]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/filemap.c
Merge tag 'libata-5.7-2020-04-09' of git://git.kernel.dk/linux-block
[mirror_ubuntu-jammy-kernel.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48
49 /*
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53
54 #include <asm/mman.h>
55
56 /*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68 /*
69 * Lock ordering:
70 *
71 * ->i_mmap_rwsem (truncate_pagecache)
72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
73 * ->swap_lock (exclusive_swap_page, others)
74 * ->i_pages lock
75 *
76 * ->i_mutex
77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
78 *
79 * ->mmap_sem
80 * ->i_mmap_rwsem
81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
83 *
84 * ->mmap_sem
85 * ->lock_page (access_process_vm)
86 *
87 * ->i_mutex (generic_perform_write)
88 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
89 *
90 * bdi->wb.list_lock
91 * sb_lock (fs/fs-writeback.c)
92 * ->i_pages lock (__sync_single_inode)
93 *
94 * ->i_mmap_rwsem
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 *
100 * ->page_table_lock or pte_lock
101 * ->swap_lock (try_to_unmap_one)
102 * ->private_lock (try_to_unmap_one)
103 * ->i_pages lock (try_to_unmap_one)
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
106 * ->private_lock (page_remove_rmap->set_page_dirty)
107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
115 * ->i_mmap_rwsem
116 * ->tasklist_lock (memory_failure, collect_procs_ao)
117 */
118
119 static void page_cache_delete(struct address_space *mapping,
120 struct page *page, void *shadow)
121 {
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
124
125 mapping_set_update(&xas, mapping);
126
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
130 nr = compound_nr(page);
131 }
132
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
139
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
154 }
155
156 static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
158 {
159 int nr;
160
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
169 cleancache_invalidate_page(mapping, page);
170
171 VM_BUG_ON_PAGE(PageTail(page), page);
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
192 page_ref_sub(page, mapcount);
193 }
194 }
195
196 /* hugetlb pages do not participate in page cache accounting. */
197 if (PageHuge(page))
198 return;
199
200 nr = hpage_nr_pages(page);
201
202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203 if (PageSwapBacked(page)) {
204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
209 filemap_nr_thps_dec(mapping);
210 }
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225
226 /*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
229 * is safe. The caller must hold the i_pages lock.
230 */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
238 page_cache_delete(mapping, page, shadow);
239 }
240
241 static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243 {
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256 }
257
258 /**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266 void delete_from_page_cache(struct page *page)
267 {
268 struct address_space *mapping = page_mapping(page);
269 unsigned long flags;
270
271 BUG_ON(!PageLocked(page));
272 xa_lock_irqsave(&mapping->i_pages, flags);
273 __delete_from_page_cache(page, NULL);
274 xa_unlock_irqrestore(&mapping->i_pages, flags);
275
276 page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279
280 /*
281 * page_cache_delete_batch - delete several pages from page cache
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
285 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
288 * It tolerates holes in @pvec (mapping entries at those indices are not
289 * modified). The function expects only THP head pages to be present in the
290 * @pvec.
291 *
292 * The function expects the i_pages lock to be held.
293 */
294 static void page_cache_delete_batch(struct address_space *mapping,
295 struct pagevec *pvec)
296 {
297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 int total_pages = 0;
299 int i = 0;
300 struct page *page;
301
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
304 if (i >= pagevec_count(pvec))
305 break;
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
308 if (xa_is_value(page))
309 continue;
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
326 page->mapping = NULL;
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
335 i++;
336 xas_store(&xas, NULL);
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340 }
341
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344 {
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
351 xa_lock_irqsave(&mapping->i_pages, flags);
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
357 page_cache_delete_batch(mapping, pvec);
358 xa_unlock_irqrestore(&mapping->i_pages, flags);
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362 }
363
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 int ret = 0;
367 /* Check for outstanding write errors */
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 ret = -ENOSPC;
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
373 ret = -EIO;
374 return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386 }
387
388 /**
389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
392 * @end: offset in bytes where the range ends (inclusive)
393 * @sync_mode: enable synchronous operation
394 *
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399 * opposed to a regular memory cleansing writeback. The difference between
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
402 *
403 * Return: %0 on success, negative error code otherwise.
404 */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
407 {
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
411 .nr_to_write = LONG_MAX,
412 .range_start = start,
413 .range_end = end,
414 };
415
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 return 0;
419
420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 ret = do_writepages(mapping, &wbc);
422 wbc_detach_inode(&wbc);
423 return ret;
424 }
425
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct page *page;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct pagevec pvec;
509 int nr_pages;
510
511 if (end_byte < start_byte)
512 return;
513
514 pagevec_init(&pvec);
515 while (index <= end) {
516 unsigned i;
517
518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 end, PAGECACHE_TAG_WRITEBACK);
520 if (!nr_pages)
521 break;
522
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
526 wait_on_page_writeback(page);
527 ClearPageError(page);
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
532 }
533
534 /**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
547 *
548 * Return: error status of the address space.
549 */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552 {
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557
558 /**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574 {
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
580 /**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604
605 /**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
616 *
617 * Return: error status of the address space.
618 */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
633 }
634
635 /**
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
643 * Note that @lend is inclusive (describes the last byte to be written) so
644 * that this function can be used to write to the very end-of-file (end = -1).
645 *
646 * Return: error status of the address space.
647 */
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
650 {
651 int err = 0;
652
653 if (mapping_needs_writeback(mapping)) {
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 WB_SYNC_ALL);
656 /*
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
661 */
662 if (err != -EIO) {
663 int err2 = filemap_fdatawait_range(mapping,
664 lstart, lend);
665 if (!err)
666 err = err2;
667 } else {
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
670 }
671 } else {
672 err = filemap_check_errors(mapping);
673 }
674 return err;
675 }
676 EXPORT_SYMBOL(filemap_write_and_wait_range);
677
678 void __filemap_set_wb_err(struct address_space *mapping, int err)
679 {
680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
681
682 trace_filemap_set_wb_err(mapping, eseq);
683 }
684 EXPORT_SYMBOL(__filemap_set_wb_err);
685
686 /**
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
690 *
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
694 *
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
697 *
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
703 *
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
707 *
708 * Return: %0 on success, negative error code otherwise.
709 */
710 int file_check_and_advance_wb_err(struct file *file)
711 {
712 int err = 0;
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
715
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
722 &file->f_wb_err);
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
725 }
726
727 /*
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
731 */
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
734 return err;
735 }
736 EXPORT_SYMBOL(file_check_and_advance_wb_err);
737
738 /**
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
743 *
744 * Write out and wait upon file offsets lstart->lend, inclusive.
745 *
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
748 *
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
751 *
752 * Return: %0 on success, negative error code otherwise.
753 */
754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755 {
756 int err = 0, err2;
757 struct address_space *mapping = file->f_mapping;
758
759 if (mapping_needs_writeback(mapping)) {
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 WB_SYNC_ALL);
762 /* See comment of filemap_write_and_wait() */
763 if (err != -EIO)
764 __filemap_fdatawait_range(mapping, lstart, lend);
765 }
766 err2 = file_check_and_advance_wb_err(file);
767 if (!err)
768 err = err2;
769 return err;
770 }
771 EXPORT_SYMBOL(file_write_and_wait_range);
772
773 /**
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
778 *
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
784 *
785 * The remove + add is atomic. This function cannot fail.
786 *
787 * Return: %0
788 */
789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790 {
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
796
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
800
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
804
805 xas_lock_irqsave(&xas, flags);
806 xas_store(&xas, new);
807
808 old->mapping = NULL;
809 /* hugetlb pages do not participate in page cache accounting. */
810 if (!PageHuge(old))
811 __dec_node_page_state(new, NR_FILE_PAGES);
812 if (!PageHuge(new))
813 __inc_node_page_state(new, NR_FILE_PAGES);
814 if (PageSwapBacked(old))
815 __dec_node_page_state(new, NR_SHMEM);
816 if (PageSwapBacked(new))
817 __inc_node_page_state(new, NR_SHMEM);
818 xas_unlock_irqrestore(&xas, flags);
819 mem_cgroup_migrate(old, new);
820 if (freepage)
821 freepage(old);
822 put_page(old);
823
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(replace_page_cache_page);
827
828 static int __add_to_page_cache_locked(struct page *page,
829 struct address_space *mapping,
830 pgoff_t offset, gfp_t gfp_mask,
831 void **shadowp)
832 {
833 XA_STATE(xas, &mapping->i_pages, offset);
834 int huge = PageHuge(page);
835 struct mem_cgroup *memcg;
836 int error;
837 void *old;
838
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 mapping_set_update(&xas, mapping);
842
843 if (!huge) {
844 error = mem_cgroup_try_charge(page, current->mm,
845 gfp_mask, &memcg, false);
846 if (error)
847 return error;
848 }
849
850 get_page(page);
851 page->mapping = mapping;
852 page->index = offset;
853
854 do {
855 xas_lock_irq(&xas);
856 old = xas_load(&xas);
857 if (old && !xa_is_value(old))
858 xas_set_err(&xas, -EEXIST);
859 xas_store(&xas, page);
860 if (xas_error(&xas))
861 goto unlock;
862
863 if (xa_is_value(old)) {
864 mapping->nrexceptional--;
865 if (shadowp)
866 *shadowp = old;
867 }
868 mapping->nrpages++;
869
870 /* hugetlb pages do not participate in page cache accounting */
871 if (!huge)
872 __inc_node_page_state(page, NR_FILE_PAGES);
873 unlock:
874 xas_unlock_irq(&xas);
875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876
877 if (xas_error(&xas))
878 goto error;
879
880 if (!huge)
881 mem_cgroup_commit_charge(page, memcg, false, false);
882 trace_mm_filemap_add_to_page_cache(page);
883 return 0;
884 error:
885 page->mapping = NULL;
886 /* Leave page->index set: truncation relies upon it */
887 if (!huge)
888 mem_cgroup_cancel_charge(page, memcg, false);
889 put_page(page);
890 return xas_error(&xas);
891 }
892 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
893
894 /**
895 * add_to_page_cache_locked - add a locked page to the pagecache
896 * @page: page to add
897 * @mapping: the page's address_space
898 * @offset: page index
899 * @gfp_mask: page allocation mode
900 *
901 * This function is used to add a page to the pagecache. It must be locked.
902 * This function does not add the page to the LRU. The caller must do that.
903 *
904 * Return: %0 on success, negative error code otherwise.
905 */
906 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
907 pgoff_t offset, gfp_t gfp_mask)
908 {
909 return __add_to_page_cache_locked(page, mapping, offset,
910 gfp_mask, NULL);
911 }
912 EXPORT_SYMBOL(add_to_page_cache_locked);
913
914 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
915 pgoff_t offset, gfp_t gfp_mask)
916 {
917 void *shadow = NULL;
918 int ret;
919
920 __SetPageLocked(page);
921 ret = __add_to_page_cache_locked(page, mapping, offset,
922 gfp_mask, &shadow);
923 if (unlikely(ret))
924 __ClearPageLocked(page);
925 else {
926 /*
927 * The page might have been evicted from cache only
928 * recently, in which case it should be activated like
929 * any other repeatedly accessed page.
930 * The exception is pages getting rewritten; evicting other
931 * data from the working set, only to cache data that will
932 * get overwritten with something else, is a waste of memory.
