]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/compaction.c
mm, compaction: ignore fragindex from compaction_zonelist_suitable()
[mirror_ubuntu-bionic-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 struct page *page, *next;
53 unsigned long high_pfn = 0;
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
56 unsigned long pfn = page_to_pfn(page);
57 list_del(&page->lru);
58 __free_page(page);
59 if (pfn > high_pfn)
60 high_pfn = pfn;
61 }
62
63 return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68 unsigned int i, order, nr_pages;
69 struct page *page, *next;
70 LIST_HEAD(tmp_list);
71
72 list_for_each_entry_safe(page, next, list, lru) {
73 list_del(&page->lru);
74
75 order = page_private(page);
76 nr_pages = 1 << order;
77
78 post_alloc_hook(page, order, __GFP_MOVABLE);
79 if (order)
80 split_page(page, order);
81
82 for (i = 0; i < nr_pages; i++) {
83 list_add(&page->lru, &tmp_list);
84 page++;
85 }
86 }
87
88 list_splice(&tmp_list, list);
89 }
90
91 static inline bool migrate_async_suitable(int migratetype)
92 {
93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
94 }
95
96 #ifdef CONFIG_COMPACTION
97
98 int PageMovable(struct page *page)
99 {
100 struct address_space *mapping;
101
102 VM_BUG_ON_PAGE(!PageLocked(page), page);
103 if (!__PageMovable(page))
104 return 0;
105
106 mapping = page_mapping(page);
107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108 return 1;
109
110 return 0;
111 }
112 EXPORT_SYMBOL(PageMovable);
113
114 void __SetPageMovable(struct page *page, struct address_space *mapping)
115 {
116 VM_BUG_ON_PAGE(!PageLocked(page), page);
117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
119 }
120 EXPORT_SYMBOL(__SetPageMovable);
121
122 void __ClearPageMovable(struct page *page)
123 {
124 VM_BUG_ON_PAGE(!PageLocked(page), page);
125 VM_BUG_ON_PAGE(!PageMovable(page), page);
126 /*
127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 * flag so that VM can catch up released page by driver after isolation.
129 * With it, VM migration doesn't try to put it back.
130 */
131 page->mapping = (void *)((unsigned long)page->mapping &
132 PAGE_MAPPING_MOVABLE);
133 }
134 EXPORT_SYMBOL(__ClearPageMovable);
135
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
138
139 /*
140 * Compaction is deferred when compaction fails to result in a page
141 * allocation success. 1 << compact_defer_limit compactions are skipped up
142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
143 */
144 void defer_compaction(struct zone *zone, int order)
145 {
146 zone->compact_considered = 0;
147 zone->compact_defer_shift++;
148
149 if (order < zone->compact_order_failed)
150 zone->compact_order_failed = order;
151
152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
154
155 trace_mm_compaction_defer_compaction(zone, order);
156 }
157
158 /* Returns true if compaction should be skipped this time */
159 bool compaction_deferred(struct zone *zone, int order)
160 {
161 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
162
163 if (order < zone->compact_order_failed)
164 return false;
165
166 /* Avoid possible overflow */
167 if (++zone->compact_considered > defer_limit)
168 zone->compact_considered = defer_limit;
169
170 if (zone->compact_considered >= defer_limit)
171 return false;
172
173 trace_mm_compaction_deferred(zone, order);
174
175 return true;
176 }
177
178 /*
179 * Update defer tracking counters after successful compaction of given order,
180 * which means an allocation either succeeded (alloc_success == true) or is
181 * expected to succeed.
182 */
183 void compaction_defer_reset(struct zone *zone, int order,
184 bool alloc_success)
185 {
186 if (alloc_success) {
187 zone->compact_considered = 0;
188 zone->compact_defer_shift = 0;
189 }
190 if (order >= zone->compact_order_failed)
191 zone->compact_order_failed = order + 1;
192
193 trace_mm_compaction_defer_reset(zone, order);
194 }
195
196 /* Returns true if restarting compaction after many failures */
197 bool compaction_restarting(struct zone *zone, int order)
198 {
199 if (order < zone->compact_order_failed)
200 return false;
201
202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203 zone->compact_considered >= 1UL << zone->compact_defer_shift;
204 }
205
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
207 static inline bool isolation_suitable(struct compact_control *cc,
208 struct page *page)
209 {
210 if (cc->ignore_skip_hint)
211 return true;
212
213 return !get_pageblock_skip(page);
214 }
215
216 static void reset_cached_positions(struct zone *zone)
217 {
218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220 zone->compact_cached_free_pfn =
221 pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 }
223
224 /*
225 * This function is called to clear all cached information on pageblocks that
226 * should be skipped for page isolation when the migrate and free page scanner
227 * meet.
228 */
229 static void __reset_isolation_suitable(struct zone *zone)
230 {
231 unsigned long start_pfn = zone->zone_start_pfn;
232 unsigned long end_pfn = zone_end_pfn(zone);
233 unsigned long pfn;
234
235 zone->compact_blockskip_flush = false;
236
237 /* Walk the zone and mark every pageblock as suitable for isolation */
238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239 struct page *page;
240
241 cond_resched();
242
243 if (!pfn_valid(pfn))
244 continue;
245
246 page = pfn_to_page(pfn);
247 if (zone != page_zone(page))
248 continue;
249
250 clear_pageblock_skip(page);
251 }
252
253 reset_cached_positions(zone);
254 }
255
256 void reset_isolation_suitable(pg_data_t *pgdat)
257 {
258 int zoneid;
259
260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261 struct zone *zone = &pgdat->node_zones[zoneid];
262 if (!populated_zone(zone))
263 continue;
264
265 /* Only flush if a full compaction finished recently */
266 if (zone->compact_blockskip_flush)
267 __reset_isolation_suitable(zone);
268 }
269 }
270
271 /*
272 * If no pages were isolated then mark this pageblock to be skipped in the
273 * future. The information is later cleared by __reset_isolation_suitable().
274 */
275 static void update_pageblock_skip(struct compact_control *cc,
276 struct page *page, unsigned long nr_isolated,
277 bool migrate_scanner)
278 {
279 struct zone *zone = cc->zone;
280 unsigned long pfn;
281
282 if (cc->ignore_skip_hint)
283 return;
284
285 if (!page)
286 return;
287
288 if (nr_isolated)
289 return;
290
291 set_pageblock_skip(page);
292
293 pfn = page_to_pfn(page);
294
295 /* Update where async and sync compaction should restart */
296 if (migrate_scanner) {
297 if (pfn > zone->compact_cached_migrate_pfn[0])
298 zone->compact_cached_migrate_pfn[0] = pfn;
299 if (cc->mode != MIGRATE_ASYNC &&
300 pfn > zone->compact_cached_migrate_pfn[1])
301 zone->compact_cached_migrate_pfn[1] = pfn;
302 } else {
303 if (pfn < zone->compact_cached_free_pfn)
304 zone->compact_cached_free_pfn = pfn;
305 }
306 }
307 #else
308 static inline bool isolation_suitable(struct compact_control *cc,
309 struct page *page)
310 {
311 return true;
312 }
313
314 static void update_pageblock_skip(struct compact_control *cc,
315 struct page *page, unsigned long nr_isolated,
316 bool migrate_scanner)
317 {
318 }
319 #endif /* CONFIG_COMPACTION */
320
321 /*
322 * Compaction requires the taking of some coarse locks that are potentially
323 * very heavily contended. For async compaction, back out if the lock cannot
324 * be taken immediately. For sync compaction, spin on the lock if needed.
