]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/compaction.c
Merge branch 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[mirror_ubuntu-bionic-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
74 {
75 if (cc->ignore_skip_hint)
76 return true;
77
78 return !get_pageblock_skip(page);
79 }
80
81 /*
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
85 */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
91
92 zone->compact_cached_migrate_pfn[0] = start_pfn;
93 zone->compact_cached_migrate_pfn[1] = start_pfn;
94 zone->compact_cached_free_pfn = end_pfn;
95 zone->compact_blockskip_flush = false;
96
97 /* Walk the zone and mark every pageblock as suitable for isolation */
98 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
99 struct page *page;
100
101 cond_resched();
102
103 if (!pfn_valid(pfn))
104 continue;
105
106 page = pfn_to_page(pfn);
107 if (zone != page_zone(page))
108 continue;
109
110 clear_pageblock_skip(page);
111 }
112 }
113
114 void reset_isolation_suitable(pg_data_t *pgdat)
115 {
116 int zoneid;
117
118 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
119 struct zone *zone = &pgdat->node_zones[zoneid];
120 if (!populated_zone(zone))
121 continue;
122
123 /* Only flush if a full compaction finished recently */
124 if (zone->compact_blockskip_flush)
125 __reset_isolation_suitable(zone);
126 }
127 }
128
129 /*
130 * If no pages were isolated then mark this pageblock to be skipped in the
131 * future. The information is later cleared by __reset_isolation_suitable().
132 */
133 static void update_pageblock_skip(struct compact_control *cc,
134 struct page *page, unsigned long nr_isolated,
135 bool set_unsuitable, bool migrate_scanner)
136 {
137 struct zone *zone = cc->zone;
138 unsigned long pfn;
139
140 if (cc->ignore_skip_hint)
141 return;
142
143 if (!page)
144 return;
145
146 if (nr_isolated)
147 return;
148
149 /*
150 * Only skip pageblocks when all forms of compaction will be known to
151 * fail in the near future.
152 */
153 if (set_unsuitable)
154 set_pageblock_skip(page);
155
156 pfn = page_to_pfn(page);
157
158 /* Update where async and sync compaction should restart */
159 if (migrate_scanner) {
160 if (cc->finished_update_migrate)
161 return;
162 if (pfn > zone->compact_cached_migrate_pfn[0])
163 zone->compact_cached_migrate_pfn[0] = pfn;
164 if (cc->mode != MIGRATE_ASYNC &&
165 pfn > zone->compact_cached_migrate_pfn[1])
166 zone->compact_cached_migrate_pfn[1] = pfn;
167 } else {
168 if (cc->finished_update_free)
169 return;
170 if (pfn < zone->compact_cached_free_pfn)
171 zone->compact_cached_free_pfn = pfn;
172 }
173 }
174 #else
175 static inline bool isolation_suitable(struct compact_control *cc,
176 struct page *page)
177 {
178 return true;
179 }
180
181 static void update_pageblock_skip(struct compact_control *cc,
182 struct page *page, unsigned long nr_isolated,
183 bool set_unsuitable, bool migrate_scanner)
184 {
185 }
186 #endif /* CONFIG_COMPACTION */
187
188 static inline bool should_release_lock(spinlock_t *lock)
189 {
190 return need_resched() || spin_is_contended(lock);
191 }
192
193 /*
194 * Compaction requires the taking of some coarse locks that are potentially
195 * very heavily contended. Check if the process needs to be scheduled or
196 * if the lock is contended. For async compaction, back out in the event
197 * if contention is severe. For sync compaction, schedule.
198 *
199 * Returns true if the lock is held.
200 * Returns false if the lock is released and compaction should abort
201 */
202 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
203 bool locked, struct compact_control *cc)
204 {
205 if (should_release_lock(lock)) {
206 if (locked) {
207 spin_unlock_irqrestore(lock, *flags);
208 locked = false;
209 }
210
211 /* async aborts if taking too long or contended */
212 if (cc->mode == MIGRATE_ASYNC) {
213 cc->contended = true;
214 return false;
215 }
216
217 cond_resched();
218 }
219
220 if (!locked)
221 spin_lock_irqsave(lock, *flags);
222 return true;
223 }
224
225 /*
226 * Aside from avoiding lock contention, compaction also periodically checks
227 * need_resched() and either schedules in sync compaction or aborts async
228 * compaction. This is similar to what compact_checklock_irqsave() does, but
229 * is used where no lock is concerned.
230 *
231 * Returns false when no scheduling was needed, or sync compaction scheduled.
232 * Returns true when async compaction should abort.