933 */
934 WARN_ON_ONCE(PageActive(page));
935 if (!(gfp_mask & __GFP_WRITE) && shadow)
936 workingset_refault(page, shadow);
937 lru_cache_add(page);
938 }
939 return ret;
940 }
941 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
942
943 #ifdef CONFIG_NUMA
944 struct page *__page_cache_alloc(gfp_t gfp)
945 {
946 int n;
947 struct page *page;
948
949 if (cpuset_do_page_mem_spread()) {
950 unsigned int cpuset_mems_cookie;
951 do {
952 cpuset_mems_cookie = read_mems_allowed_begin();
953 n = cpuset_mem_spread_node();
954 page = __alloc_pages_node(n, gfp, 0);
955 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
956
957 return page;
958 }
959 return alloc_pages(gfp, 0);
960 }
961 EXPORT_SYMBOL(__page_cache_alloc);
962 #endif
963
964 /*
965 * In order to wait for pages to become available there must be
966 * waitqueues associated with pages. By using a hash table of
967 * waitqueues where the bucket discipline is to maintain all
968 * waiters on the same queue and wake all when any of the pages
969 * become available, and for the woken contexts to check to be
970 * sure the appropriate page became available, this saves space
971 * at a cost of "thundering herd" phenomena during rare hash
972 * collisions.
973 */
974 #define PAGE_WAIT_TABLE_BITS 8
975 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
976 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
977
978 static wait_queue_head_t *page_waitqueue(struct page *page)
979 {
980 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
981 }
982
983 void __init pagecache_init(void)
984 {
985 int i;
986
987 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
988 init_waitqueue_head(&page_wait_table[i]);
989
990 page_writeback_init();
991 }
992
993 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
994 struct wait_page_key {
995 struct page *page;
996 int bit_nr;
997 int page_match;
998 };
999
1000 struct wait_page_queue {
1001 struct page *page;
1002 int bit_nr;
1003 wait_queue_entry_t wait;
1004 };
1005
1006 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1007 {
1008 struct wait_page_key *key = arg;
1009 struct wait_page_queue *wait_page
1010 = container_of(wait, struct wait_page_queue, wait);
1011
1012 if (wait_page->page != key->page)
1013 return 0;
1014 key->page_match = 1;
1015
1016 if (wait_page->bit_nr != key->bit_nr)
1017 return 0;
1018
1019 /*
1020 * Stop walking if it's locked.
1021 * Is this safe if put_and_wait_on_page_locked() is in use?
1022 * Yes: the waker must hold a reference to this page, and if PG_locked
1023 * has now already been set by another task, that task must also hold
1024 * a reference to the *same usage* of this page; so there is no need
1025 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1026 */
1027 if (test_bit(key->bit_nr, &key->page->flags))
1028 return -1;
1029
1030 return autoremove_wake_function(wait, mode, sync, key);
1031 }
1032
1033 static void wake_up_page_bit(struct page *page, int bit_nr)
1034 {
1035 wait_queue_head_t *q = page_waitqueue(page);
1036 struct wait_page_key key;
1037 unsigned long flags;
1038 wait_queue_entry_t bookmark;
1039
1040 key.page = page;
1041 key.bit_nr = bit_nr;
1042 key.page_match = 0;
1043
1044 bookmark.flags = 0;
1045 bookmark.private = NULL;
1046 bookmark.func = NULL;
1047 INIT_LIST_HEAD(&bookmark.entry);
1048
1049 spin_lock_irqsave(&q->lock, flags);
1050 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1051
1052 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1053 /*
1054 * Take a breather from holding the lock,
1055 * allow pages that finish wake up asynchronously
1056 * to acquire the lock and remove themselves
1057 * from wait queue
1058 */
1059 spin_unlock_irqrestore(&q->lock, flags);
1060 cpu_relax();
1061 spin_lock_irqsave(&q->lock, flags);
1062 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1063 }
1064
1065 /*
1066 * It is possible for other pages to have collided on the waitqueue
1067 * hash, so in that case check for a page match. That prevents a long-
1068 * term waiter
1069 *
1070 * It is still possible to miss a case here, when we woke page waiters
1071 * and removed them from the waitqueue, but there are still other
1072 * page waiters.
1073 */
1074 if (!waitqueue_active(q) || !key.page_match) {
1075 ClearPageWaiters(page);
1076 /*
1077 * It's possible to miss clearing Waiters here, when we woke
1078 * our page waiters, but the hashed waitqueue has waiters for
1079 * other pages on it.
1080 *
1081 * That's okay, it's a rare case. The next waker will clear it.
1082 */
1083 }
1084 spin_unlock_irqrestore(&q->lock, flags);
1085 }
1086
1087 static void wake_up_page(struct page *page, int bit)
1088 {
1089 if (!PageWaiters(page))
1090 return;
1091 wake_up_page_bit(page, bit);
1092 }
1093
1094 /*
1095 * A choice of three behaviors for wait_on_page_bit_common():
1096 */
1097 enum behavior {
1098 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1099 * __lock_page() waiting on then setting PG_locked.
1100 */
1101 SHARED, /* Hold ref to page and check the bit when woken, like
1102 * wait_on_page_writeback() waiting on PG_writeback.
1103 */
1104 DROP, /* Drop ref to page before wait, no check when woken,
1105 * like put_and_wait_on_page_locked() on PG_locked.
1106 */
1107 };
1108
1109 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1110 struct page *page, int bit_nr, int state, enum behavior behavior)
1111 {
1112 struct wait_page_queue wait_page;
1113 wait_queue_entry_t *wait = &wait_page.wait;
1114 bool bit_is_set;
1115 bool thrashing = false;
1116 bool delayacct = false;
1117 unsigned long pflags;
1118 int ret = 0;
1119
1120 if (bit_nr == PG_locked &&
1121 !PageUptodate(page) && PageWorkingset(page)) {
1122 if (!PageSwapBacked(page)) {
1123 delayacct_thrashing_start();
1124 delayacct = true;
1125 }
1126 psi_memstall_enter(&pflags);
1127 thrashing = true;
1128 }
1129
1130 init_wait(wait);
1131 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1132 wait->func = wake_page_function;
1133 wait_page.page = page;
1134 wait_page.bit_nr = bit_nr;
1135
1136 for (;;) {
1137 spin_lock_irq(&q->lock);
1138
1139 if (likely(list_empty(&wait->entry))) {
1140 __add_wait_queue_entry_tail(q, wait);
1141 SetPageWaiters(page);
1142 }
1143
1144 set_current_state(state);
1145
1146 spin_unlock_irq(&q->lock);
1147
1148 bit_is_set = test_bit(bit_nr, &page->flags);
1149 if (behavior == DROP)
1150 put_page(page);
1151
1152 if (likely(bit_is_set))
1153 io_schedule();
1154
1155 if (behavior == EXCLUSIVE) {
1156 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1157 break;
1158 } else if (behavior == SHARED) {
1159 if (!test_bit(bit_nr, &page->flags))
1160 break;
1161 }
1162
1163 if (signal_pending_state(state, current)) {
1164 ret = -EINTR;
1165 break;
1166 }
1167
1168 if (behavior == DROP) {
1169 /*
1170 * We can no longer safely access page->flags:
1171 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1172 * there is a risk of waiting forever on a page reused
1173 * for something that keeps it locked indefinitely.
1174 * But best check for -EINTR above before breaking.
1175 */
1176 break;
1177 }
1178 }
1179
1180 finish_wait(q, wait);
1181
1182 if (thrashing) {
1183 if (delayacct)
1184 delayacct_thrashing_end();
1185 psi_memstall_leave(&pflags);
1186 }
1187
1188 /*
1189 * A signal could leave PageWaiters set. Clearing it here if
1190 * !waitqueue_active would be possible (by open-coding finish_wait),
1191 * but still fail to catch it in the case of wait hash collision. We
1192 * already can fail to clear wait hash collision cases, so don't
1193 * bother with signals either.
1194 */
1195
1196 return ret;
1197 }
1198
1199 void wait_on_page_bit(struct page *page, int bit_nr)
1200 {
1201 wait_queue_head_t *q = page_waitqueue(page);
1202 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1203 }
1204 EXPORT_SYMBOL(wait_on_page_bit);
1205
1206 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1207 {
1208 wait_queue_head_t *q = page_waitqueue(page);
1209 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1210 }
1211 EXPORT_SYMBOL(wait_on_page_bit_killable);
1212
1213 /**
1214 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1215 * @page: The page to wait for.
1216 *
1217 * The caller should hold a reference on @page. They expect the page to
1218 * become unlocked relatively soon, but do not wish to hold up migration
1219 * (for example) by holding the reference while waiting for the page to
1220 * come unlocked. After this function returns, the caller should not
1221 * dereference @page.
1222 */
1223 void put_and_wait_on_page_locked(struct page *page)
1224 {
1225 wait_queue_head_t *q;
1226
1227 page = compound_head(page);
1228 q = page_waitqueue(page);
1229 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1230 }
1231
1232 /**
1233 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1234 * @page: Page defining the wait queue of interest
1235 * @waiter: Waiter to add to the queue
1236 *
1237 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1238 */
1239 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1240 {
1241 wait_queue_head_t *q = page_waitqueue(page);
1242 unsigned long flags;
1243
1244 spin_lock_irqsave(&q->lock, flags);
1245 __add_wait_queue_entry_tail(q, waiter);
1246 SetPageWaiters(page);
1247 spin_unlock_irqrestore(&q->lock, flags);
1248 }
1249 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1250
1251 #ifndef clear_bit_unlock_is_negative_byte
1252
1253 /*
1254 * PG_waiters is the high bit in the same byte as PG_lock.
1255 *
1256 * On x86 (and on many other architectures), we can clear PG_lock and
1257 * test the sign bit at the same time. But if the architecture does
1258 * not support that special operation, we just do this all by hand
1259 * instead.
1260 *
1261 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1262 * being cleared, but a memory barrier should be unneccssary since it is
1263 * in the same byte as PG_locked.
1264 */
1265 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1266 {
1267 clear_bit_unlock(nr, mem);
1268 /* smp_mb__after_atomic(); */
1269 return test_bit(PG_waiters, mem);
1270 }
1271
1272 #endif
1273
1274 /**
1275 * unlock_page - unlock a locked page
1276 * @page: the page
1277 *
1278 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1279 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1280 * mechanism between PageLocked pages and PageWriteback pages is shared.
1281 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1282 *
1283 * Note that this depends on PG_waiters being the sign bit in the byte
1284 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1285 * clear the PG_locked bit and test PG_waiters at the same time fairly
1286 * portably (architectures that do LL/SC can test any bit, while x86 can
1287 * test the sign bit).
1288 */
1289 void unlock_page(struct page *page)
1290 {
1291 BUILD_BUG_ON(PG_waiters != 7);
1292 page = compound_head(page);
1293 VM_BUG_ON_PAGE(!PageLocked(page), page);
1294 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1295 wake_up_page_bit(page, PG_locked);
1296 }
1297 EXPORT_SYMBOL(unlock_page);
1298
1299 /**
1300 * end_page_writeback - end writeback against a page
1301 * @page: the page
1302 */
1303 void end_page_writeback(struct page *page)
1304 {
1305 /*
1306 * TestClearPageReclaim could be used here but it is an atomic
1307 * operation and overkill in this particular case. Failing to
1308 * shuffle a page marked for immediate reclaim is too mild to
1309 * justify taking an atomic operation penalty at the end of
1310 * ever page writeback.
