, unsigned long pfn)
447 {
448 struct zone *zone = cc->zone;
449
450 if (cc->no_set_skip_hint)
451 return;
452
453 if (!page)
454 return;
455
456 set_pageblock_skip(page);
457
458 /* Update where async and sync compaction should restart */
459 if (pfn < zone->compact_cached_free_pfn)
460 zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464 struct page *page)
465 {
466 return true;
467 }
468
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 return false;
472 }
473
474 static inline void update_pageblock_skip(struct compact_control *cc,
475 struct page *page, unsigned long pfn)
476 {
477 }
478
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 unsigned long pfn)
485 {
486 return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489
490 /*
491 * Compaction requires the taking of some coarse locks that are potentially
492 * very heavily contended. For async compaction, trylock and record if the
493 * lock is contended. The lock will still be acquired but compaction will
494 * abort when the current block is finished regardless of success rate.
495 * Sync compaction acquires the lock.
496 *
497 * Always returns true which makes it easier to track lock state in callers.
498 */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 struct compact_control *cc)
501 __acquires(lock)
502 {
503 /* Track if the lock is contended in async mode */
504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 if (spin_trylock_irqsave(lock, *flags))
506 return true;
507
508 cc->contended = true;
509 }
510
511 spin_lock_irqsave(lock, *flags);
512 return true;
513 }
514
515 /*
516 * Compaction requires the taking of some coarse locks that are potentially
517 * very heavily contended. The lock should be periodically unlocked to avoid
518 * having disabled IRQs for a long time, even when there is nobody waiting on
519 * the lock. It might also be that allowing the IRQs will result in
520 * need_resched() becoming true. If scheduling is needed, async compaction
521 * aborts. Sync compaction schedules.
522 * Either compaction type will also abort if a fatal signal is pending.
523 * In either case if the lock was locked, it is dropped and not regained.
524 *
525 * Returns true if compaction should abort due to fatal signal pending, or
526 * async compaction due to need_resched()
527 * Returns false when compaction can continue (sync compaction might have
528 * scheduled)
529 */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 if (*locked) {
534 spin_unlock_irqrestore(lock, flags);
535 *locked = false;
536 }
537
538 if (fatal_signal_pending(current)) {
539 cc->contended = true;
540 return true;
541 }
542
543 cond_resched();
544
545 return false;
546 }
547
548 /*
549 * Isolate free pages onto a private freelist. If @strict is true, will abort
550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551 * (even though it may still end up isolating some pages).
552 */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 unsigned long *start_pfn,
555 unsigned long end_pfn,
556 struct list_head *freelist,
557 unsigned int stride,
558 bool strict)
559 {
560 int nr_scanned = 0, total_isolated = 0;
561 struct page *cursor;
562 unsigned long flags = 0;
563 bool locked = false;
564 unsigned long blockpfn = *start_pfn;
565 unsigned int order;
566
567 /* Strict mode is for isolation, speed is secondary */
568 if (strict)
569 stride = 1;
570
571 cursor = pfn_to_page(blockpfn);
572
573 /* Isolate free pages. */
574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 int isolated;
576 struct page *page = cursor;
577
578 /*
579 * Periodically drop the lock (if held) regardless of its
580 * contention, to give chance to IRQs. Abort if fatal signal
581 * pending or async compaction detects need_resched()
582 */
583 if (!(blockpfn % SWAP_CLUSTER_MAX)
584 && compact_unlock_should_abort(&cc->zone->lock, flags,
585 &locked, cc))
586 break;
587
588 nr_scanned++;
589 if (!pfn_valid_within(blockpfn))
590 goto isolate_fail;
591
592 /*
593 * For compound pages such as THP and hugetlbfs, we can save
594 * potentially a lot of iterations if we skip them at once.
595 * The check is racy, but we can consider only valid values
596 * and the only danger is skipping too much.
597 */
598 if (PageCompound(page)) {
599 const unsigned int order = compound_order(page);
600
601 if (likely(order < MAX_ORDER)) {
602 blockpfn += (1UL << order) - 1;
603 cursor += (1UL << order) - 1;
604 }
605 goto isolate_fail;
606 }
607
608 if (!PageBuddy(page))
609 goto isolate_fail;
610
611 /*
612 * If we already hold the lock, we can skip some rechecking.
613 * Note that if we hold the lock now, checked_pageblock was
614 * already set in some previous iteration (or strict is true),
615 * so it is correct to skip the suitable migration target
616 * recheck as well.
617 */
618 if (!locked) {
619 locked = compact_lock_irqsave(&cc->zone->lock,
620 &flags, cc);
621
622 /* Recheck this is a buddy page under lock */
623 if (!PageBuddy(page))
624 goto isolate_fail;
625 }
626
627 /* Found a free page, will break it into order-0 pages */
628 order = buddy_order(page);
629 isolated = __isolate_free_page(page, order);
630 if (!isolated)
631 break;
632 set_page_private(page, order);
633
634 total_isolated += isolated;
635 cc->nr_freepages += isolated;
636 list_add_tail(&page->lru, freelist);
637
638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 blockpfn += isolated;
640 break;
641 }
642 /* Advance to the end of split page */
643 blockpfn += isolated - 1;
644 cursor += isolated - 1;
645 continue;
646
647 isolate_fail:
648 if (strict)
649 break;
650 else
651 continue;
652
653 }
654
655 if (locked)
656 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658 /*
659 * There is a tiny chance that we have read bogus compound_order(),
660 * so be careful to not go outside of the pageblock.
661 */
662 if (unlikely(blockpfn > end_pfn))
663 blockpfn = end_pfn;
664
665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 nr_scanned, total_isolated);
667
668 /* Record how far we have got within the block */
669 *start_pfn = blockpfn;
670
671 /*
672 * If strict isolation is requested by CMA then check that all the
673 * pages requested were isolated. If there were any failures, 0 is
674 * returned and CMA will fail.
675 */
676 if (strict && blockpfn < end_pfn)
677 total_isolated = 0;
678
679 cc->total_free_scanned += nr_scanned;
680 if (total_isolated)
681 count_compact_events(COMPACTISOLATED, total_isolated);
682 return total_isolated;
683 }
684
685 /**
686 * isolate_freepages_range() - isolate free pages.
687 * @cc: Compaction control structure.
688 * @start_pfn: The first PFN to start isolating.
689 * @end_pfn: The one-past-last PFN.
690 *
691 * Non-free pages, invalid PFNs, or zone boundaries within the
692 * [start_pfn, end_pfn) range are considered errors, cause function to
693 * undo its actions and return zero.
694 *
695 * Otherwise, function returns one-past-the-last PFN of isolated page
696 * (which may be greater then end_pfn if end fell in a middle of
697 * a free page).
698 */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701 unsigned long start_pfn, unsigned long end_pfn)
702 {
703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 LIST_HEAD(freelist);
705
706 pfn = start_pfn;
707 block_start_pfn = pageblock_start_pfn(pfn);
708 if (block_start_pfn < cc->zone->zone_start_pfn)
709 block_start_pfn = cc->zone->zone_start_pfn;
710 block_end_pfn = pageblock_end_pfn(pfn);
711
712 for (; pfn < end_pfn; pfn += isolated,
713 block_start_pfn = block_end_pfn,
714 block_end_pfn += pageblock_nr_pages) {
715 /* Protect pfn from changing by isolate_freepages_block */
716 unsigned long isolate_start_pfn = pfn;
717
718 block_end_pfn = min(block_end_pfn, end_pfn);
719
720 /*
721 * pfn could pass the block_end_pfn if isolated freepage
722 * is more than pageblock order. In this case, we adjust
723 * scanning range to right one.
724 */
725 if (pfn >= block_end_pfn) {
726 block_start_pfn = pageblock_start_pfn(pfn);
727 block_end_pfn = pageblock_end_pfn(pfn);
728 block_end_pfn = min(block_end_pfn, end_pfn);
729 }
730
731 if (!pageblock_pfn_to_page(block_start_pfn,
732 block_end_pfn, cc->zone))
733 break;
734
735 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 block_end_pfn, &freelist, 0, true);
737
738 /*
739 * In strict mode, isolate_freepages_block() returns 0 if
740 * there are any holes in the block (ie. invalid PFNs or
741 * non-free pages).
742 */
743 if (!isolated)
744 break;
745
746 /*
747 * If we managed to isolate pages, it is always (1 << n) *
748 * pageblock_nr_pages for some non-negative n. (Max order
749 * page may span two pageblocks).
750 */
751 }
752
753 /* __isolate_free_page() does not map the pages */
754 split_map_pages(&freelist);
755
756 if (pfn < end_pfn) {
757 /* Loop terminated early, cleanup. */
758 release_freepages(&freelist);
759 return 0;
760 }
761
762 /* We don't use freelists for anything. */
763 return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769 unsigned long active, inactive, isolated;
770
771 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772 node_page_state(pgdat, NR_INACTIVE_ANON);
773 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774 node_page_state(pgdat, NR_ACTIVE_ANON);
775 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776 node_page_state(pgdat, NR_ISOLATED_ANON);
777
778 return isolated > (inactive + active) / 2;
779 }
780
781 /**
782 * isolate_migratepages_block() - isolate all migrate-able pages within
783 * a single pageblock
784 * @cc: Compaction control structure.
785 * @low_pfn: The first PFN to isolate
786 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
787 * @isolate_mode: Isolation mode to be used.
