]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/compaction.c
mm, compaction: use correct watermark when checking compaction success
[mirror_ubuntu-zesty-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 struct page *page, *next;
53 unsigned long high_pfn = 0;
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
56 unsigned long pfn = page_to_pfn(page);
57 list_del(&page->lru);
58 __free_page(page);
59 if (pfn > high_pfn)
60 high_pfn = pfn;
61 }
62
63 return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68 unsigned int i, order, nr_pages;
69 struct page *page, *next;
70 LIST_HEAD(tmp_list);
71
72 list_for_each_entry_safe(page, next, list, lru) {
73 list_del(&page->lru);
74
75 order = page_private(page);
76 nr_pages = 1 << order;
77
78 post_alloc_hook(page, order, __GFP_MOVABLE);
79 if (order)
80 split_page(page, order);
81
82 for (i = 0; i < nr_pages; i++) {
83 list_add(&page->lru, &tmp_list);
84 page++;
85 }
86 }
87
88 list_splice(&tmp_list, list);
89 }
90
91 static inline bool migrate_async_suitable(int migratetype)
92 {
93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
94 }
95
96 #ifdef CONFIG_COMPACTION
97
98 int PageMovable(struct page *page)
99 {
100 struct address_space *mapping;
101
102 VM_BUG_ON_PAGE(!PageLocked(page), page);
103 if (!__PageMovable(page))
104 return 0;
105
106 mapping = page_mapping(page);
107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108 return 1;
109
110 return 0;
111 }
112 EXPORT_SYMBOL(PageMovable);
113
114 void __SetPageMovable(struct page *page, struct address_space *mapping)
115 {
116 VM_BUG_ON_PAGE(!PageLocked(page), page);
117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
119 }
120 EXPORT_SYMBOL(__SetPageMovable);
121
122 void __ClearPageMovable(struct page *page)
123 {
124 VM_BUG_ON_PAGE(!PageLocked(page), page);
125 VM_BUG_ON_PAGE(!PageMovable(page), page);
126 /*
127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 * flag so that VM can catch up released page by driver after isolation.
129 * With it, VM migration doesn't try to put it back.
130 */
131 page->mapping = (void *)((unsigned long)page->mapping &
132 PAGE_MAPPING_MOVABLE);
133 }
134 EXPORT_SYMBOL(__ClearPageMovable);
135
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
138
139 /*
140 * Compaction is deferred when compaction fails to result in a page
141 * allocation success. 1 << compact_defer_limit compactions are skipped up
142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
143 */
144 void defer_compaction(struct zone *zone, int order)
145 {
146 zone->compact_considered = 0;
147 zone->compact_defer_shift++;
148
149 if (order < zone->compact_order_failed)
150 zone->compact_order_failed = order;
151
152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
154
155 trace_mm_compaction_defer_compaction(zone, order);
156 }
157
158 /* Returns true if compaction should be skipped this time */
159 bool compaction_deferred(struct zone *zone, int order)
160 {
161 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
162
163 if (order < zone->compact_order_failed)
164 return false;
165
166 /* Avoid possible overflow */
167 if (++zone->compact_considered > defer_limit)
168 zone->compact_considered = defer_limit;
169
170 if (zone->compact_considered >= defer_limit)
171 return false;
172
173 trace_mm_compaction_deferred(zone, order);
174
175 return true;
176 }
177
178 /*
179 * Update defer tracking counters after successful compaction of given order,
180 * which means an allocation either succeeded (alloc_success == true) or is
181 * expected to succeed.
182 */
183 void compaction_defer_reset(struct zone *zone, int order,
184 bool alloc_success)
185 {
186 if (alloc_success) {
187 zone->compact_considered = 0;
188 zone->compact_defer_shift = 0;
189 }
190 if (order >= zone->compact_order_failed)
191 zone->compact_order_failed = order + 1;
192
193 trace_mm_compaction_defer_reset(zone, order);
194 }
195
196 /* Returns true if restarting compaction after many failures */
197 bool compaction_restarting(struct zone *zone, int order)
198 {
199 if (order < zone->compact_order_failed)
200 return false;
201
202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203 zone->compact_considered >= 1UL << zone->compact_defer_shift;
204 }
205
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
207 static inline bool isolation_suitable(struct compact_control *cc,
208 struct page *page)
209 {
210 if (cc->ignore_skip_hint)
211 return true;
212
213 return !get_pageblock_skip(page);
214 }
215
216 static void reset_cached_positions(struct zone *zone)
217 {
218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220 zone->compact_cached_free_pfn =
221 pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 }
223
224 /*
225 * This function is called to clear all cached information on pageblocks that
226 * should be skipped for page isolation when the migrate and free page scanner
227 * meet.
228 */
229 static void __reset_isolation_suitable(struct zone *zone)
230 {
231 unsigned long start_pfn = zone->zone_start_pfn;
232 unsigned long end_pfn = zone_end_pfn(zone);
233 unsigned long pfn;
234
235 zone->compact_blockskip_flush = false;
236
237 /* Walk the zone and mark every pageblock as suitable for isolation */
238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239 struct page *page;
240
241 cond_resched();
242
243 if (!pfn_valid(pfn))
244 continue;
245
246 page = pfn_to_page(pfn);
247 if (zone != page_zone(page))
248 continue;
249
250 clear_pageblock_skip(page);
251 }
252
253 reset_cached_positions(zone);
254 }
255
256 void reset_isolation_suitable(pg_data_t *pgdat)
257 {
258 int zoneid;
259
260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261 struct zone *zone = &pgdat->node_zones[zoneid];
262 if (!populated_zone(zone))
263 continue;
264
265 /* Only flush if a full compaction finished recently */
266 if (zone->compact_blockskip_flush)
267 __reset_isolation_suitable(zone);
268 }
269 }
270
271 /*
272 * If no pages were isolated then mark this pageblock to be skipped in the
273 * future. The information is later cleared by __reset_isolation_suitable().
274 */
275 static void update_pageblock_skip(struct compact_control *cc,
276 struct page *page, unsigned long nr_isolated,
277 bool migrate_scanner)
278 {
279 struct zone *zone = cc->zone;
280 unsigned long pfn;
281
282 if (cc->ignore_skip_hint)
283 return;
284
285 if (!page)
286 return;
287
288 if (nr_isolated)
289 return;
290
291 set_pageblock_skip(page);
292
293 pfn = page_to_pfn(page);
294
295 /* Update where async and sync compaction should restart */
296 if (migrate_scanner) {
297 if (pfn > zone->compact_cached_migrate_pfn[0])
298 zone->compact_cached_migrate_pfn[0] = pfn;
299 if (cc->mode != MIGRATE_ASYNC &&
300 pfn > zone->compact_cached_migrate_pfn[1])
301 zone->compact_cached_migrate_pfn[1] = pfn;
302 } else {
303 if (pfn < zone->compact_cached_free_pfn)
304 zone->compact_cached_free_pfn = pfn;
305 }
306 }
307 #else
308 static inline bool isolation_suitable(struct compact_control *cc,
309 struct page *page)
310 {
311 return true;
312 }
313
314 static void update_pageblock_skip(struct compact_control *cc,
315 struct page *page, unsigned long nr_isolated,
316 bool migrate_scanner)
317 {
318 }
319 #endif /* CONFIG_COMPACTION */
320
321 /*
322 * Compaction requires the taking of some coarse locks that are potentially
323 * very heavily contended. For async compaction, back out if the lock cannot
324 * be taken immediately. For sync compaction, spin on the lock if needed.