1311 */
1312 if (PageReclaim(page)) {
1313 ClearPageReclaim(page);
1314 rotate_reclaimable_page(page);
1315 }
1316
1317 if (!test_clear_page_writeback(page))
1318 BUG();
1319
1320 smp_mb__after_atomic();
1321 wake_up_page(page, PG_writeback);
1322 }
1323 EXPORT_SYMBOL(end_page_writeback);
1324
1325 /*
1326 * After completing I/O on a page, call this routine to update the page
1327 * flags appropriately
1328 */
1329 void page_endio(struct page *page, bool is_write, int err)
1330 {
1331 if (!is_write) {
1332 if (!err) {
1333 SetPageUptodate(page);
1334 } else {
1335 ClearPageUptodate(page);
1336 SetPageError(page);
1337 }
1338 unlock_page(page);
1339 } else {
1340 if (err) {
1341 struct address_space *mapping;
1342
1343 SetPageError(page);
1344 mapping = page_mapping(page);
1345 if (mapping)
1346 mapping_set_error(mapping, err);
1347 }
1348 end_page_writeback(page);
1349 }
1350 }
1351 EXPORT_SYMBOL_GPL(page_endio);
1352
1353 /**
1354 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1355 * @__page: the page to lock
1356 */
1357 void __lock_page(struct page *__page)
1358 {
1359 struct page *page = compound_head(__page);
1360 wait_queue_head_t *q = page_waitqueue(page);
1361 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1362 EXCLUSIVE);
1363 }
1364 EXPORT_SYMBOL(__lock_page);
1365
1366 int __lock_page_killable(struct page *__page)
1367 {
1368 struct page *page = compound_head(__page);
1369 wait_queue_head_t *q = page_waitqueue(page);
1370 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1371 EXCLUSIVE);
1372 }
1373 EXPORT_SYMBOL_GPL(__lock_page_killable);
1374
1375 /*
1376 * Return values:
1377 * 1 - page is locked; mmap_sem is still held.
1378 * 0 - page is not locked.
1379 * mmap_sem has been released (up_read()), unless flags had both
1380 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1381 * which case mmap_sem is still held.
1382 *
1383 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1384 * with the page locked and the mmap_sem unperturbed.
1385 */
1386 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1387 unsigned int flags)
1388 {
1389 if (fault_flag_allow_retry_first(flags)) {
1390 /*
1391 * CAUTION! In this case, mmap_sem is not released
1392 * even though return 0.
1393 */
1394 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1395 return 0;
1396
1397 up_read(&mm->mmap_sem);
1398 if (flags & FAULT_FLAG_KILLABLE)
1399 wait_on_page_locked_killable(page);
1400 else
1401 wait_on_page_locked(page);
1402 return 0;
1403 } else {
1404 if (flags & FAULT_FLAG_KILLABLE) {
1405 int ret;
1406
1407 ret = __lock_page_killable(page);
1408 if (ret) {
1409 up_read(&mm->mmap_sem);
1410 return 0;
1411 }
1412 } else
1413 __lock_page(page);
1414 return 1;
1415 }
1416 }
1417
1418 /**
1419 * page_cache_next_miss() - Find the next gap in the page cache.
1420 * @mapping: Mapping.
1421 * @index: Index.
1422 * @max_scan: Maximum range to search.
1423 *
1424 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1425 * gap with the lowest index.
1426 *
1427 * This function may be called under the rcu_read_lock. However, this will
1428 * not atomically search a snapshot of the cache at a single point in time.
1429 * For example, if a gap is created at index 5, then subsequently a gap is
1430 * created at index 10, page_cache_next_miss covering both indices may
1431 * return 10 if called under the rcu_read_lock.
1432 *
1433 * Return: The index of the gap if found, otherwise an index outside the
1434 * range specified (in which case 'return - index >= max_scan' will be true).
1435 * In the rare case of index wrap-around, 0 will be returned.
1436 */
1437 pgoff_t page_cache_next_miss(struct address_space *mapping,
1438 pgoff_t index, unsigned long max_scan)
1439 {
1440 XA_STATE(xas, &mapping->i_pages, index);
1441
1442 while (max_scan--) {
1443 void *entry = xas_next(&xas);
1444 if (!entry || xa_is_value(entry))
1445 break;
1446 if (xas.xa_index == 0)
1447 break;
1448 }
1449
1450 return xas.xa_index;
1451 }
1452 EXPORT_SYMBOL(page_cache_next_miss);
1453
1454 /**
1455 * page_cache_prev_miss() - Find the previous gap in the page cache.
1456 * @mapping: Mapping.
1457 * @index: Index.
1458 * @max_scan: Maximum range to search.
1459 *
1460 * Search the range [max(index - max_scan + 1, 0), index] for the
1461 * gap with the highest index.
1462 *
1463 * This function may be called under the rcu_read_lock. However, this will
1464 * not atomically search a snapshot of the cache at a single point in time.
1465 * For example, if a gap is created at index 10, then subsequently a gap is
1466 * created at index 5, page_cache_prev_miss() covering both indices may
1467 * return 5 if called under the rcu_read_lock.
1468 *
1469 * Return: The index of the gap if found, otherwise an index outside the
1470 * range specified (in which case 'index - return >= max_scan' will be true).
1471 * In the rare case of wrap-around, ULONG_MAX will be returned.
1472 */
1473 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1474 pgoff_t index, unsigned long max_scan)
1475 {
1476 XA_STATE(xas, &mapping->i_pages, index);
1477
1478 while (max_scan--) {
1479 void *entry = xas_prev(&xas);
1480 if (!entry || xa_is_value(entry))
1481 break;
1482 if (xas.xa_index == ULONG_MAX)
1483 break;
1484 }
1485
1486 return xas.xa_index;
1487 }
1488 EXPORT_SYMBOL(page_cache_prev_miss);
1489
1490 /**
1491 * find_get_entry - find and get a page cache entry
1492 * @mapping: the address_space to search
1493 * @offset: the page cache index
1494 *
1495 * Looks up the page cache slot at @mapping & @offset. If there is a
1496 * page cache page, it is returned with an increased refcount.
1497 *
1498 * If the slot holds a shadow entry of a previously evicted page, or a
1499 * swap entry from shmem/tmpfs, it is returned.
1500 *
1501 * Return: the found page or shadow entry, %NULL if nothing is found.
1502 */
1503 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1504 {
1505 XA_STATE(xas, &mapping->i_pages, offset);
1506 struct page *page;
1507
1508 rcu_read_lock();
1509 repeat:
1510 xas_reset(&xas);
1511 page = xas_load(&xas);
1512 if (xas_retry(&xas, page))
1513 goto repeat;
1514 /*
1515 * A shadow entry of a recently evicted page, or a swap entry from
1516 * shmem/tmpfs. Return it without attempting to raise page count.
1517 */
1518 if (!page || xa_is_value(page))
1519 goto out;
1520
1521 if (!page_cache_get_speculative(page))
1522 goto repeat;
1523
1524 /*
1525 * Has the page moved or been split?
1526 * This is part of the lockless pagecache protocol. See
1527 * include/linux/pagemap.h for details.
1528 */
1529 if (unlikely(page != xas_reload(&xas))) {
1530 put_page(page);
1531 goto repeat;
1532 }
1533 page = find_subpage(page, offset);
1534 out:
1535 rcu_read_unlock();
1536
1537 return page;
1538 }
1539
1540 /**
1541 * find_lock_entry - locate, pin and lock a page cache entry
1542 * @mapping: the address_space to search
1543 * @offset: the page cache index
1544 *
1545 * Looks up the page cache slot at @mapping & @offset. If there is a
1546 * page cache page, it is returned locked and with an increased
1547 * refcount.
1548 *
1549 * If the slot holds a shadow entry of a previously evicted page, or a
1550 * swap entry from shmem/tmpfs, it is returned.
1551 *
1552 * find_lock_entry() may sleep.
1553 *
1554 * Return: the found page or shadow entry, %NULL if nothing is found.
1555 */
1556 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1557 {
1558 struct page *page;
1559
1560 repeat:
1561 page = find_get_entry(mapping, offset);
1562 if (page && !xa_is_value(page)) {
1563 lock_page(page);
1564 /* Has the page been truncated? */
1565 if (unlikely(page_mapping(page) != mapping)) {
1566 unlock_page(page);
1567 put_page(page);
1568 goto repeat;
1569 }
1570 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1571 }
1572 return page;
1573 }
1574 EXPORT_SYMBOL(find_lock_entry);
1575
1576 /**
1577 * pagecache_get_page - Find and get a reference to a page.
1578 * @mapping: The address_space to search.
1579 * @index: The page index.
1580 * @fgp_flags: %FGP flags modify how the page is returned.
1581 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1582 *
1583 * Looks up the page cache entry at @mapping & @index.
1584 *
1585 * @fgp_flags can be zero or more of these flags:
1586 *
1587 * * %FGP_ACCESSED - The page will be marked accessed.
1588 * * %FGP_LOCK - The page is returned locked.
1589 * * %FGP_CREAT - If no page is present then a new page is allocated using
1590 * @gfp_mask and added to the page cache and the VM's LRU list.
1591 * The page is returned locked and with an increased refcount.
1592 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1593 * page is already in cache. If the page was allocated, unlock it before
1594 * returning so the caller can do the same dance.
1595 *
1596 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1597 * if the %GFP flags specified for %FGP_CREAT are atomic.
1598 *
1599 * If there is a page cache page, it is returned with an increased refcount.
1600 *
1601 * Return: The found page or %NULL otherwise.
1602 */
1603 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1604 int fgp_flags, gfp_t gfp_mask)
1605 {
1606 struct page *page;
1607
1608 repeat:
1609 page = find_get_entry(mapping, index);
1610 if (xa_is_value(page))
1611 page = NULL;
1612 if (!page)
1613 goto no_page;
1614
1615 if (fgp_flags & FGP_LOCK) {
1616 if (fgp_flags & FGP_NOWAIT) {
1617 if (!trylock_page(page)) {
1618 put_page(page);
1619 return NULL;
1620 }
1621 } else {
1622 lock_page(page);
1623 }
1624
1625 /* Has the page been truncated? */
1626 if (unlikely(compound_head(page)->mapping != mapping)) {
1627 unlock_page(page);
1628 put_page(page);
1629 goto repeat;
1630 }
1631 VM_BUG_ON_PAGE(page->index != index, page);
1632 }
1633
1634 if (fgp_flags & FGP_ACCESSED)
1635 mark_page_accessed(page);
1636
1637 no_page:
1638 if (!page && (fgp_flags & FGP_CREAT)) {
1639 int err;
1640 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1641 gfp_mask |= __GFP_WRITE;
1642 if (fgp_flags & FGP_NOFS)
1643 gfp_mask &= ~__GFP_FS;
1644
1645 page = __page_cache_alloc(gfp_mask);
1646 if (!page)
1647 return NULL;
1648
1649 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1650 fgp_flags |= FGP_LOCK;
1651
1652 /* Init accessed so avoid atomic mark_page_accessed later */
1653 if (fgp_flags & FGP_ACCESSED)
1654 __SetPageReferenced(page);
1655
1656 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1657 if (unlikely(err)) {
1658 put_page(page);
1659 page = NULL;
1660 if (err == -EEXIST)
1661 goto repeat;
1662 }
1663
1664 /*
1665 * add_to_page_cache_lru locks the page, and for mmap we expect
1666 * an unlocked page.
1667 */
1668 if (page && (fgp_flags & FGP_FOR_MMAP))
1669 unlock_page(page);
1670 }
1671
1672 return page;
1673 }
1674 EXPORT_SYMBOL(pagecache_get_page);
1675
1676 /**
1677 * find_get_entries - gang pagecache lookup
1678 * @mapping: The address_space to search
1679 * @start: The starting page cache index
1680 * @nr_entries: The maximum number of entries
1681 * @entries: Where the resulting entries are placed
1682 * @indices: The cache indices corresponding to the entries in @entries
1683 *
1684 * find_get_entries() will search for and return a group of up to
1685 * @nr_entries entries in the mapping. The entries are placed at
1686 * @entries. find_get_entries() takes a reference against any actual
1687 * pages it returns.
