]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/compaction.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 struct page *page, *next;
53 unsigned long high_pfn = 0;
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
56 unsigned long pfn = page_to_pfn(page);
57 list_del(&page->lru);
58 __free_page(page);
59 if (pfn > high_pfn)
60 high_pfn = pfn;
61 }
62
63 return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68 unsigned int i, order, nr_pages;
69 struct page *page, *next;
70 LIST_HEAD(tmp_list);
71
72 list_for_each_entry_safe(page, next, list, lru) {
73 list_del(&page->lru);
74
75 order = page_private(page);
76 nr_pages = 1 << order;
77
78 post_alloc_hook(page, order, __GFP_MOVABLE);
79 if (order)
80 split_page(page, order);
81
82 for (i = 0; i < nr_pages; i++) {
83 list_add(&page->lru, &tmp_list);
84 page++;
85 }
86 }
87
88 list_splice(&tmp_list, list);
89 }
90
91 static inline bool migrate_async_suitable(int migratetype)
92 {
93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
94 }
95
96 #ifdef CONFIG_COMPACTION
97
98 int PageMovable(struct page *page)
99 {
100 struct address_space *mapping;
101
102 VM_BUG_ON_PAGE(!PageLocked(page), page);
103 if (!__PageMovable(page))
104 return 0;
105
106 mapping = page_mapping(page);
107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108 return 1;
109
110 return 0;
111 }
112 EXPORT_SYMBOL(PageMovable);
113
114 void __SetPageMovable(struct page *page, struct address_space *mapping)
115 {
116 VM_BUG_ON_PAGE(!PageLocked(page), page);
117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
119 }
120 EXPORT_SYMBOL(__SetPageMovable);
121
122 void __ClearPageMovable(struct page *page)
123 {
124 VM_BUG_ON_PAGE(!PageLocked(page), page);
125 VM_BUG_ON_PAGE(!PageMovable(page), page);
126 /*
127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 * flag so that VM can catch up released page by driver after isolation.
129 * With it, VM migration doesn't try to put it back.
130 */
131 page->mapping = (void *)((unsigned long)page->mapping &
132 PAGE_MAPPING_MOVABLE);
133 }
134 EXPORT_SYMBOL(__ClearPageMovable);
135
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
138
139 /*
140 * Compaction is deferred when compaction fails to result in a page
141 * allocation success. 1 << compact_defer_limit compactions are skipped up
142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
143 */
144 void defer_compaction(struct zone *zone, int order)
145 {
146 zone->compact_considered = 0;
147 zone->compact_defer_shift++;
148
149 if (order < zone->compact_order_failed)
150 zone->compact_order_failed = order;
151
152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
154
155 trace_mm_compaction_defer_compaction(zone, order);
156 }
157
158 /* Returns true if compaction should be skipped this time */
159 bool compaction_deferred(struct zone *zone, int order)
160 {
161 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
162
163 if (order < zone->compact_order_failed)
164 return false;
165
166 /* Avoid possible overflow */
167 if (++zone->compact_considered > defer_limit)
168 zone->compact_considered = defer_limit;
169
170 if (zone->compact_considered >= defer_limit)
171 return false;
172
173 trace_mm_compaction_deferred(zone, order);
174
175 return true;
176 }
177
178 /*
179 * Update defer tracking counters after successful compaction of given order,
180 * which means an allocation either succeeded (alloc_success == true) or is
181 * expected to succeed.
182 */
183 void compaction_defer_reset(struct zone *zone, int order,
184 bool alloc_success)
185 {
186 if (alloc_success) {
187 zone->compact_considered = 0;
188 zone->compact_defer_shift = 0;
189 }
190 if (order >= zone->compact_order_failed)
191 zone->compact_order_failed = order + 1;
192
193 trace_mm_compaction_defer_reset(zone, order);
194 }
195
196 /* Returns true if restarting compaction after many failures */
197 bool compaction_restarting(struct zone *zone, int order)
198 {
199 if (order < zone->compact_order_failed)
200 return false;
201
202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203 zone->compact_considered >= 1UL << zone->compact_defer_shift;
204 }
205
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
207 static inline bool isolation_suitable(struct compact_control *cc,
208 struct page *page)
209 {
210 if (cc->ignore_skip_hint)
211 return true;
212
213 return !get_pageblock_skip(page);
214 }
215
216 static void reset_cached_positions(struct zone *zone)
217 {
218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220 zone->compact_cached_free_pfn =
221 pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 }
223
224 /*
225 * This function is called to clear all cached information on pageblocks that
226 * should be skipped for page isolation when the migrate and free page scanner
227 * meet.
228 */
229 static void __reset_isolation_suitable(struct zone *zone)
230 {
231 unsigned long start_pfn = zone->zone_start_pfn;
232 unsigned long end_pfn = zone_end_pfn(zone);
233 unsigned long pfn;
234
235 zone->compact_blockskip_flush = false;
236
237 /* Walk the zone and mark every pageblock as suitable for isolation */
238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239 struct page *page;
240
241 cond_resched();
242
243 if (!pfn_valid(pfn))
244 continue;
245
246 page = pfn_to_page(pfn);
247 if (zone != page_zone(page))
248 continue;
249
250 clear_pageblock_skip(page);
251 }
252
253 reset_cached_positions(zone);
254 }
255
256 void reset_isolation_suitable(pg_data_t *pgdat)
257 {
258 int zoneid;
259
260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261 struct zone *zone = &pgdat->node_zones[zoneid];
262 if (!populated_zone(zone))
263 continue;
264
265 /* Only flush if a full compaction finished recently */
266 if (zone->compact_blockskip_flush)
267 __reset_isolation_suitable(zone);
268 }
269 }
270
271 /*
272 * If no pages were isolated then mark this pageblock to be skipped in the
273 * future. The information is later cleared by __reset_isolation_suitable().
274 */
275 static void update_pageblock_skip(struct compact_control *cc,
276 struct page *page, unsigned long nr_isolated,
277 bool migrate_scanner)
278 {
279 struct zone *zone = cc->zone;
280 unsigned long pfn;
281
282 if (cc->ignore_skip_hint)
283 return;
284
285 if (!page)
286 return;
287
288 if (nr_isolated)
289 return;
290
291 set_pageblock_skip(page);
292
293 pfn = page_to_pfn(page);
294
295 /* Update where async and sync compaction should restart */
296 if (migrate_scanner) {
297 if (pfn > zone->compact_cached_migrate_pfn[0])
298 zone->compact_cached_migrate_pfn[0] = pfn;
299 if (cc->mode != MIGRATE_ASYNC &&
300 pfn > zone->compact_cached_migrate_pfn[1])
301 zone->compact_cached_migrate_pfn[1] = pfn;
302 } else {
303 if (pfn < zone->compact_cached_free_pfn)
304 zone->compact_cached_free_pfn = pfn;
305 }
306 }
307 #else
308 static inline bool isolation_suitable(struct compact_control *cc,
309 struct page *page)
310 {
311 return true;
312 }
313
314 static void update_pageblock_skip(struct compact_control *cc,
315 struct page *page, unsigned long nr_isolated,
316 bool migrate_scanner)
317 {
318 }
319 #endif /* CONFIG_COMPACTION */
320
321 /*
322 * Compaction requires the taking of some coarse locks that are potentially
323 * very heavily contended. For async compaction, back out if the lock cannot
324 * be taken immediately. For sync compaction, spin on the lock if needed.