325 *
326 * Returns true if the lock is held
327 * Returns false if the lock is not held and compaction should abort
328 */
329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330 struct compact_control *cc)
331 {
332 if (cc->mode == MIGRATE_ASYNC) {
333 if (!spin_trylock_irqsave(lock, *flags)) {
334 cc->contended = true;
335 return false;
336 }
337 } else {
338 spin_lock_irqsave(lock, *flags);
339 }
340
341 return true;
342 }
343
344 /*
345 * Compaction requires the taking of some coarse locks that are potentially
346 * very heavily contended. The lock should be periodically unlocked to avoid
347 * having disabled IRQs for a long time, even when there is nobody waiting on
348 * the lock. It might also be that allowing the IRQs will result in
349 * need_resched() becoming true. If scheduling is needed, async compaction
350 * aborts. Sync compaction schedules.
351 * Either compaction type will also abort if a fatal signal is pending.
352 * In either case if the lock was locked, it is dropped and not regained.
353 *
354 * Returns true if compaction should abort due to fatal signal pending, or
355 * async compaction due to need_resched()
356 * Returns false when compaction can continue (sync compaction might have
357 * scheduled)
358 */
359 static bool compact_unlock_should_abort(spinlock_t *lock,
360 unsigned long flags, bool *locked, struct compact_control *cc)
361 {
362 if (*locked) {
363 spin_unlock_irqrestore(lock, flags);
364 *locked = false;
365 }
366
367 if (fatal_signal_pending(current)) {
368 cc->contended = true;
369 return true;
370 }
371
372 if (need_resched()) {
373 if (cc->mode == MIGRATE_ASYNC) {
374 cc->contended = true;
375 return true;
376 }
377 cond_resched();
378 }
379
380 return false;
381 }
382
383 /*
384 * Aside from avoiding lock contention, compaction also periodically checks
385 * need_resched() and either schedules in sync compaction or aborts async
386 * compaction. This is similar to what compact_unlock_should_abort() does, but
387 * is used where no lock is concerned.
388 *
389 * Returns false when no scheduling was needed, or sync compaction scheduled.
390 * Returns true when async compaction should abort.
391 */
392 static inline bool compact_should_abort(struct compact_control *cc)
393 {
394 /* async compaction aborts if contended */
395 if (need_resched()) {
396 if (cc->mode == MIGRATE_ASYNC) {
397 cc->contended = true;
398 return true;
399 }
400
401 cond_resched();
402 }
403
404 return false;
405 }
406
407 /*
408 * Isolate free pages onto a private freelist. If @strict is true, will abort
409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410 * (even though it may still end up isolating some pages).
411 */
412 static unsigned long isolate_freepages_block(struct compact_control *cc,
413 unsigned long *start_pfn,
414 unsigned long end_pfn,
415 struct list_head *freelist,
416 bool strict)
417 {
418 int nr_scanned = 0, total_isolated = 0;
419 struct page *cursor, *valid_page = NULL;
420 unsigned long flags = 0;
421 bool locked = false;
422 unsigned long blockpfn = *start_pfn;
423 unsigned int order;
424
425 cursor = pfn_to_page(blockpfn);
426
427 /* Isolate free pages. */
428 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429 int isolated;
430 struct page *page = cursor;
431
432 /*
433 * Periodically drop the lock (if held) regardless of its
434 * contention, to give chance to IRQs. Abort if fatal signal
435 * pending or async compaction detects need_resched()
436 */
437 if (!(blockpfn % SWAP_CLUSTER_MAX)
438 && compact_unlock_should_abort(&cc->zone->lock, flags,
439 &locked, cc))
440 break;
441
442 nr_scanned++;
443 if (!pfn_valid_within(blockpfn))
444 goto isolate_fail;
445
446 if (!valid_page)
447 valid_page = page;
448
449 /*
450 * For compound pages such as THP and hugetlbfs, we can save
451 * potentially a lot of iterations if we skip them at once.
452 * The check is racy, but we can consider only valid values
453 * and the only danger is skipping too much.
454 */
455 if (PageCompound(page)) {
456 unsigned int comp_order = compound_order(page);
457
458 if (likely(comp_order < MAX_ORDER)) {
459 blockpfn += (1UL << comp_order) - 1;
460 cursor += (1UL << comp_order) - 1;
461 }
462
463 goto isolate_fail;
464 }
465
466 if (!PageBuddy(page))
467 goto isolate_fail;
468
469 /*
470 * If we already hold the lock, we can skip some rechecking.
471 * Note that if we hold the lock now, checked_pageblock was
472 * already set in some previous iteration (or strict is true),
473 * so it is correct to skip the suitable migration target
474 * recheck as well.
475 */
476 if (!locked) {
477 /*
478 * The zone lock must be held to isolate freepages.
479 * Unfortunately this is a very coarse lock and can be
480 * heavily contended if there are parallel allocations
481 * or parallel compactions. For async compaction do not
482 * spin on the lock and we acquire the lock as late as
483 * possible.
484 */
485 locked = compact_trylock_irqsave(&cc->zone->lock,
486 &flags, cc);
487 if (!locked)
488 break;
489
490 /* Recheck this is a buddy page under lock */
491 if (!PageBuddy(page))
492 goto isolate_fail;
493 }
494
495 /* Found a free page, will break it into order-0 pages */
496 order = page_order(page);
497 isolated = __isolate_free_page(page, order);
498 if (!isolated)
499 break;
500 set_page_private(page, order);
501
502 total_isolated += isolated;
503 cc->nr_freepages += isolated;
504 list_add_tail(&page->lru, freelist);
505
506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507 blockpfn += isolated;
508 break;
509 }
510 /* Advance to the end of split page */
511 blockpfn += isolated - 1;
512 cursor += isolated - 1;
513 continue;
514
515 isolate_fail:
516 if (strict)
517 break;
518 else
519 continue;
520
521 }
522
523 if (locked)
524 spin_unlock_irqrestore(&cc->zone->lock, flags);
525
526 /*
527 * There is a tiny chance that we have read bogus compound_order(),
528 * so be careful to not go outside of the pageblock.
529 */
530 if (unlikely(blockpfn > end_pfn))
531 blockpfn = end_pfn;
532
533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534 nr_scanned, total_isolated);
535
536 /* Record how far we have got within the block */
537 *start_pfn = blockpfn;
538
539 /*
540 * If strict isolation is requested by CMA then check that all the
541 * pages requested were isolated. If there were any failures, 0 is
542 * returned and CMA will fail.
543 */
544 if (strict && blockpfn < end_pfn)
545 total_isolated = 0;
546
547 /* Update the pageblock-skip if the whole pageblock was scanned */
548 if (blockpfn == end_pfn)
549 update_pageblock_skip(cc, valid_page, total_isolated, false);
550
551 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552 if (total_isolated)
553 count_compact_events(COMPACTISOLATED, total_isolated);
554 return total_isolated;
555 }
556
557 /**
558 * isolate_freepages_range() - isolate free pages.
559 * @start_pfn: The first PFN to start isolating.
560 * @end_pfn: The one-past-last PFN.
561 *
562 * Non-free pages, invalid PFNs, or zone boundaries within the
563 * [start_pfn, end_pfn) range are considered errors, cause function to
564 * undo its actions and return zero.
565 *
566 * Otherwise, function returns one-past-the-last PFN of isolated page
567 * (which may be greater then end_pfn if end fell in a middle of
568 * a free page).