788 *
789 * Isolate all pages that can be migrated from the range specified by
790 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791 * Returns zero if there is a fatal signal pending, otherwise PFN of the
792 * first page that was not scanned (which may be both less, equal to or more
793 * than end_pfn).
794 *
795 * The pages are isolated on cc->migratepages list (not required to be empty),
796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797 * is neither read nor updated.
798 */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803 pg_data_t *pgdat = cc->zone->zone_pgdat;
804 unsigned long nr_scanned = 0, nr_isolated = 0;
805 struct lruvec *lruvec;
806 unsigned long flags = 0;
807 bool locked = false;
808 struct page *page = NULL, *valid_page = NULL;
809 unsigned long start_pfn = low_pfn;
810 bool skip_on_failure = false;
811 unsigned long next_skip_pfn = 0;
812 bool skip_updated = false;
813
814 /*
815 * Ensure that there are not too many pages isolated from the LRU
816 * list by either parallel reclaimers or compaction. If there are,
817 * delay for some time until fewer pages are isolated
818 */
819 while (unlikely(too_many_isolated(pgdat))) {
820 /* async migration should just abort */
821 if (cc->mode == MIGRATE_ASYNC)
822 return 0;
823
824 congestion_wait(BLK_RW_ASYNC, HZ/10);
825
826 if (fatal_signal_pending(current))
827 return 0;
828 }
829
830 cond_resched();
831
832 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
833 skip_on_failure = true;
834 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
835 }
836
837 /* Time to isolate some pages for migration */
838 for (; low_pfn < end_pfn; low_pfn++) {
839
840 if (skip_on_failure && low_pfn >= next_skip_pfn) {
841 /*
842 * We have isolated all migration candidates in the
843 * previous order-aligned block, and did not skip it due
844 * to failure. We should migrate the pages now and
845 * hopefully succeed compaction.
846 */
847 if (nr_isolated)
848 break;
849
850 /*
851 * We failed to isolate in the previous order-aligned
852 * block. Set the new boundary to the end of the
853 * current block. Note we can't simply increase
854 * next_skip_pfn by 1 << order, as low_pfn might have
855 * been incremented by a higher number due to skipping
856 * a compound or a high-order buddy page in the
857 * previous loop iteration.
858 */
859 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
860 }
861
862 /*
863 * Periodically drop the lock (if held) regardless of its
864 * contention, to give chance to IRQs. Abort completely if
865 * a fatal signal is pending.
866 */
867 if (!(low_pfn % SWAP_CLUSTER_MAX)
868 && compact_unlock_should_abort(&pgdat->lru_lock,
869 flags, &locked, cc)) {
870 low_pfn = 0;
871 goto fatal_pending;
872 }
873
874 if (!pfn_valid_within(low_pfn))
875 goto isolate_fail;
876 nr_scanned++;
877
878 page = pfn_to_page(low_pfn);
879
880 /*
881 * Check if the pageblock has already been marked skipped.
882 * Only the aligned PFN is checked as the caller isolates
883 * COMPACT_CLUSTER_MAX at a time so the second call must
884 * not falsely conclude that the block should be skipped.
885 */
886 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
887 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
888 low_pfn = end_pfn;
889 goto isolate_abort;
890 }
891 valid_page = page;
892 }
893
894 /*
895 * Skip if free. We read page order here without zone lock
896 * which is generally unsafe, but the race window is small and
897 * the worst thing that can happen is that we skip some
898 * potential isolation targets.
899 */
900 if (PageBuddy(page)) {
901 unsigned long freepage_order = buddy_order_unsafe(page);
902
903 /*
904 * Without lock, we cannot be sure that what we got is
905 * a valid page order. Consider only values in the
906 * valid order range to prevent low_pfn overflow.
907 */
908 if (freepage_order > 0 && freepage_order < MAX_ORDER)
909 low_pfn += (1UL << freepage_order) - 1;
910 continue;
911 }
912
913 /*
914 * Regardless of being on LRU, compound pages such as THP and
915 * hugetlbfs are not to be compacted unless we are attempting
916 * an allocation much larger than the huge page size (eg CMA).
917 * We can potentially save a lot of iterations if we skip them
918 * at once. The check is racy, but we can consider only valid
919 * values and the only danger is skipping too much.
920 */
921 if (PageCompound(page) && !cc->alloc_contig) {
922 const unsigned int order = compound_order(page);
923
924 if (likely(order < MAX_ORDER))
925 low_pfn += (1UL << order) - 1;
926 goto isolate_fail;
927 }
928
929 /*
930 * Check may be lockless but that's ok as we recheck later.
931 * It's possible to migrate LRU and non-lru movable pages.
932 * Skip any other type of page
933 */
934 if (!PageLRU(page)) {
935 /*
936 * __PageMovable can return false positive so we need
937 * to verify it under page_lock.
938 */
939 if (unlikely(__PageMovable(page)) &&
940 !PageIsolated(page)) {
941 if (locked) {
942 spin_unlock_irqrestore(&pgdat->lru_lock,
943 flags);
944 locked = false;
945 }
946
947 if (!isolate_movable_page(page, isolate_mode))
948 goto isolate_success;
949 }
950
951 goto isolate_fail;
952 }
953
954 /*
955 * Migration will fail if an anonymous page is pinned in memory,
956 * so avoid taking lru_lock and isolating it unnecessarily in an
957 * admittedly racy check.
958 */
959 if (!page_mapping(page) &&
960 page_count(page) > page_mapcount(page))
961 goto isolate_fail;
962
963 /*
964 * Only allow to migrate anonymous pages in GFP_NOFS context
965 * because those do not depend on fs locks.
966 */
967 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
968 goto isolate_fail;
969
970 /* If we already hold the lock, we can skip some rechecking */
971 if (!locked) {
972 locked = compact_lock_irqsave(&pgdat->lru_lock,
973 &flags, cc);
974
975 /* Try get exclusive access under lock */
976 if (!skip_updated) {
977 skip_updated = true;
978 if (test_and_set_skip(cc, page, low_pfn))
979 goto isolate_abort;
980 }
981
982 /* Recheck PageLRU and PageCompound under lock */
983 if (!PageLRU(page))
984 goto isolate_fail;
985
986 /*
987 * Page become compound since the non-locked check,
988 * and it's on LRU. It can only be a THP so the order
989 * is safe to read and it's 0 for tail pages.
990 */
991 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
992 low_pfn += compound_nr(page) - 1;
993 goto isolate_fail;
994 }
995 }
996
997 lruvec = mem_cgroup_page_lruvec(page, pgdat);
998
999 /* Try isolate the page */
1000 if (__isolate_lru_page(page, isolate_mode) != 0)
1001 goto isolate_fail;
1002
1003 /* The whole page is taken off the LRU; skip the tail pages. */
1004 if (PageCompound(page))
1005 low_pfn += compound_nr(page) - 1;
1006
1007 /* Successfully isolated */
1008 del_page_from_lru_list(page, lruvec, page_lru(page));
1009 mod_node_page_state(page_pgdat(page),
1010 NR_ISOLATED_ANON + page_is_file_lru(page),
1011 thp_nr_pages(page));
1012
1013 isolate_success:
1014 list_add(&page->lru, &cc->migratepages);
1015 cc->nr_migratepages++;
1016 nr_isolated++;
1017
1018 /*
1019 * Avoid isolating too much unless this block is being
1020 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1021 * or a lock is contended. For contention, isolate quickly to
1022 * potentially remove one source of contention.
1023 */
1024 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1025 !cc->rescan && !cc->contended) {
1026 ++low_pfn;
1027 break;
1028 }
1029
1030 continue;
1031 isolate_fail:
1032 if (!skip_on_failure)
1033 continue;
1034
1035 /*
1036 * We have isolated some pages, but then failed. Release them
1037 * instead of migrating, as we cannot form the cc->order buddy
1038 * page anyway.
1039 */
1040 if (nr_isolated) {
1041 if (locked) {
1042 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1043 locked = false;
1044 }
1045 putback_movable_pages(&cc->migratepages);
1046 cc->nr_migratepages = 0;
1047 nr_isolated = 0;
1048 }
1049
1050 if (low_pfn < next_skip_pfn) {
1051 low_pfn = next_skip_pfn - 1;
1052 /*
1053 * The check near the loop beginning would have updated
1054 * next_skip_pfn too, but this is a bit simpler.
1055 */
1056 next_skip_pfn += 1UL << cc->order;
1057 }
1058 }
1059
1060 /*
1061 * The PageBuddy() check could have potentially brought us outside
1062 * the range to be scanned.
1063 */
1064 if (unlikely(low_pfn > end_pfn))
1065 low_pfn = end_pfn;
1066
1067 isolate_abort:
1068 if (locked)
1069 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1070
1071 /*
1072 * Updated the cached scanner pfn once the pageblock has been scanned
1073 * Pages will either be migrated in which case there is no point
1074 * scanning in the near future or migration failed in which case the
1075 * failure reason may persist. The block is marked for skipping if
1076 * there were no pages isolated in the block or if the block is
1077 * rescanned twice in a row.
1078 */
1079 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1080 if (valid_page && !skip_updated)
1081 set_pageblock_skip(valid_page);
1082 update_cached_migrate(cc, low_pfn);
1083 }
1084
1085 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1086 nr_scanned, nr_isolated);
1087
1088 fatal_pending:
1089 cc->total_migrate_scanned += nr_scanned;
1090 if (nr_isolated)
1091 count_compact_events(COMPACTISOLATED, nr_isolated);
1092
1093 return low_pfn;
1094 }
1095
1096 /**
1097 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1098 * @cc: Compaction control structure.