325 *
326 * Returns true if the lock is held
327 * Returns false if the lock is not held and compaction should abort
328 */
329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330 struct compact_control *cc)
331 {
332 if (cc->mode == MIGRATE_ASYNC) {
333 if (!spin_trylock_irqsave(lock, *flags)) {
334 cc->contended = true;
335 return false;
336 }
337 } else {
338 spin_lock_irqsave(lock, *flags);
339 }
340
341 return true;
342 }
343
344 /*
345 * Compaction requires the taking of some coarse locks that are potentially
346 * very heavily contended. The lock should be periodically unlocked to avoid
347 * having disabled IRQs for a long time, even when there is nobody waiting on
348 * the lock. It might also be that allowing the IRQs will result in
349 * need_resched() becoming true. If scheduling is needed, async compaction
350 * aborts. Sync compaction schedules.
351 * Either compaction type will also abort if a fatal signal is pending.
352 * In either case if the lock was locked, it is dropped and not regained.
353 *
354 * Returns true if compaction should abort due to fatal signal pending, or
355 * async compaction due to need_resched()
356 * Returns false when compaction can continue (sync compaction might have
357 * scheduled)
358 */
359 static bool compact_unlock_should_abort(spinlock_t *lock,
360 unsigned long flags, bool *locked, struct compact_control *cc)
361 {
362 if (*locked) {
363 spin_unlock_irqrestore(lock, flags);
364 *locked = false;
365 }
366
367 if (fatal_signal_pending(current)) {
368 cc->contended = true;
369 return true;
370 }
371
372 if (need_resched()) {
373 if (cc->mode == MIGRATE_ASYNC) {
374 cc->contended = true;
375 return true;
376 }
377 cond_resched();
378 }
379
380 return false;
381 }
382
383 /*
384 * Aside from avoiding lock contention, compaction also periodically checks
385 * need_resched() and either schedules in sync compaction or aborts async
386 * compaction. This is similar to what compact_unlock_should_abort() does, but
387 * is used where no lock is concerned.
388 *
389 * Returns false when no scheduling was needed, or sync compaction scheduled.
390 * Returns true when async compaction should abort.
391 */
392 static inline bool compact_should_abort(struct compact_control *cc)
393 {
394 /* async compaction aborts if contended */
395 if (need_resched()) {
396 if (cc->mode == MIGRATE_ASYNC) {
397 cc->contended = true;
398 return true;
399 }
400
401 cond_resched();
402 }
403
404 return false;
405 }
406
407 /*
408 * Isolate free pages onto a private freelist. If @strict is true, will abort
409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410 * (even though it may still end up isolating some pages).
411 */
412 static unsigned long isolate_freepages_block(struct compact_control *cc,
413 unsigned long *start_pfn,
414 unsigned long end_pfn,
415 struct list_head *freelist,
416 bool strict)
417 {
418 int nr_scanned = 0, total_isolated = 0;
419 struct page *cursor, *valid_page = NULL;
420 unsigned long flags = 0;
421 bool locked = false;
422 unsigned long blockpfn = *start_pfn;
423 unsigned int order;
424
425 cursor = pfn_to_page(blockpfn);
426
427 /* Isolate free pages. */
428 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429 int isolated;
430 struct page *page = cursor;
431
432 /*
433 * Periodically drop the lock (if held) regardless of its
434 * contention, to give chance to IRQs. Abort if fatal signal
435 * pending or async compaction detects need_resched()
436 */
437 if (!(blockpfn % SWAP_CLUSTER_MAX)
438 && compact_unlock_should_abort(&cc->zone->lock, flags,
439 &locked, cc))
440 break;
441
442 nr_scanned++;
443 if (!pfn_valid_within(blockpfn))
444 goto isolate_fail;
445
446 if (!valid_page)
447 valid_page = page;
448
449 /*
450 * For compound pages such as THP and hugetlbfs, we can save
451 * potentially a lot of iterations if we skip them at once.
452 * The check is racy, but we can consider only valid values
453 * and the only danger is skipping too much.
454 */
455 if (PageCompound(page)) {
456 unsigned int comp_order = compound_order(page);
457
458 if (likely(comp_order < MAX_ORDER)) {
459 blockpfn += (1UL << comp_order) - 1;
460 cursor += (1UL << comp_order) - 1;
461 }
462
463 goto isolate_fail;
464 }
465
466 if (!PageBuddy(page))
467 goto isolate_fail;
468
469 /*
470 * If we already hold the lock, we can skip some rechecking.
471 * Note that if we hold the lock now, checked_pageblock was
472 * already set in some previous iteration (or strict is true),
473 * so it is correct to skip the suitable migration target
474 * recheck as well.
475 */
476 if (!locked) {
477 /*
478 * The zone lock must be held to isolate freepages.
479 * Unfortunately this is a very coarse lock and can be
480 * heavily contended if there are parallel allocations
481 * or parallel compactions. For async compaction do not
482 * spin on the lock and we acquire the lock as late as
483 * possible.
484 */
485 locked = compact_trylock_irqsave(&cc->zone->lock,
486 &flags, cc);
487 if (!locked)
488 break;
489
490 /* Recheck this is a buddy page under lock */
491 if (!PageBuddy(page))
492 goto isolate_fail;
493 }
494
495 /* Found a free page, will break it into order-0 pages */
496 order = page_order(page);
497 isolated = __isolate_free_page(page, order);
498 if (!isolated)
499 break;
500 set_page_private(page, order);
501
502 total_isolated += isolated;
503 cc->nr_freepages += isolated;
504 list_add_tail(&page->lru, freelist);
505
506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507 blockpfn += isolated;
508 break;
509 }
510 /* Advance to the end of split page */
511 blockpfn += isolated - 1;
512 cursor += isolated - 1;
513 continue;
514
515 isolate_fail:
516 if (strict)
517 break;
518 else
519 continue;
520
521 }
522
523 if (locked)
524 spin_unlock_irqrestore(&cc->zone->lock, flags);
525
526 /*
527 * There is a tiny chance that we have read bogus compound_order(),
528 * so be careful to not go outside of the pageblock.
529 */
530 if (unlikely(blockpfn > end_pfn))
531 blockpfn = end_pfn;
532
533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534 nr_scanned, total_isolated);
535
536 /* Record how far we have got within the block */
537 *start_pfn = blockpfn;
538
539 /*
540 * If strict isolation is requested by CMA then check that all the
541 * pages requested were isolated. If there were any failures, 0 is
542 * returned and CMA will fail.
543 */
544 if (strict && blockpfn < end_pfn)
545 total_isolated = 0;
546
547 /* Update the pageblock-skip if the whole pageblock was scanned */
548 if (blockpfn == end_pfn)
549 update_pageblock_skip(cc, valid_page, total_isolated, false);
550
551 cc->total_free_scanned += nr_scanned;
552 if (total_isolated)
553 count_compact_events(COMPACTISOLATED, total_isolated);
554 return total_isolated;
555 }
556
557 /**
558 * isolate_freepages_range() - isolate free pages.
559 * @start_pfn: The first PFN to start isolating.
560 * @end_pfn: The one-past-last PFN.
561 *
562 * Non-free pages, invalid PFNs, or zone boundaries within the
563 * [start_pfn, end_pfn) range are considered errors, cause function to
564 * undo its actions and return zero.
565 *
566 * Otherwise, function returns one-past-the-last PFN of isolated page
567 * (which may be greater then end_pfn if end fell in a middle of
568 * a free page).
569 */
570 unsigned long
571 isolate_freepages_range(struct compact_control *cc,
572 unsigned long start_pfn, unsigned long end_pfn)
573 {
574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 LIST_HEAD(freelist);
576
577 pfn = start_pfn;
578 block_start_pfn = pageblock_start_pfn(pfn);
579 if (block_start_pfn < cc->zone->zone_start_pfn)
580 block_start_pfn = cc->zone->zone_start_pfn;
581 block_end_pfn = pageblock_end_pfn(pfn);
582
583 for (; pfn < end_pfn; pfn += isolated,
584 block_start_pfn = block_end_pfn,
585 block_end_pfn += pageblock_nr_pages) {
586 /* Protect pfn from changing by isolate_freepages_block */
587 unsigned long isolate_start_pfn = pfn;
588
589 block_end_pfn = min(block_end_pfn, end_pfn);
590
591 /*
592 * pfn could pass the block_end_pfn if isolated freepage
593 * is more than pageblock order. In this case, we adjust
594 * scanning range to right one.