569 */
570 unsigned long
571 isolate_freepages_range(struct compact_control *cc,
572 unsigned long start_pfn, unsigned long end_pfn)
573 {
574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 LIST_HEAD(freelist);
576
577 pfn = start_pfn;
578 block_start_pfn = pageblock_start_pfn(pfn);
579 if (block_start_pfn < cc->zone->zone_start_pfn)
580 block_start_pfn = cc->zone->zone_start_pfn;
581 block_end_pfn = pageblock_end_pfn(pfn);
582
583 for (; pfn < end_pfn; pfn += isolated,
584 block_start_pfn = block_end_pfn,
585 block_end_pfn += pageblock_nr_pages) {
586 /* Protect pfn from changing by isolate_freepages_block */
587 unsigned long isolate_start_pfn = pfn;
588
589 block_end_pfn = min(block_end_pfn, end_pfn);
590
591 /*
592 * pfn could pass the block_end_pfn if isolated freepage
593 * is more than pageblock order. In this case, we adjust
594 * scanning range to right one.
595 */
596 if (pfn >= block_end_pfn) {
597 block_start_pfn = pageblock_start_pfn(pfn);
598 block_end_pfn = pageblock_end_pfn(pfn);
599 block_end_pfn = min(block_end_pfn, end_pfn);
600 }
601
602 if (!pageblock_pfn_to_page(block_start_pfn,
603 block_end_pfn, cc->zone))
604 break;
605
606 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607 block_end_pfn, &freelist, true);
608
609 /*
610 * In strict mode, isolate_freepages_block() returns 0 if
611 * there are any holes in the block (ie. invalid PFNs or
612 * non-free pages).
613 */
614 if (!isolated)
615 break;
616
617 /*
618 * If we managed to isolate pages, it is always (1 << n) *
619 * pageblock_nr_pages for some non-negative n. (Max order
620 * page may span two pageblocks).
621 */
622 }
623
624 /* __isolate_free_page() does not map the pages */
625 map_pages(&freelist);
626
627 if (pfn < end_pfn) {
628 /* Loop terminated early, cleanup. */
629 release_freepages(&freelist);
630 return 0;
631 }
632
633 /* We don't use freelists for anything. */
634 return pfn;
635 }
636
637 /* Update the number of anon and file isolated pages in the zone */
638 static void acct_isolated(struct zone *zone, struct compact_control *cc)
639 {
640 struct page *page;
641 unsigned int count[2] = { 0, };
642
643 if (list_empty(&cc->migratepages))
644 return;
645
646 list_for_each_entry(page, &cc->migratepages, lru)
647 count[!!page_is_file_cache(page)]++;
648
649 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]);
650 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]);
651 }
652
653 /* Similar to reclaim, but different enough that they don't share logic */
654 static bool too_many_isolated(struct zone *zone)
655 {
656 unsigned long active, inactive, isolated;
657
658 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
659 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
660 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
661 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
662 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
663 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
664
665 return isolated > (inactive + active) / 2;
666 }
667
668 /**
669 * isolate_migratepages_block() - isolate all migrate-able pages within
670 * a single pageblock
671 * @cc: Compaction control structure.
672 * @low_pfn: The first PFN to isolate
673 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
674 * @isolate_mode: Isolation mode to be used.
675 *
676 * Isolate all pages that can be migrated from the range specified by
677 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
678 * Returns zero if there is a fatal signal pending, otherwise PFN of the
679 * first page that was not scanned (which may be both less, equal to or more
680 * than end_pfn).
681 *
682 * The pages are isolated on cc->migratepages list (not required to be empty),
683 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
684 * is neither read nor updated.
685 */
686 static unsigned long
687 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
688 unsigned long end_pfn, isolate_mode_t isolate_mode)
689 {
690 struct zone *zone = cc->zone;
691 unsigned long nr_scanned = 0, nr_isolated = 0;
692 struct lruvec *lruvec;
693 unsigned long flags = 0;
694 bool locked = false;
695 struct page *page = NULL, *valid_page = NULL;
696 unsigned long start_pfn = low_pfn;
697 bool skip_on_failure = false;
698 unsigned long next_skip_pfn = 0;
699
700 /*
701 * Ensure that there are not too many pages isolated from the LRU
702 * list by either parallel reclaimers or compaction. If there are,
703 * delay for some time until fewer pages are isolated
704 */
705 while (unlikely(too_many_isolated(zone))) {
706 /* async migration should just abort */
707 if (cc->mode == MIGRATE_ASYNC)
708 return 0;
709
710 congestion_wait(BLK_RW_ASYNC, HZ/10);
711
712 if (fatal_signal_pending(current))
713 return 0;
714 }
715
716 if (compact_should_abort(cc))
717 return 0;
718
719 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
720 skip_on_failure = true;
721 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
722 }
723
724 /* Time to isolate some pages for migration */
725 for (; low_pfn < end_pfn; low_pfn++) {
726
727 if (skip_on_failure && low_pfn >= next_skip_pfn) {
728 /*
729 * We have isolated all migration candidates in the
730 * previous order-aligned block, and did not skip it due
731 * to failure. We should migrate the pages now and
732 * hopefully succeed compaction.
733 */
734 if (nr_isolated)
735 break;
736
737 /*
738 * We failed to isolate in the previous order-aligned
739 * block. Set the new boundary to the end of the
740 * current block. Note we can't simply increase
741 * next_skip_pfn by 1 << order, as low_pfn might have
742 * been incremented by a higher number due to skipping
743 * a compound or a high-order buddy page in the
744 * previous loop iteration.
745 */
746 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
747 }
748
749 /*
750 * Periodically drop the lock (if held) regardless of its
751 * contention, to give chance to IRQs. Abort async compaction
752 * if contended.
753 */
754 if (!(low_pfn % SWAP_CLUSTER_MAX)
755 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
756 &locked, cc))
757 break;
758
759 if (!pfn_valid_within(low_pfn))
760 goto isolate_fail;
761 nr_scanned++;
762
763 page = pfn_to_page(low_pfn);
764
765 if (!valid_page)
766 valid_page = page;
767
768 /*
769 * Skip if free. We read page order here without zone lock
770 * which is generally unsafe, but the race window is small and
771 * the worst thing that can happen is that we skip some
772 * potential isolation targets.
773 */
774 if (PageBuddy(page)) {
775 unsigned long freepage_order = page_order_unsafe(page);
776
777 /*
778 * Without lock, we cannot be sure that what we got is
779 * a valid page order. Consider only values in the
780 * valid order range to prevent low_pfn overflow.
781 */
782 if (freepage_order > 0 && freepage_order < MAX_ORDER)
783 low_pfn += (1UL << freepage_order) - 1;
784 continue;
785 }
786
787 /*
788 * Regardless of being on LRU, compound pages such as THP and
789 * hugetlbfs are not to be compacted. We can potentially save
790 * a lot of iterations if we skip them at once. The check is
791 * racy, but we can consider only valid values and the only
792 * danger is skipping too much.
793 */
794 if (PageCompound(page)) {
795 unsigned int comp_order = compound_order(page);
796
797 if (likely(comp_order < MAX_ORDER))
798 low_pfn += (1UL << comp_order) - 1;
799
800 goto isolate_fail;
801 }
802
803 /*
804 * Check may be lockless but that's ok as we recheck later.
805 * It's possible to migrate LRU and non-lru movable pages.
806 * Skip any other type of page
807 */
808 if (!PageLRU(page)) {
809 /*
810 * __PageMovable can return false positive so we need
811 * to verify it under page_lock.
812 */
813 if (unlikely(__PageMovable(page)) &&
814 !PageIsolated(page)) {
815 if (locked) {
816 spin_unlock_irqrestore(zone_lru_lock(zone),
817 flags);
818 locked = false;
819 }
820
821 if (isolate_movable_page(page, isolate_mode))
822 goto isolate_success;
823 }
824
825 goto isolate_fail;
826 }
827
828 /*
829 * Migration will fail if an anonymous page is pinned in memory,
830 * so avoid taking lru_lock and isolating it unnecessarily in an
831 * admittedly racy check.