1099 * @start_pfn: The first PFN to start isolating.
1100 * @end_pfn: The one-past-last PFN.
1101 *
1102 * Returns zero if isolation fails fatally due to e.g. pending signal.
1103 * Otherwise, function returns one-past-the-last PFN of isolated page
1104 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1105 */
1106 unsigned long
1107 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1108 unsigned long end_pfn)
1109 {
1110 unsigned long pfn, block_start_pfn, block_end_pfn;
1111
1112 /* Scan block by block. First and last block may be incomplete */
1113 pfn = start_pfn;
1114 block_start_pfn = pageblock_start_pfn(pfn);
1115 if (block_start_pfn < cc->zone->zone_start_pfn)
1116 block_start_pfn = cc->zone->zone_start_pfn;
1117 block_end_pfn = pageblock_end_pfn(pfn);
1118
1119 for (; pfn < end_pfn; pfn = block_end_pfn,
1120 block_start_pfn = block_end_pfn,
1121 block_end_pfn += pageblock_nr_pages) {
1122
1123 block_end_pfn = min(block_end_pfn, end_pfn);
1124
1125 if (!pageblock_pfn_to_page(block_start_pfn,
1126 block_end_pfn, cc->zone))
1127 continue;
1128
1129 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1130 ISOLATE_UNEVICTABLE);
1131
1132 if (!pfn)
1133 break;
1134
1135 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1136 break;
1137 }
1138
1139 return pfn;
1140 }
1141
1142 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1143 #ifdef CONFIG_COMPACTION
1144
1145 static bool suitable_migration_source(struct compact_control *cc,
1146 struct page *page)
1147 {
1148 int block_mt;
1149
1150 if (pageblock_skip_persistent(page))
1151 return false;
1152
1153 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1154 return true;
1155
1156 block_mt = get_pageblock_migratetype(page);
1157
1158 if (cc->migratetype == MIGRATE_MOVABLE)
1159 return is_migrate_movable(block_mt);
1160 else
1161 return block_mt == cc->migratetype;
1162 }
1163
1164 /* Returns true if the page is within a block suitable for migration to */
1165 static bool suitable_migration_target(struct compact_control *cc,
1166 struct page *page)
1167 {
1168 /* If the page is a large free page, then disallow migration */
1169 if (PageBuddy(page)) {
1170 /*
1171 * We are checking page_order without zone->lock taken. But
1172 * the only small danger is that we skip a potentially suitable
1173 * pageblock, so it's not worth to check order for valid range.
1174 */
1175 if (buddy_order_unsafe(page) >= pageblock_order)
1176 return false;
1177 }
1178
1179 if (cc->ignore_block_suitable)
1180 return true;
1181
1182 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1183 if (is_migrate_movable(get_pageblock_migratetype(page)))
1184 return true;
1185
1186 /* Otherwise skip the block */
1187 return false;
1188 }
1189
1190 static inline unsigned int
1191 freelist_scan_limit(struct compact_control *cc)
1192 {
1193 unsigned short shift = BITS_PER_LONG - 1;
1194
1195 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1196 }
1197
1198 /*
1199 * Test whether the free scanner has reached the same or lower pageblock than
1200 * the migration scanner, and compaction should thus terminate.
1201 */
1202 static inline bool compact_scanners_met(struct compact_control *cc)
1203 {
1204 return (cc->free_pfn >> pageblock_order)
1205 <= (cc->migrate_pfn >> pageblock_order);
1206 }
1207
1208 /*
1209 * Used when scanning for a suitable migration target which scans freelists
1210 * in reverse. Reorders the list such as the unscanned pages are scanned
1211 * first on the next iteration of the free scanner
1212 */
1213 static void
1214 move_freelist_head(struct list_head *freelist, struct page *freepage)
1215 {
1216 LIST_HEAD(sublist);
1217
1218 if (!list_is_last(freelist, &freepage->lru)) {
1219 list_cut_before(&sublist, freelist, &freepage->lru);
1220 if (!list_empty(&sublist))
1221 list_splice_tail(&sublist, freelist);
1222 }
1223 }
1224
1225 /*
1226 * Similar to move_freelist_head except used by the migration scanner
1227 * when scanning forward. It's possible for these list operations to
1228 * move against each other if they search the free list exactly in
1229 * lockstep.
1230 */
1231 static void
1232 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1233 {
1234 LIST_HEAD(sublist);
1235
1236 if (!list_is_first(freelist, &freepage->lru)) {
1237 list_cut_position(&sublist, freelist, &freepage->lru);
1238 if (!list_empty(&sublist))
1239 list_splice_tail(&sublist, freelist);
1240 }
1241 }
1242
1243 static void
1244 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1245 {
1246 unsigned long start_pfn, end_pfn;
1247 struct page *page = pfn_to_page(pfn);
1248
1249 /* Do not search around if there are enough pages already */
1250 if (cc->nr_freepages >= cc->nr_migratepages)
1251 return;
1252
1253 /* Minimise scanning during async compaction */
1254 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1255 return;
1256
1257 /* Pageblock boundaries */
1258 start_pfn = pageblock_start_pfn(pfn);
1259 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1260
1261 /* Scan before */
1262 if (start_pfn != pfn) {
1263 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1264 if (cc->nr_freepages >= cc->nr_migratepages)
1265 return;
1266 }
1267
1268 /* Scan after */
1269 start_pfn = pfn + nr_isolated;
1270 if (start_pfn < end_pfn)
1271 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1272
1273 /* Skip this pageblock in the future as it's full or nearly full */
1274 if (cc->nr_freepages < cc->nr_migratepages)
1275 set_pageblock_skip(page);
1276 }
1277
1278 /* Search orders in round-robin fashion */
1279 static int next_search_order(struct compact_control *cc, int order)
1280 {
1281 order--;
1282 if (order < 0)
1283 order = cc->order - 1;
1284
1285 /* Search wrapped around? */
1286 if (order == cc->search_order) {
1287 cc->search_order--;
1288 if (cc->search_order < 0)
1289 cc->search_order = cc->order - 1;
1290 return -1;
1291 }
1292
1293 return order;
1294 }
1295
1296 static unsigned long
1297 fast_isolate_freepages(struct compact_control *cc)
1298 {
1299 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1300 unsigned int nr_scanned = 0;
1301 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1302 unsigned long nr_isolated = 0;
1303 unsigned long distance;
1304 struct page *page = NULL;
1305 bool scan_start = false;
1306 int order;
1307
1308 /* Full compaction passes in a negative order */
1309 if (cc->order <= 0)
1310 return cc->free_pfn;
1311
1312 /*
1313 * If starting the scan, use a deeper search and use the highest
1314 * PFN found if a suitable one is not found.
1315 */
1316 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1317 limit = pageblock_nr_pages >> 1;
1318 scan_start = true;
1319 }
1320
1321 /*
1322 * Preferred point is in the top quarter of the scan space but take
1323 * a pfn from the top half if the search is problematic.
1324 */
1325 distance = (cc->free_pfn - cc->migrate_pfn);
1326 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1327 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1328
1329 if (WARN_ON_ONCE(min_pfn > low_pfn))
1330 low_pfn = min_pfn;
1331
1332 /*
1333 * Search starts from the last successful isolation order or the next
1334 * order to search after a previous failure
1335 */
1336 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1337
1338 for (order = cc->search_order;
1339 !page && order >= 0;
1340 order = next_search_order(cc, order)) {
1341 struct free_area *area = &cc->zone->free_area[order];
1342 struct list_head *freelist;
1343 struct page *freepage;
1344 unsigned long flags;
1345 unsigned int order_scanned = 0;
1346
1347 if (!area->nr_free)
1348 continue;
1349
1350 spin_lock_irqsave(&cc->zone->lock, flags);
1351 freelist = &area->free_list[MIGRATE_MOVABLE];
1352 list_for_each_entry_reverse(freepage, freelist, lru) {
1353 unsigned long pfn;
1354
1355 order_scanned++;
1356 nr_scanned++;
1357 pfn = page_to_pfn(freepage);
1358
1359 if (pfn >= highest)
1360 highest = pageblock_start_pfn(pfn);
1361
1362 if (pfn >= low_pfn) {
1363 cc->fast_search_fail = 0;
1364 cc->search_order = order;
1365 page = freepage;
1366 break;
1367 }
1368
1369 if (pfn >= min_pfn && pfn > high_pfn) {
1370 high_pfn = pfn;
1371
1372 /* Shorten the scan if a candidate is found */
1373 limit >>= 1;
1374 }
1375
1376 if (order_scanned >= limit)
1377 break;
1378 }
1379
1380 /* Use a minimum pfn if a preferred one was not found */
1381 if (!page && high_pfn) {
1382 page = pfn_to_page(high_pfn);
1383
1384 /* Update freepage for the list reorder below */
1385 freepage = page;
1386 }
1387
1388 /* Reorder to so a future search skips recent pages */
1389 move_freelist_head(freelist, freepage);
1390
1391 /* Isolate the page if available */
1392 if (page) {
1393 if (__isolate_free_page(page, order)) {
1394 set_page_private(page, order);
1395 nr_isolated = 1 << order;
1396 cc->nr_freepages += nr_isolated;
1397 list_add_tail(&page->lru, &cc->freepages);
1398 count_compact_events(COMPACTISOLATED, nr_isolated);
1399 } else {
1400 /* If isolation fails, abort the search */
1401 order = cc->search_order + 1;
1402 page = NULL;
1403 }
1404 }
1405
1406 spin_unlock_irqrestore(&cc->zone->lock, flags);
1407
1408 /*
1409 * Smaller scan on next order so the total scan ig related
1410 * to freelist_scan_limit.