233 */
234 static inline bool compact_should_abort(struct compact_control *cc)
235 {
236 /* async compaction aborts if contended */
237 if (need_resched()) {
238 if (cc->mode == MIGRATE_ASYNC) {
239 cc->contended = true;
240 return true;
241 }
242
243 cond_resched();
244 }
245
246 return false;
247 }
248
249 /* Returns true if the page is within a block suitable for migration to */
250 static bool suitable_migration_target(struct page *page)
251 {
252 /* If the page is a large free page, then disallow migration */
253 if (PageBuddy(page) && page_order(page) >= pageblock_order)
254 return false;
255
256 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
257 if (migrate_async_suitable(get_pageblock_migratetype(page)))
258 return true;
259
260 /* Otherwise skip the block */
261 return false;
262 }
263
264 /*
265 * Isolate free pages onto a private freelist. If @strict is true, will abort
266 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
267 * (even though it may still end up isolating some pages).
268 */
269 static unsigned long isolate_freepages_block(struct compact_control *cc,
270 unsigned long blockpfn,
271 unsigned long end_pfn,
272 struct list_head *freelist,
273 bool strict)
274 {
275 int nr_scanned = 0, total_isolated = 0;
276 struct page *cursor, *valid_page = NULL;
277 unsigned long flags;
278 bool locked = false;
279 bool checked_pageblock = false;
280
281 cursor = pfn_to_page(blockpfn);
282
283 /* Isolate free pages. */
284 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
285 int isolated, i;
286 struct page *page = cursor;
287
288 nr_scanned++;
289 if (!pfn_valid_within(blockpfn))
290 goto isolate_fail;
291
292 if (!valid_page)
293 valid_page = page;
294 if (!PageBuddy(page))
295 goto isolate_fail;
296
297 /*
298 * The zone lock must be held to isolate freepages.
299 * Unfortunately this is a very coarse lock and can be
300 * heavily contended if there are parallel allocations
301 * or parallel compactions. For async compaction do not
302 * spin on the lock and we acquire the lock as late as
303 * possible.
304 */
305 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
306 locked, cc);
307 if (!locked)
308 break;
309
310 /* Recheck this is a suitable migration target under lock */
311 if (!strict && !checked_pageblock) {
312 /*
313 * We need to check suitability of pageblock only once
314 * and this isolate_freepages_block() is called with
315 * pageblock range, so just check once is sufficient.
316 */
317 checked_pageblock = true;
318 if (!suitable_migration_target(page))
319 break;
320 }
321
322 /* Recheck this is a buddy page under lock */
323 if (!PageBuddy(page))
324 goto isolate_fail;
325
326 /* Found a free page, break it into order-0 pages */
327 isolated = split_free_page(page);
328 total_isolated += isolated;
329 for (i = 0; i < isolated; i++) {
330 list_add(&page->lru, freelist);
331 page++;
332 }
333
334 /* If a page was split, advance to the end of it */
335 if (isolated) {
336 blockpfn += isolated - 1;
337 cursor += isolated - 1;
338 continue;
339 }
340
341 isolate_fail:
342 if (strict)
343 break;
344 else
345 continue;
346
347 }
348
349 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
350
351 /*
352 * If strict isolation is requested by CMA then check that all the
353 * pages requested were isolated. If there were any failures, 0 is
354 * returned and CMA will fail.
355 */
356 if (strict && blockpfn < end_pfn)
357 total_isolated = 0;
358
359 if (locked)
360 spin_unlock_irqrestore(&cc->zone->lock, flags);
361
362 /* Update the pageblock-skip if the whole pageblock was scanned */
363 if (blockpfn == end_pfn)
364 update_pageblock_skip(cc, valid_page, total_isolated, true,
365 false);
366
367 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
368 if (total_isolated)
369 count_compact_events(COMPACTISOLATED, total_isolated);
370 return total_isolated;
371 }
372
373 /**
374 * isolate_freepages_range() - isolate free pages.
375 * @start_pfn: The first PFN to start isolating.
376 * @end_pfn: The one-past-last PFN.
377 *
378 * Non-free pages, invalid PFNs, or zone boundaries within the
379 * [start_pfn, end_pfn) range are considered errors, cause function to
380 * undo its actions and return zero.
381 *
382 * Otherwise, function returns one-past-the-last PFN of isolated page
383 * (which may be greater then end_pfn if end fell in a middle of
384 * a free page).
385 */
386 unsigned long
387 isolate_freepages_range(struct compact_control *cc,
388 unsigned long start_pfn, unsigned long end_pfn)
389 {
390 unsigned long isolated, pfn, block_end_pfn;
391 LIST_HEAD(freelist);
392
393 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
394 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
395 break;
396
397 /*
398 * On subsequent iterations ALIGN() is actually not needed,
399 * but we keep it that we not to complicate the code.