832 */
833 if (!page_mapping(page) &&
834 page_count(page) > page_mapcount(page))
835 goto isolate_fail;
836
837 /* If we already hold the lock, we can skip some rechecking */
838 if (!locked) {
839 locked = compact_trylock_irqsave(zone_lru_lock(zone),
840 &flags, cc);
841 if (!locked)
842 break;
843
844 /* Recheck PageLRU and PageCompound under lock */
845 if (!PageLRU(page))
846 goto isolate_fail;
847
848 /*
849 * Page become compound since the non-locked check,
850 * and it's on LRU. It can only be a THP so the order
851 * is safe to read and it's 0 for tail pages.
852 */
853 if (unlikely(PageCompound(page))) {
854 low_pfn += (1UL << compound_order(page)) - 1;
855 goto isolate_fail;
856 }
857 }
858
859 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
860
861 /* Try isolate the page */
862 if (__isolate_lru_page(page, isolate_mode) != 0)
863 goto isolate_fail;
864
865 VM_BUG_ON_PAGE(PageCompound(page), page);
866
867 /* Successfully isolated */
868 del_page_from_lru_list(page, lruvec, page_lru(page));
869
870 isolate_success:
871 list_add(&page->lru, &cc->migratepages);
872 cc->nr_migratepages++;
873 nr_isolated++;
874
875 /*
876 * Record where we could have freed pages by migration and not
877 * yet flushed them to buddy allocator.
878 * - this is the lowest page that was isolated and likely be
879 * then freed by migration.
880 */
881 if (!cc->last_migrated_pfn)
882 cc->last_migrated_pfn = low_pfn;
883
884 /* Avoid isolating too much */
885 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
886 ++low_pfn;
887 break;
888 }
889
890 continue;
891 isolate_fail:
892 if (!skip_on_failure)
893 continue;
894
895 /*
896 * We have isolated some pages, but then failed. Release them
897 * instead of migrating, as we cannot form the cc->order buddy
898 * page anyway.
899 */
900 if (nr_isolated) {
901 if (locked) {
902 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
903 locked = false;
904 }
905 acct_isolated(zone, cc);
906 putback_movable_pages(&cc->migratepages);
907 cc->nr_migratepages = 0;
908 cc->last_migrated_pfn = 0;
909 nr_isolated = 0;
910 }
911
912 if (low_pfn < next_skip_pfn) {
913 low_pfn = next_skip_pfn - 1;
914 /*
915 * The check near the loop beginning would have updated
916 * next_skip_pfn too, but this is a bit simpler.
917 */
918 next_skip_pfn += 1UL << cc->order;
919 }
920 }
921
922 /*
923 * The PageBuddy() check could have potentially brought us outside
924 * the range to be scanned.
925 */
926 if (unlikely(low_pfn > end_pfn))
927 low_pfn = end_pfn;
928
929 if (locked)
930 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
931
932 /*
933 * Update the pageblock-skip information and cached scanner pfn,
934 * if the whole pageblock was scanned without isolating any page.
935 */
936 if (low_pfn == end_pfn)
937 update_pageblock_skip(cc, valid_page, nr_isolated, true);
938
939 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
940 nr_scanned, nr_isolated);
941
942 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
943 if (nr_isolated)
944 count_compact_events(COMPACTISOLATED, nr_isolated);
945
946 return low_pfn;
947 }
948
949 /**
950 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
951 * @cc: Compaction control structure.
952 * @start_pfn: The first PFN to start isolating.
953 * @end_pfn: The one-past-last PFN.
954 *
955 * Returns zero if isolation fails fatally due to e.g. pending signal.
956 * Otherwise, function returns one-past-the-last PFN of isolated page
957 * (which may be greater than end_pfn if end fell in a middle of a THP page).
958 */
959 unsigned long
960 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
961 unsigned long end_pfn)
962 {
963 unsigned long pfn, block_start_pfn, block_end_pfn;
964
965 /* Scan block by block. First and last block may be incomplete */
966 pfn = start_pfn;
967 block_start_pfn = pageblock_start_pfn(pfn);
968 if (block_start_pfn < cc->zone->zone_start_pfn)
969 block_start_pfn = cc->zone->zone_start_pfn;
970 block_end_pfn = pageblock_end_pfn(pfn);
971
972 for (; pfn < end_pfn; pfn = block_end_pfn,
973 block_start_pfn = block_end_pfn,
974 block_end_pfn += pageblock_nr_pages) {
975
976 block_end_pfn = min(block_end_pfn, end_pfn);
977
978 if (!pageblock_pfn_to_page(block_start_pfn,
979 block_end_pfn, cc->zone))
980 continue;
981
982 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
983 ISOLATE_UNEVICTABLE);
984
985 if (!pfn)
986 break;
987
988 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
989 break;
990 }
991 acct_isolated(cc->zone, cc);
992
993 return pfn;
994 }
995
996 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
997 #ifdef CONFIG_COMPACTION
998
999 /* Returns true if the page is within a block suitable for migration to */
1000 static bool suitable_migration_target(struct page *page)
1001 {
1002 /* If the page is a large free page, then disallow migration */
1003 if (PageBuddy(page)) {
1004 /*
1005 * We are checking page_order without zone->lock taken. But
1006 * the only small danger is that we skip a potentially suitable
1007 * pageblock, so it's not worth to check order for valid range.
1008 */
1009 if (page_order_unsafe(page) >= pageblock_order)
1010 return false;
1011 }
1012
1013 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1014 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1015 return true;
1016
1017 /* Otherwise skip the block */
1018 return false;
1019 }
1020
1021 /*
1022 * Test whether the free scanner has reached the same or lower pageblock than
1023 * the migration scanner, and compaction should thus terminate.
1024 */
1025 static inline bool compact_scanners_met(struct compact_control *cc)
1026 {
1027 return (cc->free_pfn >> pageblock_order)
1028 <= (cc->migrate_pfn >> pageblock_order);
1029 }
1030
1031 /*
1032 * Based on information in the current compact_control, find blocks
1033 * suitable for isolating free pages from and then isolate them.
1034 */
1035 static void isolate_freepages(struct compact_control *cc)
1036 {
1037 struct zone *zone = cc->zone;
1038 struct page *page;
1039 unsigned long block_start_pfn; /* start of current pageblock */
1040 unsigned long isolate_start_pfn; /* exact pfn we start at */
1041 unsigned long block_end_pfn; /* end of current pageblock */
1042 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1043 struct list_head *freelist = &cc->freepages;
1044
1045 /*
1046 * Initialise the free scanner. The starting point is where we last
1047 * successfully isolated from, zone-cached value, or the end of the
1048 * zone when isolating for the first time. For looping we also need
1049 * this pfn aligned down to the pageblock boundary, because we do
1050 * block_start_pfn -= pageblock_nr_pages in the for loop.
1051 * For ending point, take care when isolating in last pageblock of a
1052 * a zone which ends in the middle of a pageblock.
1053 * The low boundary is the end of the pageblock the migration scanner
1054 * is using.
1055 */
1056 isolate_start_pfn = cc->free_pfn;
1057 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1058 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1059 zone_end_pfn(zone));
1060 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1061
1062 /*
1063 * Isolate free pages until enough are available to migrate the
1064 * pages on cc->migratepages. We stop searching if the migrate
1065 * and free page scanners meet or enough free pages are isolated.