1411 */
1412 if (order_scanned >= limit)
1413 limit = min(1U, limit >> 1);
1414 }
1415
1416 if (!page) {
1417 cc->fast_search_fail++;
1418 if (scan_start) {
1419 /*
1420 * Use the highest PFN found above min. If one was
1421 * not found, be pessimistic for direct compaction
1422 * and use the min mark.
1423 */
1424 if (highest) {
1425 page = pfn_to_page(highest);
1426 cc->free_pfn = highest;
1427 } else {
1428 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1429 page = pageblock_pfn_to_page(min_pfn,
1430 pageblock_end_pfn(min_pfn),
1431 cc->zone);
1432 cc->free_pfn = min_pfn;
1433 }
1434 }
1435 }
1436 }
1437
1438 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1439 highest -= pageblock_nr_pages;
1440 cc->zone->compact_cached_free_pfn = highest;
1441 }
1442
1443 cc->total_free_scanned += nr_scanned;
1444 if (!page)
1445 return cc->free_pfn;
1446
1447 low_pfn = page_to_pfn(page);
1448 fast_isolate_around(cc, low_pfn, nr_isolated);
1449 return low_pfn;
1450 }
1451
1452 /*
1453 * Based on information in the current compact_control, find blocks
1454 * suitable for isolating free pages from and then isolate them.
1455 */
1456 static void isolate_freepages(struct compact_control *cc)
1457 {
1458 struct zone *zone = cc->zone;
1459 struct page *page;
1460 unsigned long block_start_pfn; /* start of current pageblock */
1461 unsigned long isolate_start_pfn; /* exact pfn we start at */
1462 unsigned long block_end_pfn; /* end of current pageblock */
1463 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1464 struct list_head *freelist = &cc->freepages;
1465 unsigned int stride;
1466
1467 /* Try a small search of the free lists for a candidate */
1468 isolate_start_pfn = fast_isolate_freepages(cc);
1469 if (cc->nr_freepages)
1470 goto splitmap;
1471
1472 /*
1473 * Initialise the free scanner. The starting point is where we last
1474 * successfully isolated from, zone-cached value, or the end of the
1475 * zone when isolating for the first time. For looping we also need
1476 * this pfn aligned down to the pageblock boundary, because we do
1477 * block_start_pfn -= pageblock_nr_pages in the for loop.
1478 * For ending point, take care when isolating in last pageblock of a
1479 * zone which ends in the middle of a pageblock.
1480 * The low boundary is the end of the pageblock the migration scanner
1481 * is using.
1482 */
1483 isolate_start_pfn = cc->free_pfn;
1484 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1485 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1486 zone_end_pfn(zone));
1487 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1488 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1489
1490 /*
1491 * Isolate free pages until enough are available to migrate the
1492 * pages on cc->migratepages. We stop searching if the migrate
1493 * and free page scanners meet or enough free pages are isolated.
1494 */
1495 for (; block_start_pfn >= low_pfn;
1496 block_end_pfn = block_start_pfn,
1497 block_start_pfn -= pageblock_nr_pages,
1498 isolate_start_pfn = block_start_pfn) {
1499 unsigned long nr_isolated;
1500
1501 /*
1502 * This can iterate a massively long zone without finding any
1503 * suitable migration targets, so periodically check resched.
1504 */
1505 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1506 cond_resched();
1507
1508 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1509 zone);
1510 if (!page)
1511 continue;
1512
1513 /* Check the block is suitable for migration */
1514 if (!suitable_migration_target(cc, page))
1515 continue;
1516
1517 /* If isolation recently failed, do not retry */
1518 if (!isolation_suitable(cc, page))
1519 continue;
1520
1521 /* Found a block suitable for isolating free pages from. */
1522 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1523 block_end_pfn, freelist, stride, false);
1524
1525 /* Update the skip hint if the full pageblock was scanned */
1526 if (isolate_start_pfn == block_end_pfn)
1527 update_pageblock_skip(cc, page, block_start_pfn);
1528
1529 /* Are enough freepages isolated? */
1530 if (cc->nr_freepages >= cc->nr_migratepages) {
1531 if (isolate_start_pfn >= block_end_pfn) {
1532 /*
1533 * Restart at previous pageblock if more
1534 * freepages can be isolated next time.
1535 */
1536 isolate_start_pfn =
1537 block_start_pfn - pageblock_nr_pages;
1538 }
1539 break;
1540 } else if (isolate_start_pfn < block_end_pfn) {
1541 /*
1542 * If isolation failed early, do not continue
1543 * needlessly.
1544 */
1545 break;
1546 }
1547
1548 /* Adjust stride depending on isolation */
1549 if (nr_isolated) {
1550 stride = 1;
1551 continue;
1552 }
1553 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1554 }
1555
1556 /*
1557 * Record where the free scanner will restart next time. Either we
1558 * broke from the loop and set isolate_start_pfn based on the last
1559 * call to isolate_freepages_block(), or we met the migration scanner
1560 * and the loop terminated due to isolate_start_pfn < low_pfn
1561 */
1562 cc->free_pfn = isolate_start_pfn;
1563
1564 splitmap:
1565 /* __isolate_free_page() does not map the pages */
1566 split_map_pages(freelist);
1567 }
1568
1569 /*
1570 * This is a migrate-callback that "allocates" freepages by taking pages
1571 * from the isolated freelists in the block we are migrating to.
1572 */
1573 static struct page *compaction_alloc(struct page *migratepage,
1574 unsigned long data)
1575 {
1576 struct compact_control *cc = (struct compact_control *)data;
1577 struct page *freepage;
1578
1579 if (list_empty(&cc->freepages)) {
1580 isolate_freepages(cc);
1581
1582 if (list_empty(&cc->freepages))
1583 return NULL;
1584 }
1585
1586 freepage = list_entry(cc->freepages.next, struct page, lru);
1587 list_del(&freepage->lru);
1588 cc->nr_freepages--;
1589
1590 return freepage;
1591 }
1592
1593 /*
1594 * This is a migrate-callback that "frees" freepages back to the isolated
1595 * freelist. All pages on the freelist are from the same zone, so there is no
1596 * special handling needed for NUMA.
1597 */
1598 static void compaction_free(struct page *page, unsigned long data)
1599 {
1600 struct compact_control *cc = (struct compact_control *)data;
1601
1602 list_add(&page->lru, &cc->freepages);
1603 cc->nr_freepages++;
1604 }
1605
1606 /* possible outcome of isolate_migratepages */
1607 typedef enum {
1608 ISOLATE_ABORT, /* Abort compaction now */
1609 ISOLATE_NONE, /* No pages isolated, continue scanning */
1610 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1611 } isolate_migrate_t;
1612
1613 /*
1614 * Allow userspace to control policy on scanning the unevictable LRU for
1615 * compactable pages.
1616 */
1617 #ifdef CONFIG_PREEMPT_RT
1618 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1619 #else
1620 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1621 #endif
1622
1623 static inline void
1624 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1625 {
1626 if (cc->fast_start_pfn == ULONG_MAX)
1627 return;
1628
1629 if (!cc->fast_start_pfn)
1630 cc->fast_start_pfn = pfn;
1631
1632 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1633 }
1634
1635 static inline unsigned long
1636 reinit_migrate_pfn(struct compact_control *cc)
1637 {
1638 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1639 return cc->migrate_pfn;
1640
1641 cc->migrate_pfn = cc->fast_start_pfn;
1642 cc->fast_start_pfn = ULONG_MAX;
1643
1644 return cc->migrate_pfn;
1645 }
1646
1647 /*
1648 * Briefly search the free lists for a migration source that already has
1649 * some free pages to reduce the number of pages that need migration
1650 * before a pageblock is free.
1651 */
1652 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1653 {
1654 unsigned int limit = freelist_scan_limit(cc);
1655 unsigned int nr_scanned = 0;
1656 unsigned long distance;
1657 unsigned long pfn = cc->migrate_pfn;
1658 unsigned long high_pfn;
1659 int order;
1660
1661 /* Skip hints are relied on to avoid repeats on the fast search */
1662 if (cc->ignore_skip_hint)
1663 return pfn;
1664
1665 /*
1666 * If the migrate_pfn is not at the start of a zone or the start
1667 * of a pageblock then assume this is a continuation of a previous
1668 * scan restarted due to COMPACT_CLUSTER_MAX.
1669 */
1670 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1671 return pfn;
1672
1673 /*
1674 * For smaller orders, just linearly scan as the number of pages
1675 * to migrate should be relatively small and does not necessarily
1676 * justify freeing up a large block for a small allocation.
1677 */
1678 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1679 return pfn;
1680
1681 /*
1682 * Only allow kcompactd and direct requests for movable pages to
1683 * quickly clear out a MOVABLE pageblock for allocation. This
1684 * reduces the risk that a large movable pageblock is freed for
1685 * an unmovable/reclaimable small allocation.
1686 */
1687 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1688 return pfn;
1689
1690 /*
1691 * When starting the migration scanner, pick any pageblock within the
1692 * first half of the search space. Otherwise try and pick a pageblock
1693 * within the first eighth to reduce the chances that a migration
1694 * target later becomes a source.
