]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/filemap.c
dax: add struct iomap based DAX PMD support
[mirror_ubuntu-jammy-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115 {
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 if (node)
136 workingset_node_shadows_dec(node);
137 } else {
138 /* DAX can replace empty locked entry with a hole */
139 WARN_ON_ONCE(p !=
140 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
141 /* DAX accounts exceptional entries as normal pages */
142 if (node)
143 workingset_node_pages_dec(node);
144 /* Wakeup waiters for exceptional entry lock */
145 dax_wake_mapping_entry_waiter(mapping, page->index, p,
146 false);
147 }
148 }
149 radix_tree_replace_slot(slot, page);
150 mapping->nrpages++;
151 if (node) {
152 workingset_node_pages_inc(node);
153 /*
154 * Don't track node that contains actual pages.
155 *
156 * Avoid acquiring the list_lru lock if already
157 * untracked. The list_empty() test is safe as
158 * node->private_list is protected by
159 * mapping->tree_lock.
160 */
161 if (!list_empty(&node->private_list))
162 list_lru_del(&workingset_shadow_nodes,
163 &node->private_list);
164 }
165 return 0;
166 }
167
168 static void page_cache_tree_delete(struct address_space *mapping,
169 struct page *page, void *shadow)
170 {
171 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
172
173 VM_BUG_ON_PAGE(!PageLocked(page), page);
174 VM_BUG_ON_PAGE(PageTail(page), page);
175 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
176
177 for (i = 0; i < nr; i++) {
178 struct radix_tree_node *node;
179 void **slot;
180
181 __radix_tree_lookup(&mapping->page_tree, page->index + i,
182 &node, &slot);
183
184 radix_tree_clear_tags(&mapping->page_tree, node, slot);
185
186 if (!node) {
187 VM_BUG_ON_PAGE(nr != 1, page);
188 /*
189 * We need a node to properly account shadow
190 * entries. Don't plant any without. XXX
191 */
192 shadow = NULL;
193 }
194
195 radix_tree_replace_slot(slot, shadow);
196
197 if (!node)
198 break;
199
200 workingset_node_pages_dec(node);
201 if (shadow)
202 workingset_node_shadows_inc(node);
203 else
204 if (__radix_tree_delete_node(&mapping->page_tree, node))
205 continue;
206
207 /*
208 * Track node that only contains shadow entries. DAX mappings
209 * contain no shadow entries and may contain other exceptional
210 * entries so skip those.
211 *
212 * Avoid acquiring the list_lru lock if already tracked.
213 * The list_empty() test is safe as node->private_list is
214 * protected by mapping->tree_lock.
215 */
216 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
217 list_empty(&node->private_list)) {
218 node->private_data = mapping;
219 list_lru_add(&workingset_shadow_nodes,
220 &node->private_list);
221 }
222 }
223
224 if (shadow) {
225 mapping->nrexceptional += nr;
226 /*
227 * Make sure the nrexceptional update is committed before
228 * the nrpages update so that final truncate racing
229 * with reclaim does not see both counters 0 at the
230 * same time and miss a shadow entry.
231 */
232 smp_wmb();
233 }
234 mapping->nrpages -= nr;
235 }
236
237 /*
238 * Delete a page from the page cache and free it. Caller has to make
239 * sure the page is locked and that nobody else uses it - or that usage
240 * is safe. The caller must hold the mapping's tree_lock.
241 */
242 void __delete_from_page_cache(struct page *page, void *shadow)
243 {
244 struct address_space *mapping = page->mapping;
245 int nr = hpage_nr_pages(page);
246
247 trace_mm_filemap_delete_from_page_cache(page);
248 /*
249 * if we're uptodate, flush out into the cleancache, otherwise
250 * invalidate any existing cleancache entries. We can't leave
251 * stale data around in the cleancache once our page is gone
252 */
253 if (PageUptodate(page) && PageMappedToDisk(page))
254 cleancache_put_page(page);
255 else
256 cleancache_invalidate_page(mapping, page);
257
258 VM_BUG_ON_PAGE(PageTail(page), page);
259 VM_BUG_ON_PAGE(page_mapped(page), page);
260 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
261 int mapcount;
262
263 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
264 current->comm, page_to_pfn(page));
265 dump_page(page, "still mapped when deleted");
266 dump_stack();
267 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
268
269 mapcount = page_mapcount(page);
270 if (mapping_exiting(mapping) &&
271 page_count(page) >= mapcount + 2) {
272 /*
273 * All vmas have already been torn down, so it's
274 * a good bet that actually the page is unmapped,
275 * and we'd prefer not to leak it: if we're wrong,
276 * some other bad page check should catch it later.
277 */
278 page_mapcount_reset(page);
279 page_ref_sub(page, mapcount);
280 }
281 }
282
283 page_cache_tree_delete(mapping, page, shadow);
284
285 page->mapping = NULL;
286 /* Leave page->index set: truncation lookup relies upon it */
287
288 /* hugetlb pages do not participate in page cache accounting. */
289 if (!PageHuge(page))
290 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
291 if (PageSwapBacked(page)) {
292 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
293 if (PageTransHuge(page))
294 __dec_node_page_state(page, NR_SHMEM_THPS);
295 } else {
296 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
297 }
298
299 /*
300 * At this point page must be either written or cleaned by truncate.
301 * Dirty page here signals a bug and loss of unwritten data.
302 *
303 * This fixes dirty accounting after removing the page entirely but
304 * leaves PageDirty set: it has no effect for truncated page and
305 * anyway will be cleared before returning page into buddy allocator.
306 */
307 if (WARN_ON_ONCE(PageDirty(page)))
308 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
309 }
310
311 /**
312 * delete_from_page_cache - delete page from page cache
313 * @page: the page which the kernel is trying to remove from page cache
314 *
315 * This must be called only on pages that have been verified to be in the page
316 * cache and locked. It will never put the page into the free list, the caller
317 * has a reference on the page.
318 */
319 void delete_from_page_cache(struct page *page)
320 {
321 struct address_space *mapping = page_mapping(page);
322 unsigned long flags;
323 void (*freepage)(struct page *);
324
325 BUG_ON(!PageLocked(page));
326
327 freepage = mapping->a_ops->freepage;
328
329 spin_lock_irqsave(&mapping->tree_lock, flags);
330 __delete_from_page_cache(page, NULL);
331 spin_unlock_irqrestore(&mapping->tree_lock, flags);
332
333 if (freepage)
334 freepage(page);
335
336 if (PageTransHuge(page) && !PageHuge(page)) {
337 page_ref_sub(page, HPAGE_PMD_NR);
338 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
339 } else {
340 put_page(page);
341 }
342 }
343 EXPORT_SYMBOL(delete_from_page_cache);
344
345 int filemap_check_errors(struct address_space *mapping)
346 {
347 int ret = 0;
348 /* Check for outstanding write errors */
349 if (test_bit(AS_ENOSPC, &mapping->flags) &&
350 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 ret = -ENOSPC;
352 if (test_bit(AS_EIO, &mapping->flags) &&
353 test_and_clear_bit(AS_EIO, &mapping->flags))
354 ret = -EIO;
355 return ret;
356 }
357 EXPORT_SYMBOL(filemap_check_errors);
358
359 /**
360 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
361 * @mapping: address space structure to write
362 * @start: offset in bytes where the range starts
363 * @end: offset in bytes where the range ends (inclusive)
364 * @sync_mode: enable synchronous operation
365 *
366 * Start writeback against all of a mapping's dirty pages that lie
367 * within the byte offsets <start, end> inclusive.
368 *
369 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
370 * opposed to a regular memory cleansing writeback. The difference between
371 * these two operations is that if a dirty page/buffer is encountered, it must
372 * be waited upon, and not just skipped over.
373 */
374 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
375 loff_t end, int sync_mode)
376 {
377 int ret;
378 struct writeback_control wbc = {
379 .sync_mode = sync_mode,
380 .nr_to_write = LONG_MAX,
381 .range_start = start,
382 .range_end = end,
383 };
384
385 if (!mapping_cap_writeback_dirty(mapping))
386 return 0;
387
388 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
389 ret = do_writepages(mapping, &wbc);
390 wbc_detach_inode(&wbc);
391 return ret;
392 }
393
394 static inline int __filemap_fdatawrite(struct address_space *mapping,
395 int sync_mode)
396 {
397 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
398 }
399
400 int filemap_fdatawrite(struct address_space *mapping)
401 {
402 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
403 }
404 EXPORT_SYMBOL(filemap_fdatawrite);
405
406 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 loff_t end)
408 {
409 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
410 }
411 EXPORT_SYMBOL(filemap_fdatawrite_range);
412
413 /**
414 * filemap_flush - mostly a non-blocking flush
415 * @mapping: target address_space
416 *
417 * This is a mostly non-blocking flush. Not suitable for data-integrity
418 * purposes - I/O may not be started against all dirty pages.
419 */
420 int filemap_flush(struct address_space *mapping)
421 {
422 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
423 }
424 EXPORT_SYMBOL(filemap_flush);
425
426 static int __filemap_fdatawait_range(struct address_space *mapping,
427 loff_t start_byte, loff_t end_byte)
428 {
429 pgoff_t index = start_byte >> PAGE_SHIFT;
430 pgoff_t end = end_byte >> PAGE_SHIFT;
431 struct pagevec pvec;
432 int nr_pages;
433 int ret = 0;
434
435 if (end_byte < start_byte)
436 goto out;
437
438 pagevec_init(&pvec, 0);
439 while ((index <= end) &&
440 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
441 PAGECACHE_TAG_WRITEBACK,
442 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
443 unsigned i;
444
445 for (i = 0; i < nr_pages; i++) {
446 struct page *page = pvec.pages[i];
447
448 /* until radix tree lookup accepts end_index */
449 if (page->index > end)
450 continue;
451
452 wait_on_page_writeback(page);
453 if (TestClearPageError(page))
454 ret = -EIO;
455 }
456 pagevec_release(&pvec);
457 cond_resched();
458 }
459 out:
460 return ret;
461 }
462
463 /**
464 * filemap_fdatawait_range - wait for writeback to complete
465 * @mapping: address space structure to wait for
466 * @start_byte: offset in bytes where the range starts
467 * @end_byte: offset in bytes where the range ends (inclusive)
468 *
469 * Walk the list of under-writeback pages of the given address space
470 * in the given range and wait for all of them. Check error status of
471 * the address space and return it.
472 *
473 * Since the error status of the address space is cleared by this function,
474 * callers are responsible for checking the return value and handling and/or
475 * reporting the error.