595 */
596 if (pfn >= block_end_pfn) {
597 block_start_pfn = pageblock_start_pfn(pfn);
598 block_end_pfn = pageblock_end_pfn(pfn);
599 block_end_pfn = min(block_end_pfn, end_pfn);
600 }
601
602 if (!pageblock_pfn_to_page(block_start_pfn,
603 block_end_pfn, cc->zone))
604 break;
605
606 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607 block_end_pfn, &freelist, true);
608
609 /*
610 * In strict mode, isolate_freepages_block() returns 0 if
611 * there are any holes in the block (ie. invalid PFNs or
612 * non-free pages).
613 */
614 if (!isolated)
615 break;
616
617 /*
618 * If we managed to isolate pages, it is always (1 << n) *
619 * pageblock_nr_pages for some non-negative n. (Max order
620 * page may span two pageblocks).
621 */
622 }
623
624 /* __isolate_free_page() does not map the pages */
625 map_pages(&freelist);
626
627 if (pfn < end_pfn) {
628 /* Loop terminated early, cleanup. */
629 release_freepages(&freelist);
630 return 0;
631 }
632
633 /* We don't use freelists for anything. */
634 return pfn;
635 }
636
637 /* Similar to reclaim, but different enough that they don't share logic */
638 static bool too_many_isolated(struct zone *zone)
639 {
640 unsigned long active, inactive, isolated;
641
642 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
643 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
644 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
645 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
646 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
647 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
648
649 return isolated > (inactive + active) / 2;
650 }
651
652 /**
653 * isolate_migratepages_block() - isolate all migrate-able pages within
654 * a single pageblock
655 * @cc: Compaction control structure.
656 * @low_pfn: The first PFN to isolate
657 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
658 * @isolate_mode: Isolation mode to be used.
659 *
660 * Isolate all pages that can be migrated from the range specified by
661 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
662 * Returns zero if there is a fatal signal pending, otherwise PFN of the
663 * first page that was not scanned (which may be both less, equal to or more
664 * than end_pfn).
665 *
666 * The pages are isolated on cc->migratepages list (not required to be empty),
667 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
668 * is neither read nor updated.
669 */
670 static unsigned long
671 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
672 unsigned long end_pfn, isolate_mode_t isolate_mode)
673 {
674 struct zone *zone = cc->zone;
675 unsigned long nr_scanned = 0, nr_isolated = 0;
676 struct lruvec *lruvec;
677 unsigned long flags = 0;
678 bool locked = false;
679 struct page *page = NULL, *valid_page = NULL;
680 unsigned long start_pfn = low_pfn;
681 bool skip_on_failure = false;
682 unsigned long next_skip_pfn = 0;
683
684 /*
685 * Ensure that there are not too many pages isolated from the LRU
686 * list by either parallel reclaimers or compaction. If there are,
687 * delay for some time until fewer pages are isolated
688 */
689 while (unlikely(too_many_isolated(zone))) {
690 /* async migration should just abort */
691 if (cc->mode == MIGRATE_ASYNC)
692 return 0;
693
694 congestion_wait(BLK_RW_ASYNC, HZ/10);
695
696 if (fatal_signal_pending(current))
697 return 0;
698 }
699
700 if (compact_should_abort(cc))
701 return 0;
702
703 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
704 skip_on_failure = true;
705 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
706 }
707
708 /* Time to isolate some pages for migration */
709 for (; low_pfn < end_pfn; low_pfn++) {
710
711 if (skip_on_failure && low_pfn >= next_skip_pfn) {
712 /*
713 * We have isolated all migration candidates in the
714 * previous order-aligned block, and did not skip it due
715 * to failure. We should migrate the pages now and
716 * hopefully succeed compaction.
717 */
718 if (nr_isolated)
719 break;
720
721 /*
722 * We failed to isolate in the previous order-aligned
723 * block. Set the new boundary to the end of the
724 * current block. Note we can't simply increase
725 * next_skip_pfn by 1 << order, as low_pfn might have
726 * been incremented by a higher number due to skipping
727 * a compound or a high-order buddy page in the
728 * previous loop iteration.
729 */
730 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
731 }
732
733 /*
734 * Periodically drop the lock (if held) regardless of its
735 * contention, to give chance to IRQs. Abort async compaction
736 * if contended.
737 */
738 if (!(low_pfn % SWAP_CLUSTER_MAX)
739 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
740 &locked, cc))
741 break;
742
743 if (!pfn_valid_within(low_pfn))
744 goto isolate_fail;
745 nr_scanned++;
746
747 page = pfn_to_page(low_pfn);
748
749 if (!valid_page)
750 valid_page = page;
751
752 /*
753 * Skip if free. We read page order here without zone lock
754 * which is generally unsafe, but the race window is small and
755 * the worst thing that can happen is that we skip some
756 * potential isolation targets.
757 */
758 if (PageBuddy(page)) {
759 unsigned long freepage_order = page_order_unsafe(page);
760
761 /*
762 * Without lock, we cannot be sure that what we got is
763 * a valid page order. Consider only values in the
764 * valid order range to prevent low_pfn overflow.
765 */
766 if (freepage_order > 0 && freepage_order < MAX_ORDER)
767 low_pfn += (1UL << freepage_order) - 1;
768 continue;
769 }
770
771 /*
772 * Regardless of being on LRU, compound pages such as THP and
773 * hugetlbfs are not to be compacted. We can potentially save
774 * a lot of iterations if we skip them at once. The check is
775 * racy, but we can consider only valid values and the only
776 * danger is skipping too much.
777 */
778 if (PageCompound(page)) {
779 unsigned int comp_order = compound_order(page);
780
781 if (likely(comp_order < MAX_ORDER))
782 low_pfn += (1UL << comp_order) - 1;
783
784 goto isolate_fail;
785 }
786
787 /*
788 * Check may be lockless but that's ok as we recheck later.
789 * It's possible to migrate LRU and non-lru movable pages.
790 * Skip any other type of page
791 */
792 if (!PageLRU(page)) {
793 /*
794 * __PageMovable can return false positive so we need
795 * to verify it under page_lock.
796 */
797 if (unlikely(__PageMovable(page)) &&
798 !PageIsolated(page)) {
799 if (locked) {
800 spin_unlock_irqrestore(zone_lru_lock(zone),
801 flags);
802 locked = false;
803 }
804
805 if (isolate_movable_page(page, isolate_mode))
806 goto isolate_success;
807 }
808
809 goto isolate_fail;
810 }
811
812 /*
813 * Migration will fail if an anonymous page is pinned in memory,
814 * so avoid taking lru_lock and isolating it unnecessarily in an
815 * admittedly racy check.
816 */
817 if (!page_mapping(page) &&
818 page_count(page) > page_mapcount(page))
819 goto isolate_fail;
820
821 /*
822 * Only allow to migrate anonymous pages in GFP_NOFS context
823 * because those do not depend on fs locks.
824 */
825 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
826 goto isolate_fail;
827
828 /* If we already hold the lock, we can skip some rechecking */
829 if (!locked) {
830 locked = compact_trylock_irqsave(zone_lru_lock(zone),
831 &flags, cc);
832 if (!locked)
833 break;
834
835 /* Recheck PageLRU and PageCompound under lock */
836 if (!PageLRU(page))
837 goto isolate_fail;
838
839 /*
840 * Page become compound since the non-locked check,
841 * and it's on LRU. It can only be a THP so the order
842 * is safe to read and it's 0 for tail pages.