1695 */
1696 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1697 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1698 distance >>= 2;
1699 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1700
1701 for (order = cc->order - 1;
1702 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1703 order--) {
1704 struct free_area *area = &cc->zone->free_area[order];
1705 struct list_head *freelist;
1706 unsigned long flags;
1707 struct page *freepage;
1708
1709 if (!area->nr_free)
1710 continue;
1711
1712 spin_lock_irqsave(&cc->zone->lock, flags);
1713 freelist = &area->free_list[MIGRATE_MOVABLE];
1714 list_for_each_entry(freepage, freelist, lru) {
1715 unsigned long free_pfn;
1716
1717 nr_scanned++;
1718 free_pfn = page_to_pfn(freepage);
1719 if (free_pfn < high_pfn) {
1720 /*
1721 * Avoid if skipped recently. Ideally it would
1722 * move to the tail but even safe iteration of
1723 * the list assumes an entry is deleted, not
1724 * reordered.
1725 */
1726 if (get_pageblock_skip(freepage)) {
1727 if (list_is_last(freelist, &freepage->lru))
1728 break;
1729
1730 continue;
1731 }
1732
1733 /* Reorder to so a future search skips recent pages */
1734 move_freelist_tail(freelist, freepage);
1735
1736 update_fast_start_pfn(cc, free_pfn);
1737 pfn = pageblock_start_pfn(free_pfn);
1738 cc->fast_search_fail = 0;
1739 set_pageblock_skip(freepage);
1740 break;
1741 }
1742
1743 if (nr_scanned >= limit) {
1744 cc->fast_search_fail++;
1745 move_freelist_tail(freelist, freepage);
1746 break;
1747 }
1748 }
1749 spin_unlock_irqrestore(&cc->zone->lock, flags);
1750 }
1751
1752 cc->total_migrate_scanned += nr_scanned;
1753
1754 /*
1755 * If fast scanning failed then use a cached entry for a page block
1756 * that had free pages as the basis for starting a linear scan.
1757 */
1758 if (pfn == cc->migrate_pfn)
1759 pfn = reinit_migrate_pfn(cc);
1760
1761 return pfn;
1762 }
1763
1764 /*
1765 * Isolate all pages that can be migrated from the first suitable block,
1766 * starting at the block pointed to by the migrate scanner pfn within
1767 * compact_control.
1768 */
1769 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1770 {
1771 unsigned long block_start_pfn;
1772 unsigned long block_end_pfn;
1773 unsigned long low_pfn;
1774 struct page *page;
1775 const isolate_mode_t isolate_mode =
1776 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1777 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1778 bool fast_find_block;
1779
1780 /*
1781 * Start at where we last stopped, or beginning of the zone as
1782 * initialized by compact_zone(). The first failure will use
1783 * the lowest PFN as the starting point for linear scanning.
1784 */
1785 low_pfn = fast_find_migrateblock(cc);
1786 block_start_pfn = pageblock_start_pfn(low_pfn);
1787 if (block_start_pfn < cc->zone->zone_start_pfn)
1788 block_start_pfn = cc->zone->zone_start_pfn;
1789
1790 /*
1791 * fast_find_migrateblock marks a pageblock skipped so to avoid
1792 * the isolation_suitable check below, check whether the fast
1793 * search was successful.
1794 */
1795 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1796
1797 /* Only scan within a pageblock boundary */
1798 block_end_pfn = pageblock_end_pfn(low_pfn);
1799
1800 /*
1801 * Iterate over whole pageblocks until we find the first suitable.
1802 * Do not cross the free scanner.
1803 */
1804 for (; block_end_pfn <= cc->free_pfn;
1805 fast_find_block = false,
1806 low_pfn = block_end_pfn,
1807 block_start_pfn = block_end_pfn,
1808 block_end_pfn += pageblock_nr_pages) {
1809
1810 /*
1811 * This can potentially iterate a massively long zone with
1812 * many pageblocks unsuitable, so periodically check if we
1813 * need to schedule.
1814 */
1815 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1816 cond_resched();
1817
1818 page = pageblock_pfn_to_page(block_start_pfn,
1819 block_end_pfn, cc->zone);
1820 if (!page)
1821 continue;
1822
1823 /*
1824 * If isolation recently failed, do not retry. Only check the
1825 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1826 * to be visited multiple times. Assume skip was checked
1827 * before making it "skip" so other compaction instances do
1828 * not scan the same block.
1829 */
1830 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1831 !fast_find_block && !isolation_suitable(cc, page))
1832 continue;
1833
1834 /*
1835 * For async compaction, also only scan in MOVABLE blocks
1836 * without huge pages. Async compaction is optimistic to see
1837 * if the minimum amount of work satisfies the allocation.
1838 * The cached PFN is updated as it's possible that all
1839 * remaining blocks between source and target are unsuitable
1840 * and the compaction scanners fail to meet.
1841 */
1842 if (!suitable_migration_source(cc, page)) {
1843 update_cached_migrate(cc, block_end_pfn);
1844 continue;
1845 }
1846
1847 /* Perform the isolation */
1848 low_pfn = isolate_migratepages_block(cc, low_pfn,
1849 block_end_pfn, isolate_mode);
1850
1851 if (!low_pfn)
1852 return ISOLATE_ABORT;
1853
1854 /*
1855 * Either we isolated something and proceed with migration. Or
1856 * we failed and compact_zone should decide if we should
1857 * continue or not.
1858 */
1859 break;
1860 }
1861
1862 /* Record where migration scanner will be restarted. */
1863 cc->migrate_pfn = low_pfn;
1864
1865 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1866 }
1867
1868 /*
1869 * order == -1 is expected when compacting via
1870 * /proc/sys/vm/compact_memory
1871 */
1872 static inline bool is_via_compact_memory(int order)
1873 {
1874 return order == -1;
1875 }
1876
1877 static bool kswapd_is_running(pg_data_t *pgdat)
1878 {
1879 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1880 }
1881
1882 /*
1883 * A zone's fragmentation score is the external fragmentation wrt to the
1884 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1885 * in the range [0, 100].
1886 *
1887 * The scaling factor ensures that proactive compaction focuses on larger
1888 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1889 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1890 * and thus never exceeds the high threshold for proactive compaction.
1891 */
1892 static unsigned int fragmentation_score_zone(struct zone *zone)
1893 {
1894 unsigned long score;
1895
1896 score = zone->present_pages *
1897 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1898 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1899 }
1900
1901 /*
1902 * The per-node proactive (background) compaction process is started by its
1903 * corresponding kcompactd thread when the node's fragmentation score
1904 * exceeds the high threshold. The compaction process remains active till
1905 * the node's score falls below the low threshold, or one of the back-off
1906 * conditions is met.
1907 */
1908 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1909 {
1910 unsigned int score = 0;
1911 int zoneid;
1912
1913 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1914 struct zone *zone;
1915
1916 zone = &pgdat->node_zones[zoneid];
1917 score += fragmentation_score_zone(zone);
1918 }
1919
1920 return score;
1921 }
1922
1923 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1924 {
1925 unsigned int wmark_low;
1926
1927 /*
1928 * Cap the low watermak to avoid excessive compaction
1929 * activity in case a user sets the proactivess tunable
1930 * close to 100 (maximum).
1931 */
1932 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1933 return low ? wmark_low : min(wmark_low + 10, 100U);
1934 }
1935
1936 static bool should_proactive_compact_node(pg_data_t *pgdat)
1937 {
1938 int wmark_high;
1939
1940 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1941 return false;
1942
1943 wmark_high = fragmentation_score_wmark(pgdat, false);
1944 return fragmentation_score_node(pgdat) > wmark_high;
1945 }
1946
1947 static enum compact_result __compact_finished(struct compact_control *cc)
1948 {
1949 unsigned int order;
1950 const int migratetype = cc->migratetype;
1951 int ret;
1952
1953 /* Compaction run completes if the migrate and free scanner meet */
1954 if (compact_scanners_met(cc)) {
1955 /* Let the next compaction start anew. */
1956 reset_cached_positions(cc->zone);
1957
1958 /*
1959 * Mark that the PG_migrate_skip information should be cleared
1960 * by kswapd when it goes to sleep. kcompactd does not set the
1961 * flag itself as the decision to be clear should be directly
1962 * based on an allocation request.
1963 */
1964 if (cc->direct_compaction)
1965 cc->zone->compact_blockskip_flush = true;
1966
1967 if (cc->whole_zone)
1968 return COMPACT_COMPLETE;
1969 else
1970 return COMPACT_PARTIAL_SKIPPED;
1971 }
1972
1973 if (cc->proactive_compaction) {
1974 int score, wmark_low;
1975 pg_data_t *pgdat;
1976
1977 pgdat = cc->zone->zone_pgdat;
1978 if (kswapd_is_running(pgdat))
1979 return COMPACT_PARTIAL_SKIPPED;
1980
1981 score = fragmentation_score_zone(cc->zone);
1982 wmark_low = fragmentation_score_wmark(pgdat, true);
1983
1984 if (score > wmark_low)
1985 ret = COMPACT_CONTINUE;
1986 else
1987 ret = COMPACT_SUCCESS;
1988
1989 goto out;
1990 }
1991
1992 if (is_via_compact_memory(cc->order))
1993 return COMPACT_CONTINUE;
1994
1995 /*
1996 * Always finish scanning a pageblock to reduce the possibility of
1997 * fallbacks in the future. This is particularly important when
1998 * migration source is unmovable/reclaimable but it's not worth
1999 * special casing.