476 */
477 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
478 loff_t end_byte)
479 {
480 int ret, ret2;
481
482 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
483 ret2 = filemap_check_errors(mapping);
484 if (!ret)
485 ret = ret2;
486
487 return ret;
488 }
489 EXPORT_SYMBOL(filemap_fdatawait_range);
490
491 /**
492 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
493 * @mapping: address space structure to wait for
494 *
495 * Walk the list of under-writeback pages of the given address space
496 * and wait for all of them. Unlike filemap_fdatawait(), this function
497 * does not clear error status of the address space.
498 *
499 * Use this function if callers don't handle errors themselves. Expected
500 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
501 * fsfreeze(8)
502 */
503 void filemap_fdatawait_keep_errors(struct address_space *mapping)
504 {
505 loff_t i_size = i_size_read(mapping->host);
506
507 if (i_size == 0)
508 return;
509
510 __filemap_fdatawait_range(mapping, 0, i_size - 1);
511 }
512
513 /**
514 * filemap_fdatawait - wait for all under-writeback pages to complete
515 * @mapping: address space structure to wait for
516 *
517 * Walk the list of under-writeback pages of the given address space
518 * and wait for all of them. Check error status of the address space
519 * and return it.
520 *
521 * Since the error status of the address space is cleared by this function,
522 * callers are responsible for checking the return value and handling and/or
523 * reporting the error.
524 */
525 int filemap_fdatawait(struct address_space *mapping)
526 {
527 loff_t i_size = i_size_read(mapping->host);
528
529 if (i_size == 0)
530 return 0;
531
532 return filemap_fdatawait_range(mapping, 0, i_size - 1);
533 }
534 EXPORT_SYMBOL(filemap_fdatawait);
535
536 int filemap_write_and_wait(struct address_space *mapping)
537 {
538 int err = 0;
539
540 if ((!dax_mapping(mapping) && mapping->nrpages) ||
541 (dax_mapping(mapping) && mapping->nrexceptional)) {
542 err = filemap_fdatawrite(mapping);
543 /*
544 * Even if the above returned error, the pages may be
545 * written partially (e.g. -ENOSPC), so we wait for it.
546 * But the -EIO is special case, it may indicate the worst
547 * thing (e.g. bug) happened, so we avoid waiting for it.
548 */
549 if (err != -EIO) {
550 int err2 = filemap_fdatawait(mapping);
551 if (!err)
552 err = err2;
553 }
554 } else {
555 err = filemap_check_errors(mapping);
556 }
557 return err;
558 }
559 EXPORT_SYMBOL(filemap_write_and_wait);
560
561 /**
562 * filemap_write_and_wait_range - write out & wait on a file range
563 * @mapping: the address_space for the pages
564 * @lstart: offset in bytes where the range starts
565 * @lend: offset in bytes where the range ends (inclusive)
566 *
567 * Write out and wait upon file offsets lstart->lend, inclusive.
568 *
569 * Note that `lend' is inclusive (describes the last byte to be written) so
570 * that this function can be used to write to the very end-of-file (end = -1).
571 */
572 int filemap_write_and_wait_range(struct address_space *mapping,
573 loff_t lstart, loff_t lend)
574 {
575 int err = 0;
576
577 if ((!dax_mapping(mapping) && mapping->nrpages) ||
578 (dax_mapping(mapping) && mapping->nrexceptional)) {
579 err = __filemap_fdatawrite_range(mapping, lstart, lend,
580 WB_SYNC_ALL);
581 /* See comment of filemap_write_and_wait() */
582 if (err != -EIO) {
583 int err2 = filemap_fdatawait_range(mapping,
584 lstart, lend);
585 if (!err)
586 err = err2;
587 }
588 } else {
589 err = filemap_check_errors(mapping);
590 }
591 return err;
592 }
593 EXPORT_SYMBOL(filemap_write_and_wait_range);
594
595 /**
596 * replace_page_cache_page - replace a pagecache page with a new one
597 * @old: page to be replaced
598 * @new: page to replace with
599 * @gfp_mask: allocation mode
600 *
601 * This function replaces a page in the pagecache with a new one. On
602 * success it acquires the pagecache reference for the new page and
603 * drops it for the old page. Both the old and new pages must be
604 * locked. This function does not add the new page to the LRU, the
605 * caller must do that.
606 *
607 * The remove + add is atomic. The only way this function can fail is
608 * memory allocation failure.
609 */
610 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
611 {
612 int error;
613
614 VM_BUG_ON_PAGE(!PageLocked(old), old);
615 VM_BUG_ON_PAGE(!PageLocked(new), new);
616 VM_BUG_ON_PAGE(new->mapping, new);
617
618 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
619 if (!error) {
620 struct address_space *mapping = old->mapping;
621 void (*freepage)(struct page *);
622 unsigned long flags;
623
624 pgoff_t offset = old->index;
625 freepage = mapping->a_ops->freepage;
626
627 get_page(new);
628 new->mapping = mapping;
629 new->index = offset;
630
631 spin_lock_irqsave(&mapping->tree_lock, flags);
632 __delete_from_page_cache(old, NULL);
633 error = page_cache_tree_insert(mapping, new, NULL);
634 BUG_ON(error);
635
636 /*
637 * hugetlb pages do not participate in page cache accounting.
638 */
639 if (!PageHuge(new))
640 __inc_node_page_state(new, NR_FILE_PAGES);
641 if (PageSwapBacked(new))
642 __inc_node_page_state(new, NR_SHMEM);
643 spin_unlock_irqrestore(&mapping->tree_lock, flags);
644 mem_cgroup_migrate(old, new);
645 radix_tree_preload_end();
646 if (freepage)
647 freepage(old);
648 put_page(old);
649 }
650
651 return error;
652 }
653 EXPORT_SYMBOL_GPL(replace_page_cache_page);
654
655 static int __add_to_page_cache_locked(struct page *page,
656 struct address_space *mapping,
657 pgoff_t offset, gfp_t gfp_mask,
658 void **shadowp)
659 {
660 int huge = PageHuge(page);
661 struct mem_cgroup *memcg;
662 int error;
663
664 VM_BUG_ON_PAGE(!PageLocked(page), page);
665 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
666
667 if (!huge) {
668 error = mem_cgroup_try_charge(page, current->mm,
669 gfp_mask, &memcg, false);
670 if (error)
671 return error;
672 }
673
674 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
675 if (error) {
676 if (!huge)
677 mem_cgroup_cancel_charge(page, memcg, false);
678 return error;
679 }
680
681 get_page(page);
682 page->mapping = mapping;
683 page->index = offset;
684
685 spin_lock_irq(&mapping->tree_lock);
686 error = page_cache_tree_insert(mapping, page, shadowp);
687 radix_tree_preload_end();
688 if (unlikely(error))
689 goto err_insert;
690
691 /* hugetlb pages do not participate in page cache accounting. */
692 if (!huge)
693 __inc_node_page_state(page, NR_FILE_PAGES);
694 spin_unlock_irq(&mapping->tree_lock);
695 if (!huge)
696 mem_cgroup_commit_charge(page, memcg, false, false);
697 trace_mm_filemap_add_to_page_cache(page);
698 return 0;
699 err_insert:
700 page->mapping = NULL;
701 /* Leave page->index set: truncation relies upon it */
702 spin_unlock_irq(&mapping->tree_lock);
703 if (!huge)
704 mem_cgroup_cancel_charge(page, memcg, false);
705 put_page(page);
706 return error;
707 }
708
709 /**
710 * add_to_page_cache_locked - add a locked page to the pagecache
711 * @page: page to add
712 * @mapping: the page's address_space
713 * @offset: page index
714 * @gfp_mask: page allocation mode
715 *
716 * This function is used to add a page to the pagecache. It must be locked.
717 * This function does not add the page to the LRU. The caller must do that.
718 */
719 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
720 pgoff_t offset, gfp_t gfp_mask)
721 {
722 return __add_to_page_cache_locked(page, mapping, offset,
723 gfp_mask, NULL);
724 }
725 EXPORT_SYMBOL(add_to_page_cache_locked);
726
727 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
728 pgoff_t offset, gfp_t gfp_mask)
729 {
730 void *shadow = NULL;
731 int ret;
732
733 __SetPageLocked(page);
734 ret = __add_to_page_cache_locked(page, mapping, offset,
735 gfp_mask, &shadow);
736 if (unlikely(ret))
737 __ClearPageLocked(page);
738 else {
739 /*
740 * The page might have been evicted from cache only
741 * recently, in which case it should be activated like
742 * any other repeatedly accessed page.
743 * The exception is pages getting rewritten; evicting other
744 * data from the working set, only to cache data that will
745 * get overwritten with something else, is a waste of memory.
746 */
747 if (!(gfp_mask & __GFP_WRITE) &&
748 shadow && workingset_refault(shadow)) {
749 SetPageActive(page);
750 workingset_activation(page);
751 } else
752 ClearPageActive(page);
753 lru_cache_add(page);
754 }
755 return ret;
756 }
757 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
758
759 #ifdef CONFIG_NUMA
760 struct page *__page_cache_alloc(gfp_t gfp)
761 {
762 int n;
763 struct page *page;
764
765 if (cpuset_do_page_mem_spread()) {
766 unsigned int cpuset_mems_cookie;
767 do {
768 cpuset_mems_cookie = read_mems_allowed_begin();
769 n = cpuset_mem_spread_node();
770 page = __alloc_pages_node(n, gfp, 0);
771 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
772
773 return page;
774 }
775 return alloc_pages(gfp, 0);
776 }
777 EXPORT_SYMBOL(__page_cache_alloc);
778 #endif
779
780 /*
781 * In order to wait for pages to become available there must be
782 * waitqueues associated with pages. By using a hash table of
783 * waitqueues where the bucket discipline is to maintain all
784 * waiters on the same queue and wake all when any of the pages
785 * become available, and for the woken contexts to check to be
786 * sure the appropriate page became available, this saves space
787 * at a cost of "thundering herd" phenomena during rare hash
788 * collisions.
789 */
790 wait_queue_head_t *page_waitqueue(struct page *page)
791 {
792 const struct zone *zone = page_zone(page);
793
794 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
795 }
796 EXPORT_SYMBOL(page_waitqueue);
797
798 void wait_on_page_bit(struct page *page, int bit_nr)
799 {
800 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
801
802 if (test_bit(bit_nr, &page->flags))
803 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
804 TASK_UNINTERRUPTIBLE);
805 }
806 EXPORT_SYMBOL(wait_on_page_bit);
807
808 int wait_on_page_bit_killable(struct page *page, int bit_nr)
809 {
810 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811
812 if (!test_bit(bit_nr, &page->flags))
813 return 0;
814
815 return __wait_on_bit(page_waitqueue(page), &wait,
816 bit_wait_io, TASK_KILLABLE);
817 }
818
819 int wait_on_page_bit_killable_timeout(struct page *page,
820 int bit_nr, unsigned long timeout)
821 {
822 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
823
824 wait.key.timeout = jiffies + timeout;
825 if (!test_bit(bit_nr, &page->flags))
826 return 0;
827 return __wait_on_bit(page_waitqueue(page), &wait,
828 bit_wait_io_timeout, TASK_KILLABLE);
829 }
830 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
831
832 /**
833 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
834 * @page: Page defining the wait queue of interest
835 * @waiter: Waiter to add to the queue
836 *
837 * Add an arbitrary @waiter to the wait queue for the nominated @page.