1688 *
1689 * The search returns a group of mapping-contiguous page cache entries
1690 * with ascending indexes. There may be holes in the indices due to
1691 * not-present pages.
1692 *
1693 * Any shadow entries of evicted pages, or swap entries from
1694 * shmem/tmpfs, are included in the returned array.
1695 *
1696 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1697 * stops at that page: the caller is likely to have a better way to handle
1698 * the compound page as a whole, and then skip its extent, than repeatedly
1699 * calling find_get_entries() to return all its tails.
1700 *
1701 * Return: the number of pages and shadow entries which were found.
1702 */
1703 unsigned find_get_entries(struct address_space *mapping,
1704 pgoff_t start, unsigned int nr_entries,
1705 struct page **entries, pgoff_t *indices)
1706 {
1707 XA_STATE(xas, &mapping->i_pages, start);
1708 struct page *page;
1709 unsigned int ret = 0;
1710
1711 if (!nr_entries)
1712 return 0;
1713
1714 rcu_read_lock();
1715 xas_for_each(&xas, page, ULONG_MAX) {
1716 if (xas_retry(&xas, page))
1717 continue;
1718 /*
1719 * A shadow entry of a recently evicted page, a swap
1720 * entry from shmem/tmpfs or a DAX entry. Return it
1721 * without attempting to raise page count.
1722 */
1723 if (xa_is_value(page))
1724 goto export;
1725
1726 if (!page_cache_get_speculative(page))
1727 goto retry;
1728
1729 /* Has the page moved or been split? */
1730 if (unlikely(page != xas_reload(&xas)))
1731 goto put_page;
1732
1733 /*
1734 * Terminate early on finding a THP, to allow the caller to
1735 * handle it all at once; but continue if this is hugetlbfs.
1736 */
1737 if (PageTransHuge(page) && !PageHuge(page)) {
1738 page = find_subpage(page, xas.xa_index);
1739 nr_entries = ret + 1;
1740 }
1741 export:
1742 indices[ret] = xas.xa_index;
1743 entries[ret] = page;
1744 if (++ret == nr_entries)
1745 break;
1746 continue;
1747 put_page:
1748 put_page(page);
1749 retry:
1750 xas_reset(&xas);
1751 }
1752 rcu_read_unlock();
1753 return ret;
1754 }
1755
1756 /**
1757 * find_get_pages_range - gang pagecache lookup
1758 * @mapping: The address_space to search
1759 * @start: The starting page index
1760 * @end: The final page index (inclusive)
1761 * @nr_pages: The maximum number of pages
1762 * @pages: Where the resulting pages are placed
1763 *
1764 * find_get_pages_range() will search for and return a group of up to @nr_pages
1765 * pages in the mapping starting at index @start and up to index @end
1766 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1767 * a reference against the returned pages.
1768 *
1769 * The search returns a group of mapping-contiguous pages with ascending
1770 * indexes. There may be holes in the indices due to not-present pages.
1771 * We also update @start to index the next page for the traversal.
1772 *
1773 * Return: the number of pages which were found. If this number is
1774 * smaller than @nr_pages, the end of specified range has been
1775 * reached.
1776 */
1777 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1778 pgoff_t end, unsigned int nr_pages,
1779 struct page **pages)
1780 {
1781 XA_STATE(xas, &mapping->i_pages, *start);
1782 struct page *page;
1783 unsigned ret = 0;
1784
1785 if (unlikely(!nr_pages))
1786 return 0;
1787
1788 rcu_read_lock();
1789 xas_for_each(&xas, page, end) {
1790 if (xas_retry(&xas, page))
1791 continue;
1792 /* Skip over shadow, swap and DAX entries */
1793 if (xa_is_value(page))
1794 continue;
1795
1796 if (!page_cache_get_speculative(page))
1797 goto retry;
1798
1799 /* Has the page moved or been split? */
1800 if (unlikely(page != xas_reload(&xas)))
1801 goto put_page;
1802
1803 pages[ret] = find_subpage(page, xas.xa_index);
1804 if (++ret == nr_pages) {
1805 *start = xas.xa_index + 1;
1806 goto out;
1807 }
1808 continue;
1809 put_page:
1810 put_page(page);
1811 retry:
1812 xas_reset(&xas);
1813 }
1814
1815 /*
1816 * We come here when there is no page beyond @end. We take care to not
1817 * overflow the index @start as it confuses some of the callers. This
1818 * breaks the iteration when there is a page at index -1 but that is
1819 * already broken anyway.
1820 */
1821 if (end == (pgoff_t)-1)
1822 *start = (pgoff_t)-1;
1823 else
1824 *start = end + 1;
1825 out:
1826 rcu_read_unlock();
1827
1828 return ret;
1829 }
1830
1831 /**
1832 * find_get_pages_contig - gang contiguous pagecache lookup
1833 * @mapping: The address_space to search
1834 * @index: The starting page index
1835 * @nr_pages: The maximum number of pages
1836 * @pages: Where the resulting pages are placed
1837 *
1838 * find_get_pages_contig() works exactly like find_get_pages(), except
1839 * that the returned number of pages are guaranteed to be contiguous.
1840 *
1841 * Return: the number of pages which were found.
1842 */
1843 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1844 unsigned int nr_pages, struct page **pages)
1845 {
1846 XA_STATE(xas, &mapping->i_pages, index);
1847 struct page *page;
1848 unsigned int ret = 0;
1849
1850 if (unlikely(!nr_pages))
1851 return 0;
1852
1853 rcu_read_lock();
1854 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1855 if (xas_retry(&xas, page))
1856 continue;
1857 /*
1858 * If the entry has been swapped out, we can stop looking.
1859 * No current caller is looking for DAX entries.
1860 */
1861 if (xa_is_value(page))
1862 break;
1863
1864 if (!page_cache_get_speculative(page))
1865 goto retry;
1866
1867 /* Has the page moved or been split? */
1868 if (unlikely(page != xas_reload(&xas)))
1869 goto put_page;
1870
1871 pages[ret] = find_subpage(page, xas.xa_index);
1872 if (++ret == nr_pages)
1873 break;
1874 continue;
1875 put_page:
1876 put_page(page);
1877 retry:
1878 xas_reset(&xas);
1879 }
1880 rcu_read_unlock();
1881 return ret;
1882 }
1883 EXPORT_SYMBOL(find_get_pages_contig);
1884
1885 /**
1886 * find_get_pages_range_tag - find and return pages in given range matching @tag
1887 * @mapping: the address_space to search
1888 * @index: the starting page index
1889 * @end: The final page index (inclusive)
1890 * @tag: the tag index
1891 * @nr_pages: the maximum number of pages
1892 * @pages: where the resulting pages are placed
1893 *
1894 * Like find_get_pages, except we only return pages which are tagged with
1895 * @tag. We update @index to index the next page for the traversal.
1896 *
1897 * Return: the number of pages which were found.
1898 */
1899 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1900 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1901 struct page **pages)
1902 {
1903 XA_STATE(xas, &mapping->i_pages, *index);
1904 struct page *page;
1905 unsigned ret = 0;
1906
1907 if (unlikely(!nr_pages))
1908 return 0;
1909
1910 rcu_read_lock();
1911 xas_for_each_marked(&xas, page, end, tag) {
1912 if (xas_retry(&xas, page))
1913 continue;
1914 /*
1915 * Shadow entries should never be tagged, but this iteration
1916 * is lockless so there is a window for page reclaim to evict
1917 * a page we saw tagged. Skip over it.
1918 */
1919 if (xa_is_value(page))
1920 continue;
1921
1922 if (!page_cache_get_speculative(page))
1923 goto retry;
1924
1925 /* Has the page moved or been split? */
1926 if (unlikely(page != xas_reload(&xas)))
1927 goto put_page;
1928
1929 pages[ret] = find_subpage(page, xas.xa_index);
1930 if (++ret == nr_pages) {
1931 *index = xas.xa_index + 1;
1932 goto out;
1933 }
1934 continue;
1935 put_page:
1936 put_page(page);
1937 retry:
1938 xas_reset(&xas);
1939 }
1940
1941 /*
1942 * We come here when we got to @end. We take care to not overflow the
1943 * index @index as it confuses some of the callers. This breaks the
1944 * iteration when there is a page at index -1 but that is already
1945 * broken anyway.
1946 */
1947 if (end == (pgoff_t)-1)
1948 *index = (pgoff_t)-1;
1949 else
1950 *index = end + 1;
1951 out:
1952 rcu_read_unlock();
1953
1954 return ret;
1955 }
1956 EXPORT_SYMBOL(find_get_pages_range_tag);
1957
1958 /*
1959 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1960 * a _large_ part of the i/o request. Imagine the worst scenario:
1961 *
1962 * ---R__________________________________________B__________
1963 * ^ reading here ^ bad block(assume 4k)
1964 *
1965 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1966 * => failing the whole request => read(R) => read(R+1) =>
1967 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1968 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1969 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1970 *
1971 * It is going insane. Fix it by quickly scaling down the readahead size.
1972 */
1973 static void shrink_readahead_size_eio(struct file_ra_state *ra)
1974 {
1975 ra->ra_pages /= 4;
1976 }
1977
1978 /**
1979 * generic_file_buffered_read - generic file read routine
1980 * @iocb: the iocb to read
1981 * @iter: data destination
1982 * @written: already copied
1983 *
1984 * This is a generic file read routine, and uses the
1985 * mapping->a_ops->readpage() function for the actual low-level stuff.
1986 *
1987 * This is really ugly. But the goto's actually try to clarify some
1988 * of the logic when it comes to error handling etc.
1989 *
1990 * Return:
1991 * * total number of bytes copied, including those the were already @written
1992 * * negative error code if nothing was copied
1993 */
1994 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1995 struct iov_iter *iter, ssize_t written)
1996 {
1997 struct file *filp = iocb->ki_filp;
1998 struct address_space *mapping = filp->f_mapping;
1999 struct inode *inode = mapping->host;
2000 struct file_ra_state *ra = &filp->f_ra;
2001 loff_t *ppos = &iocb->ki_pos;
2002 pgoff_t index;
2003 pgoff_t last_index;
2004 pgoff_t prev_index;
2005 unsigned long offset; /* offset into pagecache page */
2006 unsigned int prev_offset;
2007 int error = 0;
2008
2009 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2010 return 0;
2011 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2012
2013 index = *ppos >> PAGE_SHIFT;
2014 prev_index = ra->prev_pos >> PAGE_SHIFT;
2015 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2016 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2017 offset = *ppos & ~PAGE_MASK;
2018
2019 for (;;) {
2020 struct page *page;
2021 pgoff_t end_index;
2022 loff_t isize;
2023 unsigned long nr, ret;
2024
2025 cond_resched();
2026 find_page:
2027 if (fatal_signal_pending(current)) {
2028 error = -EINTR;
2029 goto out;
2030 }
2031
2032 page = find_get_page(mapping, index);
2033 if (!page) {
2034 if (iocb->ki_flags & IOCB_NOWAIT)
2035 goto would_block;
2036 page_cache_sync_readahead(mapping,
2037 ra, filp,
2038 index, last_index - index);
2039 page = find_get_page(mapping, index);
2040 if (unlikely(page == NULL))
2041 goto no_cached_page;
2042 }
2043 if (PageReadahead(page)) {
2044 page_cache_async_readahead(mapping,
2045 ra, filp, page,
2046 index, last_index - index);
2047 }
2048 if (!PageUptodate(page)) {
2049 if (iocb->ki_flags & IOCB_NOWAIT) {
2050 put_page(page);
2051 goto would_block;
2052 }
2053
2054 /*
2055 * See comment in do_read_cache_page on why
2056 * wait_on_page_locked is used to avoid unnecessarily
2057 * serialisations and why it's safe.