2000 */
2001 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2002 return COMPACT_CONTINUE;
2003
2004 /* Direct compactor: Is a suitable page free? */
2005 ret = COMPACT_NO_SUITABLE_PAGE;
2006 for (order = cc->order; order < MAX_ORDER; order++) {
2007 struct free_area *area = &cc->zone->free_area[order];
2008 bool can_steal;
2009
2010 /* Job done if page is free of the right migratetype */
2011 if (!free_area_empty(area, migratetype))
2012 return COMPACT_SUCCESS;
2013
2014 #ifdef CONFIG_CMA
2015 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2016 if (migratetype == MIGRATE_MOVABLE &&
2017 !free_area_empty(area, MIGRATE_CMA))
2018 return COMPACT_SUCCESS;
2019 #endif
2020 /*
2021 * Job done if allocation would steal freepages from
2022 * other migratetype buddy lists.
2023 */
2024 if (find_suitable_fallback(area, order, migratetype,
2025 true, &can_steal) != -1) {
2026
2027 /* movable pages are OK in any pageblock */
2028 if (migratetype == MIGRATE_MOVABLE)
2029 return COMPACT_SUCCESS;
2030
2031 /*
2032 * We are stealing for a non-movable allocation. Make
2033 * sure we finish compacting the current pageblock
2034 * first so it is as free as possible and we won't
2035 * have to steal another one soon. This only applies
2036 * to sync compaction, as async compaction operates
2037 * on pageblocks of the same migratetype.
2038 */
2039 if (cc->mode == MIGRATE_ASYNC ||
2040 IS_ALIGNED(cc->migrate_pfn,
2041 pageblock_nr_pages)) {
2042 return COMPACT_SUCCESS;
2043 }
2044
2045 ret = COMPACT_CONTINUE;
2046 break;
2047 }
2048 }
2049
2050 out:
2051 if (cc->contended || fatal_signal_pending(current))
2052 ret = COMPACT_CONTENDED;
2053
2054 return ret;
2055 }
2056
2057 static enum compact_result compact_finished(struct compact_control *cc)
2058 {
2059 int ret;
2060
2061 ret = __compact_finished(cc);
2062 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2063 if (ret == COMPACT_NO_SUITABLE_PAGE)
2064 ret = COMPACT_CONTINUE;
2065
2066 return ret;
2067 }
2068
2069 /*
2070 * compaction_suitable: Is this suitable to run compaction on this zone now?
2071 * Returns
2072 * COMPACT_SKIPPED - If there are too few free pages for compaction
2073 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2074 * COMPACT_CONTINUE - If compaction should run now
2075 */
2076 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2077 unsigned int alloc_flags,
2078 int highest_zoneidx,
2079 unsigned long wmark_target)
2080 {
2081 unsigned long watermark;
2082
2083 if (is_via_compact_memory(order))
2084 return COMPACT_CONTINUE;
2085
2086 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2087 /*
2088 * If watermarks for high-order allocation are already met, there
2089 * should be no need for compaction at all.
2090 */
2091 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2092 alloc_flags))
2093 return COMPACT_SUCCESS;
2094
2095 /*
2096 * Watermarks for order-0 must be met for compaction to be able to
2097 * isolate free pages for migration targets. This means that the
2098 * watermark and alloc_flags have to match, or be more pessimistic than
2099 * the check in __isolate_free_page(). We don't use the direct
2100 * compactor's alloc_flags, as they are not relevant for freepage
2101 * isolation. We however do use the direct compactor's highest_zoneidx
2102 * to skip over zones where lowmem reserves would prevent allocation
2103 * even if compaction succeeds.
2104 * For costly orders, we require low watermark instead of min for
2105 * compaction to proceed to increase its chances.
2106 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2107 * suitable migration targets
2108 */
2109 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2110 low_wmark_pages(zone) : min_wmark_pages(zone);
2111 watermark += compact_gap(order);
2112 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2113 ALLOC_CMA, wmark_target))
2114 return COMPACT_SKIPPED;
2115
2116 return COMPACT_CONTINUE;
2117 }
2118
2119 enum compact_result compaction_suitable(struct zone *zone, int order,
2120 unsigned int alloc_flags,
2121 int highest_zoneidx)
2122 {
2123 enum compact_result ret;
2124 int fragindex;
2125
2126 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2127 zone_page_state(zone, NR_FREE_PAGES));
2128 /*
2129 * fragmentation index determines if allocation failures are due to
2130 * low memory or external fragmentation
2131 *
2132 * index of -1000 would imply allocations might succeed depending on
2133 * watermarks, but we already failed the high-order watermark check
2134 * index towards 0 implies failure is due to lack of memory
2135 * index towards 1000 implies failure is due to fragmentation
2136 *
2137 * Only compact if a failure would be due to fragmentation. Also
2138 * ignore fragindex for non-costly orders where the alternative to
2139 * a successful reclaim/compaction is OOM. Fragindex and the
2140 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2141 * excessive compaction for costly orders, but it should not be at the
2142 * expense of system stability.
2143 */
2144 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2145 fragindex = fragmentation_index(zone, order);
2146 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2147 ret = COMPACT_NOT_SUITABLE_ZONE;
2148 }
2149
2150 trace_mm_compaction_suitable(zone, order, ret);
2151 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2152 ret = COMPACT_SKIPPED;
2153
2154 return ret;
2155 }
2156
2157 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2158 int alloc_flags)
2159 {
2160 struct zone *zone;
2161 struct zoneref *z;
2162
2163 /*
2164 * Make sure at least one zone would pass __compaction_suitable if we continue
2165 * retrying the reclaim.
2166 */
2167 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2168 ac->highest_zoneidx, ac->nodemask) {
2169 unsigned long available;
2170 enum compact_result compact_result;
2171
2172 /*
2173 * Do not consider all the reclaimable memory because we do not
2174 * want to trash just for a single high order allocation which
2175 * is even not guaranteed to appear even if __compaction_suitable
2176 * is happy about the watermark check.
2177 */
2178 available = zone_reclaimable_pages(zone) / order;
2179 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2180 compact_result = __compaction_suitable(zone, order, alloc_flags,
2181 ac->highest_zoneidx, available);
2182 if (compact_result != COMPACT_SKIPPED)
2183 return true;
2184 }
2185
2186 return false;
2187 }
2188
2189 static enum compact_result
2190 compact_zone(struct compact_control *cc, struct capture_control *capc)
2191 {
2192 enum compact_result ret;
2193 unsigned long start_pfn = cc->zone->zone_start_pfn;
2194 unsigned long end_pfn = zone_end_pfn(cc->zone);
2195 unsigned long last_migrated_pfn;
2196 const bool sync = cc->mode != MIGRATE_ASYNC;
2197 bool update_cached;
2198
2199 /*
2200 * These counters track activities during zone compaction. Initialize
2201 * them before compacting a new zone.
2202 */
2203 cc->total_migrate_scanned = 0;
2204 cc->total_free_scanned = 0;
2205 cc->nr_migratepages = 0;
2206 cc->nr_freepages = 0;
2207 INIT_LIST_HEAD(&cc->freepages);
2208 INIT_LIST_HEAD(&cc->migratepages);
2209
2210 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2211 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2212 cc->highest_zoneidx);
2213 /* Compaction is likely to fail */
2214 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2215 return ret;
2216
2217 /* huh, compaction_suitable is returning something unexpected */
2218 VM_BUG_ON(ret != COMPACT_CONTINUE);
2219
2220 /*
2221 * Clear pageblock skip if there were failures recently and compaction
2222 * is about to be retried after being deferred.
2223 */
2224 if (compaction_restarting(cc->zone, cc->order))
2225 __reset_isolation_suitable(cc->zone);
2226
2227 /*
2228 * Setup to move all movable pages to the end of the zone. Used cached
2229 * information on where the scanners should start (unless we explicitly
2230 * want to compact the whole zone), but check that it is initialised
2231 * by ensuring the values are within zone boundaries.
2232 */
2233 cc->fast_start_pfn = 0;
2234 if (cc->whole_zone) {
2235 cc->migrate_pfn = start_pfn;
2236 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2237 } else {
2238 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2239 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2240 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2241 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2242 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2243 }
2244 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2245 cc->migrate_pfn = start_pfn;
2246 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2247 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2248 }
2249
2250 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2251 cc->whole_zone = true;
2252 }
2253
2254 last_migrated_pfn = 0;
2255
2256 /*
2257 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2258 * the basis that some migrations will fail in ASYNC mode. However,
2259 * if the cached PFNs match and pageblocks are skipped due to having
2260 * no isolation candidates, then the sync state does not matter.
2261 * Until a pageblock with isolation candidates is found, keep the
2262 * cached PFNs in sync to avoid revisiting the same blocks.
2263 */
2264 update_cached = !sync &&
2265 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2266
2267 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2268 cc->free_pfn, end_pfn, sync);
2269
2270 migrate_prep_local();
2271
2272 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2273 int err;
2274 unsigned long start_pfn = cc->migrate_pfn;
2275
2276 /*
2277 * Avoid multiple rescans which can happen if a page cannot be
2278 * isolated (dirty/writeback in async mode) or if the migrated
2279 * pages are being allocated before the pageblock is cleared.
2280 * The first rescan will capture the entire pageblock for
2281 * migration. If it fails, it'll be marked skip and scanning
2282 * will proceed as normal.