838 */
839 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
840 {
841 wait_queue_head_t *q = page_waitqueue(page);
842 unsigned long flags;
843
844 spin_lock_irqsave(&q->lock, flags);
845 __add_wait_queue(q, waiter);
846 spin_unlock_irqrestore(&q->lock, flags);
847 }
848 EXPORT_SYMBOL_GPL(add_page_wait_queue);
849
850 /**
851 * unlock_page - unlock a locked page
852 * @page: the page
853 *
854 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
855 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
856 * mechanism between PageLocked pages and PageWriteback pages is shared.
857 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
858 *
859 * The mb is necessary to enforce ordering between the clear_bit and the read
860 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
861 */
862 void unlock_page(struct page *page)
863 {
864 page = compound_head(page);
865 VM_BUG_ON_PAGE(!PageLocked(page), page);
866 clear_bit_unlock(PG_locked, &page->flags);
867 smp_mb__after_atomic();
868 wake_up_page(page, PG_locked);
869 }
870 EXPORT_SYMBOL(unlock_page);
871
872 /**
873 * end_page_writeback - end writeback against a page
874 * @page: the page
875 */
876 void end_page_writeback(struct page *page)
877 {
878 /*
879 * TestClearPageReclaim could be used here but it is an atomic
880 * operation and overkill in this particular case. Failing to
881 * shuffle a page marked for immediate reclaim is too mild to
882 * justify taking an atomic operation penalty at the end of
883 * ever page writeback.
884 */
885 if (PageReclaim(page)) {
886 ClearPageReclaim(page);
887 rotate_reclaimable_page(page);
888 }
889
890 if (!test_clear_page_writeback(page))
891 BUG();
892
893 smp_mb__after_atomic();
894 wake_up_page(page, PG_writeback);
895 }
896 EXPORT_SYMBOL(end_page_writeback);
897
898 /*
899 * After completing I/O on a page, call this routine to update the page
900 * flags appropriately
901 */
902 void page_endio(struct page *page, bool is_write, int err)
903 {
904 if (!is_write) {
905 if (!err) {
906 SetPageUptodate(page);
907 } else {
908 ClearPageUptodate(page);
909 SetPageError(page);
910 }
911 unlock_page(page);
912 } else {
913 if (err) {
914 SetPageError(page);
915 if (page->mapping)
916 mapping_set_error(page->mapping, err);
917 }
918 end_page_writeback(page);
919 }
920 }
921 EXPORT_SYMBOL_GPL(page_endio);
922
923 /**
924 * __lock_page - get a lock on the page, assuming we need to sleep to get it
925 * @page: the page to lock
926 */
927 void __lock_page(struct page *page)
928 {
929 struct page *page_head = compound_head(page);
930 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
931
932 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
933 TASK_UNINTERRUPTIBLE);
934 }
935 EXPORT_SYMBOL(__lock_page);
936
937 int __lock_page_killable(struct page *page)
938 {
939 struct page *page_head = compound_head(page);
940 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
941
942 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
943 bit_wait_io, TASK_KILLABLE);
944 }
945 EXPORT_SYMBOL_GPL(__lock_page_killable);
946
947 /*
948 * Return values:
949 * 1 - page is locked; mmap_sem is still held.
950 * 0 - page is not locked.
951 * mmap_sem has been released (up_read()), unless flags had both
952 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
953 * which case mmap_sem is still held.
954 *
955 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
956 * with the page locked and the mmap_sem unperturbed.
957 */
958 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
959 unsigned int flags)
960 {
961 if (flags & FAULT_FLAG_ALLOW_RETRY) {
962 /*
963 * CAUTION! In this case, mmap_sem is not released
964 * even though return 0.
965 */
966 if (flags & FAULT_FLAG_RETRY_NOWAIT)
967 return 0;
968
969 up_read(&mm->mmap_sem);
970 if (flags & FAULT_FLAG_KILLABLE)
971 wait_on_page_locked_killable(page);
972 else
973 wait_on_page_locked(page);
974 return 0;
975 } else {
976 if (flags & FAULT_FLAG_KILLABLE) {
977 int ret;
978
979 ret = __lock_page_killable(page);
980 if (ret) {
981 up_read(&mm->mmap_sem);
982 return 0;
983 }
984 } else
985 __lock_page(page);
986 return 1;
987 }
988 }
989
990 /**
991 * page_cache_next_hole - find the next hole (not-present entry)
992 * @mapping: mapping
993 * @index: index
994 * @max_scan: maximum range to search
995 *
996 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
997 * lowest indexed hole.
998 *
999 * Returns: the index of the hole if found, otherwise returns an index
1000 * outside of the set specified (in which case 'return - index >=
1001 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1002 * be returned.
1003 *
1004 * page_cache_next_hole may be called under rcu_read_lock. However,
1005 * like radix_tree_gang_lookup, this will not atomically search a
1006 * snapshot of the tree at a single point in time. For example, if a
1007 * hole is created at index 5, then subsequently a hole is created at
1008 * index 10, page_cache_next_hole covering both indexes may return 10
1009 * if called under rcu_read_lock.
1010 */
1011 pgoff_t page_cache_next_hole(struct address_space *mapping,
1012 pgoff_t index, unsigned long max_scan)
1013 {
1014 unsigned long i;
1015
1016 for (i = 0; i < max_scan; i++) {
1017 struct page *page;
1018
1019 page = radix_tree_lookup(&mapping->page_tree, index);
1020 if (!page || radix_tree_exceptional_entry(page))
1021 break;
1022 index++;
1023 if (index == 0)
1024 break;
1025 }
1026
1027 return index;
1028 }
1029 EXPORT_SYMBOL(page_cache_next_hole);
1030
1031 /**
1032 * page_cache_prev_hole - find the prev hole (not-present entry)
1033 * @mapping: mapping
1034 * @index: index
1035 * @max_scan: maximum range to search
1036 *
1037 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1038 * the first hole.
1039 *
1040 * Returns: the index of the hole if found, otherwise returns an index
1041 * outside of the set specified (in which case 'index - return >=
1042 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1043 * will be returned.
1044 *
1045 * page_cache_prev_hole may be called under rcu_read_lock. However,
1046 * like radix_tree_gang_lookup, this will not atomically search a
1047 * snapshot of the tree at a single point in time. For example, if a
1048 * hole is created at index 10, then subsequently a hole is created at
1049 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1050 * called under rcu_read_lock.
1051 */
1052 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1053 pgoff_t index, unsigned long max_scan)
1054 {
1055 unsigned long i;
1056
1057 for (i = 0; i < max_scan; i++) {
1058 struct page *page;
1059
1060 page = radix_tree_lookup(&mapping->page_tree, index);
1061 if (!page || radix_tree_exceptional_entry(page))
1062 break;
1063 index--;
1064 if (index == ULONG_MAX)
1065 break;
1066 }
1067
1068 return index;
1069 }
1070 EXPORT_SYMBOL(page_cache_prev_hole);
1071
1072 /**
1073 * find_get_entry - find and get a page cache entry
1074 * @mapping: the address_space to search
1075 * @offset: the page cache index
1076 *
1077 * Looks up the page cache slot at @mapping & @offset. If there is a
1078 * page cache page, it is returned with an increased refcount.
1079 *
1080 * If the slot holds a shadow entry of a previously evicted page, or a
1081 * swap entry from shmem/tmpfs, it is returned.
1082 *
1083 * Otherwise, %NULL is returned.
1084 */
1085 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1086 {
1087 void **pagep;
1088 struct page *head, *page;
1089
1090 rcu_read_lock();
1091 repeat:
1092 page = NULL;
1093 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1094 if (pagep) {
1095 page = radix_tree_deref_slot(pagep);
1096 if (unlikely(!page))
1097 goto out;
1098 if (radix_tree_exception(page)) {
1099 if (radix_tree_deref_retry(page))
1100 goto repeat;
1101 /*
1102 * A shadow entry of a recently evicted page,
1103 * or a swap entry from shmem/tmpfs. Return
1104 * it without attempting to raise page count.
1105 */
1106 goto out;
1107 }
1108
1109 head = compound_head(page);
1110 if (!page_cache_get_speculative(head))
1111 goto repeat;
1112
1113 /* The page was split under us? */
1114 if (compound_head(page) != head) {
1115 put_page(head);
1116 goto repeat;
1117 }
1118
1119 /*
1120 * Has the page moved?
1121 * This is part of the lockless pagecache protocol. See
1122 * include/linux/pagemap.h for details.
1123 */
1124 if (unlikely(page != *pagep)) {
1125 put_page(head);
1126 goto repeat;
1127 }
1128 }
1129 out:
1130 rcu_read_unlock();
1131
1132 return page;
1133 }
1134 EXPORT_SYMBOL(find_get_entry);
1135
1136 /**
1137 * find_lock_entry - locate, pin and lock a page cache entry
1138 * @mapping: the address_space to search
1139 * @offset: the page cache index
1140 *
1141 * Looks up the page cache slot at @mapping & @offset. If there is a
1142 * page cache page, it is returned locked and with an increased
1143 * refcount.
1144 *
1145 * If the slot holds a shadow entry of a previously evicted page, or a
1146 * swap entry from shmem/tmpfs, it is returned.
1147 *
1148 * Otherwise, %NULL is returned.
1149 *
1150 * find_lock_entry() may sleep.
1151 */
1152 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1153 {
1154 struct page *page;
1155
1156 repeat:
1157 page = find_get_entry(mapping, offset);
1158 if (page && !radix_tree_exception(page)) {
1159 lock_page(page);
1160 /* Has the page been truncated? */
1161 if (unlikely(page_mapping(page) != mapping)) {
1162 unlock_page(page);
1163 put_page(page);
1164 goto repeat;
1165 }
1166 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1167 }
1168 return page;
1169 }
1170 EXPORT_SYMBOL(find_lock_entry);
1171
1172 /**
1173 * pagecache_get_page - find and get a page reference
1174 * @mapping: the address_space to search
1175 * @offset: the page index
1176 * @fgp_flags: PCG flags
1177 * @gfp_mask: gfp mask to use for the page cache data page allocation
1178 *
1179 * Looks up the page cache slot at @mapping & @offset.
1180 *
1181 * PCG flags modify how the page is returned.
1182 *
1183 * FGP_ACCESSED: the page will be marked accessed
1184 * FGP_LOCK: Page is return locked
1185 * FGP_CREAT: If page is not present then a new page is allocated using
1186 * @gfp_mask and added to the page cache and the VM's LRU
1187 * list. The page is returned locked and with an increased
1188 * refcount. Otherwise, %NULL is returned.