400 */
401 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
402 block_end_pfn = min(block_end_pfn, end_pfn);
403
404 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
405 &freelist, true);
406
407 /*
408 * In strict mode, isolate_freepages_block() returns 0 if
409 * there are any holes in the block (ie. invalid PFNs or
410 * non-free pages).
411 */
412 if (!isolated)
413 break;
414
415 /*
416 * If we managed to isolate pages, it is always (1 << n) *
417 * pageblock_nr_pages for some non-negative n. (Max order
418 * page may span two pageblocks).
419 */
420 }
421
422 /* split_free_page does not map the pages */
423 map_pages(&freelist);
424
425 if (pfn < end_pfn) {
426 /* Loop terminated early, cleanup. */
427 release_freepages(&freelist);
428 return 0;
429 }
430
431 /* We don't use freelists for anything. */
432 return pfn;
433 }
434
435 /* Update the number of anon and file isolated pages in the zone */
436 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
437 {
438 struct page *page;
439 unsigned int count[2] = { 0, };
440
441 list_for_each_entry(page, &cc->migratepages, lru)
442 count[!!page_is_file_cache(page)]++;
443
444 /* If locked we can use the interrupt unsafe versions */
445 if (locked) {
446 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
447 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
448 } else {
449 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
450 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
451 }
452 }
453
454 /* Similar to reclaim, but different enough that they don't share logic */
455 static bool too_many_isolated(struct zone *zone)
456 {
457 unsigned long active, inactive, isolated;
458
459 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
460 zone_page_state(zone, NR_INACTIVE_ANON);
461 active = zone_page_state(zone, NR_ACTIVE_FILE) +
462 zone_page_state(zone, NR_ACTIVE_ANON);
463 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
464 zone_page_state(zone, NR_ISOLATED_ANON);
465
466 return isolated > (inactive + active) / 2;
467 }
468
469 /**
470 * isolate_migratepages_range() - isolate all migrate-able pages in range.
471 * @zone: Zone pages are in.
472 * @cc: Compaction control structure.
473 * @low_pfn: The first PFN of the range.
474 * @end_pfn: The one-past-the-last PFN of the range.
475 * @unevictable: true if it allows to isolate unevictable pages
476 *
477 * Isolate all pages that can be migrated from the range specified by
478 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
479 * pending), otherwise PFN of the first page that was not scanned
480 * (which may be both less, equal to or more then end_pfn).
481 *
482 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
483 * zero.
484 *
485 * Apart from cc->migratepages and cc->nr_migratetypes this function
486 * does not modify any cc's fields, in particular it does not modify
487 * (or read for that matter) cc->migrate_pfn.
488 */
489 unsigned long
490 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
491 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
492 {
493 unsigned long last_pageblock_nr = 0, pageblock_nr;
494 unsigned long nr_scanned = 0, nr_isolated = 0;
495 struct list_head *migratelist = &cc->migratepages;
496 struct lruvec *lruvec;
497 unsigned long flags;
498 bool locked = false;
499 struct page *page = NULL, *valid_page = NULL;
500 bool set_unsuitable = true;
501 const isolate_mode_t mode = (cc->mode == MIGRATE_ASYNC ?
502 ISOLATE_ASYNC_MIGRATE : 0) |
503 (unevictable ? ISOLATE_UNEVICTABLE : 0);
504
505 /*
506 * Ensure that there are not too many pages isolated from the LRU
507 * list by either parallel reclaimers or compaction. If there are,
508 * delay for some time until fewer pages are isolated
509 */
510 while (unlikely(too_many_isolated(zone))) {
511 /* async migration should just abort */
512 if (cc->mode == MIGRATE_ASYNC)
513 return 0;
514
515 congestion_wait(BLK_RW_ASYNC, HZ/10);
516
517 if (fatal_signal_pending(current))
518 return 0;
519 }
520
521 if (compact_should_abort(cc))
522 return 0;
523
524 /* Time to isolate some pages for migration */
525 for (; low_pfn < end_pfn; low_pfn++) {
526 /* give a chance to irqs before checking need_resched() */
527 if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
528 if (should_release_lock(&zone->lru_lock)) {
529 spin_unlock_irqrestore(&zone->lru_lock, flags);
530 locked = false;
531 }
532 }
533
534 /*
535 * migrate_pfn does not necessarily start aligned to a
536 * pageblock. Ensure that pfn_valid is called when moving
537 * into a new MAX_ORDER_NR_PAGES range in case of large
538 * memory holes within the zone
539 */
540 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
541 if (!pfn_valid(low_pfn)) {
542 low_pfn += MAX_ORDER_NR_PAGES - 1;
543 continue;
544 }
545 }
546
547 if (!pfn_valid_within(low_pfn))
548 continue;
549 nr_scanned++;
550
551 /*
552 * Get the page and ensure the page is within the same zone.