2283 */
2284 cc->rescan = false;
2285 if (pageblock_start_pfn(last_migrated_pfn) ==
2286 pageblock_start_pfn(start_pfn)) {
2287 cc->rescan = true;
2288 }
2289
2290 switch (isolate_migratepages(cc)) {
2291 case ISOLATE_ABORT:
2292 ret = COMPACT_CONTENDED;
2293 putback_movable_pages(&cc->migratepages);
2294 cc->nr_migratepages = 0;
2295 goto out;
2296 case ISOLATE_NONE:
2297 if (update_cached) {
2298 cc->zone->compact_cached_migrate_pfn[1] =
2299 cc->zone->compact_cached_migrate_pfn[0];
2300 }
2301
2302 /*
2303 * We haven't isolated and migrated anything, but
2304 * there might still be unflushed migrations from
2305 * previous cc->order aligned block.
2306 */
2307 goto check_drain;
2308 case ISOLATE_SUCCESS:
2309 update_cached = false;
2310 last_migrated_pfn = start_pfn;
2311 ;
2312 }
2313
2314 err = migrate_pages(&cc->migratepages, compaction_alloc,
2315 compaction_free, (unsigned long)cc, cc->mode,
2316 MR_COMPACTION);
2317
2318 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2319 &cc->migratepages);
2320
2321 /* All pages were either migrated or will be released */
2322 cc->nr_migratepages = 0;
2323 if (err) {
2324 putback_movable_pages(&cc->migratepages);
2325 /*
2326 * migrate_pages() may return -ENOMEM when scanners meet
2327 * and we want compact_finished() to detect it
2328 */
2329 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2330 ret = COMPACT_CONTENDED;
2331 goto out;
2332 }
2333 /*
2334 * We failed to migrate at least one page in the current
2335 * order-aligned block, so skip the rest of it.
2336 */
2337 if (cc->direct_compaction &&
2338 (cc->mode == MIGRATE_ASYNC)) {
2339 cc->migrate_pfn = block_end_pfn(
2340 cc->migrate_pfn - 1, cc->order);
2341 /* Draining pcplists is useless in this case */
2342 last_migrated_pfn = 0;
2343 }
2344 }
2345
2346 check_drain:
2347 /*
2348 * Has the migration scanner moved away from the previous
2349 * cc->order aligned block where we migrated from? If yes,
2350 * flush the pages that were freed, so that they can merge and
2351 * compact_finished() can detect immediately if allocation
2352 * would succeed.
2353 */
2354 if (cc->order > 0 && last_migrated_pfn) {
2355 unsigned long current_block_start =
2356 block_start_pfn(cc->migrate_pfn, cc->order);
2357
2358 if (last_migrated_pfn < current_block_start) {
2359 lru_add_drain_cpu_zone(cc->zone);
2360 /* No more flushing until we migrate again */
2361 last_migrated_pfn = 0;
2362 }
2363 }
2364
2365 /* Stop if a page has been captured */
2366 if (capc && capc->page) {
2367 ret = COMPACT_SUCCESS;
2368 break;
2369 }
2370 }
2371
2372 out:
2373 /*
2374 * Release free pages and update where the free scanner should restart,
2375 * so we don't leave any returned pages behind in the next attempt.
2376 */
2377 if (cc->nr_freepages > 0) {
2378 unsigned long free_pfn = release_freepages(&cc->freepages);
2379
2380 cc->nr_freepages = 0;
2381 VM_BUG_ON(free_pfn == 0);
2382 /* The cached pfn is always the first in a pageblock */
2383 free_pfn = pageblock_start_pfn(free_pfn);
2384 /*
2385 * Only go back, not forward. The cached pfn might have been
2386 * already reset to zone end in compact_finished()
2387 */
2388 if (free_pfn > cc->zone->compact_cached_free_pfn)
2389 cc->zone->compact_cached_free_pfn = free_pfn;
2390 }
2391
2392 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2393 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2394
2395 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2396 cc->free_pfn, end_pfn, sync, ret);
2397
2398 return ret;
2399 }
2400
2401 static enum compact_result compact_zone_order(struct zone *zone, int order,
2402 gfp_t gfp_mask, enum compact_priority prio,
2403 unsigned int alloc_flags, int highest_zoneidx,
2404 struct page **capture)
2405 {
2406 enum compact_result ret;
2407 struct compact_control cc = {
2408 .order = order,
2409 .search_order = order,
2410 .gfp_mask = gfp_mask,
2411 .zone = zone,
2412 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2413 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2414 .alloc_flags = alloc_flags,
2415 .highest_zoneidx = highest_zoneidx,
2416 .direct_compaction = true,
2417 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2418 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2419 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2420 };
2421 struct capture_control capc = {
2422 .cc = &cc,
2423 .page = NULL,
2424 };
2425
2426 /*
2427 * Make sure the structs are really initialized before we expose the
2428 * capture control, in case we are interrupted and the interrupt handler
2429 * frees a page.
2430 */
2431 barrier();
2432 WRITE_ONCE(current->capture_control, &capc);
2433
2434 ret = compact_zone(&cc, &capc);
2435
2436 VM_BUG_ON(!list_empty(&cc.freepages));
2437 VM_BUG_ON(!list_empty(&cc.migratepages));
2438
2439 /*
2440 * Make sure we hide capture control first before we read the captured
2441 * page pointer, otherwise an interrupt could free and capture a page
2442 * and we would leak it.
2443 */
2444 WRITE_ONCE(current->capture_control, NULL);
2445 *capture = READ_ONCE(capc.page);
2446
2447 return ret;
2448 }
2449
2450 int sysctl_extfrag_threshold = 500;
2451
2452 /**
2453 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2454 * @gfp_mask: The GFP mask of the current allocation
2455 * @order: The order of the current allocation
2456 * @alloc_flags: The allocation flags of the current allocation
2457 * @ac: The context of current allocation
2458 * @prio: Determines how hard direct compaction should try to succeed
2459 * @capture: Pointer to free page created by compaction will be stored here
2460 *
2461 * This is the main entry point for direct page compaction.
2462 */
2463 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2464 unsigned int alloc_flags, const struct alloc_context *ac,
2465 enum compact_priority prio, struct page **capture)
2466 {
2467 int may_perform_io = gfp_mask & __GFP_IO;
2468 struct zoneref *z;
2469 struct zone *zone;
2470 enum compact_result rc = COMPACT_SKIPPED;
2471
2472 /*
2473 * Check if the GFP flags allow compaction - GFP_NOIO is really
2474 * tricky context because the migration might require IO
2475 */
2476 if (!may_perform_io)
2477 return COMPACT_SKIPPED;
2478
2479 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2480
2481 /* Compact each zone in the list */
2482 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2483 ac->highest_zoneidx, ac->nodemask) {
2484 enum compact_result status;
2485
2486 if (prio > MIN_COMPACT_PRIORITY
2487 && compaction_deferred(zone, order)) {
2488 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2489 continue;
2490 }
2491
2492 status = compact_zone_order(zone, order, gfp_mask, prio,
2493 alloc_flags, ac->highest_zoneidx, capture);
2494 rc = max(status, rc);
2495
2496 /* The allocation should succeed, stop compacting */
2497 if (status == COMPACT_SUCCESS) {
2498 /*
2499 * We think the allocation will succeed in this zone,
2500 * but it is not certain, hence the false. The caller
2501 * will repeat this with true if allocation indeed
2502 * succeeds in this zone.
2503 */
2504 compaction_defer_reset(zone, order, false);
2505
2506 break;
2507 }
2508
2509 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2510 status == COMPACT_PARTIAL_SKIPPED))
2511 /*
2512 * We think that allocation won't succeed in this zone
2513 * so we defer compaction there. If it ends up
2514 * succeeding after all, it will be reset.
2515 */
2516 defer_compaction(zone, order);
2517
2518 /*
2519 * We might have stopped compacting due to need_resched() in
2520 * async compaction, or due to a fatal signal detected. In that
2521 * case do not try further zones
2522 */
2523 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2524 || fatal_signal_pending(current))
2525 break;
2526 }
2527
2528 return rc;
2529 }
2530
2531 /*
2532 * Compact all zones within a node till each zone's fragmentation score
2533 * reaches within proactive compaction thresholds (as determined by the
2534 * proactiveness tunable).
2535 *
2536 * It is possible that the function returns before reaching score targets
2537 * due to various back-off conditions, such as, contention on per-node or
2538 * per-zone locks.
2539 */
2540 static void proactive_compact_node(pg_data_t *pgdat)
2541 {
2542 int zoneid;
2543 struct zone *zone;
2544 struct compact_control cc = {
2545 .order = -1,
2546 .mode = MIGRATE_SYNC_LIGHT,
2547 .ignore_skip_hint = true,
2548 .whole_zone = true,
2549 .gfp_mask = GFP_KERNEL,
2550 .proactive_compaction = true,
2551 };
2552
2553 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2554 zone = &pgdat->node_zones[zoneid];
2555 if (!populated_zone(zone))
2556 continue;
2557
2558 cc.zone = zone;
2559
2560 compact_zone(&cc, NULL);
2561
2562 VM_BUG_ON(!list_empty(&cc.freepages));
2563 VM_BUG_ON(!list_empty(&cc.migratepages));
2564 }
2565 }
2566
2567 /* Compact all zones within a node */
2568 static void compact_node(int nid)
2569 {
2570 pg_data_t *pgdat = NODE_DATA(nid);
2571 int zoneid;
2572 struct zone *zone;
2573 struct compact_control cc = {
2574 .order = -1,
2575 .mode = MIGRATE_SYNC,
2576 .ignore_skip_hint = true,
2577 .whole_zone = true,
2578 .gfp_mask = GFP_KERNEL,
2579 };
2580
2581
2582 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2583
2584 zone = &pgdat->node_zones[zoneid];
2585 if (!populated_zone(zone))
2586 continue;
2587
2588 cc.zone = zone;
2589
2590 compact_zone(&cc, NULL);
2591
2592 VM_BUG_ON(!list_empty(&cc.freepages));
2593 VM_BUG_ON(!list_empty(&cc.migratepages));
2594 }
2595 }
2596
2597 /* Compact all nodes in the system */
2598 static void compact_nodes(void)
2599 {
2600 int nid;
2601
2602 /* Flush pending updates to the LRU lists */
2603 lru_add_drain_all();
2604
2605 for_each_online_node(nid)
2606 compact_node(nid);
2607 }
2608
2609 /* The written value is actually unused, all memory is compacted */
2610 int sysctl_compact_memory;
2611
2612 /*
2613 * Tunable for proactive compaction. It determines how
2614 * aggressively the kernel should compact memory in the
2615 * background. It takes values in the range [0, 100].