1189 *
1190 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1191 * if the GFP flags specified for FGP_CREAT are atomic.
1192 *
1193 * If there is a page cache page, it is returned with an increased refcount.
1194 */
1195 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1196 int fgp_flags, gfp_t gfp_mask)
1197 {
1198 struct page *page;
1199
1200 repeat:
1201 page = find_get_entry(mapping, offset);
1202 if (radix_tree_exceptional_entry(page))
1203 page = NULL;
1204 if (!page)
1205 goto no_page;
1206
1207 if (fgp_flags & FGP_LOCK) {
1208 if (fgp_flags & FGP_NOWAIT) {
1209 if (!trylock_page(page)) {
1210 put_page(page);
1211 return NULL;
1212 }
1213 } else {
1214 lock_page(page);
1215 }
1216
1217 /* Has the page been truncated? */
1218 if (unlikely(page->mapping != mapping)) {
1219 unlock_page(page);
1220 put_page(page);
1221 goto repeat;
1222 }
1223 VM_BUG_ON_PAGE(page->index != offset, page);
1224 }
1225
1226 if (page && (fgp_flags & FGP_ACCESSED))
1227 mark_page_accessed(page);
1228
1229 no_page:
1230 if (!page && (fgp_flags & FGP_CREAT)) {
1231 int err;
1232 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1233 gfp_mask |= __GFP_WRITE;
1234 if (fgp_flags & FGP_NOFS)
1235 gfp_mask &= ~__GFP_FS;
1236
1237 page = __page_cache_alloc(gfp_mask);
1238 if (!page)
1239 return NULL;
1240
1241 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1242 fgp_flags |= FGP_LOCK;
1243
1244 /* Init accessed so avoid atomic mark_page_accessed later */
1245 if (fgp_flags & FGP_ACCESSED)
1246 __SetPageReferenced(page);
1247
1248 err = add_to_page_cache_lru(page, mapping, offset,
1249 gfp_mask & GFP_RECLAIM_MASK);
1250 if (unlikely(err)) {
1251 put_page(page);
1252 page = NULL;
1253 if (err == -EEXIST)
1254 goto repeat;
1255 }
1256 }
1257
1258 return page;
1259 }
1260 EXPORT_SYMBOL(pagecache_get_page);
1261
1262 /**
1263 * find_get_entries - gang pagecache lookup
1264 * @mapping: The address_space to search
1265 * @start: The starting page cache index
1266 * @nr_entries: The maximum number of entries
1267 * @entries: Where the resulting entries are placed
1268 * @indices: The cache indices corresponding to the entries in @entries
1269 *
1270 * find_get_entries() will search for and return a group of up to
1271 * @nr_entries entries in the mapping. The entries are placed at
1272 * @entries. find_get_entries() takes a reference against any actual
1273 * pages it returns.
1274 *
1275 * The search returns a group of mapping-contiguous page cache entries
1276 * with ascending indexes. There may be holes in the indices due to
1277 * not-present pages.
1278 *
1279 * Any shadow entries of evicted pages, or swap entries from
1280 * shmem/tmpfs, are included in the returned array.
1281 *
1282 * find_get_entries() returns the number of pages and shadow entries
1283 * which were found.
1284 */
1285 unsigned find_get_entries(struct address_space *mapping,
1286 pgoff_t start, unsigned int nr_entries,
1287 struct page **entries, pgoff_t *indices)
1288 {
1289 void **slot;
1290 unsigned int ret = 0;
1291 struct radix_tree_iter iter;
1292
1293 if (!nr_entries)
1294 return 0;
1295
1296 rcu_read_lock();
1297 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1298 struct page *head, *page;
1299 repeat:
1300 page = radix_tree_deref_slot(slot);
1301 if (unlikely(!page))
1302 continue;
1303 if (radix_tree_exception(page)) {
1304 if (radix_tree_deref_retry(page)) {
1305 slot = radix_tree_iter_retry(&iter);
1306 continue;
1307 }
1308 /*
1309 * A shadow entry of a recently evicted page, a swap
1310 * entry from shmem/tmpfs or a DAX entry. Return it
1311 * without attempting to raise page count.
1312 */
1313 goto export;
1314 }
1315
1316 head = compound_head(page);
1317 if (!page_cache_get_speculative(head))
1318 goto repeat;
1319
1320 /* The page was split under us? */
1321 if (compound_head(page) != head) {
1322 put_page(head);
1323 goto repeat;
1324 }
1325
1326 /* Has the page moved? */
1327 if (unlikely(page != *slot)) {
1328 put_page(head);
1329 goto repeat;
1330 }
1331 export:
1332 indices[ret] = iter.index;
1333 entries[ret] = page;
1334 if (++ret == nr_entries)
1335 break;
1336 }
1337 rcu_read_unlock();
1338 return ret;
1339 }
1340
1341 /**
1342 * find_get_pages - gang pagecache lookup
1343 * @mapping: The address_space to search
1344 * @start: The starting page index
1345 * @nr_pages: The maximum number of pages
1346 * @pages: Where the resulting pages are placed
1347 *
1348 * find_get_pages() will search for and return a group of up to
1349 * @nr_pages pages in the mapping. The pages are placed at @pages.
1350 * find_get_pages() takes a reference against the returned pages.
1351 *
1352 * The search returns a group of mapping-contiguous pages with ascending
1353 * indexes. There may be holes in the indices due to not-present pages.
1354 *
1355 * find_get_pages() returns the number of pages which were found.
1356 */
1357 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1358 unsigned int nr_pages, struct page **pages)
1359 {
1360 struct radix_tree_iter iter;
1361 void **slot;
1362 unsigned ret = 0;
1363
1364 if (unlikely(!nr_pages))
1365 return 0;
1366
1367 rcu_read_lock();
1368 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1369 struct page *head, *page;
1370 repeat:
1371 page = radix_tree_deref_slot(slot);
1372 if (unlikely(!page))
1373 continue;
1374
1375 if (radix_tree_exception(page)) {
1376 if (radix_tree_deref_retry(page)) {
1377 slot = radix_tree_iter_retry(&iter);
1378 continue;
1379 }
1380 /*
1381 * A shadow entry of a recently evicted page,
1382 * or a swap entry from shmem/tmpfs. Skip
1383 * over it.
1384 */
1385 continue;
1386 }
1387
1388 head = compound_head(page);
1389 if (!page_cache_get_speculative(head))
1390 goto repeat;
1391
1392 /* The page was split under us? */
1393 if (compound_head(page) != head) {
1394 put_page(head);
1395 goto repeat;
1396 }
1397
1398 /* Has the page moved? */
1399 if (unlikely(page != *slot)) {
1400 put_page(head);
1401 goto repeat;
1402 }
1403
1404 pages[ret] = page;
1405 if (++ret == nr_pages)
1406 break;
1407 }
1408
1409 rcu_read_unlock();
1410 return ret;
1411 }
1412
1413 /**
1414 * find_get_pages_contig - gang contiguous pagecache lookup
1415 * @mapping: The address_space to search
1416 * @index: The starting page index
1417 * @nr_pages: The maximum number of pages
1418 * @pages: Where the resulting pages are placed
1419 *
1420 * find_get_pages_contig() works exactly like find_get_pages(), except
1421 * that the returned number of pages are guaranteed to be contiguous.
1422 *
1423 * find_get_pages_contig() returns the number of pages which were found.
1424 */
1425 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1426 unsigned int nr_pages, struct page **pages)
1427 {
1428 struct radix_tree_iter iter;
1429 void **slot;
1430 unsigned int ret = 0;
1431
1432 if (unlikely(!nr_pages))
1433 return 0;
1434
1435 rcu_read_lock();
1436 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1437 struct page *head, *page;
1438 repeat:
1439 page = radix_tree_deref_slot(slot);
1440 /* The hole, there no reason to continue */
1441 if (unlikely(!page))
1442 break;
1443
1444 if (radix_tree_exception(page)) {
1445 if (radix_tree_deref_retry(page)) {
1446 slot = radix_tree_iter_retry(&iter);
1447 continue;
1448 }
1449 /*
1450 * A shadow entry of a recently evicted page,
1451 * or a swap entry from shmem/tmpfs. Stop
1452 * looking for contiguous pages.
1453 */
1454 break;
1455 }
1456
1457 head = compound_head(page);
1458 if (!page_cache_get_speculative(head))
1459 goto repeat;
1460
1461 /* The page was split under us? */
1462 if (compound_head(page) != head) {
1463 put_page(head);
1464 goto repeat;
1465 }
1466
1467 /* Has the page moved? */
1468 if (unlikely(page != *slot)) {
1469 put_page(head);
1470 goto repeat;
1471 }
1472
1473 /*
1474 * must check mapping and index after taking the ref.
1475 * otherwise we can get both false positives and false
1476 * negatives, which is just confusing to the caller.
1477 */
1478 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1479 put_page(page);
1480 break;
1481 }
1482
1483 pages[ret] = page;
1484 if (++ret == nr_pages)
1485 break;
1486 }
1487 rcu_read_unlock();
1488 return ret;
1489 }
1490 EXPORT_SYMBOL(find_get_pages_contig);
1491
1492 /**
1493 * find_get_pages_tag - find and return pages that match @tag
1494 * @mapping: the address_space to search
1495 * @index: the starting page index
1496 * @tag: the tag index
1497 * @nr_pages: the maximum number of pages
1498 * @pages: where the resulting pages are placed
1499 *
1500 * Like find_get_pages, except we only return pages which are tagged with
1501 * @tag. We update @index to index the next page for the traversal.
1502 */
1503 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1504 int tag, unsigned int nr_pages, struct page **pages)
1505 {
1506 struct radix_tree_iter iter;
1507 void **slot;
1508 unsigned ret = 0;
1509
1510 if (unlikely(!nr_pages))
1511 return 0;
1512
1513 rcu_read_lock();
1514 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1515 &iter, *index, tag) {
1516 struct page *head, *page;
1517 repeat:
1518 page = radix_tree_deref_slot(slot);
1519 if (unlikely(!page))
1520 continue;
1521
1522 if (radix_tree_exception(page)) {
1523 if (radix_tree_deref_retry(page)) {
1524 slot = radix_tree_iter_retry(&iter);
1525 continue;
1526 }
1527 /*
1528 * A shadow entry of a recently evicted page.
1529 *
1530 * Those entries should never be tagged, but
1531 * this tree walk is lockless and the tags are
1532 * looked up in bulk, one radix tree node at a
1533 * time, so there is a sizable window for page
1534 * reclaim to evict a page we saw tagged.
1535 *
1536 * Skip over it.