843 */
844 if (unlikely(PageCompound(page))) {
845 low_pfn += (1UL << compound_order(page)) - 1;
846 goto isolate_fail;
847 }
848 }
849
850 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
851
852 /* Try isolate the page */
853 if (__isolate_lru_page(page, isolate_mode) != 0)
854 goto isolate_fail;
855
856 VM_BUG_ON_PAGE(PageCompound(page), page);
857
858 /* Successfully isolated */
859 del_page_from_lru_list(page, lruvec, page_lru(page));
860 inc_node_page_state(page,
861 NR_ISOLATED_ANON + page_is_file_cache(page));
862
863 isolate_success:
864 list_add(&page->lru, &cc->migratepages);
865 cc->nr_migratepages++;
866 nr_isolated++;
867
868 /*
869 * Record where we could have freed pages by migration and not
870 * yet flushed them to buddy allocator.
871 * - this is the lowest page that was isolated and likely be
872 * then freed by migration.
873 */
874 if (!cc->last_migrated_pfn)
875 cc->last_migrated_pfn = low_pfn;
876
877 /* Avoid isolating too much */
878 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
879 ++low_pfn;
880 break;
881 }
882
883 continue;
884 isolate_fail:
885 if (!skip_on_failure)
886 continue;
887
888 /*
889 * We have isolated some pages, but then failed. Release them
890 * instead of migrating, as we cannot form the cc->order buddy
891 * page anyway.
892 */
893 if (nr_isolated) {
894 if (locked) {
895 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
896 locked = false;
897 }
898 putback_movable_pages(&cc->migratepages);
899 cc->nr_migratepages = 0;
900 cc->last_migrated_pfn = 0;
901 nr_isolated = 0;
902 }
903
904 if (low_pfn < next_skip_pfn) {
905 low_pfn = next_skip_pfn - 1;
906 /*
907 * The check near the loop beginning would have updated
908 * next_skip_pfn too, but this is a bit simpler.
909 */
910 next_skip_pfn += 1UL << cc->order;
911 }
912 }
913
914 /*
915 * The PageBuddy() check could have potentially brought us outside
916 * the range to be scanned.
917 */
918 if (unlikely(low_pfn > end_pfn))
919 low_pfn = end_pfn;
920
921 if (locked)
922 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
923
924 /*
925 * Update the pageblock-skip information and cached scanner pfn,
926 * if the whole pageblock was scanned without isolating any page.
927 */
928 if (low_pfn == end_pfn)
929 update_pageblock_skip(cc, valid_page, nr_isolated, true);
930
931 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
932 nr_scanned, nr_isolated);
933
934 cc->total_migrate_scanned += nr_scanned;
935 if (nr_isolated)
936 count_compact_events(COMPACTISOLATED, nr_isolated);
937
938 return low_pfn;
939 }
940
941 /**
942 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
943 * @cc: Compaction control structure.
944 * @start_pfn: The first PFN to start isolating.
945 * @end_pfn: The one-past-last PFN.
946 *
947 * Returns zero if isolation fails fatally due to e.g. pending signal.
948 * Otherwise, function returns one-past-the-last PFN of isolated page
949 * (which may be greater than end_pfn if end fell in a middle of a THP page).
950 */
951 unsigned long
952 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
953 unsigned long end_pfn)
954 {
955 unsigned long pfn, block_start_pfn, block_end_pfn;
956
957 /* Scan block by block. First and last block may be incomplete */
958 pfn = start_pfn;
959 block_start_pfn = pageblock_start_pfn(pfn);
960 if (block_start_pfn < cc->zone->zone_start_pfn)
961 block_start_pfn = cc->zone->zone_start_pfn;
962 block_end_pfn = pageblock_end_pfn(pfn);
963
964 for (; pfn < end_pfn; pfn = block_end_pfn,
965 block_start_pfn = block_end_pfn,
966 block_end_pfn += pageblock_nr_pages) {
967
968 block_end_pfn = min(block_end_pfn, end_pfn);
969
970 if (!pageblock_pfn_to_page(block_start_pfn,
971 block_end_pfn, cc->zone))
972 continue;
973
974 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
975 ISOLATE_UNEVICTABLE);
976
977 if (!pfn)
978 break;
979
980 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
981 break;
982 }
983
984 return pfn;
985 }
986
987 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
988 #ifdef CONFIG_COMPACTION
989
990 /* Returns true if the page is within a block suitable for migration to */
991 static bool suitable_migration_target(struct compact_control *cc,
992 struct page *page)
993 {
994 if (cc->ignore_block_suitable)
995 return true;
996
997 /* If the page is a large free page, then disallow migration */
998 if (PageBuddy(page)) {
999 /*
1000 * We are checking page_order without zone->lock taken. But
1001 * the only small danger is that we skip a potentially suitable
1002 * pageblock, so it's not worth to check order for valid range.
1003 */
1004 if (page_order_unsafe(page) >= pageblock_order)
1005 return false;
1006 }
1007
1008 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1009 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1010 return true;
1011
1012 /* Otherwise skip the block */
1013 return false;
1014 }
1015
1016 /*
1017 * Test whether the free scanner has reached the same or lower pageblock than
1018 * the migration scanner, and compaction should thus terminate.
1019 */
1020 static inline bool compact_scanners_met(struct compact_control *cc)
1021 {
1022 return (cc->free_pfn >> pageblock_order)
1023 <= (cc->migrate_pfn >> pageblock_order);
1024 }
1025
1026 /*
1027 * Based on information in the current compact_control, find blocks
1028 * suitable for isolating free pages from and then isolate them.
1029 */
1030 static void isolate_freepages(struct compact_control *cc)
1031 {
1032 struct zone *zone = cc->zone;
1033 struct page *page;
1034 unsigned long block_start_pfn; /* start of current pageblock */
1035 unsigned long isolate_start_pfn; /* exact pfn we start at */
1036 unsigned long block_end_pfn; /* end of current pageblock */
1037 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1038 struct list_head *freelist = &cc->freepages;
1039
1040 /*
1041 * Initialise the free scanner. The starting point is where we last
1042 * successfully isolated from, zone-cached value, or the end of the
1043 * zone when isolating for the first time. For looping we also need
1044 * this pfn aligned down to the pageblock boundary, because we do
1045 * block_start_pfn -= pageblock_nr_pages in the for loop.
1046 * For ending point, take care when isolating in last pageblock of a
1047 * a zone which ends in the middle of a pageblock.
1048 * The low boundary is the end of the pageblock the migration scanner
1049 * is using.
1050 */
1051 isolate_start_pfn = cc->free_pfn;
1052 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1053 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1054 zone_end_pfn(zone));
1055 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1056
1057 /*
1058 * Isolate free pages until enough are available to migrate the
1059 * pages on cc->migratepages. We stop searching if the migrate
1060 * and free page scanners meet or enough free pages are isolated.
1061 */
1062 for (; block_start_pfn >= low_pfn;
1063 block_end_pfn = block_start_pfn,
1064 block_start_pfn -= pageblock_nr_pages,
1065 isolate_start_pfn = block_start_pfn) {
1066 /*
1067 * This can iterate a massively long zone without finding any
1068 * suitable migration targets, so periodically check if we need
1069 * to schedule, or even abort async compaction.
1070 */
1071 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1072 && compact_should_abort(cc))
1073 break;
1074
1075 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1076 zone);
1077 if (!page)
1078 continue;
1079
1080 /* Check the block is suitable for migration */
1081 if (!suitable_migration_target(cc, page))
1082 continue;
1083
1084 /* If isolation recently failed, do not retry */
1085 if (!isolation_suitable(cc, page))
1086 continue;
1087
1088 /* Found a block suitable for isolating free pages from. */
1089 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1090 freelist, false);
1091
1092 /*
1093 * If we isolated enough freepages, or aborted due to lock
1094 * contention, terminate.