325 *
326 * Returns true if the lock is held
327 * Returns false if the lock is not held and compaction should abort
328 */
329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330 struct compact_control *cc)
331 {
332 if (cc->mode == MIGRATE_ASYNC) {
333 if (!spin_trylock_irqsave(lock, *flags)) {
334 cc->contended = true;
335 return false;
336 }
337 } else {
338 spin_lock_irqsave(lock, *flags);
339 }
340
341 return true;
342 }
343
344 /*
345 * Compaction requires the taking of some coarse locks that are potentially
346 * very heavily contended. The lock should be periodically unlocked to avoid
347 * having disabled IRQs for a long time, even when there is nobody waiting on
348 * the lock. It might also be that allowing the IRQs will result in
349 * need_resched() becoming true. If scheduling is needed, async compaction
350 * aborts. Sync compaction schedules.
351 * Either compaction type will also abort if a fatal signal is pending.
352 * In either case if the lock was locked, it is dropped and not regained.
353 *
354 * Returns true if compaction should abort due to fatal signal pending, or
355 * async compaction due to need_resched()
356 * Returns false when compaction can continue (sync compaction might have
357 * scheduled)
358 */
359 static bool compact_unlock_should_abort(spinlock_t *lock,
360 unsigned long flags, bool *locked, struct compact_control *cc)
361 {
362 if (*locked) {
363 spin_unlock_irqrestore(lock, flags);
364 *locked = false;
365 }
366
367 if (fatal_signal_pending(current)) {
368 cc->contended = true;
369 return true;
370 }
371
372 if (need_resched()) {
373 if (cc->mode == MIGRATE_ASYNC) {
374 cc->contended = true;
375 return true;
376 }
377 cond_resched();
378 }
379
380 return false;
381 }
382
383 /*
384 * Aside from avoiding lock contention, compaction also periodically checks
385 * need_resched() and either schedules in sync compaction or aborts async
386 * compaction. This is similar to what compact_unlock_should_abort() does, but
387 * is used where no lock is concerned.
388 *
389 * Returns false when no scheduling was needed, or sync compaction scheduled.
390 * Returns true when async compaction should abort.
391 */
392 static inline bool compact_should_abort(struct compact_control *cc)
393 {
394 /* async compaction aborts if contended */
395 if (need_resched()) {
396 if (cc->mode == MIGRATE_ASYNC) {
397 cc->contended = true;
398 return true;
399 }
400
401 cond_resched();
402 }
403
404 return false;
405 }
406
407 /*
408 * Isolate free pages onto a private freelist. If @strict is true, will abort
409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410 * (even though it may still end up isolating some pages).
411 */
412 static unsigned long isolate_freepages_block(struct compact_control *cc,
413 unsigned long *start_pfn,
414 unsigned long end_pfn,
415 struct list_head *freelist,
416 bool strict)
417 {
418 int nr_scanned = 0, total_isolated = 0;
419 struct page *cursor, *valid_page = NULL;
420 unsigned long flags = 0;
421 bool locked = false;
422 unsigned long blockpfn = *start_pfn;
423 unsigned int order;
424
425 cursor = pfn_to_page(blockpfn);
426
427 /* Isolate free pages. */
428 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429 int isolated;
430 struct page *page = cursor;
431
432 /*
433 * Periodically drop the lock (if held) regardless of its
434 * contention, to give chance to IRQs. Abort if fatal signal
435 * pending or async compaction detects need_resched()
436 */
437 if (!(blockpfn % SWAP_CLUSTER_MAX)
438 && compact_unlock_should_abort(&cc->zone->lock, flags,
439 &locked, cc))
440 break;
441
442 nr_scanned++;
443 if (!pfn_valid_within(blockpfn))
444 goto isolate_fail;
445
446 if (!valid_page)
447 valid_page = page;
448
449 /*
450 * For compound pages such as THP and hugetlbfs, we can save
451 * potentially a lot of iterations if we skip them at once.
452 * The check is racy, but we can consider only valid values
453 * and the only danger is skipping too much.
454 */
455 if (PageCompound(page)) {
456 unsigned int comp_order = compound_order(page);
457
458 if (likely(comp_order < MAX_ORDER)) {
459 blockpfn += (1UL << comp_order) - 1;
460 cursor += (1UL << comp_order) - 1;
461 }
462
463 goto isolate_fail;
464 }
465
466 if (!PageBuddy(page))
467 goto isolate_fail;
468
469 /*
470 * If we already hold the lock, we can skip some rechecking.
471 * Note that if we hold the lock now, checked_pageblock was
472 * already set in some previous iteration (or strict is true),
473 * so it is correct to skip the suitable migration target
474 * recheck as well.
475 */
476 if (!locked) {
477 /*
478 * The zone lock must be held to isolate freepages.
479 * Unfortunately this is a very coarse lock and can be
480 * heavily contended if there are parallel allocations
481 * or parallel compactions. For async compaction do not
482 * spin on the lock and we acquire the lock as late as
483 * possible.
484 */
485 locked = compact_trylock_irqsave(&cc->zone->lock,
486 &flags, cc);
487 if (!locked)
488 break;
489
490 /* Recheck this is a buddy page under lock */
491 if (!PageBuddy(page))
492 goto isolate_fail;
493 }
494
495 /* Found a free page, will break it into order-0 pages */
496 order = page_order(page);
497 isolated = __isolate_free_page(page, order);
498 if (!isolated)
499 break;
500 set_page_private(page, order);
501
502 total_isolated += isolated;
503 cc->nr_freepages += isolated;
504 list_add_tail(&page->lru, freelist);
505
506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507 blockpfn += isolated;
508 break;
509 }
510 /* Advance to the end of split page */
511 blockpfn += isolated - 1;
512 cursor += isolated - 1;
513 continue;
514
515 isolate_fail:
516 if (strict)
517 break;
518 else
519 continue;
520
521 }
522
523 if (locked)
524 spin_unlock_irqrestore(&cc->zone->lock, flags);
525
526 /*
527 * There is a tiny chance that we have read bogus compound_order(),
528 * so be careful to not go outside of the pageblock.
529 */
530 if (unlikely(blockpfn > end_pfn))
531 blockpfn = end_pfn;
532
533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534 nr_scanned, total_isolated);
535
536 /* Record how far we have got within the block */
537 *start_pfn = blockpfn;
538
539 /*
540 * If strict isolation is requested by CMA then check that all the
541 * pages requested were isolated. If there were any failures, 0 is
542 * returned and CMA will fail.
543 */
544 if (strict && blockpfn < end_pfn)
545 total_isolated = 0;
546
547 /* Update the pageblock-skip if the whole pageblock was scanned */
548 if (blockpfn == end_pfn)
549 update_pageblock_skip(cc, valid_page, total_isolated, false);
550
551 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552 if (total_isolated)
553 count_compact_events(COMPACTISOLATED, total_isolated);
554 return total_isolated;
555 }
556
557 /**
558 * isolate_freepages_range() - isolate free pages.
559 * @start_pfn: The first PFN to start isolating.
560 * @end_pfn: The one-past-last PFN.
561 *
562 * Non-free pages, invalid PFNs, or zone boundaries within the
563 * [start_pfn, end_pfn) range are considered errors, cause function to
564 * undo its actions and return zero.
565 *
566 * Otherwise, function returns one-past-the-last PFN of isolated page
567 * (which may be greater then end_pfn if end fell in a middle of
568 * a free page).