553 * See the comment in isolate_freepages about overlapping
554 * nodes. It is deliberate that the new zone lock is not taken
555 * as memory compaction should not move pages between nodes.
556 */
557 page = pfn_to_page(low_pfn);
558 if (page_zone(page) != zone)
559 continue;
560
561 if (!valid_page)
562 valid_page = page;
563
564 /* If isolation recently failed, do not retry */
565 pageblock_nr = low_pfn >> pageblock_order;
566 if (last_pageblock_nr != pageblock_nr) {
567 int mt;
568
569 last_pageblock_nr = pageblock_nr;
570 if (!isolation_suitable(cc, page))
571 goto next_pageblock;
572
573 /*
574 * For async migration, also only scan in MOVABLE
575 * blocks. Async migration is optimistic to see if
576 * the minimum amount of work satisfies the allocation
577 */
578 mt = get_pageblock_migratetype(page);
579 if (cc->mode == MIGRATE_ASYNC &&
580 !migrate_async_suitable(mt)) {
581 set_unsuitable = false;
582 goto next_pageblock;
583 }
584 }
585
586 /*
587 * Skip if free. page_order cannot be used without zone->lock
588 * as nothing prevents parallel allocations or buddy merging.
589 */
590 if (PageBuddy(page))
591 continue;
592
593 /*
594 * Check may be lockless but that's ok as we recheck later.
595 * It's possible to migrate LRU pages and balloon pages
596 * Skip any other type of page
597 */
598 if (!PageLRU(page)) {
599 if (unlikely(balloon_page_movable(page))) {
600 if (locked && balloon_page_isolate(page)) {
601 /* Successfully isolated */
602 goto isolate_success;
603 }
604 }
605 continue;
606 }
607
608 /*
609 * PageLRU is set. lru_lock normally excludes isolation
610 * splitting and collapsing (collapsing has already happened
611 * if PageLRU is set) but the lock is not necessarily taken
612 * here and it is wasteful to take it just to check transhuge.
613 * Check TransHuge without lock and skip the whole pageblock if
614 * it's either a transhuge or hugetlbfs page, as calling
615 * compound_order() without preventing THP from splitting the
616 * page underneath us may return surprising results.
617 */
618 if (PageTransHuge(page)) {
619 if (!locked)
620 goto next_pageblock;
621 low_pfn += (1 << compound_order(page)) - 1;
622 continue;
623 }
624
625 /*
626 * Migration will fail if an anonymous page is pinned in memory,
627 * so avoid taking lru_lock and isolating it unnecessarily in an
628 * admittedly racy check.
629 */
630 if (!page_mapping(page) &&
631 page_count(page) > page_mapcount(page))
632 continue;
633
634 /* Check if it is ok to still hold the lock */
635 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
636 locked, cc);
637 if (!locked || fatal_signal_pending(current))
638 break;
639
640 /* Recheck PageLRU and PageTransHuge under lock */
641 if (!PageLRU(page))
642 continue;
643 if (PageTransHuge(page)) {
644 low_pfn += (1 << compound_order(page)) - 1;
645 continue;
646 }
647
648 lruvec = mem_cgroup_page_lruvec(page, zone);
649
650 /* Try isolate the page */
651 if (__isolate_lru_page(page, mode) != 0)
652 continue;
653
654 VM_BUG_ON_PAGE(PageTransCompound(page), page);
655
656 /* Successfully isolated */
657 del_page_from_lru_list(page, lruvec, page_lru(page));
658
659 isolate_success:
660 cc->finished_update_migrate = true;
661 list_add(&page->lru, migratelist);
662 cc->nr_migratepages++;
663 nr_isolated++;
664
665 /* Avoid isolating too much */
666 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
667 ++low_pfn;
668 break;
669 }
670
671 continue;
672
673 next_pageblock:
674 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
675 }
676
677 acct_isolated(zone, locked, cc);
678
679 if (locked)
680 spin_unlock_irqrestore(&zone->lru_lock, flags);
681
682 /*
683 * Update the pageblock-skip information and cached scanner pfn,
684 * if the whole pageblock was scanned without isolating any page.