1095 */
1096 if ((cc->nr_freepages >= cc->nr_migratepages)
1097 || cc->contended) {
1098 if (isolate_start_pfn >= block_end_pfn) {
1099 /*
1100 * Restart at previous pageblock if more
1101 * freepages can be isolated next time.
1102 */
1103 isolate_start_pfn =
1104 block_start_pfn - pageblock_nr_pages;
1105 }
1106 break;
1107 } else if (isolate_start_pfn < block_end_pfn) {
1108 /*
1109 * If isolation failed early, do not continue
1110 * needlessly.
1111 */
1112 break;
1113 }
1114 }
1115
1116 /* __isolate_free_page() does not map the pages */
1117 map_pages(freelist);
1118
1119 /*
1120 * Record where the free scanner will restart next time. Either we
1121 * broke from the loop and set isolate_start_pfn based on the last
1122 * call to isolate_freepages_block(), or we met the migration scanner
1123 * and the loop terminated due to isolate_start_pfn < low_pfn
1124 */
1125 cc->free_pfn = isolate_start_pfn;
1126 }
1127
1128 /*
1129 * This is a migrate-callback that "allocates" freepages by taking pages
1130 * from the isolated freelists in the block we are migrating to.
1131 */
1132 static struct page *compaction_alloc(struct page *migratepage,
1133 unsigned long data,
1134 int **result)
1135 {
1136 struct compact_control *cc = (struct compact_control *)data;
1137 struct page *freepage;
1138
1139 /*
1140 * Isolate free pages if necessary, and if we are not aborting due to
1141 * contention.
1142 */
1143 if (list_empty(&cc->freepages)) {
1144 if (!cc->contended)
1145 isolate_freepages(cc);
1146
1147 if (list_empty(&cc->freepages))
1148 return NULL;
1149 }
1150
1151 freepage = list_entry(cc->freepages.next, struct page, lru);
1152 list_del(&freepage->lru);
1153 cc->nr_freepages--;
1154
1155 return freepage;
1156 }
1157
1158 /*
1159 * This is a migrate-callback that "frees" freepages back to the isolated
1160 * freelist. All pages on the freelist are from the same zone, so there is no
1161 * special handling needed for NUMA.
1162 */
1163 static void compaction_free(struct page *page, unsigned long data)
1164 {
1165 struct compact_control *cc = (struct compact_control *)data;
1166
1167 list_add(&page->lru, &cc->freepages);
1168 cc->nr_freepages++;
1169 }
1170
1171 /* possible outcome of isolate_migratepages */
1172 typedef enum {
1173 ISOLATE_ABORT, /* Abort compaction now */
1174 ISOLATE_NONE, /* No pages isolated, continue scanning */
1175 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1176 } isolate_migrate_t;
1177
1178 /*
1179 * Allow userspace to control policy on scanning the unevictable LRU for
1180 * compactable pages.
1181 */
1182 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1183
1184 /*
1185 * Isolate all pages that can be migrated from the first suitable block,
1186 * starting at the block pointed to by the migrate scanner pfn within
1187 * compact_control.
1188 */
1189 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1190 struct compact_control *cc)
1191 {
1192 unsigned long block_start_pfn;
1193 unsigned long block_end_pfn;
1194 unsigned long low_pfn;
1195 struct page *page;
1196 const isolate_mode_t isolate_mode =
1197 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1198 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1199
1200 /*
1201 * Start at where we last stopped, or beginning of the zone as
1202 * initialized by compact_zone()
1203 */
1204 low_pfn = cc->migrate_pfn;
1205 block_start_pfn = pageblock_start_pfn(low_pfn);
1206 if (block_start_pfn < zone->zone_start_pfn)
1207 block_start_pfn = zone->zone_start_pfn;
1208
1209 /* Only scan within a pageblock boundary */
1210 block_end_pfn = pageblock_end_pfn(low_pfn);
1211
1212 /*
1213 * Iterate over whole pageblocks until we find the first suitable.
1214 * Do not cross the free scanner.
1215 */
1216 for (; block_end_pfn <= cc->free_pfn;
1217 low_pfn = block_end_pfn,
1218 block_start_pfn = block_end_pfn,
1219 block_end_pfn += pageblock_nr_pages) {
1220
1221 /*
1222 * This can potentially iterate a massively long zone with
1223 * many pageblocks unsuitable, so periodically check if we
1224 * need to schedule, or even abort async compaction.
1225 */
1226 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1227 && compact_should_abort(cc))
1228 break;
1229
1230 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1231 zone);
1232 if (!page)
1233 continue;
1234
1235 /* If isolation recently failed, do not retry */
1236 if (!isolation_suitable(cc, page))
1237 continue;
1238
1239 /*
1240 * For async compaction, also only scan in MOVABLE blocks.
1241 * Async compaction is optimistic to see if the minimum amount
1242 * of work satisfies the allocation.
1243 */
1244 if (cc->mode == MIGRATE_ASYNC &&
1245 !migrate_async_suitable(get_pageblock_migratetype(page)))
1246 continue;
1247
1248 /* Perform the isolation */
1249 low_pfn = isolate_migratepages_block(cc, low_pfn,
1250 block_end_pfn, isolate_mode);
1251
1252 if (!low_pfn || cc->contended)
1253 return ISOLATE_ABORT;
1254
1255 /*
1256 * Either we isolated something and proceed with migration. Or
1257 * we failed and compact_zone should decide if we should
1258 * continue or not.
1259 */
1260 break;
1261 }
1262
1263 /* Record where migration scanner will be restarted. */
1264 cc->migrate_pfn = low_pfn;
1265
1266 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1267 }
1268
1269 /*
1270 * order == -1 is expected when compacting via
1271 * /proc/sys/vm/compact_memory
1272 */
1273 static inline bool is_via_compact_memory(int order)
1274 {
1275 return order == -1;
1276 }
1277
1278 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1279 const int migratetype)
1280 {
1281 unsigned int order;
1282 unsigned long watermark;
1283
1284 if (cc->contended || fatal_signal_pending(current))
1285 return COMPACT_CONTENDED;
1286
1287 /* Compaction run completes if the migrate and free scanner meet */
1288 if (compact_scanners_met(cc)) {
1289 /* Let the next compaction start anew. */
1290 reset_cached_positions(zone);
1291
1292 /*
1293 * Mark that the PG_migrate_skip information should be cleared
1294 * by kswapd when it goes to sleep. kcompactd does not set the
1295 * flag itself as the decision to be clear should be directly
1296 * based on an allocation request.
1297 */
1298 if (cc->direct_compaction)
1299 zone->compact_blockskip_flush = true;
1300
1301 if (cc->whole_zone)
1302 return COMPACT_COMPLETE;
1303 else
1304 return COMPACT_PARTIAL_SKIPPED;
1305 }
1306
1307 if (is_via_compact_memory(cc->order))
1308 return COMPACT_CONTINUE;
1309
1310 /* Compaction run is not finished if the watermark is not met */
1311 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1312
1313 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1314 cc->alloc_flags))
1315 return COMPACT_CONTINUE;
1316
1317 /* Direct compactor: Is a suitable page free? */
1318 for (order = cc->order; order < MAX_ORDER; order++) {
1319 struct free_area *area = &zone->free_area[order];
1320 bool can_steal;
1321
1322 /* Job done if page is free of the right migratetype */
1323 if (!list_empty(&area->free_list[migratetype]))
1324 return COMPACT_SUCCESS;
1325
1326 #ifdef CONFIG_CMA
1327 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1328 if (migratetype == MIGRATE_MOVABLE &&
1329 !list_empty(&area->free_list[MIGRATE_CMA]))
1330 return COMPACT_SUCCESS;
1331 #endif
1332 /*
1333 * Job done if allocation would steal freepages from
1334 * other migratetype buddy lists.