2058 */
2059 error = wait_on_page_locked_killable(page);
2060 if (unlikely(error))
2061 goto readpage_error;
2062 if (PageUptodate(page))
2063 goto page_ok;
2064
2065 if (inode->i_blkbits == PAGE_SHIFT ||
2066 !mapping->a_ops->is_partially_uptodate)
2067 goto page_not_up_to_date;
2068 /* pipes can't handle partially uptodate pages */
2069 if (unlikely(iov_iter_is_pipe(iter)))
2070 goto page_not_up_to_date;
2071 if (!trylock_page(page))
2072 goto page_not_up_to_date;
2073 /* Did it get truncated before we got the lock? */
2074 if (!page->mapping)
2075 goto page_not_up_to_date_locked;
2076 if (!mapping->a_ops->is_partially_uptodate(page,
2077 offset, iter->count))
2078 goto page_not_up_to_date_locked;
2079 unlock_page(page);
2080 }
2081 page_ok:
2082 /*
2083 * i_size must be checked after we know the page is Uptodate.
2084 *
2085 * Checking i_size after the check allows us to calculate
2086 * the correct value for "nr", which means the zero-filled
2087 * part of the page is not copied back to userspace (unless
2088 * another truncate extends the file - this is desired though).
2089 */
2090
2091 isize = i_size_read(inode);
2092 end_index = (isize - 1) >> PAGE_SHIFT;
2093 if (unlikely(!isize || index > end_index)) {
2094 put_page(page);
2095 goto out;
2096 }
2097
2098 /* nr is the maximum number of bytes to copy from this page */
2099 nr = PAGE_SIZE;
2100 if (index == end_index) {
2101 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2102 if (nr <= offset) {
2103 put_page(page);
2104 goto out;
2105 }
2106 }
2107 nr = nr - offset;
2108
2109 /* If users can be writing to this page using arbitrary
2110 * virtual addresses, take care about potential aliasing
2111 * before reading the page on the kernel side.
2112 */
2113 if (mapping_writably_mapped(mapping))
2114 flush_dcache_page(page);
2115
2116 /*
2117 * When a sequential read accesses a page several times,
2118 * only mark it as accessed the first time.
2119 */
2120 if (prev_index != index || offset != prev_offset)
2121 mark_page_accessed(page);
2122 prev_index = index;
2123
2124 /*
2125 * Ok, we have the page, and it's up-to-date, so
2126 * now we can copy it to user space...
2127 */
2128
2129 ret = copy_page_to_iter(page, offset, nr, iter);
2130 offset += ret;
2131 index += offset >> PAGE_SHIFT;
2132 offset &= ~PAGE_MASK;
2133 prev_offset = offset;
2134
2135 put_page(page);
2136 written += ret;
2137 if (!iov_iter_count(iter))
2138 goto out;
2139 if (ret < nr) {
2140 error = -EFAULT;
2141 goto out;
2142 }
2143 continue;
2144
2145 page_not_up_to_date:
2146 /* Get exclusive access to the page ... */
2147 error = lock_page_killable(page);
2148 if (unlikely(error))
2149 goto readpage_error;
2150
2151 page_not_up_to_date_locked:
2152 /* Did it get truncated before we got the lock? */
2153 if (!page->mapping) {
2154 unlock_page(page);
2155 put_page(page);
2156 continue;
2157 }
2158
2159 /* Did somebody else fill it already? */
2160 if (PageUptodate(page)) {
2161 unlock_page(page);
2162 goto page_ok;
2163 }
2164
2165 readpage:
2166 /*
2167 * A previous I/O error may have been due to temporary
2168 * failures, eg. multipath errors.
2169 * PG_error will be set again if readpage fails.
2170 */
2171 ClearPageError(page);
2172 /* Start the actual read. The read will unlock the page. */
2173 error = mapping->a_ops->readpage(filp, page);
2174
2175 if (unlikely(error)) {
2176 if (error == AOP_TRUNCATED_PAGE) {
2177 put_page(page);
2178 error = 0;
2179 goto find_page;
2180 }
2181 goto readpage_error;
2182 }
2183
2184 if (!PageUptodate(page)) {
2185 error = lock_page_killable(page);
2186 if (unlikely(error))
2187 goto readpage_error;
2188 if (!PageUptodate(page)) {
2189 if (page->mapping == NULL) {
2190 /*
2191 * invalidate_mapping_pages got it
2192 */
2193 unlock_page(page);
2194 put_page(page);
2195 goto find_page;
2196 }
2197 unlock_page(page);
2198 shrink_readahead_size_eio(ra);
2199 error = -EIO;
2200 goto readpage_error;
2201 }
2202 unlock_page(page);
2203 }
2204
2205 goto page_ok;
2206
2207 readpage_error:
2208 /* UHHUH! A synchronous read error occurred. Report it */
2209 put_page(page);
2210 goto out;
2211
2212 no_cached_page:
2213 /*
2214 * Ok, it wasn't cached, so we need to create a new
2215 * page..
2216 */
2217 page = page_cache_alloc(mapping);
2218 if (!page) {
2219 error = -ENOMEM;
2220 goto out;
2221 }
2222 error = add_to_page_cache_lru(page, mapping, index,
2223 mapping_gfp_constraint(mapping, GFP_KERNEL));
2224 if (error) {
2225 put_page(page);
2226 if (error == -EEXIST) {
2227 error = 0;
2228 goto find_page;
2229 }
2230 goto out;
2231 }
2232 goto readpage;
2233 }
2234
2235 would_block:
2236 error = -EAGAIN;
2237 out:
2238 ra->prev_pos = prev_index;
2239 ra->prev_pos <<= PAGE_SHIFT;
2240 ra->prev_pos |= prev_offset;
2241
2242 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2243 file_accessed(filp);
2244 return written ? written : error;
2245 }
2246
2247 /**
2248 * generic_file_read_iter - generic filesystem read routine
2249 * @iocb: kernel I/O control block
2250 * @iter: destination for the data read
2251 *
2252 * This is the "read_iter()" routine for all filesystems
2253 * that can use the page cache directly.
2254 * Return:
2255 * * number of bytes copied, even for partial reads
2256 * * negative error code if nothing was read
2257 */
2258 ssize_t
2259 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2260 {
2261 size_t count = iov_iter_count(iter);
2262 ssize_t retval = 0;
2263
2264 if (!count)
2265 goto out; /* skip atime */
2266
2267 if (iocb->ki_flags & IOCB_DIRECT) {
2268 struct file *file = iocb->ki_filp;
2269 struct address_space *mapping = file->f_mapping;
2270 struct inode *inode = mapping->host;
2271 loff_t size;
2272
2273 size = i_size_read(inode);
2274 if (iocb->ki_flags & IOCB_NOWAIT) {
2275 if (filemap_range_has_page(mapping, iocb->ki_pos,
2276 iocb->ki_pos + count - 1))
2277 return -EAGAIN;
2278 } else {
2279 retval = filemap_write_and_wait_range(mapping,
2280 iocb->ki_pos,
2281 iocb->ki_pos + count - 1);
2282 if (retval < 0)
2283 goto out;
2284 }
2285
2286 file_accessed(file);
2287
2288 retval = mapping->a_ops->direct_IO(iocb, iter);
2289 if (retval >= 0) {
2290 iocb->ki_pos += retval;
2291 count -= retval;
2292 }
2293 iov_iter_revert(iter, count - iov_iter_count(iter));
2294
2295 /*
2296 * Btrfs can have a short DIO read if we encounter
2297 * compressed extents, so if there was an error, or if
2298 * we've already read everything we wanted to, or if
2299 * there was a short read because we hit EOF, go ahead
2300 * and return. Otherwise fallthrough to buffered io for
2301 * the rest of the read. Buffered reads will not work for
2302 * DAX files, so don't bother trying.
2303 */
2304 if (retval < 0 || !count || iocb->ki_pos >= size ||
2305 IS_DAX(inode))
2306 goto out;
2307 }
2308
2309 retval = generic_file_buffered_read(iocb, iter, retval);
2310 out:
2311 return retval;
2312 }
2313 EXPORT_SYMBOL(generic_file_read_iter);
2314
2315 #ifdef CONFIG_MMU
2316 #define MMAP_LOTSAMISS (100)
2317 /*
2318 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2319 * @vmf - the vm_fault for this fault.
2320 * @page - the page to lock.
2321 * @fpin - the pointer to the file we may pin (or is already pinned).
2322 *
2323 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2324 * It differs in that it actually returns the page locked if it returns 1 and 0
2325 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2326 * will point to the pinned file and needs to be fput()'ed at a later point.
2327 */
2328 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2329 struct file **fpin)
2330 {
2331 if (trylock_page(page))
2332 return 1;
2333
2334 /*
2335 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2336 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2337 * is supposed to work. We have way too many special cases..
2338 */
2339 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2340 return 0;
2341
2342 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2343 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2344 if (__lock_page_killable(page)) {
2345 /*
2346 * We didn't have the right flags to drop the mmap_sem,
2347 * but all fault_handlers only check for fatal signals
2348 * if we return VM_FAULT_RETRY, so we need to drop the
2349 * mmap_sem here and return 0 if we don't have a fpin.
2350 */
2351 if (*fpin == NULL)
2352 up_read(&vmf->vma->vm_mm->mmap_sem);
2353 return 0;
2354 }
2355 } else
2356 __lock_page(page);
2357 return 1;
2358 }
2359
2360
2361 /*
2362 * Synchronous readahead happens when we don't even find a page in the page
2363 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2364 * to drop the mmap sem we return the file that was pinned in order for us to do
2365 * that. If we didn't pin a file then we return NULL. The file that is
2366 * returned needs to be fput()'ed when we're done with it.
2367 */
2368 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2369 {
2370 struct file *file = vmf->vma->vm_file;
2371 struct file_ra_state *ra = &file->f_ra;
2372 struct address_space *mapping = file->f_mapping;
2373 struct file *fpin = NULL;
2374 pgoff_t offset = vmf->pgoff;
2375
2376 /* If we don't want any read-ahead, don't bother */
2377 if (vmf->vma->vm_flags & VM_RAND_READ)
2378 return fpin;
2379 if (!ra->ra_pages)
2380 return fpin;
2381
2382 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2383 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2384 page_cache_sync_readahead(mapping, ra, file, offset,
2385 ra->ra_pages);
2386 return fpin;
2387 }
2388
2389 /* Avoid banging the cache line if not needed */
2390 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2391 ra->mmap_miss++;
2392
2393 /*
2394 * Do we miss much more than hit in this file? If so,
2395 * stop bothering with read-ahead. It will only hurt.
2396 */
2397 if (ra->mmap_miss > MMAP_LOTSAMISS)
2398 return fpin;
2399
2400 /*
2401 * mmap read-around
2402 */
2403 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2404 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2405 ra->size = ra->ra_pages;
2406 ra->async_size = ra->ra_pages / 4;
2407 ra_submit(ra, mapping, file);
2408 return fpin;
2409 }
2410
2411 /*
2412 * Asynchronous readahead happens when we find the page and PG_readahead,
2413 * so we want to possibly extend the readahead further. We return the file that
2414 * was pinned if we have to drop the mmap_sem in order to do IO.