685 */
686 if (low_pfn == end_pfn)
687 update_pageblock_skip(cc, valid_page, nr_isolated,
688 set_unsuitable, true);
689
690 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
691
692 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
693 if (nr_isolated)
694 count_compact_events(COMPACTISOLATED, nr_isolated);
695
696 return low_pfn;
697 }
698
699 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
700 #ifdef CONFIG_COMPACTION
701 /*
702 * Based on information in the current compact_control, find blocks
703 * suitable for isolating free pages from and then isolate them.
704 */
705 static void isolate_freepages(struct zone *zone,
706 struct compact_control *cc)
707 {
708 struct page *page;
709 unsigned long block_start_pfn; /* start of current pageblock */
710 unsigned long block_end_pfn; /* end of current pageblock */
711 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
712 int nr_freepages = cc->nr_freepages;
713 struct list_head *freelist = &cc->freepages;
714
715 /*
716 * Initialise the free scanner. The starting point is where we last
717 * successfully isolated from, zone-cached value, or the end of the
718 * zone when isolating for the first time. We need this aligned to
719 * the pageblock boundary, because we do
720 * block_start_pfn -= pageblock_nr_pages in the for loop.
721 * For ending point, take care when isolating in last pageblock of a
722 * a zone which ends in the middle of a pageblock.
723 * The low boundary is the end of the pageblock the migration scanner
724 * is using.
725 */
726 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
727 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
728 zone_end_pfn(zone));
729 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
730
731 /*
732 * Isolate free pages until enough are available to migrate the
733 * pages on cc->migratepages. We stop searching if the migrate
734 * and free page scanners meet or enough free pages are isolated.
735 */
736 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
737 block_end_pfn = block_start_pfn,
738 block_start_pfn -= pageblock_nr_pages) {
739 unsigned long isolated;
740
741 /*
742 * This can iterate a massively long zone without finding any
743 * suitable migration targets, so periodically check if we need
744 * to schedule, or even abort async compaction.
745 */
746 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
747 && compact_should_abort(cc))
748 break;
749
750 if (!pfn_valid(block_start_pfn))
751 continue;
752
753 /*
754 * Check for overlapping nodes/zones. It's possible on some
755 * configurations to have a setup like
756 * node0 node1 node0
757 * i.e. it's possible that all pages within a zones range of
758 * pages do not belong to a single zone.
759 */
760 page = pfn_to_page(block_start_pfn);
761 if (page_zone(page) != zone)
762 continue;
763
764 /* Check the block is suitable for migration */
765 if (!suitable_migration_target(page))
766 continue;
767
768 /* If isolation recently failed, do not retry */
769 if (!isolation_suitable(cc, page))
770 continue;
771
772 /* Found a block suitable for isolating free pages from */
773 cc->free_pfn = block_start_pfn;
774 isolated = isolate_freepages_block(cc, block_start_pfn,
775 block_end_pfn, freelist, false);
776 nr_freepages += isolated;
777
778 /*
779 * Set a flag that we successfully isolated in this pageblock.
780 * In the next loop iteration, zone->compact_cached_free_pfn
781 * will not be updated and thus it will effectively contain the
782 * highest pageblock we isolated pages from.
783 */
784 if (isolated)
785 cc->finished_update_free = true;
786
787 /*
788 * isolate_freepages_block() might have aborted due to async
789 * compaction being contended
790 */
791 if (cc->contended)
792 break;
793 }
794
795 /* split_free_page does not map the pages */
796 map_pages(freelist);
797
798 /*
799 * If we crossed the migrate scanner, we want to keep it that way
800 * so that compact_finished() may detect this
801 */
802 if (block_start_pfn < low_pfn)
803 cc->free_pfn = cc->migrate_pfn;
804
805 cc->nr_freepages = nr_freepages;
806 }
807
808 /*
809 * This is a migrate-callback that "allocates" freepages by taking pages
810 * from the isolated freelists in the block we are migrating to.
811 */
812 static struct page *compaction_alloc(struct page *migratepage,
813 unsigned long data,
814 int **result)
815 {
816 struct compact_control *cc = (struct compact_control *)data;
817 struct page *freepage;
818
819 /*
820 * Isolate free pages if necessary, and if we are not aborting due to
821 * contention.
822 */
823 if (list_empty(&cc->freepages)) {
824 if (!cc->contended)
825 isolate_freepages(cc->zone, cc);
826
827 if (list_empty(&cc->freepages))
828 return NULL;
829 }
830
831 freepage = list_entry(cc->freepages.next, struct page, lru);
832 list_del(&freepage->lru);
833 cc->nr_freepages--;
834
835 return freepage;
836 }
837
838 /*
839 * This is a migrate-callback that "frees" freepages back to the isolated
840 * freelist. All pages on the freelist are from the same zone, so there is no
841 * special handling needed for NUMA.