1335 */
1336 if (find_suitable_fallback(area, order, migratetype,
1337 true, &can_steal) != -1)
1338 return COMPACT_SUCCESS;
1339 }
1340
1341 return COMPACT_NO_SUITABLE_PAGE;
1342 }
1343
1344 static enum compact_result compact_finished(struct zone *zone,
1345 struct compact_control *cc,
1346 const int migratetype)
1347 {
1348 int ret;
1349
1350 ret = __compact_finished(zone, cc, migratetype);
1351 trace_mm_compaction_finished(zone, cc->order, ret);
1352 if (ret == COMPACT_NO_SUITABLE_PAGE)
1353 ret = COMPACT_CONTINUE;
1354
1355 return ret;
1356 }
1357
1358 /*
1359 * compaction_suitable: Is this suitable to run compaction on this zone now?
1360 * Returns
1361 * COMPACT_SKIPPED - If there are too few free pages for compaction
1362 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1363 * COMPACT_CONTINUE - If compaction should run now
1364 */
1365 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1366 unsigned int alloc_flags,
1367 int classzone_idx,
1368 unsigned long wmark_target)
1369 {
1370 unsigned long watermark;
1371
1372 if (is_via_compact_memory(order))
1373 return COMPACT_CONTINUE;
1374
1375 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1376 /*
1377 * If watermarks for high-order allocation are already met, there
1378 * should be no need for compaction at all.
1379 */
1380 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1381 alloc_flags))
1382 return COMPACT_SUCCESS;
1383
1384 /*
1385 * Watermarks for order-0 must be met for compaction to be able to
1386 * isolate free pages for migration targets. This means that the
1387 * watermark and alloc_flags have to match, or be more pessimistic than
1388 * the check in __isolate_free_page(). We don't use the direct
1389 * compactor's alloc_flags, as they are not relevant for freepage
1390 * isolation. We however do use the direct compactor's classzone_idx to
1391 * skip over zones where lowmem reserves would prevent allocation even
1392 * if compaction succeeds.
1393 * For costly orders, we require low watermark instead of min for
1394 * compaction to proceed to increase its chances.
1395 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1396 * suitable migration targets
1397 */
1398 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1399 low_wmark_pages(zone) : min_wmark_pages(zone);
1400 watermark += compact_gap(order);
1401 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1402 ALLOC_CMA, wmark_target))
1403 return COMPACT_SKIPPED;
1404
1405 return COMPACT_CONTINUE;
1406 }
1407
1408 enum compact_result compaction_suitable(struct zone *zone, int order,
1409 unsigned int alloc_flags,
1410 int classzone_idx)
1411 {
1412 enum compact_result ret;
1413 int fragindex;
1414
1415 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1416 zone_page_state(zone, NR_FREE_PAGES));
1417 /*
1418 * fragmentation index determines if allocation failures are due to
1419 * low memory or external fragmentation
1420 *
1421 * index of -1000 would imply allocations might succeed depending on
1422 * watermarks, but we already failed the high-order watermark check
1423 * index towards 0 implies failure is due to lack of memory
1424 * index towards 1000 implies failure is due to fragmentation
1425 *
1426 * Only compact if a failure would be due to fragmentation. Also
1427 * ignore fragindex for non-costly orders where the alternative to
1428 * a successful reclaim/compaction is OOM. Fragindex and the
1429 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1430 * excessive compaction for costly orders, but it should not be at the
1431 * expense of system stability.
1432 */
1433 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1434 fragindex = fragmentation_index(zone, order);
1435 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1436 ret = COMPACT_NOT_SUITABLE_ZONE;
1437 }
1438
1439 trace_mm_compaction_suitable(zone, order, ret);
1440 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1441 ret = COMPACT_SKIPPED;
1442
1443 return ret;
1444 }
1445
1446 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1447 int alloc_flags)
1448 {
1449 struct zone *zone;
1450 struct zoneref *z;
1451
1452 /*
1453 * Make sure at least one zone would pass __compaction_suitable if we continue
1454 * retrying the reclaim.
1455 */
1456 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1457 ac->nodemask) {
1458 unsigned long available;
1459 enum compact_result compact_result;
1460
1461 /*
1462 * Do not consider all the reclaimable memory because we do not
1463 * want to trash just for a single high order allocation which
1464 * is even not guaranteed to appear even if __compaction_suitable
1465 * is happy about the watermark check.
1466 */
1467 available = zone_reclaimable_pages(zone) / order;
1468 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1469 compact_result = __compaction_suitable(zone, order, alloc_flags,
1470 ac_classzone_idx(ac), available);
1471 if (compact_result != COMPACT_SKIPPED)
1472 return true;
1473 }
1474
1475 return false;
1476 }
1477
1478 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1479 {
1480 enum compact_result ret;
1481 unsigned long start_pfn = zone->zone_start_pfn;
1482 unsigned long end_pfn = zone_end_pfn(zone);
1483 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1484 const bool sync = cc->mode != MIGRATE_ASYNC;
1485
1486 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1487 cc->classzone_idx);
1488 /* Compaction is likely to fail */
1489 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1490 return ret;
1491
1492 /* huh, compaction_suitable is returning something unexpected */
1493 VM_BUG_ON(ret != COMPACT_CONTINUE);
1494
1495 /*
1496 * Clear pageblock skip if there were failures recently and compaction
1497 * is about to be retried after being deferred.
1498 */
1499 if (compaction_restarting(zone, cc->order))
1500 __reset_isolation_suitable(zone);
1501
1502 /*
1503 * Setup to move all movable pages to the end of the zone. Used cached
1504 * information on where the scanners should start (unless we explicitly
1505 * want to compact the whole zone), but check that it is initialised
1506 * by ensuring the values are within zone boundaries.
1507 */
1508 if (cc->whole_zone) {
1509 cc->migrate_pfn = start_pfn;
1510 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1511 } else {
1512 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1513 cc->free_pfn = zone->compact_cached_free_pfn;
1514 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1515 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1516 zone->compact_cached_free_pfn = cc->free_pfn;
1517 }
1518 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1519 cc->migrate_pfn = start_pfn;
1520 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1521 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1522 }
1523
1524 if (cc->migrate_pfn == start_pfn)
1525 cc->whole_zone = true;
1526 }
1527
1528 cc->last_migrated_pfn = 0;
1529
1530 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1531 cc->free_pfn, end_pfn, sync);
1532
1533 migrate_prep_local();
1534
1535 while ((ret = compact_finished(zone, cc, migratetype)) ==
1536 COMPACT_CONTINUE) {
1537 int err;
1538
1539 switch (isolate_migratepages(zone, cc)) {
1540 case ISOLATE_ABORT:
1541 ret = COMPACT_CONTENDED;
1542 putback_movable_pages(&cc->migratepages);
1543 cc->nr_migratepages = 0;
1544 goto out;
1545 case ISOLATE_NONE:
1546 /*
1547 * We haven't isolated and migrated anything, but
1548 * there might still be unflushed migrations from
1549 * previous cc->order aligned block.
1550 */
1551 goto check_drain;
1552 case ISOLATE_SUCCESS:
1553 ;
1554 }
1555
1556 err = migrate_pages(&cc->migratepages, compaction_alloc,
1557 compaction_free, (unsigned long)cc, cc->mode,
1558 MR_COMPACTION);
1559
1560 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1561 &cc->migratepages);
1562
1563 /* All pages were either migrated or will be released */
1564 cc->nr_migratepages = 0;
1565 if (err) {
1566 putback_movable_pages(&cc->migratepages);
1567 /*
1568 * migrate_pages() may return -ENOMEM when scanners meet
1569 * and we want compact_finished() to detect it
1570 */
1571 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1572 ret = COMPACT_CONTENDED;
1573 goto out;
1574 }
1575 /*
1576 * We failed to migrate at least one page in the current
1577 * order-aligned block, so skip the rest of it.