1537 */
1538 continue;
1539 }
1540
1541 head = compound_head(page);
1542 if (!page_cache_get_speculative(head))
1543 goto repeat;
1544
1545 /* The page was split under us? */
1546 if (compound_head(page) != head) {
1547 put_page(head);
1548 goto repeat;
1549 }
1550
1551 /* Has the page moved? */
1552 if (unlikely(page != *slot)) {
1553 put_page(head);
1554 goto repeat;
1555 }
1556
1557 pages[ret] = page;
1558 if (++ret == nr_pages)
1559 break;
1560 }
1561
1562 rcu_read_unlock();
1563
1564 if (ret)
1565 *index = pages[ret - 1]->index + 1;
1566
1567 return ret;
1568 }
1569 EXPORT_SYMBOL(find_get_pages_tag);
1570
1571 /**
1572 * find_get_entries_tag - find and return entries that match @tag
1573 * @mapping: the address_space to search
1574 * @start: the starting page cache index
1575 * @tag: the tag index
1576 * @nr_entries: the maximum number of entries
1577 * @entries: where the resulting entries are placed
1578 * @indices: the cache indices corresponding to the entries in @entries
1579 *
1580 * Like find_get_entries, except we only return entries which are tagged with
1581 * @tag.
1582 */
1583 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1584 int tag, unsigned int nr_entries,
1585 struct page **entries, pgoff_t *indices)
1586 {
1587 void **slot;
1588 unsigned int ret = 0;
1589 struct radix_tree_iter iter;
1590
1591 if (!nr_entries)
1592 return 0;
1593
1594 rcu_read_lock();
1595 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1596 &iter, start, tag) {
1597 struct page *head, *page;
1598 repeat:
1599 page = radix_tree_deref_slot(slot);
1600 if (unlikely(!page))
1601 continue;
1602 if (radix_tree_exception(page)) {
1603 if (radix_tree_deref_retry(page)) {
1604 slot = radix_tree_iter_retry(&iter);
1605 continue;
1606 }
1607
1608 /*
1609 * A shadow entry of a recently evicted page, a swap
1610 * entry from shmem/tmpfs or a DAX entry. Return it
1611 * without attempting to raise page count.
1612 */
1613 goto export;
1614 }
1615
1616 head = compound_head(page);
1617 if (!page_cache_get_speculative(head))
1618 goto repeat;
1619
1620 /* The page was split under us? */
1621 if (compound_head(page) != head) {
1622 put_page(head);
1623 goto repeat;
1624 }
1625
1626 /* Has the page moved? */
1627 if (unlikely(page != *slot)) {
1628 put_page(head);
1629 goto repeat;
1630 }
1631 export:
1632 indices[ret] = iter.index;
1633 entries[ret] = page;
1634 if (++ret == nr_entries)
1635 break;
1636 }
1637 rcu_read_unlock();
1638 return ret;
1639 }
1640 EXPORT_SYMBOL(find_get_entries_tag);
1641
1642 /*
1643 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1644 * a _large_ part of the i/o request. Imagine the worst scenario:
1645 *
1646 * ---R__________________________________________B__________
1647 * ^ reading here ^ bad block(assume 4k)
1648 *
1649 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1650 * => failing the whole request => read(R) => read(R+1) =>
1651 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1652 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1653 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1654 *
1655 * It is going insane. Fix it by quickly scaling down the readahead size.
1656 */
1657 static void shrink_readahead_size_eio(struct file *filp,
1658 struct file_ra_state *ra)
1659 {
1660 ra->ra_pages /= 4;
1661 }
1662
1663 /**
1664 * do_generic_file_read - generic file read routine
1665 * @filp: the file to read
1666 * @ppos: current file position
1667 * @iter: data destination
1668 * @written: already copied
1669 *
1670 * This is a generic file read routine, and uses the
1671 * mapping->a_ops->readpage() function for the actual low-level stuff.
1672 *
1673 * This is really ugly. But the goto's actually try to clarify some
1674 * of the logic when it comes to error handling etc.
1675 */
1676 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1677 struct iov_iter *iter, ssize_t written)
1678 {
1679 struct address_space *mapping = filp->f_mapping;
1680 struct inode *inode = mapping->host;
1681 struct file_ra_state *ra = &filp->f_ra;
1682 pgoff_t index;
1683 pgoff_t last_index;
1684 pgoff_t prev_index;
1685 unsigned long offset; /* offset into pagecache page */
1686 unsigned int prev_offset;
1687 int error = 0;
1688
1689 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1690 return -EINVAL;
1691 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1692
1693 index = *ppos >> PAGE_SHIFT;
1694 prev_index = ra->prev_pos >> PAGE_SHIFT;
1695 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1696 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1697 offset = *ppos & ~PAGE_MASK;
1698
1699 for (;;) {
1700 struct page *page;
1701 pgoff_t end_index;
1702 loff_t isize;
1703 unsigned long nr, ret;
1704
1705 cond_resched();
1706 find_page:
1707 page = find_get_page(mapping, index);
1708 if (!page) {
1709 page_cache_sync_readahead(mapping,
1710 ra, filp,
1711 index, last_index - index);
1712 page = find_get_page(mapping, index);
1713 if (unlikely(page == NULL))
1714 goto no_cached_page;
1715 }
1716 if (PageReadahead(page)) {
1717 page_cache_async_readahead(mapping,
1718 ra, filp, page,
1719 index, last_index - index);
1720 }
1721 if (!PageUptodate(page)) {
1722 /*
1723 * See comment in do_read_cache_page on why
1724 * wait_on_page_locked is used to avoid unnecessarily
1725 * serialisations and why it's safe.
1726 */
1727 error = wait_on_page_locked_killable(page);
1728 if (unlikely(error))
1729 goto readpage_error;
1730 if (PageUptodate(page))
1731 goto page_ok;
1732
1733 if (inode->i_blkbits == PAGE_SHIFT ||
1734 !mapping->a_ops->is_partially_uptodate)
1735 goto page_not_up_to_date;
1736 if (!trylock_page(page))
1737 goto page_not_up_to_date;
1738 /* Did it get truncated before we got the lock? */
1739 if (!page->mapping)
1740 goto page_not_up_to_date_locked;
1741 if (!mapping->a_ops->is_partially_uptodate(page,
1742 offset, iter->count))
1743 goto page_not_up_to_date_locked;
1744 unlock_page(page);
1745 }
1746 page_ok:
1747 /*
1748 * i_size must be checked after we know the page is Uptodate.
1749 *
1750 * Checking i_size after the check allows us to calculate
1751 * the correct value for "nr", which means the zero-filled
1752 * part of the page is not copied back to userspace (unless
1753 * another truncate extends the file - this is desired though).
1754 */
1755
1756 isize = i_size_read(inode);
1757 end_index = (isize - 1) >> PAGE_SHIFT;
1758 if (unlikely(!isize || index > end_index)) {
1759 put_page(page);
1760 goto out;
1761 }
1762
1763 /* nr is the maximum number of bytes to copy from this page */
1764 nr = PAGE_SIZE;
1765 if (index == end_index) {
1766 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1767 if (nr <= offset) {
1768 put_page(page);
1769 goto out;
1770 }
1771 }
1772 nr = nr - offset;
1773
1774 /* If users can be writing to this page using arbitrary
1775 * virtual addresses, take care about potential aliasing
1776 * before reading the page on the kernel side.
1777 */
1778 if (mapping_writably_mapped(mapping))
1779 flush_dcache_page(page);
1780
1781 /*
1782 * When a sequential read accesses a page several times,
1783 * only mark it as accessed the first time.
1784 */
1785 if (prev_index != index || offset != prev_offset)
1786 mark_page_accessed(page);
1787 prev_index = index;
1788
1789 /*
1790 * Ok, we have the page, and it's up-to-date, so
1791 * now we can copy it to user space...
1792 */
1793
1794 ret = copy_page_to_iter(page, offset, nr, iter);
1795 offset += ret;
1796 index += offset >> PAGE_SHIFT;
1797 offset &= ~PAGE_MASK;
1798 prev_offset = offset;
1799
1800 put_page(page);
1801 written += ret;
1802 if (!iov_iter_count(iter))
1803 goto out;
1804 if (ret < nr) {
1805 error = -EFAULT;
1806 goto out;
1807 }
1808 continue;
1809
1810 page_not_up_to_date:
1811 /* Get exclusive access to the page ... */
1812 error = lock_page_killable(page);
1813 if (unlikely(error))
1814 goto readpage_error;
1815
1816 page_not_up_to_date_locked:
1817 /* Did it get truncated before we got the lock? */
1818 if (!page->mapping) {
1819 unlock_page(page);
1820 put_page(page);
1821 continue;
1822 }
1823
1824 /* Did somebody else fill it already? */
1825 if (PageUptodate(page)) {
1826 unlock_page(page);
1827 goto page_ok;
1828 }
1829
1830 readpage:
1831 /*
1832 * A previous I/O error may have been due to temporary
1833 * failures, eg. multipath errors.
1834 * PG_error will be set again if readpage fails.
1835 */
1836 ClearPageError(page);
1837 /* Start the actual read. The read will unlock the page. */
1838 error = mapping->a_ops->readpage(filp, page);
1839
1840 if (unlikely(error)) {
1841 if (error == AOP_TRUNCATED_PAGE) {
1842 put_page(page);
1843 error = 0;
1844 goto find_page;
1845 }
1846 goto readpage_error;
1847 }
1848
1849 if (!PageUptodate(page)) {
1850 error = lock_page_killable(page);
1851 if (unlikely(error))
1852 goto readpage_error;
1853 if (!PageUptodate(page)) {
1854 if (page->mapping == NULL) {
1855 /*
1856 * invalidate_mapping_pages got it
1857 */
1858 unlock_page(page);
1859 put_page(page);
1860 goto find_page;
1861 }
1862 unlock_page(page);
1863 shrink_readahead_size_eio(filp, ra);
1864 error = -EIO;
1865 goto readpage_error;
1866 }
1867 unlock_page(page);
1868 }
1869
1870 goto page_ok;
1871
1872 readpage_error:
1873 /* UHHUH! A synchronous read error occurred. Report it */
1874 put_page(page);
1875 goto out;
1876
1877 no_cached_page:
1878 /*
1879 * Ok, it wasn't cached, so we need to create a new
1880 * page..
1881 */
1882 page = page_cache_alloc_cold(mapping);
1883 if (!page) {
1884 error = -ENOMEM;
1885 goto out;
1886 }
1887 error = add_to_page_cache_lru(page, mapping, index,
1888 mapping_gfp_constraint(mapping, GFP_KERNEL));
1889 if (error) {
1890 put_page(page);
1891 if (error == -EEXIST) {
1892 error = 0;
1893 goto find_page;
1894 }
1895 goto out;
1896 }
1897 goto readpage;
1898 }
1899
1900 out:
1901 ra->prev_pos = prev_index;
1902 ra->prev_pos <<= PAGE_SHIFT;
1903 ra->prev_pos |= prev_offset;
1904
1905 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1906 file_accessed(filp);
1907 return written ? written : error;
1908 }
1909
1910 /**
1911 * generic_file_read_iter - generic filesystem read routine
1912 * @iocb: kernel I/O control block
1913 * @iter: destination for the data read
1914 *
1915 * This is the "read_iter()" routine for all filesystems
1916 * that can use the page cache directly.