1066 */
1067 for (; block_start_pfn >= low_pfn;
1068 block_end_pfn = block_start_pfn,
1069 block_start_pfn -= pageblock_nr_pages,
1070 isolate_start_pfn = block_start_pfn) {
1071 /*
1072 * This can iterate a massively long zone without finding any
1073 * suitable migration targets, so periodically check if we need
1074 * to schedule, or even abort async compaction.
1075 */
1076 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1077 && compact_should_abort(cc))
1078 break;
1079
1080 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1081 zone);
1082 if (!page)
1083 continue;
1084
1085 /* Check the block is suitable for migration */
1086 if (!suitable_migration_target(page))
1087 continue;
1088
1089 /* If isolation recently failed, do not retry */
1090 if (!isolation_suitable(cc, page))
1091 continue;
1092
1093 /* Found a block suitable for isolating free pages from. */
1094 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1095 freelist, false);
1096
1097 /*
1098 * If we isolated enough freepages, or aborted due to lock
1099 * contention, terminate.
1100 */
1101 if ((cc->nr_freepages >= cc->nr_migratepages)
1102 || cc->contended) {
1103 if (isolate_start_pfn >= block_end_pfn) {
1104 /*
1105 * Restart at previous pageblock if more
1106 * freepages can be isolated next time.
1107 */
1108 isolate_start_pfn =
1109 block_start_pfn - pageblock_nr_pages;
1110 }
1111 break;
1112 } else if (isolate_start_pfn < block_end_pfn) {
1113 /*
1114 * If isolation failed early, do not continue
1115 * needlessly.
1116 */
1117 break;
1118 }
1119 }
1120
1121 /* __isolate_free_page() does not map the pages */
1122 map_pages(freelist);
1123
1124 /*
1125 * Record where the free scanner will restart next time. Either we
1126 * broke from the loop and set isolate_start_pfn based on the last
1127 * call to isolate_freepages_block(), or we met the migration scanner
1128 * and the loop terminated due to isolate_start_pfn < low_pfn
1129 */
1130 cc->free_pfn = isolate_start_pfn;
1131 }
1132
1133 /*
1134 * This is a migrate-callback that "allocates" freepages by taking pages
1135 * from the isolated freelists in the block we are migrating to.
1136 */
1137 static struct page *compaction_alloc(struct page *migratepage,
1138 unsigned long data,
1139 int **result)
1140 {
1141 struct compact_control *cc = (struct compact_control *)data;
1142 struct page *freepage;
1143
1144 /*
1145 * Isolate free pages if necessary, and if we are not aborting due to
1146 * contention.
1147 */
1148 if (list_empty(&cc->freepages)) {
1149 if (!cc->contended)
1150 isolate_freepages(cc);
1151
1152 if (list_empty(&cc->freepages))
1153 return NULL;
1154 }
1155
1156 freepage = list_entry(cc->freepages.next, struct page, lru);
1157 list_del(&freepage->lru);
1158 cc->nr_freepages--;
1159
1160 return freepage;
1161 }
1162
1163 /*
1164 * This is a migrate-callback that "frees" freepages back to the isolated
1165 * freelist. All pages on the freelist are from the same zone, so there is no
1166 * special handling needed for NUMA.
1167 */
1168 static void compaction_free(struct page *page, unsigned long data)
1169 {
1170 struct compact_control *cc = (struct compact_control *)data;
1171
1172 list_add(&page->lru, &cc->freepages);
1173 cc->nr_freepages++;
1174 }
1175
1176 /* possible outcome of isolate_migratepages */
1177 typedef enum {
1178 ISOLATE_ABORT, /* Abort compaction now */
1179 ISOLATE_NONE, /* No pages isolated, continue scanning */
1180 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1181 } isolate_migrate_t;
1182
1183 /*
1184 * Allow userspace to control policy on scanning the unevictable LRU for
1185 * compactable pages.
1186 */
1187 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1188
1189 /*
1190 * Isolate all pages that can be migrated from the first suitable block,
1191 * starting at the block pointed to by the migrate scanner pfn within
1192 * compact_control.
1193 */
1194 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1195 struct compact_control *cc)
1196 {
1197 unsigned long block_start_pfn;
1198 unsigned long block_end_pfn;
1199 unsigned long low_pfn;
1200 struct page *page;
1201 const isolate_mode_t isolate_mode =
1202 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1203 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1204
1205 /*
1206 * Start at where we last stopped, or beginning of the zone as
1207 * initialized by compact_zone()
1208 */
1209 low_pfn = cc->migrate_pfn;
1210 block_start_pfn = pageblock_start_pfn(low_pfn);
1211 if (block_start_pfn < zone->zone_start_pfn)
1212 block_start_pfn = zone->zone_start_pfn;
1213
1214 /* Only scan within a pageblock boundary */
1215 block_end_pfn = pageblock_end_pfn(low_pfn);
1216
1217 /*
1218 * Iterate over whole pageblocks until we find the first suitable.
1219 * Do not cross the free scanner.
1220 */
1221 for (; block_end_pfn <= cc->free_pfn;
1222 low_pfn = block_end_pfn,
1223 block_start_pfn = block_end_pfn,
1224 block_end_pfn += pageblock_nr_pages) {
1225
1226 /*
1227 * This can potentially iterate a massively long zone with
1228 * many pageblocks unsuitable, so periodically check if we
1229 * need to schedule, or even abort async compaction.
1230 */
1231 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1232 && compact_should_abort(cc))
1233 break;
1234
1235 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1236 zone);
1237 if (!page)
1238 continue;
1239
1240 /* If isolation recently failed, do not retry */
1241 if (!isolation_suitable(cc, page))
1242 continue;
1243
1244 /*
1245 * For async compaction, also only scan in MOVABLE blocks.
1246 * Async compaction is optimistic to see if the minimum amount
1247 * of work satisfies the allocation.
1248 */
1249 if (cc->mode == MIGRATE_ASYNC &&
1250 !migrate_async_suitable(get_pageblock_migratetype(page)))
1251 continue;
1252
1253 /* Perform the isolation */
1254 low_pfn = isolate_migratepages_block(cc, low_pfn,
1255 block_end_pfn, isolate_mode);
1256
1257 if (!low_pfn || cc->contended) {
1258 acct_isolated(zone, cc);
1259 return ISOLATE_ABORT;
1260 }
1261
1262 /*
1263 * Either we isolated something and proceed with migration. Or
1264 * we failed and compact_zone should decide if we should
1265 * continue or not.
1266 */
1267 break;
1268 }
1269
1270 acct_isolated(zone, cc);
1271 /* Record where migration scanner will be restarted. */
1272 cc->migrate_pfn = low_pfn;
1273
1274 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1275 }
1276
1277 /*
1278 * order == -1 is expected when compacting via
1279 * /proc/sys/vm/compact_memory
1280 */
1281 static inline bool is_via_compact_memory(int order)
1282 {
1283 return order == -1;
1284 }
1285
1286 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1287 const int migratetype)
1288 {
1289 unsigned int order;
1290 unsigned long watermark;
1291
1292 if (cc->contended || fatal_signal_pending(current))
1293 return COMPACT_CONTENDED;
1294
1295 /* Compaction run completes if the migrate and free scanner meet */
1296 if (compact_scanners_met(cc)) {
1297 /* Let the next compaction start anew. */
1298 reset_cached_positions(zone);
1299
1300 /*
1301 * Mark that the PG_migrate_skip information should be cleared
1302 * by kswapd when it goes to sleep. kcompactd does not set the
1303 * flag itself as the decision to be clear should be directly
1304 * based on an allocation request.