569 */
570 unsigned long
571 isolate_freepages_range(struct compact_control *cc,
572 unsigned long start_pfn, unsigned long end_pfn)
573 {
574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 LIST_HEAD(freelist);
576
577 pfn = start_pfn;
578 block_start_pfn = pageblock_start_pfn(pfn);
579 if (block_start_pfn < cc->zone->zone_start_pfn)
580 block_start_pfn = cc->zone->zone_start_pfn;
581 block_end_pfn = pageblock_end_pfn(pfn);
582
583 for (; pfn < end_pfn; pfn += isolated,
584 block_start_pfn = block_end_pfn,
585 block_end_pfn += pageblock_nr_pages) {
586 /* Protect pfn from changing by isolate_freepages_block */
587 unsigned long isolate_start_pfn = pfn;
588
589 block_end_pfn = min(block_end_pfn, end_pfn);
590
591 /*
592 * pfn could pass the block_end_pfn if isolated freepage
593 * is more than pageblock order. In this case, we adjust
594 * scanning range to right one.
595 */
596 if (pfn >= block_end_pfn) {
597 block_start_pfn = pageblock_start_pfn(pfn);
598 block_end_pfn = pageblock_end_pfn(pfn);
599 block_end_pfn = min(block_end_pfn, end_pfn);
600 }
601
602 if (!pageblock_pfn_to_page(block_start_pfn,
603 block_end_pfn, cc->zone))
604 break;
605
606 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607 block_end_pfn, &freelist, true);
608
609 /*
610 * In strict mode, isolate_freepages_block() returns 0 if
611 * there are any holes in the block (ie. invalid PFNs or
612 * non-free pages).
613 */
614 if (!isolated)
615 break;
616
617 /*
618 * If we managed to isolate pages, it is always (1 << n) *
619 * pageblock_nr_pages for some non-negative n. (Max order
620 * page may span two pageblocks).
621 */
622 }
623
624 /* __isolate_free_page() does not map the pages */
625 map_pages(&freelist);
626
627 if (pfn < end_pfn) {
628 /* Loop terminated early, cleanup. */
629 release_freepages(&freelist);
630 return 0;
631 }
632
633 /* We don't use freelists for anything. */
634 return pfn;
635 }
636
637 /* Update the number of anon and file isolated pages in the zone */
638 static void acct_isolated(struct zone *zone, struct compact_control *cc)
639 {
640 struct page *page;
641 unsigned int count[2] = { 0, };
642
643 if (list_empty(&cc->migratepages))
644 return;
645
646 list_for_each_entry(page, &cc->migratepages, lru)
647 count[!!page_is_file_cache(page)]++;
648
649 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]);
650 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]);
651 }
652
653 /* Similar to reclaim, but different enough that they don't share logic */
654 static bool too_many_isolated(struct zone *zone)
655 {
656 unsigned long active, inactive, isolated;
657
658 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
659 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
660 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
661 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
662 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
663 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
664
665 return isolated > (inactive + active) / 2;
666 }
667
668 /**
669 * isolate_migratepages_block() - isolate all migrate-able pages within
670 * a single pageblock
671 * @cc: Compaction control structure.
672 * @low_pfn: The first PFN to isolate
673 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
674 * @isolate_mode: Isolation mode to be used.
675 *
676 * Isolate all pages that can be migrated from the range specified by
677 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
678 * Returns zero if there is a fatal signal pending, otherwise PFN of the
679 * first page that was not scanned (which may be both less, equal to or more
680 * than end_pfn).
681 *
682 * The pages are isolated on cc->migratepages list (not required to be empty),
683 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
684 * is neither read nor updated.
685 */
686 static unsigned long
687 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
688 unsigned long end_pfn, isolate_mode_t isolate_mode)
689 {
690 struct zone *zone = cc->zone;
691 unsigned long nr_scanned = 0, nr_isolated = 0;
692 struct lruvec *lruvec;
693 unsigned long flags = 0;
694 bool locked = false;
695 struct page *page = NULL, *valid_page = NULL;
696 unsigned long start_pfn = low_pfn;
697 bool skip_on_failure = false;
698 unsigned long next_skip_pfn = 0;
699
700 /*
701 * Ensure that there are not too many pages isolated from the LRU
702 * list by either parallel reclaimers or compaction. If there are,
703 * delay for some time until fewer pages are isolated
704 */
705 while (unlikely(too_many_isolated(zone))) {
706 /* async migration should just abort */
707 if (cc->mode == MIGRATE_ASYNC)
708 return 0;
709
710 congestion_wait(BLK_RW_ASYNC, HZ/10);
711
712 if (fatal_signal_pending(current))
713 return 0;
714 }
715
716 if (compact_should_abort(cc))
717 return 0;
718
719 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
720 skip_on_failure = true;
721 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
722 }
723
724 /* Time to isolate some pages for migration */
725 for (; low_pfn < end_pfn; low_pfn++) {
726
727 if (skip_on_failure && low_pfn >= next_skip_pfn) {
728 /*
729 * We have isolated all migration candidates in the
730 * previous order-aligned block, and did not skip it due
731 * to failure. We should migrate the pages now and
732 * hopefully succeed compaction.
733 */
734 if (nr_isolated)
735 break;
736
737 /*
738 * We failed to isolate in the previous order-aligned
739 * block. Set the new boundary to the end of the
740 * current block. Note we can't simply increase
741 * next_skip_pfn by 1 << order, as low_pfn might have
742 * been incremented by a higher number due to skipping
743 * a compound or a high-order buddy page in the
744 * previous loop iteration.
745 */
746 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
747 }
748
749 /*
750 * Periodically drop the lock (if held) regardless of its
751 * contention, to give chance to IRQs. Abort async compaction
752 * if contended.
753 */
754 if (!(low_pfn % SWAP_CLUSTER_MAX)
755 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
756 &locked, cc))
757 break;
758
759 if (!pfn_valid_within(low_pfn))
760 goto isolate_fail;
761 nr_scanned++;
762
763 page = pfn_to_page(low_pfn);
764
765 if (!valid_page)
766 valid_page = page;
767
768 /*
769 * Skip if free. We read page order here without zone lock
770 * which is generally unsafe, but the race window is small and
771 * the worst thing that can happen is that we skip some
772 * potential isolation targets.
773 */
774 if (PageBuddy(page)) {
775 unsigned long freepage_order = page_order_unsafe(page);
776
777 /*
778 * Without lock, we cannot be sure that what we got is
779 * a valid page order. Consider only values in the
780 * valid order range to prevent low_pfn overflow.
781 */
782 if (freepage_order > 0 && freepage_order < MAX_ORDER)
783 low_pfn += (1UL << freepage_order) - 1;
784 continue;
785 }
786
787 /*
788 * Regardless of being on LRU, compound pages such as THP and
789 * hugetlbfs are not to be compacted. We can potentially save
790 * a lot of iterations if we skip them at once. The check is
791 * racy, but we can consider only valid values and the only
792 * danger is skipping too much.
793 */
794 if (PageCompound(page)) {
795 unsigned int comp_order = compound_order(page);
796
797 if (likely(comp_order < MAX_ORDER))
798 low_pfn += (1UL << comp_order) - 1;
799
800 goto isolate_fail;
801 }
802
803 /*
804 * Check may be lockless but that's ok as we recheck later.
805 * It's possible to migrate LRU and non-lru movable pages.
806 * Skip any other type of page
807 */
808 if (!PageLRU(page)) {
809 /*
810 * __PageMovable can return false positive so we need
811 * to verify it under page_lock.
812 */
813 if (unlikely(__PageMovable(page)) &&
814 !PageIsolated(page)) {
815 if (locked) {
816 spin_unlock_irqrestore(zone_lru_lock(zone),
817 flags);
818 locked = false;
819 }
820
821 if (isolate_movable_page(page, isolate_mode))
822 goto isolate_success;
823 }
824
825 goto isolate_fail;
826 }
827
828 /*
829 * Migration will fail if an anonymous page is pinned in memory,
830 * so avoid taking lru_lock and isolating it unnecessarily in an
831 * admittedly racy check.