1917 */
1918 ssize_t
1919 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1920 {
1921 struct file *file = iocb->ki_filp;
1922 ssize_t retval = 0;
1923 size_t count = iov_iter_count(iter);
1924
1925 if (!count)
1926 goto out; /* skip atime */
1927
1928 if (iocb->ki_flags & IOCB_DIRECT) {
1929 struct address_space *mapping = file->f_mapping;
1930 struct inode *inode = mapping->host;
1931 struct iov_iter data = *iter;
1932 loff_t size;
1933
1934 size = i_size_read(inode);
1935 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1936 iocb->ki_pos + count - 1);
1937 if (retval < 0)
1938 goto out;
1939
1940 file_accessed(file);
1941
1942 retval = mapping->a_ops->direct_IO(iocb, &data);
1943 if (retval >= 0) {
1944 iocb->ki_pos += retval;
1945 iov_iter_advance(iter, retval);
1946 }
1947
1948 /*
1949 * Btrfs can have a short DIO read if we encounter
1950 * compressed extents, so if there was an error, or if
1951 * we've already read everything we wanted to, or if
1952 * there was a short read because we hit EOF, go ahead
1953 * and return. Otherwise fallthrough to buffered io for
1954 * the rest of the read. Buffered reads will not work for
1955 * DAX files, so don't bother trying.
1956 */
1957 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1958 IS_DAX(inode))
1959 goto out;
1960 }
1961
1962 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1963 out:
1964 return retval;
1965 }
1966 EXPORT_SYMBOL(generic_file_read_iter);
1967
1968 #ifdef CONFIG_MMU
1969 /**
1970 * page_cache_read - adds requested page to the page cache if not already there
1971 * @file: file to read
1972 * @offset: page index
1973 * @gfp_mask: memory allocation flags
1974 *
1975 * This adds the requested page to the page cache if it isn't already there,
1976 * and schedules an I/O to read in its contents from disk.
1977 */
1978 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1979 {
1980 struct address_space *mapping = file->f_mapping;
1981 struct page *page;
1982 int ret;
1983
1984 do {
1985 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1986 if (!page)
1987 return -ENOMEM;
1988
1989 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1990 if (ret == 0)
1991 ret = mapping->a_ops->readpage(file, page);
1992 else if (ret == -EEXIST)
1993 ret = 0; /* losing race to add is OK */
1994
1995 put_page(page);
1996
1997 } while (ret == AOP_TRUNCATED_PAGE);
1998
1999 return ret;
2000 }
2001
2002 #define MMAP_LOTSAMISS (100)
2003
2004 /*
2005 * Synchronous readahead happens when we don't even find
2006 * a page in the page cache at all.
2007 */
2008 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2009 struct file_ra_state *ra,
2010 struct file *file,
2011 pgoff_t offset)
2012 {
2013 struct address_space *mapping = file->f_mapping;
2014
2015 /* If we don't want any read-ahead, don't bother */
2016 if (vma->vm_flags & VM_RAND_READ)
2017 return;
2018 if (!ra->ra_pages)
2019 return;
2020
2021 if (vma->vm_flags & VM_SEQ_READ) {
2022 page_cache_sync_readahead(mapping, ra, file, offset,
2023 ra->ra_pages);
2024 return;
2025 }
2026
2027 /* Avoid banging the cache line if not needed */
2028 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2029 ra->mmap_miss++;
2030
2031 /*
2032 * Do we miss much more than hit in this file? If so,
2033 * stop bothering with read-ahead. It will only hurt.
2034 */
2035 if (ra->mmap_miss > MMAP_LOTSAMISS)
2036 return;
2037
2038 /*
2039 * mmap read-around
2040 */
2041 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2042 ra->size = ra->ra_pages;
2043 ra->async_size = ra->ra_pages / 4;
2044 ra_submit(ra, mapping, file);
2045 }
2046
2047 /*
2048 * Asynchronous readahead happens when we find the page and PG_readahead,
2049 * so we want to possibly extend the readahead further..
2050 */
2051 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2052 struct file_ra_state *ra,
2053 struct file *file,
2054 struct page *page,
2055 pgoff_t offset)
2056 {
2057 struct address_space *mapping = file->f_mapping;
2058
2059 /* If we don't want any read-ahead, don't bother */
2060 if (vma->vm_flags & VM_RAND_READ)
2061 return;
2062 if (ra->mmap_miss > 0)
2063 ra->mmap_miss--;
2064 if (PageReadahead(page))
2065 page_cache_async_readahead(mapping, ra, file,
2066 page, offset, ra->ra_pages);
2067 }
2068
2069 /**
2070 * filemap_fault - read in file data for page fault handling
2071 * @vma: vma in which the fault was taken
2072 * @vmf: struct vm_fault containing details of the fault
2073 *
2074 * filemap_fault() is invoked via the vma operations vector for a
2075 * mapped memory region to read in file data during a page fault.
2076 *
2077 * The goto's are kind of ugly, but this streamlines the normal case of having
2078 * it in the page cache, and handles the special cases reasonably without
2079 * having a lot of duplicated code.
2080 *
2081 * vma->vm_mm->mmap_sem must be held on entry.
2082 *
2083 * If our return value has VM_FAULT_RETRY set, it's because
2084 * lock_page_or_retry() returned 0.
2085 * The mmap_sem has usually been released in this case.
2086 * See __lock_page_or_retry() for the exception.
2087 *
2088 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2089 * has not been released.
2090 *
2091 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2092 */
2093 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2094 {
2095 int error;
2096 struct file *file = vma->vm_file;
2097 struct address_space *mapping = file->f_mapping;
2098 struct file_ra_state *ra = &file->f_ra;
2099 struct inode *inode = mapping->host;
2100 pgoff_t offset = vmf->pgoff;
2101 struct page *page;
2102 loff_t size;
2103 int ret = 0;
2104
2105 size = round_up(i_size_read(inode), PAGE_SIZE);
2106 if (offset >= size >> PAGE_SHIFT)
2107 return VM_FAULT_SIGBUS;
2108
2109 /*
2110 * Do we have something in the page cache already?
2111 */
2112 page = find_get_page(mapping, offset);
2113 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2114 /*
2115 * We found the page, so try async readahead before
2116 * waiting for the lock.
2117 */
2118 do_async_mmap_readahead(vma, ra, file, page, offset);
2119 } else if (!page) {
2120 /* No page in the page cache at all */
2121 do_sync_mmap_readahead(vma, ra, file, offset);
2122 count_vm_event(PGMAJFAULT);
2123 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2124 ret = VM_FAULT_MAJOR;
2125 retry_find:
2126 page = find_get_page(mapping, offset);
2127 if (!page)
2128 goto no_cached_page;
2129 }
2130
2131 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2132 put_page(page);
2133 return ret | VM_FAULT_RETRY;
2134 }
2135
2136 /* Did it get truncated? */
2137 if (unlikely(page->mapping != mapping)) {
2138 unlock_page(page);
2139 put_page(page);
2140 goto retry_find;
2141 }
2142 VM_BUG_ON_PAGE(page->index != offset, page);
2143
2144 /*
2145 * We have a locked page in the page cache, now we need to check
2146 * that it's up-to-date. If not, it is going to be due to an error.
2147 */
2148 if (unlikely(!PageUptodate(page)))
2149 goto page_not_uptodate;
2150
2151 /*
2152 * Found the page and have a reference on it.
2153 * We must recheck i_size under page lock.
2154 */
2155 size = round_up(i_size_read(inode), PAGE_SIZE);
2156 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2157 unlock_page(page);
2158 put_page(page);
2159 return VM_FAULT_SIGBUS;
2160 }
2161
2162 vmf->page = page;
2163 return ret | VM_FAULT_LOCKED;
2164
2165 no_cached_page:
2166 /*
2167 * We're only likely to ever get here if MADV_RANDOM is in
2168 * effect.
2169 */
2170 error = page_cache_read(file, offset, vmf->gfp_mask);
2171
2172 /*
2173 * The page we want has now been added to the page cache.
2174 * In the unlikely event that someone removed it in the
2175 * meantime, we'll just come back here and read it again.
2176 */
2177 if (error >= 0)
2178 goto retry_find;
2179
2180 /*
2181 * An error return from page_cache_read can result if the
2182 * system is low on memory, or a problem occurs while trying
2183 * to schedule I/O.
2184 */
2185 if (error == -ENOMEM)
2186 return VM_FAULT_OOM;
2187 return VM_FAULT_SIGBUS;
2188
2189 page_not_uptodate:
2190 /*
2191 * Umm, take care of errors if the page isn't up-to-date.
2192 * Try to re-read it _once_. We do this synchronously,
2193 * because there really aren't any performance issues here
2194 * and we need to check for errors.