1578 */
1579 if (cc->direct_compaction &&
1580 (cc->mode == MIGRATE_ASYNC)) {
1581 cc->migrate_pfn = block_end_pfn(
1582 cc->migrate_pfn - 1, cc->order);
1583 /* Draining pcplists is useless in this case */
1584 cc->last_migrated_pfn = 0;
1585
1586 }
1587 }
1588
1589 check_drain:
1590 /*
1591 * Has the migration scanner moved away from the previous
1592 * cc->order aligned block where we migrated from? If yes,
1593 * flush the pages that were freed, so that they can merge and
1594 * compact_finished() can detect immediately if allocation
1595 * would succeed.
1596 */
1597 if (cc->order > 0 && cc->last_migrated_pfn) {
1598 int cpu;
1599 unsigned long current_block_start =
1600 block_start_pfn(cc->migrate_pfn, cc->order);
1601
1602 if (cc->last_migrated_pfn < current_block_start) {
1603 cpu = get_cpu();
1604 lru_add_drain_cpu(cpu);
1605 drain_local_pages(zone);
1606 put_cpu();
1607 /* No more flushing until we migrate again */
1608 cc->last_migrated_pfn = 0;
1609 }
1610 }
1611
1612 }
1613
1614 out:
1615 /*
1616 * Release free pages and update where the free scanner should restart,
1617 * so we don't leave any returned pages behind in the next attempt.
1618 */
1619 if (cc->nr_freepages > 0) {
1620 unsigned long free_pfn = release_freepages(&cc->freepages);
1621
1622 cc->nr_freepages = 0;
1623 VM_BUG_ON(free_pfn == 0);
1624 /* The cached pfn is always the first in a pageblock */
1625 free_pfn = pageblock_start_pfn(free_pfn);
1626 /*
1627 * Only go back, not forward. The cached pfn might have been
1628 * already reset to zone end in compact_finished()
1629 */
1630 if (free_pfn > zone->compact_cached_free_pfn)
1631 zone->compact_cached_free_pfn = free_pfn;
1632 }
1633
1634 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1635 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1636
1637 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1638 cc->free_pfn, end_pfn, sync, ret);
1639
1640 return ret;
1641 }
1642
1643 static enum compact_result compact_zone_order(struct zone *zone, int order,
1644 gfp_t gfp_mask, enum compact_priority prio,
1645 unsigned int alloc_flags, int classzone_idx)
1646 {
1647 enum compact_result ret;
1648 struct compact_control cc = {
1649 .nr_freepages = 0,
1650 .nr_migratepages = 0,
1651 .total_migrate_scanned = 0,
1652 .total_free_scanned = 0,
1653 .order = order,
1654 .gfp_mask = gfp_mask,
1655 .zone = zone,
1656 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1657 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1658 .alloc_flags = alloc_flags,
1659 .classzone_idx = classzone_idx,
1660 .direct_compaction = true,
1661 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1662 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1663 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1664 };
1665 INIT_LIST_HEAD(&cc.freepages);
1666 INIT_LIST_HEAD(&cc.migratepages);
1667
1668 ret = compact_zone(zone, &cc);
1669
1670 VM_BUG_ON(!list_empty(&cc.freepages));
1671 VM_BUG_ON(!list_empty(&cc.migratepages));
1672
1673 return ret;
1674 }
1675
1676 int sysctl_extfrag_threshold = 500;
1677
1678 /**
1679 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1680 * @gfp_mask: The GFP mask of the current allocation
1681 * @order: The order of the current allocation
1682 * @alloc_flags: The allocation flags of the current allocation
1683 * @ac: The context of current allocation
1684 * @mode: The migration mode for async, sync light, or sync migration
1685 *
1686 * This is the main entry point for direct page compaction.
1687 */
1688 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1689 unsigned int alloc_flags, const struct alloc_context *ac,
1690 enum compact_priority prio)
1691 {
1692 int may_perform_io = gfp_mask & __GFP_IO;
1693 struct zoneref *z;
1694 struct zone *zone;
1695 enum compact_result rc = COMPACT_SKIPPED;
1696
1697 /*
1698 * Check if the GFP flags allow compaction - GFP_NOIO is really
1699 * tricky context because the migration might require IO
1700 */
1701 if (!may_perform_io)
1702 return COMPACT_SKIPPED;
1703
1704 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1705
1706 /* Compact each zone in the list */
1707 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1708 ac->nodemask) {
1709 enum compact_result status;
1710
1711 if (prio > MIN_COMPACT_PRIORITY
1712 && compaction_deferred(zone, order)) {
1713 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1714 continue;
1715 }
1716
1717 status = compact_zone_order(zone, order, gfp_mask, prio,
1718 alloc_flags, ac_classzone_idx(ac));
1719 rc = max(status, rc);
1720
1721 /* The allocation should succeed, stop compacting */
1722 if (status == COMPACT_SUCCESS) {
1723 /*
1724 * We think the allocation will succeed in this zone,
1725 * but it is not certain, hence the false. The caller
1726 * will repeat this with true if allocation indeed
1727 * succeeds in this zone.
1728 */
1729 compaction_defer_reset(zone, order, false);
1730
1731 break;
1732 }
1733
1734 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1735 status == COMPACT_PARTIAL_SKIPPED))
1736 /*
1737 * We think that allocation won't succeed in this zone
1738 * so we defer compaction there. If it ends up
1739 * succeeding after all, it will be reset.
1740 */
1741 defer_compaction(zone, order);
1742
1743 /*
1744 * We might have stopped compacting due to need_resched() in
1745 * async compaction, or due to a fatal signal detected. In that
1746 * case do not try further zones
1747 */
1748 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1749 || fatal_signal_pending(current))
1750 break;
1751 }
1752
1753 return rc;
1754 }
1755
1756
1757 /* Compact all zones within a node */
1758 static void compact_node(int nid)
1759 {
1760 pg_data_t *pgdat = NODE_DATA(nid);
1761 int zoneid;
1762 struct zone *zone;
1763 struct compact_control cc = {
1764 .order = -1,
1765 .total_migrate_scanned = 0,
1766 .total_free_scanned = 0,
1767 .mode = MIGRATE_SYNC,
1768 .ignore_skip_hint = true,
1769 .whole_zone = true,
1770 .gfp_mask = GFP_KERNEL,
1771 };
1772
1773
1774 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1775
1776 zone = &pgdat->node_zones[zoneid];
1777 if (!populated_zone(zone))
1778 continue;
1779
1780 cc.nr_freepages = 0;
1781 cc.nr_migratepages = 0;
1782 cc.zone = zone;
1783 INIT_LIST_HEAD(&cc.freepages);
1784 INIT_LIST_HEAD(&cc.migratepages);
1785
1786 compact_zone(zone, &cc);
1787
1788 VM_BUG_ON(!list_empty(&cc.freepages));
1789 VM_BUG_ON(!list_empty(&cc.migratepages));
1790 }
1791 }
1792
1793 /* Compact all nodes in the system */
1794 static void compact_nodes(void)
1795 {
1796 int nid;
1797
1798 /* Flush pending updates to the LRU lists */
1799 lru_add_drain_all();
1800
1801 for_each_online_node(nid)
1802 compact_node(nid);
1803 }
1804
1805 /* The written value is actually unused, all memory is compacted */
1806 int sysctl_compact_memory;
1807
1808 /*
1809 * This is the entry point for compacting all nodes via
1810 * /proc/sys/vm/compact_memory
1811 */
1812 int sysctl_compaction_handler(struct ctl_table *table, int write,
1813 void __user *buffer, size_t *length, loff_t *ppos)
1814 {
1815 if (write)
1816 compact_nodes();
1817
1818 return 0;
1819 }
1820
1821 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1822 void __user *buffer, size_t *length, loff_t *ppos)
1823 {
1824 proc_dointvec_minmax(table, write, buffer, length, ppos);
1825
1826 return 0;
1827 }
1828
1829 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1830 static ssize_t sysfs_compact_node(struct device *dev,
1831 struct device_attribute *attr,
1832 const char *buf, size_t count)
1833 {
1834 int nid = dev->id;
1835
1836 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1837 /* Flush pending updates to the LRU lists */
1838 lru_add_drain_all();
1839
1840 compact_node(nid);
1841 }
1842
1843 return count;
1844 }
1845 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1846
1847 int compaction_register_node(struct node *node)
1848 {
1849 return device_create_file(&node->dev, &dev_attr_compact);
1850 }
1851
1852 void compaction_unregister_node(struct node *node)
1853 {
1854 return device_remove_file(&node->dev, &dev_attr_compact);
1855 }
1856 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1857
1858 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1859 {
1860 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1861 }
1862
1863 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1864 {
1865 int zoneid;
1866 struct zone *zone;
1867 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1868
1869 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1870 zone = &pgdat->node_zones[zoneid];
1871
1872 if (!populated_zone(zone))
1873 continue;
1874
1875 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1876 classzone_idx) == COMPACT_CONTINUE)
1877 return true;
1878 }
1879
1880 return false;
1881 }
1882
1883 static void kcompactd_do_work(pg_data_t *pgdat)
1884 {
1885 /*
1886 * With no special task, compact all zones so that a page of requested
1887 * order is allocatable.