2616 */
2617 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2618
2619 /*
2620 * This is the entry point for compacting all nodes via
2621 * /proc/sys/vm/compact_memory
2622 */
2623 int sysctl_compaction_handler(struct ctl_table *table, int write,
2624 void *buffer, size_t *length, loff_t *ppos)
2625 {
2626 if (write)
2627 compact_nodes();
2628
2629 return 0;
2630 }
2631
2632 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2633 static ssize_t sysfs_compact_node(struct device *dev,
2634 struct device_attribute *attr,
2635 const char *buf, size_t count)
2636 {
2637 int nid = dev->id;
2638
2639 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2640 /* Flush pending updates to the LRU lists */
2641 lru_add_drain_all();
2642
2643 compact_node(nid);
2644 }
2645
2646 return count;
2647 }
2648 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2649
2650 int compaction_register_node(struct node *node)
2651 {
2652 return device_create_file(&node->dev, &dev_attr_compact);
2653 }
2654
2655 void compaction_unregister_node(struct node *node)
2656 {
2657 return device_remove_file(&node->dev, &dev_attr_compact);
2658 }
2659 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2660
2661 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2662 {
2663 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2664 }
2665
2666 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2667 {
2668 int zoneid;
2669 struct zone *zone;
2670 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2671
2672 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2673 zone = &pgdat->node_zones[zoneid];
2674
2675 if (!populated_zone(zone))
2676 continue;
2677
2678 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2679 highest_zoneidx) == COMPACT_CONTINUE)
2680 return true;
2681 }
2682
2683 return false;
2684 }
2685
2686 static void kcompactd_do_work(pg_data_t *pgdat)
2687 {
2688 /*
2689 * With no special task, compact all zones so that a page of requested
2690 * order is allocatable.
2691 */
2692 int zoneid;
2693 struct zone *zone;
2694 struct compact_control cc = {
2695 .order = pgdat->kcompactd_max_order,
2696 .search_order = pgdat->kcompactd_max_order,
2697 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2698 .mode = MIGRATE_SYNC_LIGHT,
2699 .ignore_skip_hint = false,
2700 .gfp_mask = GFP_KERNEL,
2701 };
2702 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2703 cc.highest_zoneidx);
2704 count_compact_event(KCOMPACTD_WAKE);
2705
2706 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2707 int status;
2708
2709 zone = &pgdat->node_zones[zoneid];
2710 if (!populated_zone(zone))
2711 continue;
2712
2713 if (compaction_deferred(zone, cc.order))
2714 continue;
2715
2716 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2717 COMPACT_CONTINUE)
2718 continue;
2719
2720 if (kthread_should_stop())
2721 return;
2722
2723 cc.zone = zone;
2724 status = compact_zone(&cc, NULL);
2725
2726 if (status == COMPACT_SUCCESS) {
2727 compaction_defer_reset(zone, cc.order, false);
2728 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2729 /*
2730 * Buddy pages may become stranded on pcps that could
2731 * otherwise coalesce on the zone's free area for
2732 * order >= cc.order. This is ratelimited by the
2733 * upcoming deferral.
2734 */
2735 drain_all_pages(zone);
2736
2737 /*
2738 * We use sync migration mode here, so we defer like
2739 * sync direct compaction does.
2740 */
2741 defer_compaction(zone, cc.order);
2742 }
2743
2744 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2745 cc.total_migrate_scanned);
2746 count_compact_events(KCOMPACTD_FREE_SCANNED,
2747 cc.total_free_scanned);
2748
2749 VM_BUG_ON(!list_empty(&cc.freepages));
2750 VM_BUG_ON(!list_empty(&cc.migratepages));
2751 }
2752
2753 /*
2754 * Regardless of success, we are done until woken up next. But remember
2755 * the requested order/highest_zoneidx in case it was higher/tighter
2756 * than our current ones
2757 */
2758 if (pgdat->kcompactd_max_order <= cc.order)
2759 pgdat->kcompactd_max_order = 0;
2760 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2761 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2762 }
2763
2764 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2765 {
2766 if (!order)
2767 return;
2768
2769 if (pgdat->kcompactd_max_order < order)
2770 pgdat->kcompactd_max_order = order;
2771
2772 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2773 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2774
2775 /*
2776 * Pairs with implicit barrier in wait_event_freezable()
2777 * such that wakeups are not missed.
2778 */
2779 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2780 return;
2781
2782 if (!kcompactd_node_suitable(pgdat))
2783 return;
2784
2785 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2786 highest_zoneidx);
2787 wake_up_interruptible(&pgdat->kcompactd_wait);
2788 }
2789
2790 /*
2791 * The background compaction daemon, started as a kernel thread
2792 * from the init process.
2793 */
2794 static int kcompactd(void *p)
2795 {
2796 pg_data_t *pgdat = (pg_data_t*)p;
2797 struct task_struct *tsk = current;
2798 unsigned int proactive_defer = 0;
2799
2800 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2801
2802 if (!cpumask_empty(cpumask))
2803 set_cpus_allowed_ptr(tsk, cpumask);
2804
2805 set_freezable();
2806
2807 pgdat->kcompactd_max_order = 0;
2808 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2809
2810 while (!kthread_should_stop()) {
2811 unsigned long pflags;
2812
2813 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2814 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2815 kcompactd_work_requested(pgdat),
2816 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2817
2818 psi_memstall_enter(&pflags);
2819 kcompactd_do_work(pgdat);
2820 psi_memstall_leave(&pflags);
2821 continue;
2822 }
2823
2824 /* kcompactd wait timeout */
2825 if (should_proactive_compact_node(pgdat)) {
2826 unsigned int prev_score, score;
2827
2828 if (proactive_defer) {
2829 proactive_defer--;
2830 continue;
2831 }
2832 prev_score = fragmentation_score_node(pgdat);
2833 proactive_compact_node(pgdat);
2834 score = fragmentation_score_node(pgdat);
2835 /*
2836 * Defer proactive compaction if the fragmentation
2837 * score did not go down i.e. no progress made.
2838 */
2839 proactive_defer = score < prev_score ?
2840 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2841 }
2842 }
2843
2844 return 0;
2845 }
2846
2847 /*
2848 * This kcompactd start function will be called by init and node-hot-add.
2849 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2850 */
2851 int kcompactd_run(int nid)
2852 {
2853 pg_data_t *pgdat = NODE_DATA(nid);
2854 int ret = 0;
2855
2856 if (pgdat->kcompactd)
2857 return 0;
2858
2859 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2860 if (IS_ERR(pgdat->kcompactd)) {
2861 pr_err("Failed to start kcompactd on node %d\n", nid);
2862 ret = PTR_ERR(pgdat->kcompactd);
2863 pgdat->kcompactd = NULL;
2864 }
2865 return ret;
2866 }
2867
2868 /*
2869 * Called by memory hotplug when all memory in a node is offlined. Caller must
2870 * hold mem_hotplug_begin/end().
2871 */
2872 void kcompactd_stop(int nid)
2873 {
2874 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2875
2876 if (kcompactd) {
2877 kthread_stop(kcompactd);
2878 NODE_DATA(nid)->kcompactd = NULL;
2879 }
2880 }
2881
2882 /*
2883 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2884 * not required for correctness. So if the last cpu in a node goes
2885 * away, we get changed to run anywhere: as the first one comes back,
2886 * restore their cpu bindings.
2887 */
2888 static int kcompactd_cpu_online(unsigned int cpu)
2889 {
2890 int nid;
2891
2892 for_each_node_state(nid, N_MEMORY) {
2893 pg_data_t *pgdat = NODE_DATA(nid);
2894 const struct cpumask *mask;
2895
2896 mask = cpumask_of_node(pgdat->node_id);
2897
2898 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2899 /* One of our CPUs online: restore mask */
2900 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2901 }
2902 return 0;
2903 }
2904
2905 static int __init kcompactd_init(void)
2906 {
2907 int nid;
2908 int ret;
2909
2910 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2911 "mm/compaction:online",
2912 kcompactd_cpu_online, NULL);
2913 if (ret < 0) {
2914 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2915 return ret;
2916 }
2917
2918 for_each_node_state(nid, N_MEMORY)
2919 kcompactd_run(nid);
2920 return 0;
2921 }
2922 subsys_initcall(kcompactd_init)
2923
2924 #endif /* CONFIG_COMPACTION */