2415 */
2416 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2417 struct page *page)
2418 {
2419 struct file *file = vmf->vma->vm_file;
2420 struct file_ra_state *ra = &file->f_ra;
2421 struct address_space *mapping = file->f_mapping;
2422 struct file *fpin = NULL;
2423 pgoff_t offset = vmf->pgoff;
2424
2425 /* If we don't want any read-ahead, don't bother */
2426 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2427 return fpin;
2428 if (ra->mmap_miss > 0)
2429 ra->mmap_miss--;
2430 if (PageReadahead(page)) {
2431 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2432 page_cache_async_readahead(mapping, ra, file,
2433 page, offset, ra->ra_pages);
2434 }
2435 return fpin;
2436 }
2437
2438 /**
2439 * filemap_fault - read in file data for page fault handling
2440 * @vmf: struct vm_fault containing details of the fault
2441 *
2442 * filemap_fault() is invoked via the vma operations vector for a
2443 * mapped memory region to read in file data during a page fault.
2444 *
2445 * The goto's are kind of ugly, but this streamlines the normal case of having
2446 * it in the page cache, and handles the special cases reasonably without
2447 * having a lot of duplicated code.
2448 *
2449 * vma->vm_mm->mmap_sem must be held on entry.
2450 *
2451 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2452 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2453 *
2454 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2455 * has not been released.
2456 *
2457 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2458 *
2459 * Return: bitwise-OR of %VM_FAULT_ codes.
2460 */
2461 vm_fault_t filemap_fault(struct vm_fault *vmf)
2462 {
2463 int error;
2464 struct file *file = vmf->vma->vm_file;
2465 struct file *fpin = NULL;
2466 struct address_space *mapping = file->f_mapping;
2467 struct file_ra_state *ra = &file->f_ra;
2468 struct inode *inode = mapping->host;
2469 pgoff_t offset = vmf->pgoff;
2470 pgoff_t max_off;
2471 struct page *page;
2472 vm_fault_t ret = 0;
2473
2474 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2475 if (unlikely(offset >= max_off))
2476 return VM_FAULT_SIGBUS;
2477
2478 /*
2479 * Do we have something in the page cache already?
2480 */
2481 page = find_get_page(mapping, offset);
2482 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2483 /*
2484 * We found the page, so try async readahead before
2485 * waiting for the lock.
2486 */
2487 fpin = do_async_mmap_readahead(vmf, page);
2488 } else if (!page) {
2489 /* No page in the page cache at all */
2490 count_vm_event(PGMAJFAULT);
2491 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2492 ret = VM_FAULT_MAJOR;
2493 fpin = do_sync_mmap_readahead(vmf);
2494 retry_find:
2495 page = pagecache_get_page(mapping, offset,
2496 FGP_CREAT|FGP_FOR_MMAP,
2497 vmf->gfp_mask);
2498 if (!page) {
2499 if (fpin)
2500 goto out_retry;
2501 return VM_FAULT_OOM;
2502 }
2503 }
2504
2505 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2506 goto out_retry;
2507
2508 /* Did it get truncated? */
2509 if (unlikely(compound_head(page)->mapping != mapping)) {
2510 unlock_page(page);
2511 put_page(page);
2512 goto retry_find;
2513 }
2514 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2515
2516 /*
2517 * We have a locked page in the page cache, now we need to check
2518 * that it's up-to-date. If not, it is going to be due to an error.
2519 */
2520 if (unlikely(!PageUptodate(page)))
2521 goto page_not_uptodate;
2522
2523 /*
2524 * We've made it this far and we had to drop our mmap_sem, now is the
2525 * time to return to the upper layer and have it re-find the vma and
2526 * redo the fault.
2527 */
2528 if (fpin) {
2529 unlock_page(page);
2530 goto out_retry;
2531 }
2532
2533 /*
2534 * Found the page and have a reference on it.
2535 * We must recheck i_size under page lock.
2536 */
2537 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2538 if (unlikely(offset >= max_off)) {
2539 unlock_page(page);
2540 put_page(page);
2541 return VM_FAULT_SIGBUS;
2542 }
2543
2544 vmf->page = page;
2545 return ret | VM_FAULT_LOCKED;
2546
2547 page_not_uptodate:
2548 /*
2549 * Umm, take care of errors if the page isn't up-to-date.
2550 * Try to re-read it _once_. We do this synchronously,
2551 * because there really aren't any performance issues here
2552 * and we need to check for errors.
2553 */
2554 ClearPageError(page);
2555 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2556 error = mapping->a_ops->readpage(file, page);
2557 if (!error) {
2558 wait_on_page_locked(page);
2559 if (!PageUptodate(page))
2560 error = -EIO;
2561 }
2562 if (fpin)
2563 goto out_retry;
2564 put_page(page);
2565
2566 if (!error || error == AOP_TRUNCATED_PAGE)
2567 goto retry_find;
2568
2569 /* Things didn't work out. Return zero to tell the mm layer so. */
2570 shrink_readahead_size_eio(ra);
2571 return VM_FAULT_SIGBUS;
2572
2573 out_retry:
2574 /*
2575 * We dropped the mmap_sem, we need to return to the fault handler to
2576 * re-find the vma and come back and find our hopefully still populated
2577 * page.
2578 */
2579 if (page)
2580 put_page(page);
2581 if (fpin)
2582 fput(fpin);
2583 return ret | VM_FAULT_RETRY;
2584 }
2585 EXPORT_SYMBOL(filemap_fault);
2586
2587 void filemap_map_pages(struct vm_fault *vmf,
2588 pgoff_t start_pgoff, pgoff_t end_pgoff)
2589 {
2590 struct file *file = vmf->vma->vm_file;
2591 struct address_space *mapping = file->f_mapping;
2592 pgoff_t last_pgoff = start_pgoff;
2593 unsigned long max_idx;
2594 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2595 struct page *page;
2596
2597 rcu_read_lock();
2598 xas_for_each(&xas, page, end_pgoff) {
2599 if (xas_retry(&xas, page))
2600 continue;
2601 if (xa_is_value(page))
2602 goto next;
2603
2604 /*
2605 * Check for a locked page first, as a speculative
2606 * reference may adversely influence page migration.
2607 */
2608 if (PageLocked(page))
2609 goto next;
2610 if (!page_cache_get_speculative(page))
2611 goto next;
2612
2613 /* Has the page moved or been split? */
2614 if (unlikely(page != xas_reload(&xas)))
2615 goto skip;
2616 page = find_subpage(page, xas.xa_index);
2617
2618 if (!PageUptodate(page) ||
2619 PageReadahead(page) ||
2620 PageHWPoison(page))
2621 goto skip;
2622 if (!trylock_page(page))
2623 goto skip;
2624
2625 if (page->mapping != mapping || !PageUptodate(page))
2626 goto unlock;
2627
2628 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2629 if (page->index >= max_idx)
2630 goto unlock;
2631
2632 if (file->f_ra.mmap_miss > 0)
2633 file->f_ra.mmap_miss--;
2634
2635 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2636 if (vmf->pte)
2637 vmf->pte += xas.xa_index - last_pgoff;
2638 last_pgoff = xas.xa_index;
2639 if (alloc_set_pte(vmf, NULL, page))
2640 goto unlock;
2641 unlock_page(page);
2642 goto next;
2643 unlock:
2644 unlock_page(page);
2645 skip:
2646 put_page(page);
2647 next:
2648 /* Huge page is mapped? No need to proceed. */
2649 if (pmd_trans_huge(*vmf->pmd))
2650 break;
2651 }
2652 rcu_read_unlock();
2653 }
2654 EXPORT_SYMBOL(filemap_map_pages);
2655
2656 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2657 {
2658 struct page *page = vmf->page;
2659 struct inode *inode = file_inode(vmf->vma->vm_file);
2660 vm_fault_t ret = VM_FAULT_LOCKED;
2661
2662 sb_start_pagefault(inode->i_sb);
2663 file_update_time(vmf->vma->vm_file);
2664 lock_page(page);
2665 if (page->mapping != inode->i_mapping) {
2666 unlock_page(page);
2667 ret = VM_FAULT_NOPAGE;
2668 goto out;
2669 }
2670 /*
2671 * We mark the page dirty already here so that when freeze is in
2672 * progress, we are guaranteed that writeback during freezing will
2673 * see the dirty page and writeprotect it again.
2674 */
2675 set_page_dirty(page);
2676 wait_for_stable_page(page);
2677 out:
2678 sb_end_pagefault(inode->i_sb);
2679 return ret;
2680 }
2681
2682 const struct vm_operations_struct generic_file_vm_ops = {
2683 .fault = filemap_fault,
2684 .map_pages = filemap_map_pages,
2685 .page_mkwrite = filemap_page_mkwrite,
2686 };
2687
2688 /* This is used for a general mmap of a disk file */
2689
2690 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2691 {
2692 struct address_space *mapping = file->f_mapping;
2693
2694 if (!mapping->a_ops->readpage)
2695 return -ENOEXEC;
2696 file_accessed(file);
2697 vma->vm_ops = &generic_file_vm_ops;
2698 return 0;
2699 }
2700
2701 /*
2702 * This is for filesystems which do not implement ->writepage.
2703 */
2704 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2705 {
2706 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2707 return -EINVAL;
2708 return generic_file_mmap(file, vma);
2709 }
2710 #else
2711 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2712 {
2713 return VM_FAULT_SIGBUS;
2714 }
2715 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2716 {
2717 return -ENOSYS;
2718 }
2719 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2720 {
2721 return -ENOSYS;
2722 }
2723 #endif /* CONFIG_MMU */
2724
2725 EXPORT_SYMBOL(filemap_page_mkwrite);
2726 EXPORT_SYMBOL(generic_file_mmap);
2727 EXPORT_SYMBOL(generic_file_readonly_mmap);
2728
2729 static struct page *wait_on_page_read(struct page *page)
2730 {
2731 if (!IS_ERR(page)) {
2732 wait_on_page_locked(page);
2733 if (!PageUptodate(page)) {
2734 put_page(page);
2735 page = ERR_PTR(-EIO);
2736 }
2737 }
2738 return page;
2739 }
2740
2741 static struct page *do_read_cache_page(struct address_space *mapping,
2742 pgoff_t index,
2743 int (*filler)(void *, struct page *),
2744 void *data,
2745 gfp_t gfp)
2746 {
2747 struct page *page;
2748 int err;
2749 repeat:
2750 page = find_get_page(mapping, index);
2751 if (!page) {
2752 page = __page_cache_alloc(gfp);
2753 if (!page)
2754 return ERR_PTR(-ENOMEM);
2755 err = add_to_page_cache_lru(page, mapping, index, gfp);
2756 if (unlikely(err)) {
2757 put_page(page);
2758 if (err == -EEXIST)
2759 goto repeat;
2760 /* Presumably ENOMEM for xarray node */
2761 return ERR_PTR(err);
2762 }
2763
2764 filler:
2765 if (filler)
2766 err = filler(data, page);
2767 else
2768 err = mapping->a_ops->readpage(data, page);
2769
2770 if (err < 0) {
2771 put_page(page);
2772 return ERR_PTR(err);
2773 }
2774
2775 page = wait_on_page_read(page);
2776 if (IS_ERR(page))
2777 return page;
2778 goto out;
2779 }
2780 if (PageUptodate(page))
2781 goto out;
2782
2783 /*
2784 * Page is not up to date and may be locked due one of the following
2785 * case a: Page is being filled and the page lock is held
2786 * case b: Read/write error clearing the page uptodate status
2787 * case c: Truncation in progress (page locked)
2788 * case d: Reclaim in progress
2789 *
2790 * Case a, the page will be up to date when the page is unlocked.
2791 * There is no need to serialise on the page lock here as the page
2792 * is pinned so the lock gives no additional protection. Even if the
2793 * the page is truncated, the data is still valid if PageUptodate as
2794 * it's a race vs truncate race.