1888 */
1889 int zoneid;
1890 struct zone *zone;
1891 struct compact_control cc = {
1892 .order = pgdat->kcompactd_max_order,
1893 .total_migrate_scanned = 0,
1894 .total_free_scanned = 0,
1895 .classzone_idx = pgdat->kcompactd_classzone_idx,
1896 .mode = MIGRATE_SYNC_LIGHT,
1897 .ignore_skip_hint = true,
1898 .gfp_mask = GFP_KERNEL,
1899
1900 };
1901 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1902 cc.classzone_idx);
1903 count_compact_event(KCOMPACTD_WAKE);
1904
1905 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1906 int status;
1907
1908 zone = &pgdat->node_zones[zoneid];
1909 if (!populated_zone(zone))
1910 continue;
1911
1912 if (compaction_deferred(zone, cc.order))
1913 continue;
1914
1915 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1916 COMPACT_CONTINUE)
1917 continue;
1918
1919 cc.nr_freepages = 0;
1920 cc.nr_migratepages = 0;
1921 cc.total_migrate_scanned = 0;
1922 cc.total_free_scanned = 0;
1923 cc.zone = zone;
1924 INIT_LIST_HEAD(&cc.freepages);
1925 INIT_LIST_HEAD(&cc.migratepages);
1926
1927 if (kthread_should_stop())
1928 return;
1929 status = compact_zone(zone, &cc);
1930
1931 if (status == COMPACT_SUCCESS) {
1932 compaction_defer_reset(zone, cc.order, false);
1933 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1934 /*
1935 * We use sync migration mode here, so we defer like
1936 * sync direct compaction does.
1937 */
1938 defer_compaction(zone, cc.order);
1939 }
1940
1941 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1942 cc.total_migrate_scanned);
1943 count_compact_events(KCOMPACTD_FREE_SCANNED,
1944 cc.total_free_scanned);
1945
1946 VM_BUG_ON(!list_empty(&cc.freepages));
1947 VM_BUG_ON(!list_empty(&cc.migratepages));
1948 }
1949
1950 /*
1951 * Regardless of success, we are done until woken up next. But remember
1952 * the requested order/classzone_idx in case it was higher/tighter than
1953 * our current ones
1954 */
1955 if (pgdat->kcompactd_max_order <= cc.order)
1956 pgdat->kcompactd_max_order = 0;
1957 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1958 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1959 }
1960
1961 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1962 {
1963 if (!order)
1964 return;
1965
1966 if (pgdat->kcompactd_max_order < order)
1967 pgdat->kcompactd_max_order = order;
1968
1969 /*
1970 * Pairs with implicit barrier in wait_event_freezable()
1971 * such that wakeups are not missed in the lockless
1972 * waitqueue_active() call.
1973 */
1974 smp_acquire__after_ctrl_dep();
1975
1976 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1977 pgdat->kcompactd_classzone_idx = classzone_idx;
1978
1979 if (!waitqueue_active(&pgdat->kcompactd_wait))
1980 return;
1981
1982 if (!kcompactd_node_suitable(pgdat))
1983 return;
1984
1985 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1986 classzone_idx);
1987 wake_up_interruptible(&pgdat->kcompactd_wait);
1988 }
1989
1990 /*
1991 * The background compaction daemon, started as a kernel thread
1992 * from the init process.
1993 */
1994 static int kcompactd(void *p)
1995 {
1996 pg_data_t *pgdat = (pg_data_t*)p;
1997 struct task_struct *tsk = current;
1998
1999 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2000
2001 if (!cpumask_empty(cpumask))
2002 set_cpus_allowed_ptr(tsk, cpumask);
2003
2004 set_freezable();
2005
2006 pgdat->kcompactd_max_order = 0;
2007 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2008
2009 while (!kthread_should_stop()) {
2010 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2011 wait_event_freezable(pgdat->kcompactd_wait,
2012 kcompactd_work_requested(pgdat));
2013
2014 kcompactd_do_work(pgdat);
2015 }
2016
2017 return 0;
2018 }
2019
2020 /*
2021 * This kcompactd start function will be called by init and node-hot-add.
2022 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2023 */
2024 int kcompactd_run(int nid)
2025 {
2026 pg_data_t *pgdat = NODE_DATA(nid);
2027 int ret = 0;
2028
2029 if (pgdat->kcompactd)
2030 return 0;
2031
2032 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2033 if (IS_ERR(pgdat->kcompactd)) {
2034 pr_err("Failed to start kcompactd on node %d\n", nid);
2035 ret = PTR_ERR(pgdat->kcompactd);
2036 pgdat->kcompactd = NULL;
2037 }
2038 return ret;
2039 }
2040
2041 /*
2042 * Called by memory hotplug when all memory in a node is offlined. Caller must
2043 * hold mem_hotplug_begin/end().
2044 */
2045 void kcompactd_stop(int nid)
2046 {
2047 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2048
2049 if (kcompactd) {
2050 kthread_stop(kcompactd);
2051 NODE_DATA(nid)->kcompactd = NULL;
2052 }
2053 }
2054
2055 /*
2056 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2057 * not required for correctness. So if the last cpu in a node goes
2058 * away, we get changed to run anywhere: as the first one comes back,
2059 * restore their cpu bindings.
2060 */
2061 static int kcompactd_cpu_online(unsigned int cpu)
2062 {
2063 int nid;
2064
2065 for_each_node_state(nid, N_MEMORY) {
2066 pg_data_t *pgdat = NODE_DATA(nid);
2067 const struct cpumask *mask;
2068
2069 mask = cpumask_of_node(pgdat->node_id);
2070
2071 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2072 /* One of our CPUs online: restore mask */
2073 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2074 }
2075 return 0;
2076 }
2077
2078 static int __init kcompactd_init(void)
2079 {
2080 int nid;
2081 int ret;
2082
2083 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2084 "mm/compaction:online",
2085 kcompactd_cpu_online, NULL);
2086 if (ret < 0) {
2087 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2088 return ret;
2089 }
2090
2091 for_each_node_state(nid, N_MEMORY)
2092 kcompactd_run(nid);
2093 return 0;
2094 }
2095 subsys_initcall(kcompactd_init)
2096
2097 #endif /* CONFIG_COMPACTION */