832 */
833 if (!page_mapping(page) &&
834 page_count(page) > page_mapcount(page))
835 goto isolate_fail;
836
837 /* If we already hold the lock, we can skip some rechecking */
838 if (!locked) {
839 locked = compact_trylock_irqsave(zone_lru_lock(zone),
840 &flags, cc);
841 if (!locked)
842 break;
843
844 /* Recheck PageLRU and PageCompound under lock */
845 if (!PageLRU(page))
846 goto isolate_fail;
847
848 /*
849 * Page become compound since the non-locked check,
850 * and it's on LRU. It can only be a THP so the order
851 * is safe to read and it's 0 for tail pages.
852 */
853 if (unlikely(PageCompound(page))) {
854 low_pfn += (1UL << compound_order(page)) - 1;
855 goto isolate_fail;
856 }
857 }
858
859 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
860
861 /* Try isolate the page */
862 if (__isolate_lru_page(page, isolate_mode) != 0)
863 goto isolate_fail;
864
865 VM_BUG_ON_PAGE(PageCompound(page), page);
866
867 /* Successfully isolated */
868 del_page_from_lru_list(page, lruvec, page_lru(page));
869
870 isolate_success:
871 list_add(&page->lru, &cc->migratepages);
872 cc->nr_migratepages++;
873 nr_isolated++;
874
875 /*
876 * Record where we could have freed pages by migration and not
877 * yet flushed them to buddy allocator.
878 * - this is the lowest page that was isolated and likely be
879 * then freed by migration.
880 */
881 if (!cc->last_migrated_pfn)
882 cc->last_migrated_pfn = low_pfn;
883
884 /* Avoid isolating too much */
885 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
886 ++low_pfn;
887 break;
888 }
889
890 continue;
891 isolate_fail:
892 if (!skip_on_failure)
893 continue;
894
895 /*
896 * We have isolated some pages, but then failed. Release them
897 * instead of migrating, as we cannot form the cc->order buddy
898 * page anyway.
899 */
900 if (nr_isolated) {
901 if (locked) {
902 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
903 locked = false;
904 }
905 acct_isolated(zone, cc);
906 putback_movable_pages(&cc->migratepages);
907 cc->nr_migratepages = 0;
908 cc->last_migrated_pfn = 0;
909 nr_isolated = 0;
910 }
911
912 if (low_pfn < next_skip_pfn) {
913 low_pfn = next_skip_pfn - 1;
914 /*
915 * The check near the loop beginning would have updated
916 * next_skip_pfn too, but this is a bit simpler.
917 */
918 next_skip_pfn += 1UL << cc->order;
919 }
920 }
921
922 /*
923 * The PageBuddy() check could have potentially brought us outside
924 * the range to be scanned.
925 */
926 if (unlikely(low_pfn > end_pfn))
927 low_pfn = end_pfn;
928
929 if (locked)
930 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
931
932 /*
933 * Update the pageblock-skip information and cached scanner pfn,
934 * if the whole pageblock was scanned without isolating any page.
935 */
936 if (low_pfn == end_pfn)
937 update_pageblock_skip(cc, valid_page, nr_isolated, true);
938
939 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
940 nr_scanned, nr_isolated);
941
942 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
943 if (nr_isolated)
944 count_compact_events(COMPACTISOLATED, nr_isolated);
945
946 return low_pfn;
947 }
948
949 /**
950 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
951 * @cc: Compaction control structure.
952 * @start_pfn: The first PFN to start isolating.
953 * @end_pfn: The one-past-last PFN.
954 *
955 * Returns zero if isolation fails fatally due to e.g. pending signal.
956 * Otherwise, function returns one-past-the-last PFN of isolated page
957 * (which may be greater than end_pfn if end fell in a middle of a THP page).
958 */
959 unsigned long
960 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
961 unsigned long end_pfn)
962 {
963 unsigned long pfn, block_start_pfn, block_end_pfn;
964
965 /* Scan block by block. First and last block may be incomplete */
966 pfn = start_pfn;
967 block_start_pfn = pageblock_start_pfn(pfn);
968 if (block_start_pfn < cc->zone->zone_start_pfn)
969 block_start_pfn = cc->zone->zone_start_pfn;
970 block_end_pfn = pageblock_end_pfn(pfn);
971
972 for (; pfn < end_pfn; pfn = block_end_pfn,
973 block_start_pfn = block_end_pfn,
974 block_end_pfn += pageblock_nr_pages) {
975
976 block_end_pfn = min(block_end_pfn, end_pfn);
977
978 if (!pageblock_pfn_to_page(block_start_pfn,
979 block_end_pfn, cc->zone))
980 continue;
981
982 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
983 ISOLATE_UNEVICTABLE);
984
985 if (!pfn)
986 break;
987
988 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
989 break;
990 }
991 acct_isolated(cc->zone, cc);
992
993 return pfn;
994 }
995
996 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
997 #ifdef CONFIG_COMPACTION
998
999 /* Returns true if the page is within a block suitable for migration to */
1000 static bool suitable_migration_target(struct compact_control *cc,
1001 struct page *page)
1002 {
1003 if (cc->ignore_block_suitable)
1004 return true;
1005
1006 /* If the page is a large free page, then disallow migration */
1007 if (PageBuddy(page)) {
1008 /*
1009 * We are checking page_order without zone->lock taken. But
1010 * the only small danger is that we skip a potentially suitable
1011 * pageblock, so it's not worth to check order for valid range.
1012 */
1013 if (page_order_unsafe(page) >= pageblock_order)
1014 return false;
1015 }
1016
1017 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1018 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1019 return true;
1020
1021 /* Otherwise skip the block */
1022 return false;
1023 }
1024
1025 /*
1026 * Test whether the free scanner has reached the same or lower pageblock than
1027 * the migration scanner, and compaction should thus terminate.
1028 */
1029 static inline bool compact_scanners_met(struct compact_control *cc)
1030 {
1031 return (cc->free_pfn >> pageblock_order)
1032 <= (cc->migrate_pfn >> pageblock_order);
1033 }
1034
1035 /*
1036 * Based on information in the current compact_control, find blocks
1037 * suitable for isolating free pages from and then isolate them.
1038 */
1039 static void isolate_freepages(struct compact_control *cc)
1040 {
1041 struct zone *zone = cc->zone;
1042 struct page *page;
1043 unsigned long block_start_pfn; /* start of current pageblock */
1044 unsigned long isolate_start_pfn; /* exact pfn we start at */
1045 unsigned long block_end_pfn; /* end of current pageblock */
1046 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1047 struct list_head *freelist = &cc->freepages;
1048
1049 /*
1050 * Initialise the free scanner. The starting point is where we last
1051 * successfully isolated from, zone-cached value, or the end of the
1052 * zone when isolating for the first time. For looping we also need
1053 * this pfn aligned down to the pageblock boundary, because we do
1054 * block_start_pfn -= pageblock_nr_pages in the for loop.
1055 * For ending point, take care when isolating in last pageblock of a
1056 * a zone which ends in the middle of a pageblock.
1057 * The low boundary is the end of the pageblock the migration scanner
1058 * is using.
1059 */
1060 isolate_start_pfn = cc->free_pfn;
1061 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1062 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1063 zone_end_pfn(zone));
1064 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1065
1066 /*
1067 * Isolate free pages until enough are available to migrate the
1068 * pages on cc->migratepages. We stop searching if the migrate
1069 * and free page scanners meet or enough free pages are isolated.
1070 */
1071 for (; block_start_pfn >= low_pfn;
1072 block_end_pfn = block_start_pfn,
1073 block_start_pfn -= pageblock_nr_pages,
1074 isolate_start_pfn = block_start_pfn) {
1075 /*
1076 * This can iterate a massively long zone without finding any
1077 * suitable migration targets, so periodically check if we need
1078 * to schedule, or even abort async compaction.