1305 */
1306 if (cc->direct_compaction)
1307 zone->compact_blockskip_flush = true;
1308
1309 if (cc->whole_zone)
1310 return COMPACT_COMPLETE;
1311 else
1312 return COMPACT_PARTIAL_SKIPPED;
1313 }
1314
1315 if (is_via_compact_memory(cc->order))
1316 return COMPACT_CONTINUE;
1317
1318 /* Compaction run is not finished if the watermark is not met */
1319 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1320
1321 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1322 cc->alloc_flags))
1323 return COMPACT_CONTINUE;
1324
1325 /* Direct compactor: Is a suitable page free? */
1326 for (order = cc->order; order < MAX_ORDER; order++) {
1327 struct free_area *area = &zone->free_area[order];
1328 bool can_steal;
1329
1330 /* Job done if page is free of the right migratetype */
1331 if (!list_empty(&area->free_list[migratetype]))
1332 return COMPACT_SUCCESS;
1333
1334 #ifdef CONFIG_CMA
1335 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1336 if (migratetype == MIGRATE_MOVABLE &&
1337 !list_empty(&area->free_list[MIGRATE_CMA]))
1338 return COMPACT_SUCCESS;
1339 #endif
1340 /*
1341 * Job done if allocation would steal freepages from
1342 * other migratetype buddy lists.
1343 */
1344 if (find_suitable_fallback(area, order, migratetype,
1345 true, &can_steal) != -1)
1346 return COMPACT_SUCCESS;
1347 }
1348
1349 return COMPACT_NO_SUITABLE_PAGE;
1350 }
1351
1352 static enum compact_result compact_finished(struct zone *zone,
1353 struct compact_control *cc,
1354 const int migratetype)
1355 {
1356 int ret;
1357
1358 ret = __compact_finished(zone, cc, migratetype);
1359 trace_mm_compaction_finished(zone, cc->order, ret);
1360 if (ret == COMPACT_NO_SUITABLE_PAGE)
1361 ret = COMPACT_CONTINUE;
1362
1363 return ret;
1364 }
1365
1366 /*
1367 * compaction_suitable: Is this suitable to run compaction on this zone now?
1368 * Returns
1369 * COMPACT_SKIPPED - If there are too few free pages for compaction
1370 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1371 * COMPACT_CONTINUE - If compaction should run now
1372 */
1373 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1374 unsigned int alloc_flags,
1375 int classzone_idx,
1376 unsigned long wmark_target)
1377 {
1378 int fragindex;
1379 unsigned long watermark;
1380
1381 if (is_via_compact_memory(order))
1382 return COMPACT_CONTINUE;
1383
1384 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1385 /*
1386 * If watermarks for high-order allocation are already met, there
1387 * should be no need for compaction at all.
1388 */
1389 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1390 alloc_flags))
1391 return COMPACT_SUCCESS;
1392
1393 /*
1394 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1395 * This is because during migration, copies of pages need to be
1396 * allocated and for a short time, the footprint is higher
1397 */
1398 watermark = low_wmark_pages(zone) + (2UL << order);
1399 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1400 alloc_flags, wmark_target))
1401 return COMPACT_SKIPPED;
1402
1403 /*
1404 * fragmentation index determines if allocation failures are due to
1405 * low memory or external fragmentation
1406 *
1407 * index of -1000 would imply allocations might succeed depending on
1408 * watermarks, but we already failed the high-order watermark check
1409 * index towards 0 implies failure is due to lack of memory
1410 * index towards 1000 implies failure is due to fragmentation
1411 *
1412 * Only compact if a failure would be due to fragmentation.
1413 */
1414 fragindex = fragmentation_index(zone, order);
1415 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1416 return COMPACT_NOT_SUITABLE_ZONE;
1417
1418 return COMPACT_CONTINUE;
1419 }
1420
1421 enum compact_result compaction_suitable(struct zone *zone, int order,
1422 unsigned int alloc_flags,
1423 int classzone_idx)
1424 {
1425 enum compact_result ret;
1426
1427 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1428 zone_page_state(zone, NR_FREE_PAGES));
1429 trace_mm_compaction_suitable(zone, order, ret);
1430 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1431 ret = COMPACT_SKIPPED;
1432
1433 return ret;
1434 }
1435
1436 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1437 int alloc_flags)
1438 {
1439 struct zone *zone;
1440 struct zoneref *z;
1441
1442 /*
1443 * Make sure at least one zone would pass __compaction_suitable if we continue
1444 * retrying the reclaim.
1445 */
1446 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1447 ac->nodemask) {
1448 unsigned long available;
1449 enum compact_result compact_result;
1450
1451 /*
1452 * Do not consider all the reclaimable memory because we do not
1453 * want to trash just for a single high order allocation which
1454 * is even not guaranteed to appear even if __compaction_suitable
1455 * is happy about the watermark check.
1456 */
1457 available = zone_reclaimable_pages(zone) / order;
1458 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1459 compact_result = __compaction_suitable(zone, order, alloc_flags,
1460 ac_classzone_idx(ac), available);
1461 if (compact_result != COMPACT_SKIPPED &&
1462 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1463 return true;
1464 }
1465
1466 return false;
1467 }
1468
1469 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1470 {
1471 enum compact_result ret;
1472 unsigned long start_pfn = zone->zone_start_pfn;
1473 unsigned long end_pfn = zone_end_pfn(zone);
1474 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1475 const bool sync = cc->mode != MIGRATE_ASYNC;
1476
1477 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1478 cc->classzone_idx);
1479 /* Compaction is likely to fail */
1480 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1481 return ret;
1482
1483 /* huh, compaction_suitable is returning something unexpected */
1484 VM_BUG_ON(ret != COMPACT_CONTINUE);
1485
1486 /*
1487 * Clear pageblock skip if there were failures recently and compaction
1488 * is about to be retried after being deferred.
1489 */
1490 if (compaction_restarting(zone, cc->order))
1491 __reset_isolation_suitable(zone);
1492
1493 /*
1494 * Setup to move all movable pages to the end of the zone. Used cached
1495 * information on where the scanners should start (unless we explicitly
1496 * want to compact the whole zone), but check that it is initialised
1497 * by ensuring the values are within zone boundaries.
1498 */
1499 if (cc->whole_zone) {
1500 cc->migrate_pfn = start_pfn;
1501 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1502 } else {
1503 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1504 cc->free_pfn = zone->compact_cached_free_pfn;
1505 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1506 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1507 zone->compact_cached_free_pfn = cc->free_pfn;
1508 }
1509 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1510 cc->migrate_pfn = start_pfn;
1511 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1512 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1513 }
1514
1515 if (cc->migrate_pfn == start_pfn)
1516 cc->whole_zone = true;
1517 }
1518
1519 cc->last_migrated_pfn = 0;
1520
1521 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1522 cc->free_pfn, end_pfn, sync);
1523
1524 migrate_prep_local();
1525
1526 while ((ret = compact_finished(zone, cc, migratetype)) ==
1527 COMPACT_CONTINUE) {
1528 int err;
1529
1530 switch (isolate_migratepages(zone, cc)) {
1531 case ISOLATE_ABORT:
1532 ret = COMPACT_CONTENDED;
1533 putback_movable_pages(&cc->migratepages);
1534 cc->nr_migratepages = 0;
1535 goto out;
1536 case ISOLATE_NONE:
1537 /*
1538 * We haven't isolated and migrated anything, but
1539 * there might still be unflushed migrations from
1540 * previous cc->order aligned block.