842 */
843 static void compaction_free(struct page *page, unsigned long data)
844 {
845 struct compact_control *cc = (struct compact_control *)data;
846
847 list_add(&page->lru, &cc->freepages);
848 cc->nr_freepages++;
849 }
850
851 /* possible outcome of isolate_migratepages */
852 typedef enum {
853 ISOLATE_ABORT, /* Abort compaction now */
854 ISOLATE_NONE, /* No pages isolated, continue scanning */
855 ISOLATE_SUCCESS, /* Pages isolated, migrate */
856 } isolate_migrate_t;
857
858 /*
859 * Isolate all pages that can be migrated from the block pointed to by
860 * the migrate scanner within compact_control.
861 */
862 static isolate_migrate_t isolate_migratepages(struct zone *zone,
863 struct compact_control *cc)
864 {
865 unsigned long low_pfn, end_pfn;
866
867 /* Do not scan outside zone boundaries */
868 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
869
870 /* Only scan within a pageblock boundary */
871 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
872
873 /* Do not cross the free scanner or scan within a memory hole */
874 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
875 cc->migrate_pfn = end_pfn;
876 return ISOLATE_NONE;
877 }
878
879 /* Perform the isolation */
880 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
881 if (!low_pfn || cc->contended)
882 return ISOLATE_ABORT;
883
884 cc->migrate_pfn = low_pfn;
885
886 return ISOLATE_SUCCESS;
887 }
888
889 static int compact_finished(struct zone *zone,
890 struct compact_control *cc)
891 {
892 unsigned int order;
893 unsigned long watermark;
894
895 if (cc->contended || fatal_signal_pending(current))
896 return COMPACT_PARTIAL;
897
898 /* Compaction run completes if the migrate and free scanner meet */
899 if (cc->free_pfn <= cc->migrate_pfn) {
900 /* Let the next compaction start anew. */
901 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
902 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
903 zone->compact_cached_free_pfn = zone_end_pfn(zone);
904
905 /*
906 * Mark that the PG_migrate_skip information should be cleared
907 * by kswapd when it goes to sleep. kswapd does not set the
908 * flag itself as the decision to be clear should be directly
909 * based on an allocation request.
910 */
911 if (!current_is_kswapd())
912 zone->compact_blockskip_flush = true;
913
914 return COMPACT_COMPLETE;
915 }
916
917 /*
918 * order == -1 is expected when compacting via
919 * /proc/sys/vm/compact_memory
920 */
921 if (cc->order == -1)
922 return COMPACT_CONTINUE;
923
924 /* Compaction run is not finished if the watermark is not met */
925 watermark = low_wmark_pages(zone);
926 watermark += (1 << cc->order);
927
928 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
929 return COMPACT_CONTINUE;
930
931 /* Direct compactor: Is a suitable page free? */
932 for (order = cc->order; order < MAX_ORDER; order++) {
933 struct free_area *area = &zone->free_area[order];
934
935 /* Job done if page is free of the right migratetype */
936 if (!list_empty(&area->free_list[cc->migratetype]))
937 return COMPACT_PARTIAL;
938
939 /* Job done if allocation would set block type */
940 if (cc->order >= pageblock_order && area->nr_free)
941 return COMPACT_PARTIAL;
942 }
943
944 return COMPACT_CONTINUE;
945 }
946
947 /*
948 * compaction_suitable: Is this suitable to run compaction on this zone now?
949 * Returns
950 * COMPACT_SKIPPED - If there are too few free pages for compaction
951 * COMPACT_PARTIAL - If the allocation would succeed without compaction
952 * COMPACT_CONTINUE - If compaction should run now
953 */
954 unsigned long compaction_suitable(struct zone *zone, int order)
955 {
956 int fragindex;
957 unsigned long watermark;
958
959 /*
960 * order == -1 is expected when compacting via
961 * /proc/sys/vm/compact_memory
962 */
963 if (order == -1)
964 return COMPACT_CONTINUE;
965
966 /*
967 * Watermarks for order-0 must be met for compaction. Note the 2UL.
968 * This is because during migration, copies of pages need to be
969 * allocated and for a short time, the footprint is higher
970 */
971 watermark = low_wmark_pages(zone) + (2UL << order);
972 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
973 return COMPACT_SKIPPED;
974
975 /*
976 * fragmentation index determines if allocation failures are due to
977 * low memory or external fragmentation
978 *
979 * index of -1000 implies allocations might succeed depending on
980 * watermarks
981 * index towards 0 implies failure is due to lack of memory
982 * index towards 1000 implies failure is due to fragmentation
983 *
984 * Only compact if a failure would be due to fragmentation.