1079 */
1080 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1081 && compact_should_abort(cc))
1082 break;
1083
1084 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1085 zone);
1086 if (!page)
1087 continue;
1088
1089 /* Check the block is suitable for migration */
1090 if (!suitable_migration_target(cc, page))
1091 continue;
1092
1093 /* If isolation recently failed, do not retry */
1094 if (!isolation_suitable(cc, page))
1095 continue;
1096
1097 /* Found a block suitable for isolating free pages from. */
1098 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1099 freelist, false);
1100
1101 /*
1102 * If we isolated enough freepages, or aborted due to lock
1103 * contention, terminate.
1104 */
1105 if ((cc->nr_freepages >= cc->nr_migratepages)
1106 || cc->contended) {
1107 if (isolate_start_pfn >= block_end_pfn) {
1108 /*
1109 * Restart at previous pageblock if more
1110 * freepages can be isolated next time.
1111 */
1112 isolate_start_pfn =
1113 block_start_pfn - pageblock_nr_pages;
1114 }
1115 break;
1116 } else if (isolate_start_pfn < block_end_pfn) {
1117 /*
1118 * If isolation failed early, do not continue
1119 * needlessly.
1120 */
1121 break;
1122 }
1123 }
1124
1125 /* __isolate_free_page() does not map the pages */
1126 map_pages(freelist);
1127
1128 /*
1129 * Record where the free scanner will restart next time. Either we
1130 * broke from the loop and set isolate_start_pfn based on the last
1131 * call to isolate_freepages_block(), or we met the migration scanner
1132 * and the loop terminated due to isolate_start_pfn < low_pfn
1133 */
1134 cc->free_pfn = isolate_start_pfn;
1135 }
1136
1137 /*
1138 * This is a migrate-callback that "allocates" freepages by taking pages
1139 * from the isolated freelists in the block we are migrating to.
1140 */
1141 static struct page *compaction_alloc(struct page *migratepage,
1142 unsigned long data,
1143 int **result)
1144 {
1145 struct compact_control *cc = (struct compact_control *)data;
1146 struct page *freepage;
1147
1148 /*
1149 * Isolate free pages if necessary, and if we are not aborting due to
1150 * contention.
1151 */
1152 if (list_empty(&cc->freepages)) {
1153 if (!cc->contended)
1154 isolate_freepages(cc);
1155
1156 if (list_empty(&cc->freepages))
1157 return NULL;
1158 }
1159
1160 freepage = list_entry(cc->freepages.next, struct page, lru);
1161 list_del(&freepage->lru);
1162 cc->nr_freepages--;
1163
1164 return freepage;
1165 }
1166
1167 /*
1168 * This is a migrate-callback that "frees" freepages back to the isolated
1169 * freelist. All pages on the freelist are from the same zone, so there is no
1170 * special handling needed for NUMA.
1171 */
1172 static void compaction_free(struct page *page, unsigned long data)
1173 {
1174 struct compact_control *cc = (struct compact_control *)data;
1175
1176 list_add(&page->lru, &cc->freepages);
1177 cc->nr_freepages++;
1178 }
1179
1180 /* possible outcome of isolate_migratepages */
1181 typedef enum {
1182 ISOLATE_ABORT, /* Abort compaction now */
1183 ISOLATE_NONE, /* No pages isolated, continue scanning */
1184 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1185 } isolate_migrate_t;
1186
1187 /*
1188 * Allow userspace to control policy on scanning the unevictable LRU for
1189 * compactable pages.
1190 */
1191 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1192
1193 /*
1194 * Isolate all pages that can be migrated from the first suitable block,
1195 * starting at the block pointed to by the migrate scanner pfn within
1196 * compact_control.
1197 */
1198 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1199 struct compact_control *cc)
1200 {
1201 unsigned long block_start_pfn;
1202 unsigned long block_end_pfn;
1203 unsigned long low_pfn;
1204 struct page *page;
1205 const isolate_mode_t isolate_mode =
1206 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1207 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1208
1209 /*
1210 * Start at where we last stopped, or beginning of the zone as
1211 * initialized by compact_zone()
1212 */
1213 low_pfn = cc->migrate_pfn;
1214 block_start_pfn = pageblock_start_pfn(low_pfn);
1215 if (block_start_pfn < zone->zone_start_pfn)
1216 block_start_pfn = zone->zone_start_pfn;
1217
1218 /* Only scan within a pageblock boundary */
1219 block_end_pfn = pageblock_end_pfn(low_pfn);
1220
1221 /*
1222 * Iterate over whole pageblocks until we find the first suitable.
1223 * Do not cross the free scanner.
1224 */
1225 for (; block_end_pfn <= cc->free_pfn;
1226 low_pfn = block_end_pfn,
1227 block_start_pfn = block_end_pfn,
1228 block_end_pfn += pageblock_nr_pages) {
1229
1230 /*
1231 * This can potentially iterate a massively long zone with
1232 * many pageblocks unsuitable, so periodically check if we
1233 * need to schedule, or even abort async compaction.
1234 */
1235 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1236 && compact_should_abort(cc))
1237 break;
1238
1239 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1240 zone);
1241 if (!page)
1242 continue;
1243
1244 /* If isolation recently failed, do not retry */
1245 if (!isolation_suitable(cc, page))
1246 continue;
1247
1248 /*
1249 * For async compaction, also only scan in MOVABLE blocks.
1250 * Async compaction is optimistic to see if the minimum amount
1251 * of work satisfies the allocation.
1252 */
1253 if (cc->mode == MIGRATE_ASYNC &&
1254 !migrate_async_suitable(get_pageblock_migratetype(page)))
1255 continue;
1256
1257 /* Perform the isolation */
1258 low_pfn = isolate_migratepages_block(cc, low_pfn,
1259 block_end_pfn, isolate_mode);
1260
1261 if (!low_pfn || cc->contended) {
1262 acct_isolated(zone, cc);
1263 return ISOLATE_ABORT;
1264 }
1265
1266 /*
1267 * Either we isolated something and proceed with migration. Or
1268 * we failed and compact_zone should decide if we should
1269 * continue or not.
1270 */
1271 break;
1272 }
1273
1274 acct_isolated(zone, cc);
1275 /* Record where migration scanner will be restarted. */
1276 cc->migrate_pfn = low_pfn;
1277
1278 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1279 }
1280
1281 /*
1282 * order == -1 is expected when compacting via
1283 * /proc/sys/vm/compact_memory
1284 */
1285 static inline bool is_via_compact_memory(int order)
1286 {
1287 return order == -1;
1288 }
1289
1290 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1291 const int migratetype)
1292 {
1293 unsigned int order;
1294 unsigned long watermark;
1295
1296 if (cc->contended || fatal_signal_pending(current))
1297 return COMPACT_CONTENDED;
1298
1299 /* Compaction run completes if the migrate and free scanner meet */
1300 if (compact_scanners_met(cc)) {
1301 /* Let the next compaction start anew. */
1302 reset_cached_positions(zone);
1303
1304 /*
1305 * Mark that the PG_migrate_skip information should be cleared
1306 * by kswapd when it goes to sleep. kcompactd does not set the
1307 * flag itself as the decision to be clear should be directly
1308 * based on an allocation request.