2795 * Case b, the page will not be up to date
2796 * Case c, the page may be truncated but in itself, the data may still
2797 * be valid after IO completes as it's a read vs truncate race. The
2798 * operation must restart if the page is not uptodate on unlock but
2799 * otherwise serialising on page lock to stabilise the mapping gives
2800 * no additional guarantees to the caller as the page lock is
2801 * released before return.
2802 * Case d, similar to truncation. If reclaim holds the page lock, it
2803 * will be a race with remove_mapping that determines if the mapping
2804 * is valid on unlock but otherwise the data is valid and there is
2805 * no need to serialise with page lock.
2806 *
2807 * As the page lock gives no additional guarantee, we optimistically
2808 * wait on the page to be unlocked and check if it's up to date and
2809 * use the page if it is. Otherwise, the page lock is required to
2810 * distinguish between the different cases. The motivation is that we
2811 * avoid spurious serialisations and wakeups when multiple processes
2812 * wait on the same page for IO to complete.
2813 */
2814 wait_on_page_locked(page);
2815 if (PageUptodate(page))
2816 goto out;
2817
2818 /* Distinguish between all the cases under the safety of the lock */
2819 lock_page(page);
2820
2821 /* Case c or d, restart the operation */
2822 if (!page->mapping) {
2823 unlock_page(page);
2824 put_page(page);
2825 goto repeat;
2826 }
2827
2828 /* Someone else locked and filled the page in a very small window */
2829 if (PageUptodate(page)) {
2830 unlock_page(page);
2831 goto out;
2832 }
2833
2834 /*
2835 * A previous I/O error may have been due to temporary
2836 * failures.
2837 * Clear page error before actual read, PG_error will be
2838 * set again if read page fails.
2839 */
2840 ClearPageError(page);
2841 goto filler;
2842
2843 out:
2844 mark_page_accessed(page);
2845 return page;
2846 }
2847
2848 /**
2849 * read_cache_page - read into page cache, fill it if needed
2850 * @mapping: the page's address_space
2851 * @index: the page index
2852 * @filler: function to perform the read
2853 * @data: first arg to filler(data, page) function, often left as NULL
2854 *
2855 * Read into the page cache. If a page already exists, and PageUptodate() is
2856 * not set, try to fill the page and wait for it to become unlocked.
2857 *
2858 * If the page does not get brought uptodate, return -EIO.
2859 *
2860 * Return: up to date page on success, ERR_PTR() on failure.
2861 */
2862 struct page *read_cache_page(struct address_space *mapping,
2863 pgoff_t index,
2864 int (*filler)(void *, struct page *),
2865 void *data)
2866 {
2867 return do_read_cache_page(mapping, index, filler, data,
2868 mapping_gfp_mask(mapping));
2869 }
2870 EXPORT_SYMBOL(read_cache_page);
2871
2872 /**
2873 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2874 * @mapping: the page's address_space
2875 * @index: the page index
2876 * @gfp: the page allocator flags to use if allocating
2877 *
2878 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2879 * any new page allocations done using the specified allocation flags.
2880 *
2881 * If the page does not get brought uptodate, return -EIO.
2882 *
2883 * Return: up to date page on success, ERR_PTR() on failure.
2884 */
2885 struct page *read_cache_page_gfp(struct address_space *mapping,
2886 pgoff_t index,
2887 gfp_t gfp)
2888 {
2889 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2890 }
2891 EXPORT_SYMBOL(read_cache_page_gfp);
2892
2893 /*
2894 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2895 * LFS limits. If pos is under the limit it becomes a short access. If it
2896 * exceeds the limit we return -EFBIG.
2897 */
2898 static int generic_write_check_limits(struct file *file, loff_t pos,
2899 loff_t *count)
2900 {
2901 struct inode *inode = file->f_mapping->host;
2902 loff_t max_size = inode->i_sb->s_maxbytes;
2903 loff_t limit = rlimit(RLIMIT_FSIZE);
2904
2905 if (limit != RLIM_INFINITY) {
2906 if (pos >= limit) {
2907 send_sig(SIGXFSZ, current, 0);
2908 return -EFBIG;
2909 }
2910 *count = min(*count, limit - pos);
2911 }
2912
2913 if (!(file->f_flags & O_LARGEFILE))
2914 max_size = MAX_NON_LFS;
2915
2916 if (unlikely(pos >= max_size))
2917 return -EFBIG;
2918
2919 *count = min(*count, max_size - pos);
2920
2921 return 0;
2922 }
2923
2924 /*
2925 * Performs necessary checks before doing a write
2926 *
2927 * Can adjust writing position or amount of bytes to write.
2928 * Returns appropriate error code that caller should return or
2929 * zero in case that write should be allowed.
2930 */
2931 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2932 {
2933 struct file *file = iocb->ki_filp;
2934 struct inode *inode = file->f_mapping->host;
2935 loff_t count;
2936 int ret;
2937
2938 if (IS_SWAPFILE(inode))
2939 return -ETXTBSY;
2940
2941 if (!iov_iter_count(from))
2942 return 0;
2943
2944 /* FIXME: this is for backwards compatibility with 2.4 */
2945 if (iocb->ki_flags & IOCB_APPEND)
2946 iocb->ki_pos = i_size_read(inode);
2947
2948 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2949 return -EINVAL;
2950
2951 count = iov_iter_count(from);
2952 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2953 if (ret)
2954 return ret;
2955
2956 iov_iter_truncate(from, count);
2957 return iov_iter_count(from);
2958 }
2959 EXPORT_SYMBOL(generic_write_checks);
2960
2961 /*
2962 * Performs necessary checks before doing a clone.
2963 *
2964 * Can adjust amount of bytes to clone via @req_count argument.
2965 * Returns appropriate error code that caller should return or
2966 * zero in case the clone should be allowed.
2967 */
2968 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2969 struct file *file_out, loff_t pos_out,
2970 loff_t *req_count, unsigned int remap_flags)
2971 {
2972 struct inode *inode_in = file_in->f_mapping->host;
2973 struct inode *inode_out = file_out->f_mapping->host;
2974 uint64_t count = *req_count;
2975 uint64_t bcount;
2976 loff_t size_in, size_out;
2977 loff_t bs = inode_out->i_sb->s_blocksize;
2978 int ret;
2979
2980 /* The start of both ranges must be aligned to an fs block. */
2981 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2982 return -EINVAL;
2983
2984 /* Ensure offsets don't wrap. */
2985 if (pos_in + count < pos_in || pos_out + count < pos_out)
2986 return -EINVAL;
2987
2988 size_in = i_size_read(inode_in);
2989 size_out = i_size_read(inode_out);
2990
2991 /* Dedupe requires both ranges to be within EOF. */
2992 if ((remap_flags & REMAP_FILE_DEDUP) &&
2993 (pos_in >= size_in || pos_in + count > size_in ||
2994 pos_out >= size_out || pos_out + count > size_out))
2995 return -EINVAL;
2996
2997 /* Ensure the infile range is within the infile. */
2998 if (pos_in >= size_in)
2999 return -EINVAL;
3000 count = min(count, size_in - (uint64_t)pos_in);
3001
3002 ret = generic_write_check_limits(file_out, pos_out, &count);
3003 if (ret)
3004 return ret;
3005
3006 /*
3007 * If the user wanted us to link to the infile's EOF, round up to the
3008 * next block boundary for this check.
3009 *
3010 * Otherwise, make sure the count is also block-aligned, having
3011 * already confirmed the starting offsets' block alignment.
3012 */
3013 if (pos_in + count == size_in) {
3014 bcount = ALIGN(size_in, bs) - pos_in;
3015 } else {
3016 if (!IS_ALIGNED(count, bs))
3017 count = ALIGN_DOWN(count, bs);
3018 bcount = count;
3019 }
3020
3021 /* Don't allow overlapped cloning within the same file. */
3022 if (inode_in == inode_out &&
3023 pos_out + bcount > pos_in &&
3024 pos_out < pos_in + bcount)
3025 return -EINVAL;
3026
3027 /*
3028 * We shortened the request but the caller can't deal with that, so
3029 * bounce the request back to userspace.
3030 */
3031 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3032 return -EINVAL;
3033
3034 *req_count = count;
3035 return 0;
3036 }
3037
3038
3039 /*
3040 * Performs common checks before doing a file copy/clone
3041 * from @file_in to @file_out.
3042 */
3043 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3044 {
3045 struct inode *inode_in = file_inode(file_in);
3046 struct inode *inode_out = file_inode(file_out);
3047
3048 /* Don't copy dirs, pipes, sockets... */
3049 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3050 return -EISDIR;
3051 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3052 return -EINVAL;
3053
3054 if (!(file_in->f_mode & FMODE_READ) ||
3055 !(file_out->f_mode & FMODE_WRITE) ||
3056 (file_out->f_flags & O_APPEND))
3057 return -EBADF;
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * Performs necessary checks before doing a file copy
3064 *
3065 * Can adjust amount of bytes to copy via @req_count argument.
3066 * Returns appropriate error code that caller should return or
3067 * zero in case the copy should be allowed.
3068 */
3069 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3070 struct file *file_out, loff_t pos_out,
3071 size_t *req_count, unsigned int flags)
3072 {
3073 struct inode *inode_in = file_inode(file_in);
3074 struct inode *inode_out = file_inode(file_out);
3075 uint64_t count = *req_count;
3076 loff_t size_in;
3077 int ret;
3078
3079 ret = generic_file_rw_checks(file_in, file_out);
3080 if (ret)
3081 return ret;
3082
3083 /* Don't touch certain kinds of inodes */
3084 if (IS_IMMUTABLE(inode_out))
3085 return -EPERM;
3086
3087 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3088 return -ETXTBSY;
3089
3090 /* Ensure offsets don't wrap. */
3091 if (pos_in + count < pos_in || pos_out + count < pos_out)
3092 return -EOVERFLOW;
3093
3094 /* Shorten the copy to EOF */
3095 size_in = i_size_read(inode_in);
3096 if (pos_in >= size_in)
3097 count = 0;
3098 else
3099 count = min(count, size_in - (uint64_t)pos_in);
3100
3101 ret = generic_write_check_limits(file_out, pos_out, &count);
3102 if (ret)
3103 return ret;
3104
3105 /* Don't allow overlapped copying within the same file. */
3106 if (inode_in == inode_out &&
3107 pos_out + count > pos_in &&
3108 pos_out < pos_in + count)
3109 return -EINVAL;
3110
3111 *req_count = count;
3112 return 0;
3113 }
3114
3115 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3116 loff_t pos, unsigned len, unsigned flags,
3117 struct page **pagep, void **fsdata)
3118 {
3119 const struct address_space_operations *aops = mapping->a_ops;
3120
3121 return aops->write_begin(file, mapping, pos, len, flags,
3122 pagep, fsdata);
3123 }
3124 EXPORT_SYMBOL(pagecache_write_begin);
3125
3126 int pagecache_write_end(struct file *file, struct address_space *mapping,
3127 loff_t pos, unsigned len, unsigned copied,
3128 struct page *page, void *fsdata)
3129 {
3130 const struct address_space_operations *aops = mapping->a_ops;
3131
3132 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3133 }
3134 EXPORT_SYMBOL(pagecache_write_end);
3135
3136 /*
3137 * Warn about a page cache invalidation failure during a direct I/O write.