985 */
986 fragindex = fragmentation_index(zone, order);
987 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
988 return COMPACT_SKIPPED;
989
990 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
991 0, 0))
992 return COMPACT_PARTIAL;
993
994 return COMPACT_CONTINUE;
995 }
996
997 static int compact_zone(struct zone *zone, struct compact_control *cc)
998 {
999 int ret;
1000 unsigned long start_pfn = zone->zone_start_pfn;
1001 unsigned long end_pfn = zone_end_pfn(zone);
1002 const bool sync = cc->mode != MIGRATE_ASYNC;
1003
1004 ret = compaction_suitable(zone, cc->order);
1005 switch (ret) {
1006 case COMPACT_PARTIAL:
1007 case COMPACT_SKIPPED:
1008 /* Compaction is likely to fail */
1009 return ret;
1010 case COMPACT_CONTINUE:
1011 /* Fall through to compaction */
1012 ;
1013 }
1014
1015 /*
1016 * Clear pageblock skip if there were failures recently and compaction
1017 * is about to be retried after being deferred. kswapd does not do
1018 * this reset as it'll reset the cached information when going to sleep.
1019 */
1020 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1021 __reset_isolation_suitable(zone);
1022
1023 /*
1024 * Setup to move all movable pages to the end of the zone. Used cached
1025 * information on where the scanners should start but check that it
1026 * is initialised by ensuring the values are within zone boundaries.
1027 */
1028 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1029 cc->free_pfn = zone->compact_cached_free_pfn;
1030 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1031 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1032 zone->compact_cached_free_pfn = cc->free_pfn;
1033 }
1034 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1035 cc->migrate_pfn = start_pfn;
1036 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1037 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1038 }
1039
1040 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1041
1042 migrate_prep_local();
1043
1044 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1045 int err;
1046
1047 switch (isolate_migratepages(zone, cc)) {
1048 case ISOLATE_ABORT:
1049 ret = COMPACT_PARTIAL;
1050 putback_movable_pages(&cc->migratepages);
1051 cc->nr_migratepages = 0;
1052 goto out;
1053 case ISOLATE_NONE:
1054 continue;
1055 case ISOLATE_SUCCESS:
1056 ;
1057 }
1058
1059 if (!cc->nr_migratepages)
1060 continue;
1061
1062 err = migrate_pages(&cc->migratepages, compaction_alloc,
1063 compaction_free, (unsigned long)cc, cc->mode,
1064 MR_COMPACTION);
1065
1066 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1067 &cc->migratepages);
1068
1069 /* All pages were either migrated or will be released */
1070 cc->nr_migratepages = 0;
1071 if (err) {
1072 putback_movable_pages(&cc->migratepages);
1073 /*
1074 * migrate_pages() may return -ENOMEM when scanners meet
1075 * and we want compact_finished() to detect it
1076 */
1077 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1078 ret = COMPACT_PARTIAL;
1079 goto out;
1080 }
1081 }
1082 }
1083
1084 out:
1085 /* Release free pages and check accounting */
1086 cc->nr_freepages -= release_freepages(&cc->freepages);
1087 VM_BUG_ON(cc->nr_freepages != 0);
1088
1089 trace_mm_compaction_end(ret);
1090
1091 return ret;
1092 }
1093
1094 static unsigned long compact_zone_order(struct zone *zone, int order,
1095 gfp_t gfp_mask, enum migrate_mode mode, bool *contended)
1096 {
1097 unsigned long ret;
1098 struct compact_control cc = {
1099 .nr_freepages = 0,
1100 .nr_migratepages = 0,
1101 .order = order,
1102 .migratetype = allocflags_to_migratetype(gfp_mask),
1103 .zone = zone,
1104 .mode = mode,
1105 };
1106 INIT_LIST_HEAD(&cc.freepages);
1107 INIT_LIST_HEAD(&cc.migratepages);
1108
1109 ret = compact_zone(zone, &cc);
1110
1111 VM_BUG_ON(!list_empty(&cc.freepages));
1112 VM_BUG_ON(!list_empty(&cc.migratepages));
1113
1114 *contended = cc.contended;
1115 return ret;
1116 }
1117
1118 int sysctl_extfrag_threshold = 500;
1119
1120 /**
1121 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1122 * @zonelist: The zonelist used for the current allocation
1123 * @order: The order of the current allocation
1124 * @gfp_mask: The GFP mask of the current allocation
1125 * @nodemask: The allowed nodes to allocate from
1126 * @mode: The migration mode for async, sync light, or sync migration
1127 * @contended: Return value that is true if compaction was aborted due to lock contention
1128 * @page: Optionally capture a free page of the requested order during compaction
1129 *
1130 * This is the main entry point for direct page compaction.