1309 */
1310 if (cc->direct_compaction)
1311 zone->compact_blockskip_flush = true;
1312
1313 if (cc->whole_zone)
1314 return COMPACT_COMPLETE;
1315 else
1316 return COMPACT_PARTIAL_SKIPPED;
1317 }
1318
1319 if (is_via_compact_memory(cc->order))
1320 return COMPACT_CONTINUE;
1321
1322 /* Compaction run is not finished if the watermark is not met */
1323 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1324
1325 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1326 cc->alloc_flags))
1327 return COMPACT_CONTINUE;
1328
1329 /* Direct compactor: Is a suitable page free? */
1330 for (order = cc->order; order < MAX_ORDER; order++) {
1331 struct free_area *area = &zone->free_area[order];
1332 bool can_steal;
1333
1334 /* Job done if page is free of the right migratetype */
1335 if (!list_empty(&area->free_list[migratetype]))
1336 return COMPACT_SUCCESS;
1337
1338 #ifdef CONFIG_CMA
1339 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1340 if (migratetype == MIGRATE_MOVABLE &&
1341 !list_empty(&area->free_list[MIGRATE_CMA]))
1342 return COMPACT_SUCCESS;
1343 #endif
1344 /*
1345 * Job done if allocation would steal freepages from
1346 * other migratetype buddy lists.
1347 */
1348 if (find_suitable_fallback(area, order, migratetype,
1349 true, &can_steal) != -1)
1350 return COMPACT_SUCCESS;
1351 }
1352
1353 return COMPACT_NO_SUITABLE_PAGE;
1354 }
1355
1356 static enum compact_result compact_finished(struct zone *zone,
1357 struct compact_control *cc,
1358 const int migratetype)
1359 {
1360 int ret;
1361
1362 ret = __compact_finished(zone, cc, migratetype);
1363 trace_mm_compaction_finished(zone, cc->order, ret);
1364 if (ret == COMPACT_NO_SUITABLE_PAGE)
1365 ret = COMPACT_CONTINUE;
1366
1367 return ret;
1368 }
1369
1370 /*
1371 * compaction_suitable: Is this suitable to run compaction on this zone now?
1372 * Returns
1373 * COMPACT_SKIPPED - If there are too few free pages for compaction
1374 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1375 * COMPACT_CONTINUE - If compaction should run now
1376 */
1377 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1378 unsigned int alloc_flags,
1379 int classzone_idx,
1380 unsigned long wmark_target)
1381 {
1382 unsigned long watermark;
1383
1384 if (is_via_compact_memory(order))
1385 return COMPACT_CONTINUE;
1386
1387 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1388 /*
1389 * If watermarks for high-order allocation are already met, there
1390 * should be no need for compaction at all.
1391 */
1392 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1393 alloc_flags))
1394 return COMPACT_SUCCESS;
1395
1396 /*
1397 * Watermarks for order-0 must be met for compaction to be able to
1398 * isolate free pages for migration targets. This means that the
1399 * watermark and alloc_flags have to match, or be more pessimistic than
1400 * the check in __isolate_free_page(). We don't use the direct
1401 * compactor's alloc_flags, as they are not relevant for freepage
1402 * isolation. We however do use the direct compactor's classzone_idx to
1403 * skip over zones where lowmem reserves would prevent allocation even
1404 * if compaction succeeds.
1405 * For costly orders, we require low watermark instead of min for
1406 * compaction to proceed to increase its chances.
1407 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1408 * suitable migration targets
1409 */
1410 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1411 low_wmark_pages(zone) : min_wmark_pages(zone);
1412 watermark += compact_gap(order);
1413 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1414 ALLOC_CMA, wmark_target))
1415 return COMPACT_SKIPPED;
1416
1417 return COMPACT_CONTINUE;
1418 }
1419
1420 enum compact_result compaction_suitable(struct zone *zone, int order,
1421 unsigned int alloc_flags,
1422 int classzone_idx)
1423 {
1424 enum compact_result ret;
1425 int fragindex;
1426
1427 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1428 zone_page_state(zone, NR_FREE_PAGES));
1429 /*
1430 * fragmentation index determines if allocation failures are due to
1431 * low memory or external fragmentation
1432 *
1433 * index of -1000 would imply allocations might succeed depending on
1434 * watermarks, but we already failed the high-order watermark check
1435 * index towards 0 implies failure is due to lack of memory
1436 * index towards 1000 implies failure is due to fragmentation
1437 *
1438 * Only compact if a failure would be due to fragmentation.
1439 */
1440 if (ret == COMPACT_CONTINUE) {
1441 fragindex = fragmentation_index(zone, order);
1442 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1443 ret = COMPACT_NOT_SUITABLE_ZONE;
1444 }
1445
1446 trace_mm_compaction_suitable(zone, order, ret);
1447 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1448 ret = COMPACT_SKIPPED;
1449
1450 return ret;
1451 }
1452
1453 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1454 int alloc_flags)
1455 {
1456 struct zone *zone;
1457 struct zoneref *z;
1458
1459 /*
1460 * Make sure at least one zone would pass __compaction_suitable if we continue
1461 * retrying the reclaim.
1462 */
1463 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1464 ac->nodemask) {
1465 unsigned long available;
1466 enum compact_result compact_result;
1467
1468 /*
1469 * Do not consider all the reclaimable memory because we do not
1470 * want to trash just for a single high order allocation which
1471 * is even not guaranteed to appear even if __compaction_suitable
1472 * is happy about the watermark check.
1473 */
1474 available = zone_reclaimable_pages(zone) / order;
1475 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1476 compact_result = __compaction_suitable(zone, order, alloc_flags,
1477 ac_classzone_idx(ac), available);
1478 if (compact_result != COMPACT_SKIPPED)
1479 return true;
1480 }
1481
1482 return false;
1483 }
1484
1485 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1486 {
1487 enum compact_result ret;
1488 unsigned long start_pfn = zone->zone_start_pfn;
1489 unsigned long end_pfn = zone_end_pfn(zone);
1490 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1491 const bool sync = cc->mode != MIGRATE_ASYNC;
1492
1493 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1494 cc->classzone_idx);
1495 /* Compaction is likely to fail */
1496 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1497 return ret;
1498
1499 /* huh, compaction_suitable is returning something unexpected */
1500 VM_BUG_ON(ret != COMPACT_CONTINUE);
1501
1502 /*
1503 * Clear pageblock skip if there were failures recently and compaction
1504 * is about to be retried after being deferred.
1505 */
1506 if (compaction_restarting(zone, cc->order))
1507 __reset_isolation_suitable(zone);
1508
1509 /*
1510 * Setup to move all movable pages to the end of the zone. Used cached
1511 * information on where the scanners should start (unless we explicitly
1512 * want to compact the whole zone), but check that it is initialised
1513 * by ensuring the values are within zone boundaries.
1514 */
1515 if (cc->whole_zone) {
1516 cc->migrate_pfn = start_pfn;
1517 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1518 } else {
1519 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1520 cc->free_pfn = zone->compact_cached_free_pfn;
1521 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1522 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1523 zone->compact_cached_free_pfn = cc->free_pfn;
1524 }
1525 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1526 cc->migrate_pfn = start_pfn;
1527 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1528 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1529 }
1530
1531 if (cc->migrate_pfn == start_pfn)
1532 cc->whole_zone = true;
1533 }
1534
1535 cc->last_migrated_pfn = 0;
1536
1537 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1538 cc->free_pfn, end_pfn, sync);
1539
1540 migrate_prep_local();
1541
1542 while ((ret = compact_finished(zone, cc, migratetype)) ==
1543 COMPACT_CONTINUE) {
1544 int err;
1545
1546 switch (isolate_migratepages(zone, cc)) {
1547 case ISOLATE_ABORT:
1548 ret = COMPACT_CONTENDED;
1549 putback_movable_pages(&cc->migratepages);
1550 cc->nr_migratepages = 0;
1551 goto out;
1552 case ISOLATE_NONE:
1553 /*
1554 * We haven't isolated and migrated anything, but
1555 * there might still be unflushed migrations from
1556 * previous cc->order aligned block.