1541 */
1542 goto check_drain;
1543 case ISOLATE_SUCCESS:
1544 ;
1545 }
1546
1547 err = migrate_pages(&cc->migratepages, compaction_alloc,
1548 compaction_free, (unsigned long)cc, cc->mode,
1549 MR_COMPACTION);
1550
1551 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1552 &cc->migratepages);
1553
1554 /* All pages were either migrated or will be released */
1555 cc->nr_migratepages = 0;
1556 if (err) {
1557 putback_movable_pages(&cc->migratepages);
1558 /*
1559 * migrate_pages() may return -ENOMEM when scanners meet
1560 * and we want compact_finished() to detect it
1561 */
1562 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1563 ret = COMPACT_CONTENDED;
1564 goto out;
1565 }
1566 /*
1567 * We failed to migrate at least one page in the current
1568 * order-aligned block, so skip the rest of it.
1569 */
1570 if (cc->direct_compaction &&
1571 (cc->mode == MIGRATE_ASYNC)) {
1572 cc->migrate_pfn = block_end_pfn(
1573 cc->migrate_pfn - 1, cc->order);
1574 /* Draining pcplists is useless in this case */
1575 cc->last_migrated_pfn = 0;
1576
1577 }
1578 }
1579
1580 check_drain:
1581 /*
1582 * Has the migration scanner moved away from the previous
1583 * cc->order aligned block where we migrated from? If yes,
1584 * flush the pages that were freed, so that they can merge and
1585 * compact_finished() can detect immediately if allocation
1586 * would succeed.
1587 */
1588 if (cc->order > 0 && cc->last_migrated_pfn) {
1589 int cpu;
1590 unsigned long current_block_start =
1591 block_start_pfn(cc->migrate_pfn, cc->order);
1592
1593 if (cc->last_migrated_pfn < current_block_start) {
1594 cpu = get_cpu();
1595 lru_add_drain_cpu(cpu);
1596 drain_local_pages(zone);
1597 put_cpu();
1598 /* No more flushing until we migrate again */
1599 cc->last_migrated_pfn = 0;
1600 }
1601 }
1602
1603 }
1604
1605 out:
1606 /*
1607 * Release free pages and update where the free scanner should restart,
1608 * so we don't leave any returned pages behind in the next attempt.
1609 */
1610 if (cc->nr_freepages > 0) {
1611 unsigned long free_pfn = release_freepages(&cc->freepages);
1612
1613 cc->nr_freepages = 0;
1614 VM_BUG_ON(free_pfn == 0);
1615 /* The cached pfn is always the first in a pageblock */
1616 free_pfn = pageblock_start_pfn(free_pfn);
1617 /*
1618 * Only go back, not forward. The cached pfn might have been
1619 * already reset to zone end in compact_finished()
1620 */
1621 if (free_pfn > zone->compact_cached_free_pfn)
1622 zone->compact_cached_free_pfn = free_pfn;
1623 }
1624
1625 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1626 cc->free_pfn, end_pfn, sync, ret);
1627
1628 return ret;
1629 }
1630
1631 static enum compact_result compact_zone_order(struct zone *zone, int order,
1632 gfp_t gfp_mask, enum compact_priority prio,
1633 unsigned int alloc_flags, int classzone_idx)
1634 {
1635 enum compact_result ret;
1636 struct compact_control cc = {
1637 .nr_freepages = 0,
1638 .nr_migratepages = 0,
1639 .order = order,
1640 .gfp_mask = gfp_mask,
1641 .zone = zone,
1642 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1643 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1644 .alloc_flags = alloc_flags,
1645 .classzone_idx = classzone_idx,
1646 .direct_compaction = true,
1647 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1648 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY)
1649 };
1650 INIT_LIST_HEAD(&cc.freepages);
1651 INIT_LIST_HEAD(&cc.migratepages);
1652
1653 ret = compact_zone(zone, &cc);
1654
1655 VM_BUG_ON(!list_empty(&cc.freepages));
1656 VM_BUG_ON(!list_empty(&cc.migratepages));
1657
1658 return ret;
1659 }
1660
1661 int sysctl_extfrag_threshold = 500;
1662
1663 /**
1664 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1665 * @gfp_mask: The GFP mask of the current allocation
1666 * @order: The order of the current allocation
1667 * @alloc_flags: The allocation flags of the current allocation
1668 * @ac: The context of current allocation
1669 * @mode: The migration mode for async, sync light, or sync migration
1670 *
1671 * This is the main entry point for direct page compaction.
1672 */
1673 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1674 unsigned int alloc_flags, const struct alloc_context *ac,
1675 enum compact_priority prio)
1676 {
1677 int may_enter_fs = gfp_mask & __GFP_FS;
1678 int may_perform_io = gfp_mask & __GFP_IO;
1679 struct zoneref *z;
1680 struct zone *zone;
1681 enum compact_result rc = COMPACT_SKIPPED;
1682
1683 /* Check if the GFP flags allow compaction */
1684 if (!may_enter_fs || !may_perform_io)
1685 return COMPACT_SKIPPED;
1686
1687 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1688
1689 /* Compact each zone in the list */
1690 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1691 ac->nodemask) {
1692 enum compact_result status;
1693
1694 if (prio > MIN_COMPACT_PRIORITY
1695 && compaction_deferred(zone, order)) {
1696 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1697 continue;
1698 }
1699
1700 status = compact_zone_order(zone, order, gfp_mask, prio,
1701 alloc_flags, ac_classzone_idx(ac));
1702 rc = max(status, rc);
1703
1704 /* The allocation should succeed, stop compacting */
1705 if (status == COMPACT_SUCCESS) {
1706 /*
1707 * We think the allocation will succeed in this zone,
1708 * but it is not certain, hence the false. The caller
1709 * will repeat this with true if allocation indeed
1710 * succeeds in this zone.
1711 */
1712 compaction_defer_reset(zone, order, false);
1713
1714 break;
1715 }
1716
1717 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1718 status == COMPACT_PARTIAL_SKIPPED))
1719 /*
1720 * We think that allocation won't succeed in this zone
1721 * so we defer compaction there. If it ends up
1722 * succeeding after all, it will be reset.