2195 */
2196 ClearPageError(page);
2197 error = mapping->a_ops->readpage(file, page);
2198 if (!error) {
2199 wait_on_page_locked(page);
2200 if (!PageUptodate(page))
2201 error = -EIO;
2202 }
2203 put_page(page);
2204
2205 if (!error || error == AOP_TRUNCATED_PAGE)
2206 goto retry_find;
2207
2208 /* Things didn't work out. Return zero to tell the mm layer so. */
2209 shrink_readahead_size_eio(file, ra);
2210 return VM_FAULT_SIGBUS;
2211 }
2212 EXPORT_SYMBOL(filemap_fault);
2213
2214 void filemap_map_pages(struct fault_env *fe,
2215 pgoff_t start_pgoff, pgoff_t end_pgoff)
2216 {
2217 struct radix_tree_iter iter;
2218 void **slot;
2219 struct file *file = fe->vma->vm_file;
2220 struct address_space *mapping = file->f_mapping;
2221 pgoff_t last_pgoff = start_pgoff;
2222 loff_t size;
2223 struct page *head, *page;
2224
2225 rcu_read_lock();
2226 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2227 start_pgoff) {
2228 if (iter.index > end_pgoff)
2229 break;
2230 repeat:
2231 page = radix_tree_deref_slot(slot);
2232 if (unlikely(!page))
2233 goto next;
2234 if (radix_tree_exception(page)) {
2235 if (radix_tree_deref_retry(page)) {
2236 slot = radix_tree_iter_retry(&iter);
2237 continue;
2238 }
2239 goto next;
2240 }
2241
2242 head = compound_head(page);
2243 if (!page_cache_get_speculative(head))
2244 goto repeat;
2245
2246 /* The page was split under us? */
2247 if (compound_head(page) != head) {
2248 put_page(head);
2249 goto repeat;
2250 }
2251
2252 /* Has the page moved? */
2253 if (unlikely(page != *slot)) {
2254 put_page(head);
2255 goto repeat;
2256 }
2257
2258 if (!PageUptodate(page) ||
2259 PageReadahead(page) ||
2260 PageHWPoison(page))
2261 goto skip;
2262 if (!trylock_page(page))
2263 goto skip;
2264
2265 if (page->mapping != mapping || !PageUptodate(page))
2266 goto unlock;
2267
2268 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2269 if (page->index >= size >> PAGE_SHIFT)
2270 goto unlock;
2271
2272 if (file->f_ra.mmap_miss > 0)
2273 file->f_ra.mmap_miss--;
2274
2275 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2276 if (fe->pte)
2277 fe->pte += iter.index - last_pgoff;
2278 last_pgoff = iter.index;
2279 if (alloc_set_pte(fe, NULL, page))
2280 goto unlock;
2281 unlock_page(page);
2282 goto next;
2283 unlock:
2284 unlock_page(page);
2285 skip:
2286 put_page(page);
2287 next:
2288 /* Huge page is mapped? No need to proceed. */
2289 if (pmd_trans_huge(*fe->pmd))
2290 break;
2291 if (iter.index == end_pgoff)
2292 break;
2293 }
2294 rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL(filemap_map_pages);
2297
2298 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2299 {
2300 struct page *page = vmf->page;
2301 struct inode *inode = file_inode(vma->vm_file);
2302 int ret = VM_FAULT_LOCKED;
2303
2304 sb_start_pagefault(inode->i_sb);
2305 file_update_time(vma->vm_file);
2306 lock_page(page);
2307 if (page->mapping != inode->i_mapping) {
2308 unlock_page(page);
2309 ret = VM_FAULT_NOPAGE;
2310 goto out;
2311 }
2312 /*
2313 * We mark the page dirty already here so that when freeze is in
2314 * progress, we are guaranteed that writeback during freezing will
2315 * see the dirty page and writeprotect it again.
2316 */
2317 set_page_dirty(page);
2318 wait_for_stable_page(page);
2319 out:
2320 sb_end_pagefault(inode->i_sb);
2321 return ret;
2322 }
2323 EXPORT_SYMBOL(filemap_page_mkwrite);
2324
2325 const struct vm_operations_struct generic_file_vm_ops = {
2326 .fault = filemap_fault,
2327 .map_pages = filemap_map_pages,
2328 .page_mkwrite = filemap_page_mkwrite,
2329 };
2330
2331 /* This is used for a general mmap of a disk file */
2332
2333 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2334 {
2335 struct address_space *mapping = file->f_mapping;
2336
2337 if (!mapping->a_ops->readpage)
2338 return -ENOEXEC;
2339 file_accessed(file);
2340 vma->vm_ops = &generic_file_vm_ops;
2341 return 0;
2342 }
2343
2344 /*
2345 * This is for filesystems which do not implement ->writepage.
2346 */
2347 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2348 {
2349 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2350 return -EINVAL;
2351 return generic_file_mmap(file, vma);
2352 }
2353 #else
2354 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2355 {
2356 return -ENOSYS;
2357 }
2358 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2359 {
2360 return -ENOSYS;
2361 }
2362 #endif /* CONFIG_MMU */
2363
2364 EXPORT_SYMBOL(generic_file_mmap);
2365 EXPORT_SYMBOL(generic_file_readonly_mmap);
2366
2367 static struct page *wait_on_page_read(struct page *page)
2368 {
2369 if (!IS_ERR(page)) {
2370 wait_on_page_locked(page);
2371 if (!PageUptodate(page)) {
2372 put_page(page);
2373 page = ERR_PTR(-EIO);
2374 }
2375 }
2376 return page;
2377 }
2378
2379 static struct page *do_read_cache_page(struct address_space *mapping,
2380 pgoff_t index,
2381 int (*filler)(void *, struct page *),
2382 void *data,
2383 gfp_t gfp)
2384 {
2385 struct page *page;
2386 int err;
2387 repeat:
2388 page = find_get_page(mapping, index);
2389 if (!page) {
2390 page = __page_cache_alloc(gfp | __GFP_COLD);
2391 if (!page)
2392 return ERR_PTR(-ENOMEM);
2393 err = add_to_page_cache_lru(page, mapping, index, gfp);
2394 if (unlikely(err)) {
2395 put_page(page);
2396 if (err == -EEXIST)
2397 goto repeat;
2398 /* Presumably ENOMEM for radix tree node */
2399 return ERR_PTR(err);
2400 }
2401
2402 filler:
2403 err = filler(data, page);
2404 if (err < 0) {
2405 put_page(page);
2406 return ERR_PTR(err);
2407 }
2408
2409 page = wait_on_page_read(page);
2410 if (IS_ERR(page))
2411 return page;
2412 goto out;
2413 }
2414 if (PageUptodate(page))
2415 goto out;
2416
2417 /*
2418 * Page is not up to date and may be locked due one of the following
2419 * case a: Page is being filled and the page lock is held
2420 * case b: Read/write error clearing the page uptodate status
2421 * case c: Truncation in progress (page locked)
2422 * case d: Reclaim in progress
2423 *
2424 * Case a, the page will be up to date when the page is unlocked.
2425 * There is no need to serialise on the page lock here as the page
2426 * is pinned so the lock gives no additional protection. Even if the
2427 * the page is truncated, the data is still valid if PageUptodate as
2428 * it's a race vs truncate race.
2429 * Case b, the page will not be up to date
2430 * Case c, the page may be truncated but in itself, the data may still
2431 * be valid after IO completes as it's a read vs truncate race. The
2432 * operation must restart if the page is not uptodate on unlock but
2433 * otherwise serialising on page lock to stabilise the mapping gives
2434 * no additional guarantees to the caller as the page lock is
2435 * released before return.
2436 * Case d, similar to truncation. If reclaim holds the page lock, it
2437 * will be a race with remove_mapping that determines if the mapping
2438 * is valid on unlock but otherwise the data is valid and there is
2439 * no need to serialise with page lock.
2440 *
2441 * As the page lock gives no additional guarantee, we optimistically
2442 * wait on the page to be unlocked and check if it's up to date and
2443 * use the page if it is. Otherwise, the page lock is required to
2444 * distinguish between the different cases. The motivation is that we
2445 * avoid spurious serialisations and wakeups when multiple processes
2446 * wait on the same page for IO to complete.
2447 */
2448 wait_on_page_locked(page);
2449 if (PageUptodate(page))
2450 goto out;
2451
2452 /* Distinguish between all the cases under the safety of the lock */
2453 lock_page(page);
2454
2455 /* Case c or d, restart the operation */
2456 if (!page->mapping) {
2457 unlock_page(page);
2458 put_page(page);
2459 goto repeat;
2460 }
2461
2462 /* Someone else locked and filled the page in a very small window */
2463 if (PageUptodate(page)) {
2464 unlock_page(page);
2465 goto out;
2466 }
2467 goto filler;
2468
2469 out:
2470 mark_page_accessed(page);
2471 return page;
2472 }
2473
2474 /**
2475 * read_cache_page - read into page cache, fill it if needed
2476 * @mapping: the page's address_space
2477 * @index: the page index
2478 * @filler: function to perform the read
2479 * @data: first arg to filler(data, page) function, often left as NULL
2480 *
2481 * Read into the page cache. If a page already exists, and PageUptodate() is
2482 * not set, try to fill the page and wait for it to become unlocked.
2483 *
2484 * If the page does not get brought uptodate, return -EIO.
2485 */
2486 struct page *read_cache_page(struct address_space *mapping,
2487 pgoff_t index,
2488 int (*filler)(void *, struct page *),
2489 void *data)
2490 {
2491 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2492 }
2493 EXPORT_SYMBOL(read_cache_page);
2494
2495 /**
2496 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2497 * @mapping: the page's address_space
2498 * @index: the page index
2499 * @gfp: the page allocator flags to use if allocating
2500 *
2501 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2502 * any new page allocations done using the specified allocation flags.
2503 *
2504 * If the page does not get brought uptodate, return -EIO.
2505 */
2506 struct page *read_cache_page_gfp(struct address_space *mapping,
2507 pgoff_t index,
2508 gfp_t gfp)
2509 {
2510 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2511
2512 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2513 }
2514 EXPORT_SYMBOL(read_cache_page_gfp);
2515
2516 /*
2517 * Performs necessary checks before doing a write
2518 *
2519 * Can adjust writing position or amount of bytes to write.
2520 * Returns appropriate error code that caller should return or
2521 * zero in case that write should be allowed.
2522 */
2523 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2524 {
2525 struct file *file = iocb->ki_filp;
2526 struct inode *inode = file->f_mapping->host;
2527 unsigned long limit = rlimit(RLIMIT_FSIZE);
2528 loff_t pos;
2529
2530 if (!iov_iter_count(from))
2531 return 0;
2532
2533 /* FIXME: this is for backwards compatibility with 2.4 */
2534 if (iocb->ki_flags & IOCB_APPEND)
2535 iocb->ki_pos = i_size_read(inode);
2536
2537 pos = iocb->ki_pos;
2538
2539 if (limit != RLIM_INFINITY) {
2540 if (iocb->ki_pos >= limit) {
2541 send_sig(SIGXFSZ, current, 0);
2542 return -EFBIG;
2543 }
2544 iov_iter_truncate(from, limit - (unsigned long)pos);
2545 }
2546
2547 /*
2548 * LFS rule
2549 */
2550 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2551 !(file->f_flags & O_LARGEFILE))) {
2552 if (pos >= MAX_NON_LFS)
2553 return -EFBIG;
2554 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2555 }
2556
2557 /*
2558 * Are we about to exceed the fs block limit ?
2559 *
2560 * If we have written data it becomes a short write. If we have
2561 * exceeded without writing data we send a signal and return EFBIG.
2562 * Linus frestrict idea will clean these up nicely..