1557 */
1558 goto check_drain;
1559 case ISOLATE_SUCCESS:
1560 ;
1561 }
1562
1563 err = migrate_pages(&cc->migratepages, compaction_alloc,
1564 compaction_free, (unsigned long)cc, cc->mode,
1565 MR_COMPACTION);
1566
1567 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1568 &cc->migratepages);
1569
1570 /* All pages were either migrated or will be released */
1571 cc->nr_migratepages = 0;
1572 if (err) {
1573 putback_movable_pages(&cc->migratepages);
1574 /*
1575 * migrate_pages() may return -ENOMEM when scanners meet
1576 * and we want compact_finished() to detect it
1577 */
1578 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1579 ret = COMPACT_CONTENDED;
1580 goto out;
1581 }
1582 /*
1583 * We failed to migrate at least one page in the current
1584 * order-aligned block, so skip the rest of it.
1585 */
1586 if (cc->direct_compaction &&
1587 (cc->mode == MIGRATE_ASYNC)) {
1588 cc->migrate_pfn = block_end_pfn(
1589 cc->migrate_pfn - 1, cc->order);
1590 /* Draining pcplists is useless in this case */
1591 cc->last_migrated_pfn = 0;
1592
1593 }
1594 }
1595
1596 check_drain:
1597 /*
1598 * Has the migration scanner moved away from the previous
1599 * cc->order aligned block where we migrated from? If yes,
1600 * flush the pages that were freed, so that they can merge and
1601 * compact_finished() can detect immediately if allocation
1602 * would succeed.
1603 */
1604 if (cc->order > 0 && cc->last_migrated_pfn) {
1605 int cpu;
1606 unsigned long current_block_start =
1607 block_start_pfn(cc->migrate_pfn, cc->order);
1608
1609 if (cc->last_migrated_pfn < current_block_start) {
1610 cpu = get_cpu();
1611 lru_add_drain_cpu(cpu);
1612 drain_local_pages(zone);
1613 put_cpu();
1614 /* No more flushing until we migrate again */
1615 cc->last_migrated_pfn = 0;
1616 }
1617 }
1618
1619 }
1620
1621 out:
1622 /*
1623 * Release free pages and update where the free scanner should restart,
1624 * so we don't leave any returned pages behind in the next attempt.
1625 */
1626 if (cc->nr_freepages > 0) {
1627 unsigned long free_pfn = release_freepages(&cc->freepages);
1628
1629 cc->nr_freepages = 0;
1630 VM_BUG_ON(free_pfn == 0);
1631 /* The cached pfn is always the first in a pageblock */
1632 free_pfn = pageblock_start_pfn(free_pfn);
1633 /*
1634 * Only go back, not forward. The cached pfn might have been
1635 * already reset to zone end in compact_finished()
1636 */
1637 if (free_pfn > zone->compact_cached_free_pfn)
1638 zone->compact_cached_free_pfn = free_pfn;
1639 }
1640
1641 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1642 cc->free_pfn, end_pfn, sync, ret);
1643
1644 return ret;
1645 }
1646
1647 static enum compact_result compact_zone_order(struct zone *zone, int order,
1648 gfp_t gfp_mask, enum compact_priority prio,
1649 unsigned int alloc_flags, int classzone_idx)
1650 {
1651 enum compact_result ret;
1652 struct compact_control cc = {
1653 .nr_freepages = 0,
1654 .nr_migratepages = 0,
1655 .order = order,
1656 .gfp_mask = gfp_mask,
1657 .zone = zone,
1658 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1659 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1660 .alloc_flags = alloc_flags,
1661 .classzone_idx = classzone_idx,
1662 .direct_compaction = true,
1663 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1664 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1665 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1666 };
1667 INIT_LIST_HEAD(&cc.freepages);
1668 INIT_LIST_HEAD(&cc.migratepages);
1669
1670 ret = compact_zone(zone, &cc);
1671
1672 VM_BUG_ON(!list_empty(&cc.freepages));
1673 VM_BUG_ON(!list_empty(&cc.migratepages));
1674
1675 return ret;
1676 }
1677
1678 int sysctl_extfrag_threshold = 500;
1679
1680 /**
1681 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1682 * @gfp_mask: The GFP mask of the current allocation
1683 * @order: The order of the current allocation
1684 * @alloc_flags: The allocation flags of the current allocation
1685 * @ac: The context of current allocation
1686 * @mode: The migration mode for async, sync light, or sync migration
1687 *
1688 * This is the main entry point for direct page compaction.
1689 */
1690 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1691 unsigned int alloc_flags, const struct alloc_context *ac,
1692 enum compact_priority prio)
1693 {
1694 int may_enter_fs = gfp_mask & __GFP_FS;
1695 int may_perform_io = gfp_mask & __GFP_IO;
1696 struct zoneref *z;
1697 struct zone *zone;
1698 enum compact_result rc = COMPACT_SKIPPED;
1699
1700 /* Check if the GFP flags allow compaction */
1701 if (!may_enter_fs || !may_perform_io)
1702 return COMPACT_SKIPPED;
1703
1704 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1705
1706 /* Compact each zone in the list */
1707 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1708 ac->nodemask) {
1709 enum compact_result status;
1710
1711 if (prio > MIN_COMPACT_PRIORITY
1712 && compaction_deferred(zone, order)) {
1713 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1714 continue;
1715 }
1716
1717 status = compact_zone_order(zone, order, gfp_mask, prio,
1718 alloc_flags, ac_classzone_idx(ac));
1719 rc = max(status, rc);
1720
1721 /* The allocation should succeed, stop compacting */
1722 if (status == COMPACT_SUCCESS) {
1723 /*
1724 * We think the allocation will succeed in this zone,
1725 * but it is not certain, hence the false. The caller
1726 * will repeat this with true if allocation indeed
1727 * succeeds in this zone.
1728 */
1729 compaction_defer_reset(zone, order, false);
1730
1731 break;
1732 }
1733
1734 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1735 status == COMPACT_PARTIAL_SKIPPED))
1736 /*
1737 * We think that allocation won't succeed in this zone
1738 * so we defer compaction there. If it ends up
1739 * succeeding after all, it will be reset.