1131 */
1132 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1133 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1134 enum migrate_mode mode, bool *contended)
1135 {
1136 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1137 int may_enter_fs = gfp_mask & __GFP_FS;
1138 int may_perform_io = gfp_mask & __GFP_IO;
1139 struct zoneref *z;
1140 struct zone *zone;
1141 int rc = COMPACT_SKIPPED;
1142 int alloc_flags = 0;
1143
1144 /* Check if the GFP flags allow compaction */
1145 if (!order || !may_enter_fs || !may_perform_io)
1146 return rc;
1147
1148 count_compact_event(COMPACTSTALL);
1149
1150 #ifdef CONFIG_CMA
1151 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1152 alloc_flags |= ALLOC_CMA;
1153 #endif
1154 /* Compact each zone in the list */
1155 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1156 nodemask) {
1157 int status;
1158
1159 status = compact_zone_order(zone, order, gfp_mask, mode,
1160 contended);
1161 rc = max(status, rc);
1162
1163 /* If a normal allocation would succeed, stop compacting */
1164 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1165 alloc_flags))
1166 break;
1167 }
1168
1169 return rc;
1170 }
1171
1172
1173 /* Compact all zones within a node */
1174 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1175 {
1176 int zoneid;
1177 struct zone *zone;
1178
1179 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1180
1181 zone = &pgdat->node_zones[zoneid];
1182 if (!populated_zone(zone))
1183 continue;
1184
1185 cc->nr_freepages = 0;
1186 cc->nr_migratepages = 0;
1187 cc->zone = zone;
1188 INIT_LIST_HEAD(&cc->freepages);
1189 INIT_LIST_HEAD(&cc->migratepages);
1190
1191 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1192 compact_zone(zone, cc);
1193
1194 if (cc->order > 0) {
1195 if (zone_watermark_ok(zone, cc->order,
1196 low_wmark_pages(zone), 0, 0))
1197 compaction_defer_reset(zone, cc->order, false);
1198 }
1199
1200 VM_BUG_ON(!list_empty(&cc->freepages));
1201 VM_BUG_ON(!list_empty(&cc->migratepages));
1202 }
1203 }
1204
1205 void compact_pgdat(pg_data_t *pgdat, int order)
1206 {
1207 struct compact_control cc = {
1208 .order = order,
1209 .mode = MIGRATE_ASYNC,
1210 };
1211
1212 if (!order)
1213 return;
1214
1215 __compact_pgdat(pgdat, &cc);
1216 }
1217
1218 static void compact_node(int nid)
1219 {
1220 struct compact_control cc = {
1221 .order = -1,
1222 .mode = MIGRATE_SYNC,
1223 .ignore_skip_hint = true,
1224 };
1225
1226 __compact_pgdat(NODE_DATA(nid), &cc);
1227 }
1228
1229 /* Compact all nodes in the system */
1230 static void compact_nodes(void)
1231 {
1232 int nid;
1233
1234 /* Flush pending updates to the LRU lists */
1235 lru_add_drain_all();
1236
1237 for_each_online_node(nid)
1238 compact_node(nid);
1239 }
1240
1241 /* The written value is actually unused, all memory is compacted */
1242 int sysctl_compact_memory;
1243
1244 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1245 int sysctl_compaction_handler(struct ctl_table *table, int write,
1246 void __user *buffer, size_t *length, loff_t *ppos)
1247 {
1248 if (write)
1249 compact_nodes();
1250
1251 return 0;
1252 }
1253
1254 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1255 void __user *buffer, size_t *length, loff_t *ppos)
1256 {
1257 proc_dointvec_minmax(table, write, buffer, length, ppos);
1258
1259 return 0;
1260 }
1261
1262 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1263 static ssize_t sysfs_compact_node(struct device *dev,
1264 struct device_attribute *attr,
1265 const char *buf, size_t count)
1266 {
1267 int nid = dev->id;
1268
1269 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1270 /* Flush pending updates to the LRU lists */
1271 lru_add_drain_all();
1272
1273 compact_node(nid);
1274 }
1275
1276 return count;
1277 }
1278 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1279
1280 int compaction_register_node(struct node *node)
1281 {
1282 return device_create_file(&node->dev, &dev_attr_compact);
1283 }
1284
1285 void compaction_unregister_node(struct node *node)
1286 {
1287 return device_remove_file(&node->dev, &dev_attr_compact);
1288 }
1289 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1290
1291 #endif /* CONFIG_COMPACTION */