1723 */
1724 defer_compaction(zone, order);
1725
1726 /*
1727 * We might have stopped compacting due to need_resched() in
1728 * async compaction, or due to a fatal signal detected. In that
1729 * case do not try further zones
1730 */
1731 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1732 || fatal_signal_pending(current))
1733 break;
1734 }
1735
1736 return rc;
1737 }
1738
1739
1740 /* Compact all zones within a node */
1741 static void compact_node(int nid)
1742 {
1743 pg_data_t *pgdat = NODE_DATA(nid);
1744 int zoneid;
1745 struct zone *zone;
1746 struct compact_control cc = {
1747 .order = -1,
1748 .mode = MIGRATE_SYNC,
1749 .ignore_skip_hint = true,
1750 .whole_zone = true,
1751 };
1752
1753
1754 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1755
1756 zone = &pgdat->node_zones[zoneid];
1757 if (!populated_zone(zone))
1758 continue;
1759
1760 cc.nr_freepages = 0;
1761 cc.nr_migratepages = 0;
1762 cc.zone = zone;
1763 INIT_LIST_HEAD(&cc.freepages);
1764 INIT_LIST_HEAD(&cc.migratepages);
1765
1766 compact_zone(zone, &cc);
1767
1768 VM_BUG_ON(!list_empty(&cc.freepages));
1769 VM_BUG_ON(!list_empty(&cc.migratepages));
1770 }
1771 }
1772
1773 /* Compact all nodes in the system */
1774 static void compact_nodes(void)
1775 {
1776 int nid;
1777
1778 /* Flush pending updates to the LRU lists */
1779 lru_add_drain_all();
1780
1781 for_each_online_node(nid)
1782 compact_node(nid);
1783 }
1784
1785 /* The written value is actually unused, all memory is compacted */
1786 int sysctl_compact_memory;
1787
1788 /*
1789 * This is the entry point for compacting all nodes via
1790 * /proc/sys/vm/compact_memory
1791 */
1792 int sysctl_compaction_handler(struct ctl_table *table, int write,
1793 void __user *buffer, size_t *length, loff_t *ppos)
1794 {
1795 if (write)
1796 compact_nodes();
1797
1798 return 0;
1799 }
1800
1801 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1802 void __user *buffer, size_t *length, loff_t *ppos)
1803 {
1804 proc_dointvec_minmax(table, write, buffer, length, ppos);
1805
1806 return 0;
1807 }
1808
1809 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1810 static ssize_t sysfs_compact_node(struct device *dev,
1811 struct device_attribute *attr,
1812 const char *buf, size_t count)
1813 {
1814 int nid = dev->id;
1815
1816 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1817 /* Flush pending updates to the LRU lists */
1818 lru_add_drain_all();
1819
1820 compact_node(nid);
1821 }
1822
1823 return count;
1824 }
1825 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1826
1827 int compaction_register_node(struct node *node)
1828 {
1829 return device_create_file(&node->dev, &dev_attr_compact);
1830 }
1831
1832 void compaction_unregister_node(struct node *node)
1833 {
1834 return device_remove_file(&node->dev, &dev_attr_compact);
1835 }
1836 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1837
1838 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1839 {
1840 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1841 }
1842
1843 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1844 {
1845 int zoneid;
1846 struct zone *zone;
1847 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1848
1849 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1850 zone = &pgdat->node_zones[zoneid];
1851
1852 if (!populated_zone(zone))
1853 continue;
1854
1855 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1856 classzone_idx) == COMPACT_CONTINUE)
1857 return true;
1858 }
1859
1860 return false;
1861 }
1862
1863 static void kcompactd_do_work(pg_data_t *pgdat)
1864 {
1865 /*
1866 * With no special task, compact all zones so that a page of requested
1867 * order is allocatable.
1868 */
1869 int zoneid;
1870 struct zone *zone;
1871 struct compact_control cc = {
1872 .order = pgdat->kcompactd_max_order,
1873 .classzone_idx = pgdat->kcompactd_classzone_idx,
1874 .mode = MIGRATE_SYNC_LIGHT,
1875 .ignore_skip_hint = true,
1876
1877 };
1878 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1879 cc.classzone_idx);
1880 count_vm_event(KCOMPACTD_WAKE);
1881
1882 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1883 int status;
1884
1885 zone = &pgdat->node_zones[zoneid];
1886 if (!populated_zone(zone))
1887 continue;
1888
1889 if (compaction_deferred(zone, cc.order))
1890 continue;
1891
1892 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1893 COMPACT_CONTINUE)
1894 continue;
1895
1896 cc.nr_freepages = 0;
1897 cc.nr_migratepages = 0;
1898 cc.zone = zone;
1899 INIT_LIST_HEAD(&cc.freepages);
1900 INIT_LIST_HEAD(&cc.migratepages);
1901
1902 if (kthread_should_stop())
1903 return;
1904 status = compact_zone(zone, &cc);
1905
1906 if (status == COMPACT_SUCCESS) {
1907 compaction_defer_reset(zone, cc.order, false);
1908 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1909 /*
1910 * We use sync migration mode here, so we defer like
1911 * sync direct compaction does.
1912 */
1913 defer_compaction(zone, cc.order);
1914 }
1915
1916 VM_BUG_ON(!list_empty(&cc.freepages));
1917 VM_BUG_ON(!list_empty(&cc.migratepages));
1918 }
1919
1920 /*
1921 * Regardless of success, we are done until woken up next. But remember
1922 * the requested order/classzone_idx in case it was higher/tighter than
1923 * our current ones
1924 */
1925 if (pgdat->kcompactd_max_order <= cc.order)
1926 pgdat->kcompactd_max_order = 0;
1927 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1928 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1929 }
1930
1931 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1932 {
1933 if (!order)
1934 return;
1935
1936 if (pgdat->kcompactd_max_order < order)
1937 pgdat->kcompactd_max_order = order;
1938
1939 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1940 pgdat->kcompactd_classzone_idx = classzone_idx;
1941
1942 if (!waitqueue_active(&pgdat->kcompactd_wait))
1943 return;
1944
1945 if (!kcompactd_node_suitable(pgdat))
1946 return;
1947
1948 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1949 classzone_idx);
1950 wake_up_interruptible(&pgdat->kcompactd_wait);
1951 }
1952
1953 /*
1954 * The background compaction daemon, started as a kernel thread
1955 * from the init process.
1956 */
1957 static int kcompactd(void *p)
1958 {
1959 pg_data_t *pgdat = (pg_data_t*)p;
1960 struct task_struct *tsk = current;
1961
1962 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1963
1964 if (!cpumask_empty(cpumask))
1965 set_cpus_allowed_ptr(tsk, cpumask);
1966
1967 set_freezable();
1968
1969 pgdat->kcompactd_max_order = 0;
1970 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1971
1972 while (!kthread_should_stop()) {
1973 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1974 wait_event_freezable(pgdat->kcompactd_wait,
1975 kcompactd_work_requested(pgdat));
1976
1977 kcompactd_do_work(pgdat);
1978 }
1979
1980 return 0;
1981 }
1982
1983 /*
1984 * This kcompactd start function will be called by init and node-hot-add.
1985 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1986 */
1987 int kcompactd_run(int nid)
1988 {
1989 pg_data_t *pgdat = NODE_DATA(nid);
1990 int ret = 0;
1991
1992 if (pgdat->kcompactd)
1993 return 0;
1994
1995 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1996 if (IS_ERR(pgdat->kcompactd)) {
1997 pr_err("Failed to start kcompactd on node %d\n", nid);
1998 ret = PTR_ERR(pgdat->kcompactd);
1999 pgdat->kcompactd = NULL;
2000 }
2001 return ret;
2002 }
2003
2004 /*
2005 * Called by memory hotplug when all memory in a node is offlined. Caller must
2006 * hold mem_hotplug_begin/end().
2007 */
2008 void kcompactd_stop(int nid)
2009 {
2010 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2011
2012 if (kcompactd) {
2013 kthread_stop(kcompactd);
2014 NODE_DATA(nid)->kcompactd = NULL;
2015 }
2016 }
2017
2018 /*
2019 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2020 * not required for correctness. So if the last cpu in a node goes
2021 * away, we get changed to run anywhere: as the first one comes back,
2022 * restore their cpu bindings.
2023 */
2024 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2025 void *hcpu)
2026 {
2027 int nid;
2028
2029 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2030 for_each_node_state(nid, N_MEMORY) {
2031 pg_data_t *pgdat = NODE_DATA(nid);
2032 const struct cpumask *mask;
2033
2034 mask = cpumask_of_node(pgdat->node_id);
2035
2036 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2037 /* One of our CPUs online: restore mask */
2038 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2039 }
2040 }
2041 return NOTIFY_OK;
2042 }
2043
2044 static int __init kcompactd_init(void)
2045 {
2046 int nid;
2047
2048 for_each_node_state(nid, N_MEMORY)
2049 kcompactd_run(nid);
2050 hotcpu_notifier(cpu_callback, 0);
2051 return 0;
2052 }
2053 subsys_initcall(kcompactd_init)
2054
2055 #endif /* CONFIG_COMPACTION */