1740 */
1741 defer_compaction(zone, order);
1742
1743 /*
1744 * We might have stopped compacting due to need_resched() in
1745 * async compaction, or due to a fatal signal detected. In that
1746 * case do not try further zones
1747 */
1748 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1749 || fatal_signal_pending(current))
1750 break;
1751 }
1752
1753 return rc;
1754 }
1755
1756
1757 /* Compact all zones within a node */
1758 static void compact_node(int nid)
1759 {
1760 pg_data_t *pgdat = NODE_DATA(nid);
1761 int zoneid;
1762 struct zone *zone;
1763 struct compact_control cc = {
1764 .order = -1,
1765 .mode = MIGRATE_SYNC,
1766 .ignore_skip_hint = true,
1767 .whole_zone = true,
1768 };
1769
1770
1771 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1772
1773 zone = &pgdat->node_zones[zoneid];
1774 if (!populated_zone(zone))
1775 continue;
1776
1777 cc.nr_freepages = 0;
1778 cc.nr_migratepages = 0;
1779 cc.zone = zone;
1780 INIT_LIST_HEAD(&cc.freepages);
1781 INIT_LIST_HEAD(&cc.migratepages);
1782
1783 compact_zone(zone, &cc);
1784
1785 VM_BUG_ON(!list_empty(&cc.freepages));
1786 VM_BUG_ON(!list_empty(&cc.migratepages));
1787 }
1788 }
1789
1790 /* Compact all nodes in the system */
1791 static void compact_nodes(void)
1792 {
1793 int nid;
1794
1795 /* Flush pending updates to the LRU lists */
1796 lru_add_drain_all();
1797
1798 for_each_online_node(nid)
1799 compact_node(nid);
1800 }
1801
1802 /* The written value is actually unused, all memory is compacted */
1803 int sysctl_compact_memory;
1804
1805 /*
1806 * This is the entry point for compacting all nodes via
1807 * /proc/sys/vm/compact_memory
1808 */
1809 int sysctl_compaction_handler(struct ctl_table *table, int write,
1810 void __user *buffer, size_t *length, loff_t *ppos)
1811 {
1812 if (write)
1813 compact_nodes();
1814
1815 return 0;
1816 }
1817
1818 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1819 void __user *buffer, size_t *length, loff_t *ppos)
1820 {
1821 proc_dointvec_minmax(table, write, buffer, length, ppos);
1822
1823 return 0;
1824 }
1825
1826 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1827 static ssize_t sysfs_compact_node(struct device *dev,
1828 struct device_attribute *attr,
1829 const char *buf, size_t count)
1830 {
1831 int nid = dev->id;
1832
1833 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1834 /* Flush pending updates to the LRU lists */
1835 lru_add_drain_all();
1836
1837 compact_node(nid);
1838 }
1839
1840 return count;
1841 }
1842 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1843
1844 int compaction_register_node(struct node *node)
1845 {
1846 return device_create_file(&node->dev, &dev_attr_compact);
1847 }
1848
1849 void compaction_unregister_node(struct node *node)
1850 {
1851 return device_remove_file(&node->dev, &dev_attr_compact);
1852 }
1853 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1854
1855 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1856 {
1857 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1858 }
1859
1860 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1861 {
1862 int zoneid;
1863 struct zone *zone;
1864 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1865
1866 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1867 zone = &pgdat->node_zones[zoneid];
1868
1869 if (!populated_zone(zone))
1870 continue;
1871
1872 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1873 classzone_idx) == COMPACT_CONTINUE)
1874 return true;
1875 }
1876
1877 return false;
1878 }
1879
1880 static void kcompactd_do_work(pg_data_t *pgdat)
1881 {
1882 /*
1883 * With no special task, compact all zones so that a page of requested
1884 * order is allocatable.
1885 */
1886 int zoneid;
1887 struct zone *zone;
1888 struct compact_control cc = {
1889 .order = pgdat->kcompactd_max_order,
1890 .classzone_idx = pgdat->kcompactd_classzone_idx,
1891 .mode = MIGRATE_SYNC_LIGHT,
1892 .ignore_skip_hint = true,
1893
1894 };
1895 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1896 cc.classzone_idx);
1897 count_vm_event(KCOMPACTD_WAKE);
1898
1899 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1900 int status;
1901
1902 zone = &pgdat->node_zones[zoneid];
1903 if (!populated_zone(zone))
1904 continue;
1905
1906 if (compaction_deferred(zone, cc.order))
1907 continue;
1908
1909 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1910 COMPACT_CONTINUE)
1911 continue;
1912
1913 cc.nr_freepages = 0;
1914 cc.nr_migratepages = 0;
1915 cc.zone = zone;
1916 INIT_LIST_HEAD(&cc.freepages);
1917 INIT_LIST_HEAD(&cc.migratepages);
1918
1919 if (kthread_should_stop())
1920 return;
1921 status = compact_zone(zone, &cc);
1922
1923 if (status == COMPACT_SUCCESS) {
1924 compaction_defer_reset(zone, cc.order, false);
1925 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1926 /*
1927 * We use sync migration mode here, so we defer like
1928 * sync direct compaction does.
1929 */
1930 defer_compaction(zone, cc.order);
1931 }
1932
1933 VM_BUG_ON(!list_empty(&cc.freepages));
1934 VM_BUG_ON(!list_empty(&cc.migratepages));
1935 }
1936
1937 /*
1938 * Regardless of success, we are done until woken up next. But remember
1939 * the requested order/classzone_idx in case it was higher/tighter than
1940 * our current ones
1941 */
1942 if (pgdat->kcompactd_max_order <= cc.order)
1943 pgdat->kcompactd_max_order = 0;
1944 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1945 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1946 }
1947
1948 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1949 {
1950 if (!order)
1951 return;
1952
1953 if (pgdat->kcompactd_max_order < order)
1954 pgdat->kcompactd_max_order = order;
1955
1956 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1957 pgdat->kcompactd_classzone_idx = classzone_idx;
1958
1959 if (!waitqueue_active(&pgdat->kcompactd_wait))
1960 return;
1961
1962 if (!kcompactd_node_suitable(pgdat))
1963 return;
1964
1965 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1966 classzone_idx);
1967 wake_up_interruptible(&pgdat->kcompactd_wait);
1968 }
1969
1970 /*
1971 * The background compaction daemon, started as a kernel thread
1972 * from the init process.
1973 */
1974 static int kcompactd(void *p)
1975 {
1976 pg_data_t *pgdat = (pg_data_t*)p;
1977 struct task_struct *tsk = current;
1978
1979 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1980
1981 if (!cpumask_empty(cpumask))
1982 set_cpus_allowed_ptr(tsk, cpumask);
1983
1984 set_freezable();
1985
1986 pgdat->kcompactd_max_order = 0;
1987 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1988
1989 while (!kthread_should_stop()) {
1990 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1991 wait_event_freezable(pgdat->kcompactd_wait,
1992 kcompactd_work_requested(pgdat));
1993
1994 kcompactd_do_work(pgdat);
1995 }
1996
1997 return 0;
1998 }
1999
2000 /*
2001 * This kcompactd start function will be called by init and node-hot-add.
2002 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2003 */
2004 int kcompactd_run(int nid)
2005 {
2006 pg_data_t *pgdat = NODE_DATA(nid);
2007 int ret = 0;
2008
2009 if (pgdat->kcompactd)
2010 return 0;
2011
2012 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2013 if (IS_ERR(pgdat->kcompactd)) {
2014 pr_err("Failed to start kcompactd on node %d\n", nid);
2015 ret = PTR_ERR(pgdat->kcompactd);
2016 pgdat->kcompactd = NULL;
2017 }
2018 return ret;
2019 }
2020
2021 /*
2022 * Called by memory hotplug when all memory in a node is offlined. Caller must
2023 * hold mem_hotplug_begin/end().
2024 */
2025 void kcompactd_stop(int nid)
2026 {
2027 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2028
2029 if (kcompactd) {
2030 kthread_stop(kcompactd);
2031 NODE_DATA(nid)->kcompactd = NULL;
2032 }
2033 }
2034
2035 /*
2036 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2037 * not required for correctness. So if the last cpu in a node goes
2038 * away, we get changed to run anywhere: as the first one comes back,
2039 * restore their cpu bindings.
2040 */
2041 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2042 void *hcpu)
2043 {
2044 int nid;
2045
2046 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2047 for_each_node_state(nid, N_MEMORY) {
2048 pg_data_t *pgdat = NODE_DATA(nid);
2049 const struct cpumask *mask;
2050
2051 mask = cpumask_of_node(pgdat->node_id);
2052
2053 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2054 /* One of our CPUs online: restore mask */
2055 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2056 }
2057 }
2058 return NOTIFY_OK;
2059 }
2060
2061 static int __init kcompactd_init(void)
2062 {
2063 int nid;
2064
2065 for_each_node_state(nid, N_MEMORY)
2066 kcompactd_run(nid);
2067 hotcpu_notifier(cpu_callback, 0);
2068 return 0;
2069 }
2070 subsys_initcall(kcompactd_init)
2071
2072 #endif /* CONFIG_COMPACTION */