3138 */
3139 void dio_warn_stale_pagecache(struct file *filp)
3140 {
3141 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3142 char pathname[128];
3143 struct inode *inode = file_inode(filp);
3144 char *path;
3145
3146 errseq_set(&inode->i_mapping->wb_err, -EIO);
3147 if (__ratelimit(&_rs)) {
3148 path = file_path(filp, pathname, sizeof(pathname));
3149 if (IS_ERR(path))
3150 path = "(unknown)";
3151 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3152 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3153 current->comm);
3154 }
3155 }
3156
3157 ssize_t
3158 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3159 {
3160 struct file *file = iocb->ki_filp;
3161 struct address_space *mapping = file->f_mapping;
3162 struct inode *inode = mapping->host;
3163 loff_t pos = iocb->ki_pos;
3164 ssize_t written;
3165 size_t write_len;
3166 pgoff_t end;
3167
3168 write_len = iov_iter_count(from);
3169 end = (pos + write_len - 1) >> PAGE_SHIFT;
3170
3171 if (iocb->ki_flags & IOCB_NOWAIT) {
3172 /* If there are pages to writeback, return */
3173 if (filemap_range_has_page(inode->i_mapping, pos,
3174 pos + write_len - 1))
3175 return -EAGAIN;
3176 } else {
3177 written = filemap_write_and_wait_range(mapping, pos,
3178 pos + write_len - 1);
3179 if (written)
3180 goto out;
3181 }
3182
3183 /*
3184 * After a write we want buffered reads to be sure to go to disk to get
3185 * the new data. We invalidate clean cached page from the region we're
3186 * about to write. We do this *before* the write so that we can return
3187 * without clobbering -EIOCBQUEUED from ->direct_IO().
3188 */
3189 written = invalidate_inode_pages2_range(mapping,
3190 pos >> PAGE_SHIFT, end);
3191 /*
3192 * If a page can not be invalidated, return 0 to fall back
3193 * to buffered write.
3194 */
3195 if (written) {
3196 if (written == -EBUSY)
3197 return 0;
3198 goto out;
3199 }
3200
3201 written = mapping->a_ops->direct_IO(iocb, from);
3202
3203 /*
3204 * Finally, try again to invalidate clean pages which might have been
3205 * cached by non-direct readahead, or faulted in by get_user_pages()
3206 * if the source of the write was an mmap'ed region of the file
3207 * we're writing. Either one is a pretty crazy thing to do,
3208 * so we don't support it 100%. If this invalidation
3209 * fails, tough, the write still worked...
3210 *
3211 * Most of the time we do not need this since dio_complete() will do
3212 * the invalidation for us. However there are some file systems that
3213 * do not end up with dio_complete() being called, so let's not break
3214 * them by removing it completely.
3215 *
3216 * Noticeable example is a blkdev_direct_IO().
3217 *
3218 * Skip invalidation for async writes or if mapping has no pages.
3219 */
3220 if (written > 0 && mapping->nrpages &&
3221 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3222 dio_warn_stale_pagecache(file);
3223
3224 if (written > 0) {
3225 pos += written;
3226 write_len -= written;
3227 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3228 i_size_write(inode, pos);
3229 mark_inode_dirty(inode);
3230 }
3231 iocb->ki_pos = pos;
3232 }
3233 iov_iter_revert(from, write_len - iov_iter_count(from));
3234 out:
3235 return written;
3236 }
3237 EXPORT_SYMBOL(generic_file_direct_write);
3238
3239 /*
3240 * Find or create a page at the given pagecache position. Return the locked
3241 * page. This function is specifically for buffered writes.
3242 */
3243 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3244 pgoff_t index, unsigned flags)
3245 {
3246 struct page *page;
3247 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3248
3249 if (flags & AOP_FLAG_NOFS)
3250 fgp_flags |= FGP_NOFS;
3251
3252 page = pagecache_get_page(mapping, index, fgp_flags,
3253 mapping_gfp_mask(mapping));
3254 if (page)
3255 wait_for_stable_page(page);
3256
3257 return page;
3258 }
3259 EXPORT_SYMBOL(grab_cache_page_write_begin);
3260
3261 ssize_t generic_perform_write(struct file *file,
3262 struct iov_iter *i, loff_t pos)
3263 {
3264 struct address_space *mapping = file->f_mapping;
3265 const struct address_space_operations *a_ops = mapping->a_ops;
3266 long status = 0;
3267 ssize_t written = 0;
3268 unsigned int flags = 0;
3269
3270 do {
3271 struct page *page;
3272 unsigned long offset; /* Offset into pagecache page */
3273 unsigned long bytes; /* Bytes to write to page */
3274 size_t copied; /* Bytes copied from user */
3275 void *fsdata;
3276
3277 offset = (pos & (PAGE_SIZE - 1));
3278 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3279 iov_iter_count(i));
3280
3281 again:
3282 /*
3283 * Bring in the user page that we will copy from _first_.
3284 * Otherwise there's a nasty deadlock on copying from the
3285 * same page as we're writing to, without it being marked
3286 * up-to-date.
3287 *
3288 * Not only is this an optimisation, but it is also required
3289 * to check that the address is actually valid, when atomic
3290 * usercopies are used, below.
3291 */
3292 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3293 status = -EFAULT;
3294 break;
3295 }
3296
3297 if (fatal_signal_pending(current)) {
3298 status = -EINTR;
3299 break;
3300 }
3301
3302 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3303 &page, &fsdata);
3304 if (unlikely(status < 0))
3305 break;
3306
3307 if (mapping_writably_mapped(mapping))
3308 flush_dcache_page(page);
3309
3310 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3311 flush_dcache_page(page);
3312
3313 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3314 page, fsdata);
3315 if (unlikely(status < 0))
3316 break;
3317 copied = status;
3318
3319 cond_resched();
3320
3321 iov_iter_advance(i, copied);
3322 if (unlikely(copied == 0)) {
3323 /*
3324 * If we were unable to copy any data at all, we must
3325 * fall back to a single segment length write.
3326 *
3327 * If we didn't fallback here, we could livelock
3328 * because not all segments in the iov can be copied at
3329 * once without a pagefault.
3330 */
3331 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3332 iov_iter_single_seg_count(i));
3333 goto again;
3334 }
3335 pos += copied;
3336 written += copied;
3337
3338 balance_dirty_pages_ratelimited(mapping);
3339 } while (iov_iter_count(i));
3340
3341 return written ? written : status;
3342 }
3343 EXPORT_SYMBOL(generic_perform_write);
3344
3345 /**
3346 * __generic_file_write_iter - write data to a file
3347 * @iocb: IO state structure (file, offset, etc.)
3348 * @from: iov_iter with data to write
3349 *
3350 * This function does all the work needed for actually writing data to a
3351 * file. It does all basic checks, removes SUID from the file, updates
3352 * modification times and calls proper subroutines depending on whether we
3353 * do direct IO or a standard buffered write.
3354 *
3355 * It expects i_mutex to be grabbed unless we work on a block device or similar
3356 * object which does not need locking at all.
3357 *
3358 * This function does *not* take care of syncing data in case of O_SYNC write.
3359 * A caller has to handle it. This is mainly due to the fact that we want to
3360 * avoid syncing under i_mutex.
3361 *
3362 * Return:
3363 * * number of bytes written, even for truncated writes
3364 * * negative error code if no data has been written at all
3365 */
3366 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3367 {
3368 struct file *file = iocb->ki_filp;
3369 struct address_space * mapping = file->f_mapping;
3370 struct inode *inode = mapping->host;
3371 ssize_t written = 0;
3372 ssize_t err;
3373 ssize_t status;
3374
3375 /* We can write back this queue in page reclaim */
3376 current->backing_dev_info = inode_to_bdi(inode);
3377 err = file_remove_privs(file);
3378 if (err)
3379 goto out;
3380
3381 err = file_update_time(file);
3382 if (err)
3383 goto out;
3384
3385 if (iocb->ki_flags & IOCB_DIRECT) {
3386 loff_t pos, endbyte;
3387
3388 written = generic_file_direct_write(iocb, from);
3389 /*
3390 * If the write stopped short of completing, fall back to
3391 * buffered writes. Some filesystems do this for writes to
3392 * holes, for example. For DAX files, a buffered write will
3393 * not succeed (even if it did, DAX does not handle dirty
3394 * page-cache pages correctly).
3395 */
3396 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3397 goto out;
3398
3399 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3400 /*
3401 * If generic_perform_write() returned a synchronous error
3402 * then we want to return the number of bytes which were
3403 * direct-written, or the error code if that was zero. Note
3404 * that this differs from normal direct-io semantics, which
3405 * will return -EFOO even if some bytes were written.
3406 */
3407 if (unlikely(status < 0)) {
3408 err = status;
3409 goto out;
3410 }
3411 /*
3412 * We need to ensure that the page cache pages are written to
3413 * disk and invalidated to preserve the expected O_DIRECT
3414 * semantics.
3415 */
3416 endbyte = pos + status - 1;
3417 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3418 if (err == 0) {
3419 iocb->ki_pos = endbyte + 1;
3420 written += status;
3421 invalidate_mapping_pages(mapping,
3422 pos >> PAGE_SHIFT,
3423 endbyte >> PAGE_SHIFT);
3424 } else {
3425 /*
3426 * We don't know how much we wrote, so just return
3427 * the number of bytes which were direct-written
3428 */
3429 }
3430 } else {
3431 written = generic_perform_write(file, from, iocb->ki_pos);
3432 if (likely(written > 0))
3433 iocb->ki_pos += written;
3434 }
3435 out:
3436 current->backing_dev_info = NULL;
3437 return written ? written : err;
3438 }
3439 EXPORT_SYMBOL(__generic_file_write_iter);
3440
3441 /**
3442 * generic_file_write_iter - write data to a file
3443 * @iocb: IO state structure
3444 * @from: iov_iter with data to write
3445 *
3446 * This is a wrapper around __generic_file_write_iter() to be used by most
3447 * filesystems. It takes care of syncing the file in case of O_SYNC file
3448 * and acquires i_mutex as needed.
3449 * Return:
3450 * * negative error code if no data has been written at all of
3451 * vfs_fsync_range() failed for a synchronous write
3452 * * number of bytes written, even for truncated writes
3453 */
3454 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3455 {
3456 struct file *file = iocb->ki_filp;
3457 struct inode *inode = file->f_mapping->host;
3458 ssize_t ret;
3459
3460 inode_lock(inode);
3461 ret = generic_write_checks(iocb, from);
3462 if (ret > 0)
3463 ret = __generic_file_write_iter(iocb, from);
3464 inode_unlock(inode);
3465
3466 if (ret > 0)
3467 ret = generic_write_sync(iocb, ret);
3468 return ret;
3469 }
3470 EXPORT_SYMBOL(generic_file_write_iter);
3471
3472 /**
3473 * try_to_release_page() - release old fs-specific metadata on a page
3474 *
3475 * @page: the page which the kernel is trying to free
3476 * @gfp_mask: memory allocation flags (and I/O mode)
3477 *
3478 * The address_space is to try to release any data against the page
3479 * (presumably at page->private).
3480 *
3481 * This may also be called if PG_fscache is set on a page, indicating that the
3482 * page is known to the local caching routines.
3483 *
3484 * The @gfp_mask argument specifies whether I/O may be performed to release
3485 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3486 *
3487 * Return: %1 if the release was successful, otherwise return zero.
3488 */
3489 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3490 {
3491 struct address_space * const mapping = page->mapping;
3492
3493 BUG_ON(!PageLocked(page));
3494 if (PageWriteback(page))
3495 return 0;
3496
3497 if (mapping && mapping->a_ops->releasepage)
3498 return mapping->a_ops->releasepage(page, gfp_mask);
3499 return try_to_free_buffers(page);
3500 }
3501
3502 EXPORT_SYMBOL(try_to_release_page);