2563 */
2564 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2565 return -EFBIG;
2566
2567 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2568 return iov_iter_count(from);
2569 }
2570 EXPORT_SYMBOL(generic_write_checks);
2571
2572 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2573 loff_t pos, unsigned len, unsigned flags,
2574 struct page **pagep, void **fsdata)
2575 {
2576 const struct address_space_operations *aops = mapping->a_ops;
2577
2578 return aops->write_begin(file, mapping, pos, len, flags,
2579 pagep, fsdata);
2580 }
2581 EXPORT_SYMBOL(pagecache_write_begin);
2582
2583 int pagecache_write_end(struct file *file, struct address_space *mapping,
2584 loff_t pos, unsigned len, unsigned copied,
2585 struct page *page, void *fsdata)
2586 {
2587 const struct address_space_operations *aops = mapping->a_ops;
2588
2589 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2590 }
2591 EXPORT_SYMBOL(pagecache_write_end);
2592
2593 ssize_t
2594 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2595 {
2596 struct file *file = iocb->ki_filp;
2597 struct address_space *mapping = file->f_mapping;
2598 struct inode *inode = mapping->host;
2599 loff_t pos = iocb->ki_pos;
2600 ssize_t written;
2601 size_t write_len;
2602 pgoff_t end;
2603 struct iov_iter data;
2604
2605 write_len = iov_iter_count(from);
2606 end = (pos + write_len - 1) >> PAGE_SHIFT;
2607
2608 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2609 if (written)
2610 goto out;
2611
2612 /*
2613 * After a write we want buffered reads to be sure to go to disk to get
2614 * the new data. We invalidate clean cached page from the region we're
2615 * about to write. We do this *before* the write so that we can return
2616 * without clobbering -EIOCBQUEUED from ->direct_IO().
2617 */
2618 if (mapping->nrpages) {
2619 written = invalidate_inode_pages2_range(mapping,
2620 pos >> PAGE_SHIFT, end);
2621 /*
2622 * If a page can not be invalidated, return 0 to fall back
2623 * to buffered write.
2624 */
2625 if (written) {
2626 if (written == -EBUSY)
2627 return 0;
2628 goto out;
2629 }
2630 }
2631
2632 data = *from;
2633 written = mapping->a_ops->direct_IO(iocb, &data);
2634
2635 /*
2636 * Finally, try again to invalidate clean pages which might have been
2637 * cached by non-direct readahead, or faulted in by get_user_pages()
2638 * if the source of the write was an mmap'ed region of the file
2639 * we're writing. Either one is a pretty crazy thing to do,
2640 * so we don't support it 100%. If this invalidation
2641 * fails, tough, the write still worked...
2642 */
2643 if (mapping->nrpages) {
2644 invalidate_inode_pages2_range(mapping,
2645 pos >> PAGE_SHIFT, end);
2646 }
2647
2648 if (written > 0) {
2649 pos += written;
2650 iov_iter_advance(from, written);
2651 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2652 i_size_write(inode, pos);
2653 mark_inode_dirty(inode);
2654 }
2655 iocb->ki_pos = pos;
2656 }
2657 out:
2658 return written;
2659 }
2660 EXPORT_SYMBOL(generic_file_direct_write);
2661
2662 /*
2663 * Find or create a page at the given pagecache position. Return the locked
2664 * page. This function is specifically for buffered writes.
2665 */
2666 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2667 pgoff_t index, unsigned flags)
2668 {
2669 struct page *page;
2670 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2671
2672 if (flags & AOP_FLAG_NOFS)
2673 fgp_flags |= FGP_NOFS;
2674
2675 page = pagecache_get_page(mapping, index, fgp_flags,
2676 mapping_gfp_mask(mapping));
2677 if (page)
2678 wait_for_stable_page(page);
2679
2680 return page;
2681 }
2682 EXPORT_SYMBOL(grab_cache_page_write_begin);
2683
2684 ssize_t generic_perform_write(struct file *file,
2685 struct iov_iter *i, loff_t pos)
2686 {
2687 struct address_space *mapping = file->f_mapping;
2688 const struct address_space_operations *a_ops = mapping->a_ops;
2689 long status = 0;
2690 ssize_t written = 0;
2691 unsigned int flags = 0;
2692
2693 /*
2694 * Copies from kernel address space cannot fail (NFSD is a big user).
2695 */
2696 if (!iter_is_iovec(i))
2697 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2698
2699 do {
2700 struct page *page;
2701 unsigned long offset; /* Offset into pagecache page */
2702 unsigned long bytes; /* Bytes to write to page */
2703 size_t copied; /* Bytes copied from user */
2704 void *fsdata;
2705
2706 offset = (pos & (PAGE_SIZE - 1));
2707 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2708 iov_iter_count(i));
2709
2710 again:
2711 /*
2712 * Bring in the user page that we will copy from _first_.
2713 * Otherwise there's a nasty deadlock on copying from the
2714 * same page as we're writing to, without it being marked
2715 * up-to-date.
2716 *
2717 * Not only is this an optimisation, but it is also required
2718 * to check that the address is actually valid, when atomic
2719 * usercopies are used, below.
2720 */
2721 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2722 status = -EFAULT;
2723 break;
2724 }
2725
2726 if (fatal_signal_pending(current)) {
2727 status = -EINTR;
2728 break;
2729 }
2730
2731 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2732 &page, &fsdata);
2733 if (unlikely(status < 0))
2734 break;
2735
2736 if (mapping_writably_mapped(mapping))
2737 flush_dcache_page(page);
2738
2739 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2740 flush_dcache_page(page);
2741
2742 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2743 page, fsdata);
2744 if (unlikely(status < 0))
2745 break;
2746 copied = status;
2747
2748 cond_resched();
2749
2750 iov_iter_advance(i, copied);
2751 if (unlikely(copied == 0)) {
2752 /*
2753 * If we were unable to copy any data at all, we must
2754 * fall back to a single segment length write.
2755 *
2756 * If we didn't fallback here, we could livelock
2757 * because not all segments in the iov can be copied at
2758 * once without a pagefault.
2759 */
2760 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2761 iov_iter_single_seg_count(i));
2762 goto again;
2763 }
2764 pos += copied;
2765 written += copied;
2766
2767 balance_dirty_pages_ratelimited(mapping);
2768 } while (iov_iter_count(i));
2769
2770 return written ? written : status;
2771 }
2772 EXPORT_SYMBOL(generic_perform_write);
2773
2774 /**
2775 * __generic_file_write_iter - write data to a file
2776 * @iocb: IO state structure (file, offset, etc.)
2777 * @from: iov_iter with data to write
2778 *
2779 * This function does all the work needed for actually writing data to a
2780 * file. It does all basic checks, removes SUID from the file, updates
2781 * modification times and calls proper subroutines depending on whether we
2782 * do direct IO or a standard buffered write.
2783 *
2784 * It expects i_mutex to be grabbed unless we work on a block device or similar
2785 * object which does not need locking at all.
2786 *
2787 * This function does *not* take care of syncing data in case of O_SYNC write.
2788 * A caller has to handle it. This is mainly due to the fact that we want to
2789 * avoid syncing under i_mutex.
2790 */
2791 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2792 {
2793 struct file *file = iocb->ki_filp;
2794 struct address_space * mapping = file->f_mapping;
2795 struct inode *inode = mapping->host;
2796 ssize_t written = 0;
2797 ssize_t err;
2798 ssize_t status;
2799
2800 /* We can write back this queue in page reclaim */
2801 current->backing_dev_info = inode_to_bdi(inode);
2802 err = file_remove_privs(file);
2803 if (err)
2804 goto out;
2805
2806 err = file_update_time(file);
2807 if (err)
2808 goto out;
2809
2810 if (iocb->ki_flags & IOCB_DIRECT) {
2811 loff_t pos, endbyte;
2812
2813 written = generic_file_direct_write(iocb, from);
2814 /*
2815 * If the write stopped short of completing, fall back to
2816 * buffered writes. Some filesystems do this for writes to
2817 * holes, for example. For DAX files, a buffered write will
2818 * not succeed (even if it did, DAX does not handle dirty
2819 * page-cache pages correctly).
2820 */
2821 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2822 goto out;
2823
2824 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2825 /*
2826 * If generic_perform_write() returned a synchronous error
2827 * then we want to return the number of bytes which were
2828 * direct-written, or the error code if that was zero. Note
2829 * that this differs from normal direct-io semantics, which
2830 * will return -EFOO even if some bytes were written.
2831 */
2832 if (unlikely(status < 0)) {
2833 err = status;
2834 goto out;
2835 }
2836 /*
2837 * We need to ensure that the page cache pages are written to
2838 * disk and invalidated to preserve the expected O_DIRECT
2839 * semantics.
2840 */
2841 endbyte = pos + status - 1;
2842 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2843 if (err == 0) {
2844 iocb->ki_pos = endbyte + 1;
2845 written += status;
2846 invalidate_mapping_pages(mapping,
2847 pos >> PAGE_SHIFT,
2848 endbyte >> PAGE_SHIFT);
2849 } else {
2850 /*
2851 * We don't know how much we wrote, so just return
2852 * the number of bytes which were direct-written
2853 */
2854 }
2855 } else {
2856 written = generic_perform_write(file, from, iocb->ki_pos);
2857 if (likely(written > 0))
2858 iocb->ki_pos += written;
2859 }
2860 out:
2861 current->backing_dev_info = NULL;
2862 return written ? written : err;
2863 }
2864 EXPORT_SYMBOL(__generic_file_write_iter);
2865
2866 /**
2867 * generic_file_write_iter - write data to a file
2868 * @iocb: IO state structure
2869 * @from: iov_iter with data to write
2870 *
2871 * This is a wrapper around __generic_file_write_iter() to be used by most
2872 * filesystems. It takes care of syncing the file in case of O_SYNC file
2873 * and acquires i_mutex as needed.
2874 */
2875 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2876 {
2877 struct file *file = iocb->ki_filp;
2878 struct inode *inode = file->f_mapping->host;
2879 ssize_t ret;
2880
2881 inode_lock(inode);
2882 ret = generic_write_checks(iocb, from);
2883 if (ret > 0)
2884 ret = __generic_file_write_iter(iocb, from);
2885 inode_unlock(inode);
2886
2887 if (ret > 0)
2888 ret = generic_write_sync(iocb, ret);
2889 return ret;
2890 }
2891 EXPORT_SYMBOL(generic_file_write_iter);
2892
2893 /**
2894 * try_to_release_page() - release old fs-specific metadata on a page
2895 *
2896 * @page: the page which the kernel is trying to free
2897 * @gfp_mask: memory allocation flags (and I/O mode)
2898 *
2899 * The address_space is to try to release any data against the page
2900 * (presumably at page->private). If the release was successful, return `1'.
2901 * Otherwise return zero.
2902 *
2903 * This may also be called if PG_fscache is set on a page, indicating that the
2904 * page is known to the local caching routines.
2905 *
2906 * The @gfp_mask argument specifies whether I/O may be performed to release
2907 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2908 *
2909 */
2910 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2911 {
2912 struct address_space * const mapping = page->mapping;
2913
2914 BUG_ON(!PageLocked(page));
2915 if (PageWriteback(page))
2916 return 0;
2917
2918 if (mapping && mapping->a_ops->releasepage)
2919 return mapping->a_ops->releasepage(page, gfp_mask);
2920 return try_to_free_buffers(page);
2921 }
2922
2923 EXPORT_SYMBOL(try_to_release_page);